SOCKETS PROGRAMMING AND
GO’S NET PACKAGE

George Porter
Jan 12, 2023

UCSan Diego

@ ® ® ©

ATTRIBUTION

* These slides are released under an Attribution-NonCommercial-ShareAlike 3.0
Unported (CC BY-NC-SA 3.0) Creative Commons license

* These slides incorporate material from:

* Alex C. Snoeren, UC San Diego

* Michael Freedman and Kyle Jamieson, Princeton University
* |nternet Society

e Computer Networking: A Top Down Approach

DK Moon, Berkeley’s EE122

* Network Programming With Go (Woodbeck) UCSanDiego

AGENDA

Sockets programming using Go’s net package

ASSIGNED READINGS

“Network programming with Go” chapter 3

PROJECTS

Project O is available

UC San Diego

Today’s agenda

Let’s write a couple Go programs
that send/receive data over the
network using the TCP protocol

Then we’ll go back and take a
deep dive on why they work and
what is going on “under the

engine hood”

QUICK ADVICE W.R.T. PROJECT O

e How do you read bytes of data from a file? Write
data to a file?

 The whole file? 100 bytes at a time? 10/90 bytes?

e How do you represent a 10-byte key, 90-byte value
record type in Go?

 How do you maintain some kind of list/array of
those records?

 There is a sort package for built-in types (e.g. ints).
But what about custom record types?

 Hint: check out sort’s Slice() method and bytes package

BERKELEY SOCKETS API

From UC Berkeley (1980s)

Most popular network API

Ported to various OSes, various languages
. Windows Winsock, BSD, OS X, Linux, Solaris, ...

. Socket modules in Java, Python, Perl, ...

Similar to Unix file 1/O API

. In the form of file descriptor (sort of handle).

. Can share the same read () fwrite () /close () system calls.

BERKELEY SOCKETS API

* What is a socket?
* The point where a local application attaches to the network
e Aninterface between an application and the transport protocol
 An application creates the socket
 The interface defines operations for
e Creating a socket
e Attaching a socket to the network
 Sending and receiving messages through the socket

 Closing the socket

* Sockets are where your program send and receive data

SOCKETS

* Various sockets... Any similarity?

e Endpoint of a connection

. Identified by IP address and Port number

* Primitive to implement high-level networking interfaces

. e.g., Remote procedure call (RPC), HTTP, Video streaming, etc etc.

AN IP PACKET

0 3 7 15 16 18 31
T HLEN - : 4
Version Type of service (ToS) Total length (in bytes)
Identification Flags Fragmentation offset 20
Time to live (TTL) Protocol Header checksum bytes
Source IP address
Destination IP address ¥
Option (If any)
Data

INTERNET DELIVERY MODEL

P

* Send and receive packets of data, up to 64KB in size (though 1500 bytes is the
norm)

e Connection-less
» “Best-effort” delivery
* Arbitrary order of packet delivery

* Packets can be lost, and there is no automatic retransmission

e Possible duplicates

* Packets can get corrupted during transit

TYPES OF SOCKETS

TCP UDP

* Connection-oriented e Connection-less

* Requires connection establishment

2 termination “Best-effort” delivery

* Interface: “Infinite bytestream” * Arbitrary order of packet delivery

* Reliable delivery * No retransmission

* In-order delivery * Possible duplicates

* Retransmission
* Low variance in latency

* No duplicates

_ _ * Packet-like interface
* High variance in latency

* Cost of the reliable service * Requires packetizing

 E.g., HTTP,SSH, FTP, ... * E.g., DNS, VolP, VOD, ...

UNIX “TIME” PROTOCOL

TCP Transport
Protocol

TCP Port 13

Network Working Group J. Postel
Request for Comments: 867 ISI
May 1983

Daytime Protocol

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet that choose to implement a Daytime Protocol are
expected to adopt and implement this standard.

A useful debugging and measurement tool is a daytime service. A daytime
service simply sends a the current date and time as a character string
without regard to the input.

TCP Based Daytime Service
One daytime service is defined as a connectlon based application on

TCP. A server llstens for TCP connec TCP port 13. Once a
connectlon is esta b S

quote.
UDP Based Daytime Service

Another daytime service service is defined as a datagram based
application on UDP. A server listens for UDP datagrams on UDP port
13. When a datagram is received, an answering datagram is sent
containing the current date and time as a ASCII character string (the
data in the received datagram is ignored).

