COMPILER-ASSISTED PROTOCOL
PROCESSING + REMOTE PROCEDURE CALL
(RPC) + GRPC

George Porter
Feb 7 and 14, 2023

UCSan Diego

@ ® ® ©

ATTRIBUTION

* These slides are released under an Attribution-NonCommercial-ShareAlike 3.0
Unported (CC BY-NC-SA 3.0) Creative Commons license

* These slides incorporate material from:

* Kyle Jamieson, Princeton University (also under a CC BY-NC-SA 3.0
Creative Commons license)

UC San Diego

REQUIRED READING

Chapter 4 of “Network Programming with Go”

UC San Diego

Outline

RPC fundamentals

Compiler-assisted framing and
parsing

gRPC demo

WHY RPC?

* The typical programmer is trained to write single-
threaded code that runs in one place

* Goal: Easy-to-program network communication
that makes client-server communication
transparent

* Retains the “feel” of writing centralized code

* Programmer needn’t think about the network

REMOTE PROCEDURE CALL (RPC)

* Distributed programming is challenging

* Need common primitives/abstraction to hide
complexity

* E.g., file system abstraction to hide block layout,
process abstraction for scheduling/fault isolation

* In early 1980’s, researchers at PARC noticed
most distributed programming took form of
remote procedure call

WHAT’S THE GOAL OF RPC?

* Within a single program, running in a single process,
recall the well-known notion of a procedure call:

* Caller pushes arguments onto stack,

* jumps to address of callee function

 Callee reads arguments from stack,

e executes, puts return value in register,

* returns to next instruction in caller

| . 0 .
i RPC’s Goal: To make communication appear like a
i Iocal procedure call: transparency for procedure calls

RPC EXAMPLE

Local computing Remote computing
X =3 *10; server = connectToServer(S);
print(X) Try:
> 30 X = server.mult(3,10);
print(X)
Except e:

print “Error!”
> 30
or

> Error

RPC ISSUES

* Heterogeneity
e C(Client needs to rendezvous with the server

 Server must dispatch to the required function

 What if server is different type of machine?
* Failure
* What if messages get dropped?
e What if client, server, or network fails?
* Performance
Procedure call takes = 10 cycles = 3 ns

« RPCin a data center takes = 10 us (103x slower)

* Inthe wide area, typically 10°x slower

PROBLEM: DIFFERENCES IN DATA REPRESENTATION

* Not an issue for local procedure call

 For aremote procedure call, a remote machine
may:

 Represent data types using different sizes
 Use a different byte ordering (endianness)
 Represent floating point numbers differently

 Have different data alighment requirements

e e.g.,4-byte type begins only on 4-byte memory boundary

BYTE ORDER

* x86-64 is a little endian architecture int 5 at address 0x1000:

 Least significant byte of multi- 0x1000: 0000 0101

byte entity at lowest memory 0x1001: 0000 0000
address

0x1002: 0000 0000
e “Little end goes first” 0x1003: 0000 0000

* Some other systems use big endian

* Most significant byte of multi- int 5 at address 0x1000:
byte entity at lowest memory 0x1000: 0000 0000
address '

0x1001: 0000 0000
* “Big end goes first” 0x1002: | 0000 0000
0x1003: 0000 0101

PROBLEM: DIFFERENCES IN PROGRAMMING
SUPPORT

* Language support varies:

* Many programming languages have no inbuilt
concept of remote procedure calls

* e.g., C, C++, earlier Java

e Some languages have support that enables RPC

* e.g., Python, Haskell, Go

SOLUTION: INTERFACE DESCRIPTION LANGUAGE

 Mechanism to pass procedure parameters and return
values in a machine-independent way

 Programmer may write an interface description in the IDL
* Defines API for procedure calls: names, parameter/return types
 Then runs an IDL compiler which generates:

 Code to marshal (convert) native data types into machine-
independent byte streams

* And vice-versa, called unmarshaling
e (lient stub: Forwards local procedure call as a request to server

e Server stub: Dispatches RPC to its implementation

A DAY IN THE LIFE OF AN RPC

1. Client calls stub function (pushes params onto
stack)

Client machine

Client stub (RPC library)

A DAY IN THE LIFE OF AN RPC

1. Client calls stub function (pushes params onto stack)

2. Stub marshals parameters to a network message

Client machine

Client stub (RPC library)
proc: add | int: 3 | int: 5 1)

A DAY IN THE LIFE OF AN RPC

2.

