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ATTRIBUTION
• These slides incorporate material from:

• Diego Ongaro and John Ousterhout, Stanford University
• Distributed Systems, 2nd Edition, Sukumar Ghosh



REQUIRED READING

In Search of an Understandable Consensus Algorithm (Extended Version) by Diego 
Ongaro and John Ousterhout (https://raft.github.io/raft.pdf).
- Section 1, 2, 4, 5, 8, and 11 are required reading
- Sections 3, 6, 7, 9, 10, and 12 are optional and not necessary for your project
- You will not be implementing log compaction or membership changes!

To study for this topic, please refer to the paper.  Consensus protocols are very 
subtle and studying these slides and/or rewatching the lecture will NOT be 
sufficient for obtaining a deep understanding of the RAFT protocol.

https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf


ROADMAP ON APPROACHES TO FAULT TOLERANCE

# servers that can 
fail before data is 
lost

Accepts updates 
and serves clients 
during failures

# servers that 
need to be 
operational to 
accept updates 
and serve clients

Transaction 
coordinator (or 
leader) can fail

Single replica 0 No 1 N/A

N replicas w/ 2-PC N-1 No N No

N replicas w/ RAFT 
algorithm N/2  (N is odd) Yes (up to N/2 

failures) Ceil(N/2)  (N is odd) Yes



OUTLINE

1. Quorums

2. Formulate system logic as a state 
machine

3. Election to choose the leader

4. Leader replicates operations to 
multiple backup state machines

5. Mechanism to “clean up” system 
when leader fails



SURFSTORE METADATA SERVER PROBLEM

Surfstore
Client

All data is lost!

UpdateFile(
file=“kitten.jpg”,
ver=2,
hashlist = {h3,h4}

);



IDEA 1: ADAPT TWO-PHASE COMMIT TO SAVE DATA

1. C à TC: “UpdateFile()”

2. TC à Seoul (S), Mumbai (M): 
“prepare!”

3. S, M àP: “yes” or “wrong_version”

4. TC àS, M: “commit!” or “abort!”

• TC sends commit if bothsay yes

• TCsends abort if eithersay no

5. TC àC: “okay” or “failed”

• S, M commit on receipt of commit 
message

Client C

Transaction 
Coordinator TC

okay

Seoul

Mumbai



IDEA 2: ASSUME TC DOESN’T FAIL (FOR NOW)

1. C à TC: “UpdateFile()”

2. TC à Seoul (S), Mumbai (M): 
“prepare!”

3. S, M àP: “yes” [why always yes?]

4. TC àS, M: “commit!”

• TC sends commit

5. TC àC: “okay”

• S, M commit on receipt of commit 
message

• Why do we still need the commit?

Client C

Transaction 
Coordinator TC

okay

Seoul

Mumbai



NETWORK PARTITIONS

• Some failure (either network or host) keeps 
replicas from communicating with one another

• Two-phase commit (even if we assume all 
replicas agree) only works if all nodes can be 
contacted

• How to proceed with read/write transactions in 
case where not all replicas can be contacted?



DATA REPLICATION

• Idea: Replicate data across multiple servers

S0

S3

S1

S5

S4

S2

S6
(kitten.jpg, ver=0)

(kitten.jpg, ver=0)

(kitten.jpg, ver=0)

(kitten.jpg, ver=0)

(kitten.jpg, ver=0)

(kitten.jpg, ver=0)

(kitten.jpg, ver=0)

(kitten.jpg, ver=1)

????



QUORUM-BASED PROTOCOLS 

• Idea: Tell client that a file’s version is updated after a subset of 
SurfStoreServers get the update

• Form a “read quorum” of size 𝑁!
• Contact 𝑁! servers and read all their versions

• Select highest version as the “correct” version

• Form a “write quorum” of size 𝑁"
• Contact 𝑁" servers

• Increment the highest version from that set

• Write out that new version to the servers in the write quorum



READ AND WRITE QUORUMS



CONSTANTS AND CONSTRAINTS

• N: Total #Replicas
• NR: #Replicas in Read Quorum

• NW: #Replicas in Write Quorum 
• Constraints:

1. NR + NW > N

2. NW > N/2



READING AND WRITING TO QUORUMS

• To read:

• Get “read locks” on N_r
nodes

• To write:

• Get “write locks” on a 
N_w nodes



QUORUM CONSENSUS

• Write operations can be propagated in 
background to replicas not in quorum

• Assumes eventual repair of any network partition

• Operations are slowed by the necessity of first 
gathering a quorum

• Though previously, all writes had to go to all replicas

• With quorum system, must only contact subset of replicas



QUORUMS IN MICROSOFT ACTIVE DIRECTORY



QUORUM EXAMPLE

• 5 replicas, read quorum: 3, write quorum: 3
• R+W>5 votes ensures overlap between any read/write 

quorum

• How does this perform for reads?
• How does this perform for writes?