Daytime Syntax

Format of the

response

There is no specific syntax for the daytime. It is recommended that
it be limited to the ASCII printing characters, space, carriage
return, and line feed. The daytime should be just one line.
One popular syntax is:
Weekday, Month Day, Year Time-Zone

Example:

Tuesday, February 22, 1982 17:37:43-PST

UNIX TIME PROTOCOL AND LAYERING
867

TCP
(Destination port 13)

timequery.go

TCP
(Source port:
autoassigned)

IP
(Source address:
autoasssigned)

IP

(Destination: time.nist.gov)

Link Layer (don’t care)

Physical Layer (don'’t care)

Link Layer

NN

Physical Layer

MINI DEMO: TIMEQUERY.GO

‘gmporter@navygrog lec@3-demo % go run timequery.go time.nist.gov:13
59850 22-09-28 22:33:00 50 0 0 15.1 UTC(NIST) =*

gmporter@Pnavygrog lec@3-demo % D

Full list of servers at: https://tf.nist.gov/tf-cgi/servers.cqi

INITIALLY: THE LOWER-LEVEL C INTERFACE
THEN: THE SAME INTERFACE BUT IN GO

UC San Diego

CLIENT AND SERVER SOCKETS (SYSTEM CALLS)

Client Server
(socket socket |
bind > open_listenfd
open clientfd < l
listen
. J
Connection |
\ connect - - _r_qg_u_gg_t miaiale accept
v v
Client / > write > read
Serv?r il il
Session read write
\4 v
close = f----- E Q—F—————» read
A 4
close

INITIALIZATION (CLIENT AND SERVER)

(sock < 0) {
perror (“socket () failed”);
abort () ;

socket () : returns a socket descriptor

AF INET: IPv4 address family. (also OK with PF_INET)
— C.f IPv6 => AF_INET6

SOCK STREAM: streaming socket type
— C.f SOCK_DGRAM

perror ():prints out an error message

INITIALIZATION ON THE SERVER VIA BIND()

* Server needs to bind a particular port number.

/égiuct sockaddr in sin;

memset (&sin, 0, sizeof (sin));
sin.sin family = AF INET;

sin.sin addr.s addr = INADDR ANY;
sin.sin port = htons(server port);

if (bind(sock, (struct sockaddr *) &sin, sizeof(sin)) < 0)
perror (“bind failed”);
N

N

{

)

abort () ;
* bind(): binds a socket with a particular port number.
— Kernel remembers which process has bound which port(s).
— Only one process can bind a particular port number at a time.

* struct sockaddr_in: Ipv4 socket address structure. (c.f., struct sockaddr_in6)
* INADDR_ANY: If server has multiple IP addresses, binds any address.

* htons(): converts host byte order into network byte order.

* Q) You have a 16-bit number: 0xOAOB. How is it stored in memory?

Increasing address

[
>

O0x0A

0x0B

0x0B

O0x0A

Increasing address
* Host byte order is not uniform

v

Big Endian

Little Endian

— Some machines are Big endian, others are Little endian

« Communicating between machines with different host byte orders is

problematic

— Transferred $256 (0x0100), but received $1 (0x0001)

— For Internet, we standardize on big-endianness

— htons() and ns

ENDIANESS (CON’T)

 Network byte order: Big endian
— To avoid the endian problem

 We must use network byte order when sending 16bit, 32bit
, 64bit numbers.

e Utility functions for easy conversion

uintlé t htons(uintlé t hostlébitvalue);
uint32 t htonl (uint32 t host32bitvalue);
uintlé t ntohs(uintl6é t netlébitvalue);
uint32 t ntohl (uint32 t net32bitvalue);

 Hint: h, n, s, and 1 stand for host byte order, network byte order,
short(16bit), and long(32bit), respectively

INITIALIZATION, SERVER VIA LISTEN()

e Socket is active, by default
 We need to make it passive to get connections.

/if (listen(sock, back log) < 0) { N
perror (“listen failed”);
abort () ;

J y

e listen ():converts an active socket to passive

* back log: connection-waiting queue size. (e.g., 32)
— Busy server may need a large value (e.g., 1024, ...)

CLIENT AND SERVER SOCKETS (SYSTEM CALLS)

Client Server
(socket socket |
bind > open_listenfd
open clientfd < l
listen
. J
Connection |
\ connect - - _r_qg_u_gg_t miaiale accept
v v
Client / > write > read
Serv?r il il
Session read write
\4 v
close = f----- E Q—F—————» read
A 4
close

CONNECTION ESTABLISHMENT (ON THE CLIENT)

/gg;uct sockaddr in sin; \\\\

memset (&sin, 0 ,sizeof(sin));

sin.sin family = AF INET;
sin.sin addr.s addr = inet addr(“128.32.132.214");
sin.sin port = htons(80);

if (connect(sock, (struct sockaddr *) &sin, sizeof(sin)) < 0) {
perror (“connection failed”);
abort () ;

U 4

 Connect (): waits until connection establishes/fails

* inet addr ():converts an IP address string into a 32bit address
number (network byte order).