3. OS sends a network message to the server

Client machine Server machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS Server OS
J proc: add | int: 3 | int: § || >

A DAY IN THE LIFE OF AN RPC

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

Client machine Server machine

Client stub (RPC library) Server stub (RPC library)

_ |p add | int: 3 | int: 5 i

A DAY IN THE LIFE OF AN RPC

4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server
function

Client machine Server machine

Client stub (RPC library)

proc: add | int: 3 | int: 5 1)

A DAY IN THE LIFE OF AN RPC

5. Server stub unmarshals params, calls server
function

6. Server function runs, returns a value

Client machine Server machine

Client stub (RPC library) Server stub (RPC library)

A DAY IN THE LIFE OF AN RPC

6. Server function runs, returns a value

7. Server stub marshals the return value, sends msg

Client machine Server machine
Client stub (RPC library) Server stub (RPC library)
Result | int: 8)

A DAY IN THE LIFE OF AN RPC

7. Server stub marshals the return value, sends msg

8. Server OS sends the reply back across the network

Client machine Server machine

Client stub (RPC library) Server stub (RPC library)

Result | int: 8

A DAY IN THE LIFE OF AN RPC

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

Client machine Server machine

Client stub (RPC library) Server stub (RPC library)

A DAY IN THE LIFE OF AN RPC

9. Client OS receives the reply and passes up to stub

10.Client stub unmarshals return value, returns to
client

Client machine Server machine

Client stub (RH {library) Server stub (RPC library)
Result | int: 8 J

PETERSON AND DAVIE VIEW

Caller Callee
(client) (server)
' A
Arguments Rotim Arguments Ren
’ value | value
Client Server
stub stub
A A
Request Reply Request Reply
] L
RPC RPC
protocol protocol

THE SERVER STUB IS REALLY TWO PARTS

* Dispatcher

* Receives a client’s RPC request

* Identifies appropriate server-side method to invoke

* Skeleton
 Unmarshals parameters to server-native types
e (Calls the local server procedure

 Marshals the response, sends it back to the dispatcher

e All this is hidden from the programmer

 Dispatcher and skeleton may be integrated

* Depends on implementation

Outline

Compiler-assisted framing and
parsing

gRPC demo

HOW DO YOU ENCODE THIS TABLE?

fred programmer

liping analyst

sureerat manager

ONE OPTION

3
fred\O

programmer\0
liping\o
analyst\0
sureerat\o
managexr\0

ANOTHER OPTION

fred\0\0\0\0
programmex
liping\0\O
analyst\0\0\o
sureerat
manager\0\0\0

Assumes that the first column is 8 chars wide, and the 24 is 10 chars wide

TAKE-AWAY

Lots of valid ways of encoding complex data...

...but both endpoints need to know how to
interpret what the other side sends them

GO’S AUTOMATIC ENCODING SUPPORT

gmporter@navygrog ch4 % go doc encoding
package encoding // import "encoding"

Package encoding defines interfaces shared by other packages
data to and from byte-level and textual representations. Pac
for these interfaces include encoding/gob, encoding/json, ar
As a result, implementing an interface once can make a type
encodings. Standard types that implement these interfaces in
net.IP. The interfaces come in pairs that produce and consun

type BinaryMarshaler interface{ ... }
type BinaryUnmarshaler interface{ ... }
type TextMarshaler interface{ ... }
tvpe TextUnmarshaler interface{ ... }

GO’S ENCODING FORMATS

gmporter@navygrog ch4 % go list encoding/...
encoding

encoding/ascii85
encoding/asnl
encoding/base32
encoding/baseé4
encoding/binary
encoding/csv

encoding/gob

encoding/hex
encoding/json
encoding/pem

encoding/xml
gmporter®Pnavygrog ch4 % I

(BASE64 DEMO)

A CLOSER LOOK USING JSON

e Javascript Object
Notation commonly used
in networked
applications

' lu
* Youtube search, Google
Maps, twitter

1!::11 Y

)/

e Let’s look at a tweet:

'j g,

~ . :
nar ar HOWDY; PARTNERS.

* https://twitter.com/geo
rgemporter/status/162
30273916428/77953

(TWITTER DEMO)

(JSON ECHO CLIENT AND SERVER DEMO)

PROTOBUF: INTERFACE DEFINITION LANGUAGE
$ protoc search.proto /‘\P_Ythﬂﬂ

IDL

$ protoc search.proto Java JJ

* Language-neutral way of specifying:
e Data structures called Messages (Protocol Buffers)
* Services, consisting of procedures/methods (gRPC)
e Stub compiler

e Compiles IDL into Python, Java, etc. (protoc)

IDL LANGUAGE: PROTOCOL BUFFERS

 Defines Messages (i.e., data structures) language neutral

We’re using version 3 of
protocol buffers

 Field 1: query |
| Type: String ; Name of the

| i | syntax = "proto3"; _— message
Fiold 2. \\m‘essage SearchReques‘t{/
page_number string query = 1;
Type: 32-bit » int32 page_number = 2;
signed int int32 result_per_page = 3;
)/

Field 3:
results_per_page
Type: 32-bit

signed int

IDL TYPES MAPPED TO SPECIFIC LANGUAGE TYPES

.proto
Type

double
float

int32

int64

uint32

uint64

sint32

Notes

Uses variable-length
encoding. Inefficient
for encoding
negative numbers —
if your field is likely
to have negative
values, use sint32
instead.