Write
quorum Read

quorum

ver:2 ver:2 ver:2 ver:1 ver:1



QUORUM EXAMPLE

• 5 replicas, read quorum: 5, write quorum: 1

• R+W>5 votes ensures overlap between any read/write quorum

• How does this perform for reads?

• How does this perform for writes?

Write
quorum

Read
quorum

ver:3 ver:2 ver:2 ver:1 ver:1



QUORUM EXAMPLE

• 5 replicas, read quorum: 1, write quorum: 5
• R+W>5 votes ensures overlap between any read/write quorum

• Also called ROWA (read one, write all)

• How does this perform for reads?

• How does this perform for writes?

Write
quorum Read

quorum

ver:2 ver:2 ver:2 ver:2 ver:2



OBSERVATIONS

• Observation 1

• The system is resilient to

the crash of f ≤ (N/2)−1 servers.

• Observation 2

• Since a read lock does not block readers, multiple 
readers can concurrently read: For example, one 
reader can read from the quorum {S0, S1, S2, S4}, 
while a second reader can read from the quorum {S1, 
S3, S5, S6}.



OBSERVATIONS

• Observation 3

• Two different write operations cannot proceed at the 
same time, so all write operations are serialized. 
Furthermore, the intersection of the read quorum 
and the write quorum is nonempty, so reads do not 
overlap with writes. As a result, every read operation 
returns the latest version that was written



OUTLINE

1. Quorums

2. Formulate system logic as a state 
machine

3. Election to choose the leader

4. Leader replicates operations to 
multiple backup state machines

5. Mechanism to “clean up” system 
when leader fails



FORMULATE SYSTEM AS A STATE MACHINE



REPLICATED DETERMINISTIC FINITE STATE MACHINES

1. GO NORTH

2. GO NORTH

3. GO EAST

4. GET SWORD

5. OPEN DOOR

6. GO SOUTH

7. FIGHT DRAGON

8. GET LAMP

1. GO NORTH

2. GO NORTH

3. GO EAST

4. GET SWORD

5. OPEN DOOR

6. GO SOUTH

7. FIGHT DRAGON

8. GET LAMP

PLAYER 1 PLAYER 2

Both players in same state after same invocation of commands



STATE MACHINE REPLICATION

• Each machine starts in the same initial state

• Executes the same requests (deterministic)

• Requires consensus to execute in same order

• (GET SWORD; FIGHT DRAGON) has a very different 
outcome from (FIGHT DRAGON; GET SWORD)

• Produces the same output



• Replicated log => replicated state machine

– All servers execute same commands in same order

• Consensus module ensures proper log replication

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients

shl



OUTLINE

1. Quorums

2. Formulate system logic as a state 
machine

3. Election to choose the leader

4. Leader replicates operations to 
multiple backup state machines

5. Mechanism to “clean up” system 
when leader fails



WHY BOTHER WITH A LEADER?

Not necessary, but …

• Decomposition:  normal operation vs. leader changes

• Simplifies normal operation (no conflicts)

• More efficient than leader-less approaches such as raw 
quorum replication

• Obvious place to handle non-determinism (leader 
chooses the sequence)

Image courtesy of Reuters



SERVER STATES

• At any given time, each server is either:

• Leader: handles all client interactions, log replication

• Follower: completely passive

• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Follower Candidate Leader



OPERATIONS

• AppendEntries()

• The leader uses this to “push” new operations to the 
replicated state machines

• Also used by the leader to tell the other nodes it is the 
leader

• RequestVote()
• Used when the system starts up to select a leader

• Used when the leader fails to elect a new leader

• Used when the leader is unreachable due to a network 
partition to elect a new leader



LIVENESS VALIDATION

• Servers start as followers

• Leaders send heartbeats (empty AppendEntries RPCs) to maintain 
authority

• If electionTimeout elapses with no RPCs (100-500ms), follower 
assumes leader has crashed and starts new election

Follower Candidate Leader

start
timeout,
start election

receive votes from
majority of servers

timeout,
new election

discover server with
higher termdiscover current leader

or higher term

“step
down”



TERMS (AKA EPOCHS)

• Time divided into terms
• Election (either failed or resulted in 1 leader)

• Normal operation under a single leader

• Each server maintains current term value

• Key role of terms: identify obsolete information

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote



ELECTIONS

• Start election:
• Increment current term, change to candidate state, vote for self

• Send RequestVote to all other servers, retry until either:

1. Receive votes from majority of servers:

• Become leader

• Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:

• Return to follower state

3. No-one wins election (election timeout elapses):

• Increment term, start new election



ELECTION PROPERTIES

• Safety:  allow at most one winner per term
• Each server votes only once per term (persists on disk)

• Two different candidates can’t get majorities in same term

• Liveness: some candidate must eventually win
• Each choose election timeouts randomly in [T, 2T]