CONNECTION ESTABLISHMENT (ON THE SERVER)

//gfruct sockaddr in client sin; ‘\\\
int addr len = sizeof(client sin);
int client sock = accept(listening sock,
(struct sockaddr *) &client sin,
&addr len);
1f (client sock < 0) {
perror (“accept failed”);
abort () ;

& /

* accept ():returns a new socket descriptor for a client connection
in the connection-waiting queue.

— This socket descriptor is to communicate with the client
— The passive socket (listening_sock) is not to communicate with a client

SENDING DATA (BOTH CLIENT AND SERVER)

/6Bar *data addr = “hello, world”; <\\
int data len = 12;

int sent bytes = send(sock, data_addr, data len, 0);
1f (sent bytes < 0) {
perror (“send failed”);

N\ J
 send ():sends data, returns the number of sent bytes
— Also OKwithwrite (), writev ()

* data addr: address of data to send
* data len:size of the data

* With blocking sockets (default), send() blocks until it sends all the data.

* With non-blocking sockets, sent_bytes may not equal to data_len
— If kernel does not have enough space, it accepts only partial data
— You must retry for the unsent data

RECEIVING DATA (BOTH CLIENT AND SERVER)

/c{ar buffer[4096] ; \
int expected data len = sizeof (buffer);

int read bytes = recv(sock, buffer, expected data len, 0);

if (read bytes == 0) { // connection is closed

} else if (read bytes < 0) { // error
perror (“recv failed”);

} else { // OK. But no guarantee read bytes == expected data len

0 4
« recv ():reads bytes from the socket and returns the number of read bytes.
— Also OK with read () and readv ()

 read bytes may not equal to expected_data_len
— If no data is available, it blocks
— If only partial data is available, read_bytes < expected_data_len
— On socket close, expected _data_len equals to O (not error!)
— If you get only partial data, you should retry for the remaining portion.

CLOSING CONNECTION (BOTH CLIENT AND SERVER)

/7/ after use the socket)
close (sock) ;
\ J

* close (): closes the socket descriptor

* We cannot open files/sockets more than 1024 *

— We must release the resource after use

* Super user can overcome this constraint, but regular user cannot.

CLIENT AND SERVER SOCKETS (SYSTEM CALLS)

Client Server
(socket socket |
bind > open_listenfd
open clientfd < l
listen
. J
Connection |
\ connect - - _r_qg_u_gg_t miaiale accept
v v
Client / > write > read
Serv?r il il
Session read write
\4 v
close = f----- E Q—F—————» read
A 4
close

GO DEMO: DAYTIMESERVER.GO

UCSan Diego

DIGGING INTO SEND() A BIT MORE

rv = connect(s,...);

;v = send(s,buffer0,1000,0);
;v = send(s,bufferl,2000,0);
;v = send(s,buffer2,5000,0);

close(s);

AFTER 3 SEND() CALLS

Sending sockets layer Receiving sockets layer Receiving program
|] | L
| 1 I 1
SendQ Recv(Q Delivered
AR R S
send() P8 s T B el ['CP protocol recv() ‘
Ry S 10 -
— PSRN T i o]
6500 bytes 1500 bytes 0 bytes

First send call (1000 bytes)
EJ Second send call (2000 bytes)
[Third send call (5000 bytes)

AFTER FIRST RECV()

Sending sockets layer Receiving sockets layer Receiving program
; } +]
Send(Q Delivered
500 bytes 6000 bytes 1500 bytes

Bl First send call (1000 bytes)
Bl Second send call (2000 bytes)
Bl Third send call (5000 bytes)

AFTER ANOTHER RECV()

Sending sockets layer Receiving sockets layer Receiving program
| 1 ! T 1
Send(Q RecvQ
500 bytes 2000 bytes 5500 bytes

First send call (1000 bytes)
Second send call (2000 bytes)
Third send call (5000 bytes)

WHEN DOES BLOCKING OCCUR?

* SendQ size: SQS
* RecvQ size: RQS
* send(s, buffer, n, 0);
 n>SQS: blocks until (n — SQS) bytes xfered to RecvQ

* If n>(SQS+RQS), blocks until receiver calls recv()
enough to read in n-(SQS+RQS) bytes

e How does this lead to deadlock?

* Trivial cause: both sides call recv() w/o sending data

MORE SUBTLE REASON FOR DEADLOCK

send(s,buffer,1500,0); send(s,buffer,1500,0);

To be sent SendQ Recv(Q Delivered
Delivered Recv(Q SendQ To be sent
e

Program - Sockets layer | ' Sockets layer 1 Program 1
L d L]
Host A Host B

e SendQ size = 500; RecvQ size = 500

UC San Diego