Uses variable-length
encoding. Inefficient
for encoding
negative numbers —
if your field is likely
to have negative
values, use sint64
instead.

Uses variable-length
encoding.

Uses variable-length
encoding.

Uses variable-length
encoding. Signed int
value. These more
efficiently encode
negative numbers
than regular int32s.

C++ Java/Kotlin Python
Type Typel'l Typel®!
double double float
float float float
int32 int int

inté4 long int/longl4]
uint32 intl2 int/ Iong[4]
uinté4 long!? int/longl4]
int32 int int

Go
Type

float64
float32

int32

int64

uint32

uint64

int32

Ruby Type

Float
Float

Fixnum or Bignum (as
required)

Bignum

Fixnum or Bignum (as
required)

Bignum

Fixnum or Bignum (as
required)

C# Type

double
float

int

long

uint

ulong

int

PHP Type

float
float

integer

integer/strin¢

integer

integer/strin¢

integer

IDL TYPES MAPPED TO SPECIFIC LANGUAGE TYPES

.proto C++ Java/Kotlin Python Go
Not Ruby T C#T PHP T
Type otes Type Typel'l Typel®! Type Y PE ype ype
fixed32 Always four bytes. uint32 intl2 int/long[4] uint32 Fixnum or Bignum (as uint integer
More efficient than required)
uint32 if values are
often greater than
228
fixed64 Always eight bytes. uint64 Iongm int/long[4] uinté4 Bignum ulong integer/strin¢
More efficient than
uint64 if values are
often greater than
295,
sfixed32 Always four bytes. int32 int int int32 Fixnum or Bignum (as int integer
required)
sfixed64 Always eight bytes. int64 long int/long[4] int64 Bignum long integer/strin¢
bool bool boolean bool bool TrueClass/FalseClass bool boolean
string A string must always string String str/unicodel®! string String (UTF-8) string string
contain UTF-8
encoded or 7-bit
ASCII text, and
cannot be longer
than 232,
bytes May contain any string ByteString str (Python 2) [lbyte String (ASCII-8BIT) ByteString string
arbitrary sequence bytes (Python
of bytes no longer 3)
than 232,

IDL POSITIONAL ARGUMENTS

* Why do we label the fields with numbers?

* So we can change “signature” of the message
later and still be compatible with legacy code

syntax = "proto3";

message SearchRequest {
string query = 1;
int32 page_number = 2; syntax = "proto3";
1int32 result_per_page = 3;

} message SearchRequest {

string query = 1;
1nt32 page_number = 2;
int32 shard_num = 4;

}

GOOGLE RPC (GRPC)

* Cross-platform RPC toolkit developed by Google
* Languages:

e (C++, Java, Python, Go, Ruby, C#, Node.js, Android,
Obj-C, PHP

e Defines services

e Collection of RPC calls

service Search {
rpc searchweb(SearchRequest) returns (SearchResult) {}

}

MAKING SERVICES EVOLVABLE

* No way to “stop everything” and upgrade
* Clients/servers/services must co-exist

* For newly added fields, old services use defaults:

own»

e String:
e bytes: []
 Dbools: false

e numeric: 0

PROTOCOL BUFFERS: MAP TYPE

* map<key type, value type> map_ field = N;

e Example:

* map<string, Project> projects = 3;

IMPLEMENTING IN DIFFERENT LANGUAGES

IDL

message Person {
required string name = 1; C++: reading from a file
rquired 1nt32 id ='2; Person john:
optional string email = 3; fstream input(argv[1],

} ios::in | 1os::binary);

john.ParseFromIstream(&input) ;
id = john.id();

name = john.name();

email = john.email();

Java: writing to a file

Person john = Person.newBuilder()
.setld(1234)
.setName("John Doe")
.setEmail (" jdoe@example.com™)

Lbuild();
output = new FileOutputStream(args[@]);
john.writeTo(output);

A C++ EXAMPLE

Person person,
person.set_name(“John Doe");

person.set_id(1234);
person.set_email("jdoe@example.com”);

fstream output("myfile”, ios::out | 1os::binary);
person.SerializeToOstream(&output);

fstream input(“myfile”, ios::in | i1os::binary);
Person person,

person.ParseFromIstream(&input) ;

cout << "Name: " << person.name() << endl;

cout << "E-mail: " << person.email() << endl;

* Can read/write protobuf Message objects to files/stream/raw sockets

* In particular, gRPC service RPCs

* Take Message as argument, return Message as response

UC San Diego