• One usually initiates and wins election before others start

• Works well if T >> network RTT 

Servers

Voted for 
candidate A

B can’t also 
get majority



WEB SIMULATOR/DEMO

https://raft.github.io/raftscope/index.html



RAFT OVERVIEW

1. Leader election

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes

4. Neutralizing old leaders

5. Client interactions

6. Reconfiguration



• Log entry = < index, term, command >

• Log stored on stable storage (disk); survives crashes

• Entry committed if known to be stored on majority of servers

– Durable / stable, will eventually be executed by state machines

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2

mov
3

div
3

shl
3

sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

Log Structure



• Client sends command to leader
• Leader appends command to its log
• Leader sends AppendEntries RPCs to followers

• Once new entry committed:
– Leader passes command to its state machine, sends result to 

client
– Leader piggybacks commitment to followers in later 

AppendEntries
– Followers pass committed commands to their state machines

38

Normal operation

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl



• Crashed / slow followers?
– Leader retries RPCs until they succeed

• Performance is optimal in common case:
– One successful RPC to any majority of servers

39

Normal operation

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl



• If log entries on different server have same index and 
term:
– Store the same command

– Logs are identical in all preceding entries

• If given entry is committed, all preceding also 
committed

40

Log Operation:  Highly Coherent

1
add

1 2 3 4 5 6
3

jmp
1

cmp
1

ret
2

mov
3

div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

server1

server2



• AppendEntries has <index,term> of entry preceding new ones

• Follower must contain matching entry; otherwise it rejects

• Implements an induction step, ensures coherency

41

Log Operation:  Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:
matching entry

AppendEntries fails:
mismatch



• New leader’s log is truth, no special steps, start normal operation

– Will eventually make follower’s logs identical to leader’s

– Old leader may have left entries partially replicated

• Multiple crashes can leave many extraneous log entries

1 2 3 4 5 6 7log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5

42

Leader Changes



• Raft safety property:  If leader has decided log entry is committed, 
entry will be present in logs of all future leaders

• Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs

2. Only entries in leader’s log can be committed

3. Entries must be committed before applying to state machine
Committed → Present in future leaders’ logs

Restrictions on
commitment

Restrictions on
leader election

43

Safety Requirement

Once log entry applied to a state machine, no other state 
machine must apply a different value for that log entry



• Elect candidate most likely to contain all committed 
entries

– In RequestVote, candidates incl. index + term of last log entry

– Voter V denies vote if its log is “more complete”:              (newer 
term) or (entry in higher index of same term)

– Leader will have “most complete” log among electing majority

44

Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 Unavailable during 
leader transition

Committed?
Can’t tell 

which entries 
committed!

s1

s2



• Case #1: Leader decides entry in current term is 
committed

• Safe: leader for term 3 must contain entry 4

45

Committing Entry from Current Term

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2 Can’t be elected as
leader for term 3

AppendEntries just succeeded

Leader for term 2



• Case #2: Leader trying to finish committing entry from earlier

• Entry 3 not safely committed:
– s5 can be elected as leader for term 5 (how?)

– If elected, it will overwrite entry 3 on s1, s2, and s3

46

Committing Entry from Earlier Term

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

AppendEntries just succeeded

Leader for term 4

3



• For leader to decide entry is committed:
1. Entry stored on a majority 

2. ≥ 1 new entry from leader’s term also on majority 

47

New Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

4

4

3

Leader for term 4



Leader changes can result in log inconsistencies
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Challenge:  Log Inconsistencies

1 41 1 4 5 5 6 6 6Leader for term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

Possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Missing
Entries

Extraneous
Entries

1 2 3 4 5 6 7 8 9 10 11 12



Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7
1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1
Followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• New leader must make follower logs consistent with its own
– Delete extraneous entries
– Fill in missing entries

• Leader keeps nextIndex for each follower:
– Index of next log entry to send to that follower
– Initialized to (1 + leader’s last index)

• If AppendEntries consistency check fails, decrement nextIndex, try again



Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7
1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1Before repair 2 2 33 3 3 32

(a)

(f)

1 1 1 4(f)

nextIndex

After repair



Leader temporarily disconnected  
→ other servers elect new leader

→ old leader reconnected

→ old leader attempts to commit log entries

• Terms used to detect stale leaders (and candidates)

– Every RPC contains term of sender

– Sender’s term < receiver:
• Receiver: Rejects RPC (via ACK which sender processes…)

– Receiver’s term < sender:
• Receiver reverts to follower, updates term, processes RPC

• Election updates terms of majority of servers

– Deposed server cannot commit new log entries

51

Neutralizing Old Leaders



• Send commands to leader

– If leader unknown, contact any server, which redirects client to leader

• Leader only responds after command logged, committed, and executed by 
leader 

• If request times out (e.g., leader crashes):

– Client reissues command to new leader (after possible redirect)

• Ensure exactly-once semantics even with leader failures

– E.g., Leader can execute command then crash before responding

– Client should embed unique ID in each command

– This client ID included in log entry

– Before accepting request, leader checks log for entry with same id

52

Client Protocol



WEB SIMULATOR/DEMO
https://raft.github.io/raftscope/index.html




