LOCATING DATA ON THE NETWORK:
CONSISTENT HASHING,
P2P NETWORKS, CHORD, AND DYNAMODB

Feb 16, 2023
George Porter

UCSan Diego

@ ® ® ©

ATTRIBUTION

* These slides are released under an Attribution-NonCommercial-ShareAlike 3.0
Unported (CC BY-NC-SA 3.0) Creative Commons license

* These slides incorporate material from:

e Christo Wilson, NEU (used with permission)
e Kyle Jamieson, Princeton
 Tanenbaum and Van Steen, 3" edition

UC San Diego

READING

Please read section 3 of the “Algorithmic nuggets in content delivery” paper from
Akamai

UC San Diego

LOCATING ITEMS (AT SCALE) IS A PRETTY HARD
PROBLEM

e Consider our metadata store:

kitten.jpg 1 [hO, h1, h2, h3, h4]
puppy.mp4 1 [h5,h6,h7,h8,h9]

e Let’s figure out about how many files a single
server metadata store can store...

LET’S CHOOSE AN AWS INSTANCE TYPE

General Purpose

Compute Optimized

Memory Optimized

Accelerated Computing

Storage Optimized

Instance Features

Measuring Instance
Performance

LET’S PICK THE ARM-BASED MEMORY INSTANCE

R6g R5 R5a R5b R5n R4 X2gd X1e X1 High Memory z1d

Amazon EC2 R6g instances are powered by Arm-based AWS Graviton2 processors. They deliver up to 40% better price
performance over current generation R5 instances for memory-intensive applications.

Features:

e Custom built AWS Graviton2 Processor with 64-bit Arm Neoverse cores

 Support for Enhanced Networking with Up to 25 Gbps of Network bandwidth

e EBS-optimized by default

e Powered by the AWS Nitro System, a combination of dedicated hardware and lightweight hypervisor

e With R6gd instances, local NVMe-based SSDs are physically connected to the host server and provide block-level storage that
is coupled to the lifetime of the instance

MEMORY INSTANCE TYPES

Network .
Instance Size vCPU Memory (GiB) Instance Storage Bandwidth EE> Bandwidih
(Gbps)**+ (Mbps)
rég.medium 1 8 EBS-Only Up to 10 Up to 4,750
rég.large 2 16 EBS-Only Up to 10 Up to 4,750
rég.xlarge 4 32 EBS-Only Up to 10 Up to 4,750
rég.2xlarge 8 64 EBS-Only Upto 10 Up to 4,750
rég.4xlarge 16 128 EBS-Only Upto 10 4750
r6g.8xlarge 32 256 EBS-Only 12 9000
r6g.12xlarge 48 384 EBS-Only 20 13500
r6g.16xlarge 64 512 EBS-Only 25 19000
rég.metal 64 512 EBS-Only 25 19000

Cost (per hour) of the r6qg.16xlarge instance type: $3.2256

HOW MANY FILES CAN FIT INTO R6G.16XLARGE?

* 512GB of RAM

e Data requirements of each entry in the
FileInfoMap?

* Depends on size of the block...

 Depends on distribution of file sizes...
* Lots of small files? (e.g. C++, Java, Python, Go development)

* Or big files? (audio or video files)

* Let’s see what the research literature says

TANENBAUM ET AL, 2004

File Size Distribution on UNIX Systems—Then and Now

Andrew S. Tanenbaum, Jorrit N. Herder*, Herbert Bos
Dept. of Computer Science
Vrije Universiteit
Amsterdam, The Netherlands
{ast@cs.vu.nl, jnherder@cs.vu.nl, herbertb@cs.vu.nl}

]
©
-.g 100 B T E—
o
c 80
©
<
» 60
2
g 40
3 —+—1984 —+-2005 —=—Web
8 20 -
i . b ’(&—ﬁ—! o o
Q U 1 J 1
e 1 32 1K 32K 1M 32M 1G
File size
Fig. 2. Data of Fig. 1 shown graphically.

