
LOCATING DATA ON THE NETWORK:
CONSISTENT HASHING,
P2P NETWORKS, CHORD, AND DYNAMODB

Feb 16, 2023
George Porter

ATTRIBUTION
• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:

• Christo Wilson, NEU (used with permission)
• Kyle Jamieson, Princeton
• Tanenbaum and Van Steen, 3rd edition

READING
Please read section 3 of the “Algorithmic nuggets in content delivery” paper from
Akamai

LOCATING ITEMS (AT SCALE) IS A PRETTY HARD
PROBLEM

• Consider our metadata store:

• Let’s figure out about how many files a single
server metadata store can store…

LET’S CHOOSE AN AWS INSTANCE TYPE

LET’S PICK THE ARM-BASED MEMORY INSTANCE

MEMORY INSTANCE TYPES

Cost (per hour) of the r6g.16xlarge instance type: $3.2256

HOW MANY FILES CAN FIT INTO R6G.16XLARGE?

• 512GB of RAM

• Data requirements of each entry in the
FileInfoMap?

• Depends on size of the block...

• Depends on distribution of file sizes…

• Lots of small files? (e.g. C++, Java, Python, Go development)

• Or big files? (audio or video files)

• Let’s see what the research literature says

TANENBAUM ET AL, 2004

LIU ET AL, 2013

A SIMPLE MODEL

• File size distributions change over time and change depending on environment

• But to make it “easy”, let’s assume:

• 90% of files are small (64KB) and 10% are big (256MB)

• Let’s use a 64KB block size

• 90% of files need 1 hash in the hash list

• 64 bytes for hash + 64 for filename and version = 128 bytes

• 10% need 4000 hashes in the hash list

• 4000*64 for hash + 64 for filename and version = 256 KB

• 0.9 * N * 128 + 0.1 * N * 256 KB = 512GB

• N(0.9*128 + 0.1*256KB) = 512GB

• N about 1.997 x 10^7 so just under 20 million

BUT WHAT IF YOU NEED MORE SPACE?

• What if you have more than 20 million files??

• You need scale

SCALING

Vertical Scaling
(bigger machines)

Horizontal Scaling
(more machines)

VERTICAL SCALING

• Get a machine with more RAM, more storage, a
faster CPU, more CPUs, …

• Advantages:

• Simple: Single machine abstraction

• Simple: Only one IP address/hostname to consult

• Disadvantages:

• Machines only get so big (have so much ram, etc)

• What if the machine fails?

HORIZONTAL SCALING

• Form a cluster of 10, 100, 1000… servers that work
together

• Advantages:
• No one machine has to be very expensive/fancy

• A failure of one machine doesn’t result in everything
being lost

• Disadvantages:
• How to find the data you’re looking for??

• Performance is hard to reason about (subject of a future
lecture, in fact)

HORIZONTAL SCALING ISSUES

• Probability of any failure in given period = 1−(1−p)n

• p = probability a machine fails in given period

• n = number of machines

• For 50K machines, each with 99.99966% available

• 16% of the time, data center experiences failures

• For 100K machines, failures 30% of the time!

THE LOCATION PROBLEM

• Given a cluster C of N servers, how do we locate the
specific server Ci responsible for a data item?

• E.g. For a logical metadata storage service spread
across N machines, which machine has the hash list
for kitten.jpg? For puppy.mp4?

PEER TO PEER NETWORKS

• A distributed set of nodes sharing content, often
based on “flat” names, is called a peer to peer
network

WHAT IS “FLAT” NAMING?

• The name doesn’t give you an indication of
where the data is located

• Flat:

• MAC address: 00:50:56:a3:0d:2a

• Vs hierarchical:

• IP address: 206.109.2.12/24

• DNS name: starbase.neosoft.com

FLAT NAME LOOKUP PROBLEM

N1

N2 N3

N6N5

Publisher (N4)

Client
?Internet

put(“LastOfUs.mov”,
[content])

get(“LastOfUs.mov”)

CENTRALIZED LOOKUP (NAPSTER)

N1

N2 N3

N6N5

Publisher (N4)

Client

SetLoc(“LastOfUs.mov”, IP
address of N4)

