
PROTOCOL FRAMING AND PARSING
George Porter
Jan 24, 2023

ATTRIBUTION
• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:

• Computer Networks: A Systems Approach, 5e, by Peterson and Davie
• Michael Freedman and Kyle Jamieson, Princeton University (also under a

CC BY-NC-SA 3.0 Creative Commons license)

WHAT ARE PROTOCOLS?

Image from public domain

• Explicit and implicit conventions for
how to communicate

• Not for what is communicated

• Enables heterogeneous architectures,
languages, OSes, byte ordering, …

SERVICE AND PROTOCOL INTERFACES

WHERE DO PROTOCOLS COME FROM?

• Standards bodies

• IETF: Internet Engineering Task
Force

• ISO: International Standards
Organization

• Community efforts

• “Request for comments”

• Bitcoin

• Corporations/industry

• RealAudio™, Call of Duty
multiplayer, Skype

HOW ARE PROTOCOLS SPECIFIED?

Prose/BNF State transition diagrams

Message Sequence Diagram Packet formats

By Stefan Birkner, cc-by-sa-2.5,2.0,1.0

EXAMPLE: A SIMPLE VOTE COUNTING
SYSTEM

DEFINITIONS

• Operation (e.g., in a voting system)
• An action you can perform within a protocol’s service interface
• E.g., “Submit vote”, “get current vote count”, “reset vote count

to zero”
• Message
• An encoding of an operation according to a protocol’s wire

format. Common formats include XML, binary, JSON, …
• Framing
• Writing out (and reading in) messages from a stream such that

messages can be separated and interpreted correctly
• Parsing/encoding/decoding
• Converting a message to/from an application data structure

PARSING: CONVERTING IN-MEMORY
REPRESENTATION WITH A “WIRE” REPRESENTATION

• Binary

• Text (ad-hoc)

• Text (XML)

• Many others…

operation id department

8 64 16

“OP=1, id=428, d=80”

(1,428,80)

<employee>
<operation>1</operation>
<id>428</id>
<department>80</department>

</employee>

FRAMING: LENGTH SPECIFICATION VS DELIMITERS

• Binary representation of name?

• Handling variable length

• Consider “Alan” as a name

• Option 1: Explicit length

• But how big should length be?

• Option 2: Delimiter

• But what if delimiter is in the
message?

97 108 97 110

4 97 108 97 110

97 108 97 110 0

FRAMING: DETERMINING MESSAGE BOUNDARIES

• Framing

• Finds and returns bytes
corresponding to single message

• Even if messages are variable
length

• Writes out bytes corresponding
to a message with enough
context for the other side to
determine the message
boundaries

FRAMING SCENARIO

• Consider a voting scenario

• Each message is variable length

• “Voting v 134” à [Vote for candidate 134]

• “Voting i 19381”

• à [Query candidate 19381’s vote count]

• First is 12 characters, second is 14 characters

• Given a stream of vote operations, how to
separate them?

FRAMING CHOICES

• Delimiter (in this case ‘$’)
Voting v 134$Voting v 2817$Voting i
9172651$Voting v 2$Voting i 1900$Voting v
32$Voting i 8

• Length + message
12Voting v 13413Voting v 281716Voting i
917265110Voting v 213Voting i 190011Voting v
3210Voting i 8

THE MAIN LOOP OF YOUR SERVER

Remaining := “”

buf := make([]byte, 1024)

for {

for “Does remaining contain a full request?” {

If yes,(1) parse it, then (2) remove from remaining

}

size, err := c.Read(buf)

data := buf[:size]

remaining = remaining + string(data)

} How do you know when a request is completed?

HOW TO TELL IF BUFFER CONTAINS A COMPLETE
REQUEST?

• This is the framing problem

• For length-based framing:

• Keep reading until we have 12 bytes of request data

• For delimiter-based framing:

• OK to simply scan for delimiters using e.g., a for loop

12 97 108 97 ...

FRAMING: SUMMARY

• Reading data

• Reads from stream until entire
message is read, returns to higher
layer

1. Explicit length

• Reads the length, then reads
that many bytes (security?)

2. Delimiter

• Reads continuously into a
buffer until delimiter is
encountered

• Message then returned to
higher layer

• Writing data

• Given an array of bytes
representing an application-level
operation, writes to stream

1. Explicit length

• Writes out the length of the
message, then message

2. Delimiter

• Ensures delimiter doesn’t
appear in message

• Writes out message

• Then writes out delimiter

PRIMARY FRAMING/PARSING LOOP

• [see turing-printer.go and turing-sender.go
demo]