LIU ET AL, 2013

2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

Understanding Data Characteristics and Access Patterns
in a Cloud Storage System

| I
personal —+—
ystem Science

* Ministry of |
cience and Technology

T Tsinghua National L

File Count(%)
File Bytes(%)

Figure 2. Bimodal file size distributions

A SIMPLE MODEL

* File size distributions change over time and change depending on environment

But to make it “easy”, let’s assume:

90% of files are small (64KB) and 10% are big (256 MB)

Let’s use a 64KB block size

. 90% of files need 1 hash in the hash list
64 bytes for hash + 64 for filename and version = 128 bytes

. 10% need 4000 hashes in the hash list

4000*64 for hash + 64 for filename and version = 256 KB

0.9*N*128+ 0.1 * N * 256 KB=512GB

N(0.9*128 + 0.1*256KB) = 512GB

N about 1.997 x 1077 so just under 20 million

BUT WHAT IF YOU NEED MORE SPACE?

 What if you have more than 20 million files??

* You need scale

SCALING

Vertical Scaling Horizontal Scaling
(bigger machines) (more machines)

VERTICAL SCALING

e Get a machine with more RAM, more storage, a
faster CPU, more CPUs, ...

 Advantages:

 Simple: Single machine abstraction

* Simple: Only one IP address/hostname to consult
* Disadvantages:

 Machines only get so big (have so much ram, etc)

e What if the machine fails?

HORIZONTAL SCALING

e Form a cluster of 10, 100, 1000... servers that work
together

 Advantages:
 No one machine has to be very expensive/fancy

A failure of one machine doesn’t result in everything
being lost

 Disadvantages:
* How to find the data you’re looking for??

 Performance is hard to reason about (subject of a future
lecture, in fact)

HORIZONTAL SCALING ISSUES

* Probability of any failure in given period = 1-(1-p)"
e p = probability a machine fails in given period

e n=number of machines

 For 50K machines, each with 99.99966% available

 16% of the time, data center experiences failures

 For 100K machines, failures 30% of the time!

THE LOCATION PROBLEM

e G@Given a cluster C of N servers, how do we locate the
specific server C, responsible for a data item?

kitten.jpg 1 [hO, h1, h2, h3, h4]
puppy.mp4 1 [h5,h6,h7,h8,h9]

 E.g. For alogical metadata storage service spread
across N machines, which machine has the hash list

for kitten.jpg? For puppy.mp4?

PEER TO PEER NETWORKS

 Adistributed set of nodes sharing content, often
based on “flat” names, is called a peer to peer
network

WHAT IS “FLAT” NAMING?

e The name doesn’t give you an indication of
where the data is located

e Flat:
e MAC address: 00:50:56:a3:0d:2a

Vs hierarchical:

 |P address: 206.109.2.12/24

e DNS name: starbase.neosoft.com

FLAT NAME LOOKUP PROBLEM

m = [get ("LastOfUs.mov")]
N)
g 4 =
N Client
N
1 2
J Internet '
\]

put ("LastOfUs.mov"”, Pd5
[content])

CENTRALIZED LOOKUP (NAPSTER)

[} m
g 2 M =
N1 _ Cl\lent

SetLoc (“LastOfUs.mov”, IP DB Lookup (“LastOf
address of Ny) Us.mov")

Publisher (N,) ! 'Slmple but O(N) state and a
.smgle point of failure

key=""LastOfUs.mov"”,
value=[content]

PEER-TO-PEER (P2P) NETWORKS

LI Node
Node\ ‘ /Node
Internet
2-< ="
NBEé Node

 Adistributed system architecture:
* No centralized control
* Nodes are roughly symmetric in function

e Large number of unreliable nodes (could be reliable too)

FLOODED QUERIES (ORIGINAL GNUTELLA)
[z:ifi%(“LastO]
% E fUs.mov”)

= N2 N3 &/\
N Client
] \

'Robust but O(N = number of peers) i
imessages per lookup i

S =
Publisher (N,) /—
key=“Last0OfUs.mov”,) ;

value=[content]

ROUTED DHT QUERIES (DYNAMODB AND SURFSTORE)

Lookup (H (LastOfU J

J%%_ .E% s.mov))
g N2 N3 &/\
Client
B v
_____ Publisher (N.)

'Can we make it robust, reasonable
.state reasonable number of hops?

SYSTEMATIC FLAT NAME LOOKUPS VIA DHTS

* Local hash table:
key = Hash (name)
put (key, wvalue)
get (key) =2 value

e Service: Constant-time insertion and lookup

/

How can | do (roughly) this across
millions of hosts on the Internet or

within a giant datacenter application?
/\Distributed Hash Table (DHT)

~

J

WHAT IS A DHT (AND WHY)?