Lookup(“LastOf
Us.mov”)DB

key=“LastOfUs.mov”,
value=[content]

Simple, but O(N) state and a
single point of failure

PEER-TO-PEER (P2P) NETWORKS

• A distributed system architecture:

• No centralized control

• Nodes are roughly symmetric in function

• Large number of unreliable nodes (could be reliable too)

Node

Node

Node Node

Node

Internet

FLOODED QUERIES (ORIGINAL GNUTELLA)

N1

N2 N3

N6N5

Publisher (N4)

Client

Lookup(“LastO
fUs.mov”)

key=“LastOfUs.mov”,
value=[content]

Robust, but O(N = number of peers)
messages per lookup

ROUTED DHT QUERIES (DYNAMODB AND SURFSTORE)

N1

N2 N3

N6N5

Publisher (N4)

Client

Lookup(H(LastOfU
s.mov))

key=“H(audio data)”,
value=[content]Can we make it robust, reasonable
state, reasonable number of hops?

SYSTEMATIC FLAT NAME LOOKUPS VIA DHTS

• Local hash table:

key = Hash(name)

put(key, value)

get(key) à value

• Service: Constant-time insertion and lookup

How can I do (roughly) this across
millions of hosts on the Internet or
within a giant datacenter application?
Distributed Hash Table (DHT)

WHAT IS A DHT (AND WHY)?

• Distributed Hash Table:
key = hash(data)

lookup(key) à IP addr

send-RPC(IP address, put, key, data)

send-RPC(IP address, get, key) à data

• Partitioning data in truly large-scale distributed systems
• Tuples in a global database engine
• Data blocks in SurfStore
• Files in a P2P file-sharing system

SUMMARY OF IDEA

• We’re going to rely on hashing to map keys to
servers

• That way, to find a key (e.g. filename), just hash the
name you’re looking for and consult just that server!

• Cool… let’s see how that works in practice…

STRAWMAN: MODULO HASHING (E.G. HASHMAP)

• Consider problem of data partition:

• Given object id X, choose one of k servers to use

• Suppose instead we use modulo hashing:

• Place X on server i = hash(X) mod k

• What happens if a server fails or joins (k ß k±1)?

• or different clients have different estimate of k?

PROBLEMS WITH MODULO HASHING

Server

Object serial number

h(x) = x + 1 (mod 4)

7 10 11 27 29 36 38 40

4

3

2

1

0
5

Add one machine: h(x) = x + 1 (mod 5)

All entries get remapped to new nodes!
àNeed to move objects over the network

We need a different hashing approach that
doesn’t change everything when a server
comes or goes…

CONSISTENT HASHING [KARGER ‘97]

• Key identifier = hash(key)

• Node identifier = hash(server’s IP address) or
hash(server’s hostname) or hash(server’s identity)

• Same hash function maps two different types of data to
the same ID space!

CONSISTENT HASHING

0

4

8

12
Token

14

– Assign n tokens to random points on
mod 2k circle; hash key size = k

– Hash object to random circle position
– Put object in closest clockwise bucket

– successor (key) à bucket

• Desired features –
– Balance: No bucket has “too many” objects
– Smoothness: Addition/removal of token minimizes

object movements for other buckets

31

Bucket

EXAMPLE FROM AKAMAI PAPER (SECTION 3)

CONSISTENT HASHING [KARGER ‘97]

Key is stored at its successor: node with next-higher ID

K80

N32

N90

N105 K20

K5

Circular 7-bit
ID space

Key 5

Node 105

CONSISTENT HASHING AND LOAD BALANCING

• Each node owns 1/nth of the ID space in expectation
• Says nothing of request load per bucket

• If a node fails, its successor takes over bucket
• Smoothness goal ✔: Only localized shift, not O(n)

• But now successor owns twobuckets: 2/nthof key space
• The failure has upset the load balance

VIRTUAL NODES

• Idea: Each physical node now maintains v > 1 tokens

• Each token corresponds to a virtual node

• Each virtual node owns an expected 1/(vn)th of ID space

• Upon a physical node’s failure, v successors take over,
each now stores (v+1)/v×1/nth of ID space

• Result: Better load balance with larger v

DYNAMODB

• Amazon’s DynamoDB data store is
based on this concept of consistent
hashing