* Distributed Hash Table:
key = hash (data)
lookup (key) —> IP addr
send-RPC (IP address, put, key, data)
send-RPC (IP address, get, key) =2 data

* Partitioning data in truly large-scale distributed systems
 Tuplesin a global database engine

e Data blocks in SurfStore

 Filesin a P2P file-sharing system

SUMMARY OF IDEA

 We're going to rely on hashing to map keys to
servers

 That way, to find a key (e.g. filename), just hash the
name you’re looking for and consult just that server!

e Cool... let’s see how that works in practice...

STRAWMAN: MODULO HASHING (E.G. HASHMAP)

 Consider problem of data partition:

 Given object id X, choose one of k servers to use

* Suppose instead we use modulo hashing:

 Place X on server i =hash(X) mod k

* What happens if a server fails or joins (k < k+1)?

e or different clients have different estimate of k?

PROBLEMS WITH MODULO HASHING

h(x) =x+ 1 (mod 4)
Add one machine: h(x) =x+ 1 (mod 5)

'AII entries get remapped to new nodes!
‘> Need to move objects over the network

We need a different hashing approach that
doesn’t change everything when a server
:COmMes or goes. .

CONSISTENT HASHING [KARGER ‘97]

e Key identifier = hash(key)

 Node identifier = hash(server’s IP address) or
hash(server’s hostname) or hash(server’s identity)

 Same hash function maps two different types of data to
the same ID space!

CONSISTENT HASHING

— Assign n tokens to random points on
mod 2k circle; hash key size = k

— Hash object to random circle position

— Put object in closest clockwise bucket
— successor (key) = bucket

12

 Desired features —
— Balance: No bucket has “too many” objects

— Smoothness: Addition/removal of token minimizes
object movements for other buckets

31

EXAMPLE FROM AKAMAI PAPER (SECTION 3)

Figure 4: Consistent hashing first maps both objects
and buckets (servers) to the unit circle. An object
is then mapped to the next server that appears on
the circle in clockwise order.

CONSISTENT HASHING [KARGER ‘97]

Key 5 —, K5
N105 K20
Node 105 Circular 7-bit N32

ID space

N9O

CONSISTENT HASHING AND LOAD BALANCING

* Each node owns 1/nt" of the ID space in expectation

e Says nothing of request load per bucket

* |If a node fails, its successor takes over bucket

* Smoothness goal V: Only localized shift, not O(n)

e But now successor owns two buckets: 2/n'" of key space

* The failure has upset the load balance

VIRTUAL NODES

* |dea: Each physical node now maintains v > 1 tokens

 Each token corresponds to a virtual node

e Each virtual node owns an expected 1/(vn)t of ID space

 Upon a physical node’s failure, v successors take over,
each now stores (v+1)/vx1/nt of ID space

* Result: Better load balance with larger v

DYNAMODB

Amazon DynamoDB

Fast and flexible NoSQL database service for any scale

Get started with Amazon DynamoDB
on the AWS Free

ey e

Amazon DynamoDB is a key-value and document database that delivers single-digit millisecond performance at
any scale. Its a fully managed, multiregion, multimaster, durable database with built-in security, backup and
restore, and in-memory caching for internet-scale applications. DynamoDB can handle more than 10 trillion
requests per day and can support peaks of more than 20 million requests per second,

Many of the world's fastest growing businesses such as Lyft, Airbnb, and Redfin as well as enterprises such as
Samsung, Toyota, and Capital One depend on the scale and performance of DynamoDB to support their
mission-critical workloads,

Hundreds of thousands of AWS customers have chosen DynamoDB as their key-value and document database
for mobile, web, gaming, ad tech, loT, and other applications that need low-latency data access at any scale.
Create a new table for your application and let DynamoDB handle the rest.

Benefits
Performance at scale No servers to manage
DynamoDB supports some of the world's largest scale DynamoDB is serverless with no servers to provision,

Introduction to Amazon DynamoDB (1:01)

Enterprise ready

DynamoDB supports ACID transactions to enable you to

* Amazon’s DynamoDB data store is
based on this concept of consistent
hashing

UC San Diego

