
SOCKETS PROGRAMMING AND
GO’S NET PACKAGE
George Porter
Jan 12, 2023

ATTRIBUTION
• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:

• Alex C. Snoeren, UC San Diego
• Michael Freedman and Kyle Jamieson, Princeton University
• Internet Society
• Computer Networking: A Top Down Approach
• DK Moon, Berkeley’s EE122
• Network Programming With Go (Woodbeck)

AGENDA
Sockets programming using Go’s net package

ASSIGNED READINGS
“Network programming with Go” chapter 3

PROJECTS
Project 0 is available

Today’s agenda

• Let’s write a couple Go programs
that send/receive data over the
network using the TCP protocol

• Then we’ll go back and take a
deep dive on why they work and
what is going on “under the
engine hood”

QUICK ADVICE W.R.T. PROJECT 0

• How do you read bytes of data from a file? Write
data to a file?
• The whole file? 100 bytes at a time? 10/90 bytes?

• How do you represent a 10-byte key, 90-byte value
record type in Go?

• How do you maintain some kind of list/array of
those records?

• There is a sort package for built-in types (e.g. ints).
But what about custom record types?
• Hint: check out sort’s Slice() method and bytes package

BERKELEY SOCKETS API

• From UC Berkeley (1980s)

• Most popular network API

• Ported to various OSes, various languages

• Windows Winsock, BSD, OS X, Linux, Solaris, …

• Socket modules in Java, Python, Perl, …

• Similar to Unix file I/O API

• In the form of file descriptor (sort of handle).

• Can share the same read()/write()/close() system calls.

BERKELEY SOCKETS API

• What is a socket?

• The point where a local application attaches to the network

• An interface between an application and the transport protocol

• An application creates the socket

• The interface defines operations for

• Creating a socket

• Attaching a socket to the network

• Sending and receiving messages through the socket

• Closing the socket

• Sockets are where your program send and receive data

SOCKETS

• Various sockets… Any similarity?

• Endpoint of a connection

• Identified by IP address and Port number

• Primitive to implement high-level networking interfaces

• e.g., Remote procedure call (RPC), HTTP, Video streaming, etc etc.

AN IP PACKET

INTERNET DELIVERY MODEL

• Send and receive packets of data, up to 64KB in size (though 1500 bytes is the
norm)

• Connection-less

• “Best-effort” delivery

• Arbitrary order of packet delivery

• Packets can be lost, and there is no automatic retransmission

• Possible duplicates

• Packets can get corrupted during transit

IP

TYPES OF SOCKETS

• Connection-less

• “Best-effort” delivery

• Arbitrary order of packet delivery

• No retransmission

• Possible duplicates

• Low variance in latency

• Packet-like interface

• Requires packetizing

• E.g., DNS, VoIP, VOD, …

• Connection-oriented

• Requires connection establishment
& termination

• Interface: “Infinite bytestream”

• Reliable delivery

• In-order delivery

• Retransmission

• No duplicates

• High variance in latency

• Cost of the reliable service

• E.g., HTTP, SSH, FTP, …

TCP UDP

UNIX “TIME” PROTOCOL

TCP Transport
Protocol

TCP Port 13

Format of the
response

UNIX TIME PROTOCOL AND LAYERING

UNIX Time Protocol (RFC-
867)

TCP
(Destination port 13)

IP
(Destination: time.nist.gov)

Link Layer (don’t care)

Physical Layer (don’t care)

timequery.go

TCP
(Source port:
autoassigned)

IP
(Source address:
autoasssigned)

Link Layer

Physical Layer

MINI DEMO: TIMEQUERY.GO

Full list of servers at: https://tf.nist.gov/tf-cgi/servers.cgi

INITIALLY: THE LOWER-LEVEL C INTERFACE
THEN: THE SAME INTERFACE BUT IN GO

CLIENT AND SERVER SOCKETS (SYSTEM CALLS)

Client /
Server
Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close EOF

open_listenfd

acceptconnect

open_clientfd

INITIALIZATION (CLIENT AND SERVER)

INITIALIZATION ON THE SERVER VIA BIND()

• Server needs to bind a particular port number.

struct sockaddr_in sin;
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(server_port);

if (bind(sock, (struct sockaddr *) &sin, sizeof(sin)) < 0) {
perror(“bind failed”);
abort();

}

• bind(): binds a socket with a particular port number.
– Kernel remembers which process has bound which port(s).
– Only one process can bind a particular port number at a time.

• struct sockaddr_in: Ipv4 socket address structure. (c.f., struct sockaddr_in6)

• INADDR_ANY: If server has multiple IP addresses, binds any address.

• htons(): converts host byte order into network byte order.

ENDIANESS

• Q) You have a 16-bit number: 0x0A0B. How is it stored in memory?

• Host byte order is not uniform
– Some machines are Big endian, others are Little endian

• Communicating between machines with different host byte orders is
problematic
– Transferred $256 (0x0100), but received $1 (0x0001)

– For Internet, we standardize on big-endianness
– htons() and ns

0x0A 0x0B

0x0B 0x0A

Increasing address

Increasing address

Big Endian

Little Endian

ENDIANESS (CON’T)

• Network byte order: Big endian
– To avoid the endian problem

• We must use network byte order when sending 16bit, 32bit
, 64bit numbers.

• Utility functions for easy conversion

uint16_t htons(uint16_t host16bitvalue);
uint32_t htonl(uint32_t host32bitvalue);
uint16_t ntohs(uint16_t net16bitvalue);
uint32_t ntohl(uint32_t net32bitvalue);

• Hint: h, n, s, and l stand for host byte order, network byte order,
short(16bit), and long(32bit), respectively

INITIALIZATION, SERVER VIA LISTEN()

• Socket is active, by default
• We need to make it passive to get connections.

if (listen(sock, back_log) < 0) {
perror(“listen failed”);
abort();

}

• listen(): converts an active socket to passive

• back_log: connection-waiting queue size. (e.g., 32)
– Busy server may need a large value (e.g., 1024, …)

CLIENT AND SERVER SOCKETS (SYSTEM CALLS)

Client /
Server
Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close EOF

open_listenfd

acceptconnect

open_clientfd

CONNECTION ESTABLISHMENT (ON THE CLIENT)

struct sockaddr_in sin;
memset(&sin, 0 ,sizeof(sin));

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = inet_addr(“128.32.132.214”);
sin.sin_port = htons(80);

if (connect(sock, (struct sockaddr *) &sin, sizeof(sin)) < 0) {
perror(“connection failed”);
abort();

}

• Connect(): waits until connection establishes/fails

• inet_addr(): converts an IP address string into a 32bit address
number (network byte order).

CONNECTION ESTABLISHMENT (ON THE SERVER)

struct sockaddr_in client_sin;
int addr_len = sizeof(client_sin);
int client_sock = accept(listening_sock,

(struct sockaddr *) &client_sin,
&addr_len);

if (client_sock < 0) {
perror(“accept failed”);
abort();

}

• accept(): returns a new socket descriptor for a client connection
in the connection-waiting queue.
– This socket descriptor is to communicate with the client
– The passive socket (listening_sock) is not to communicate with a client

SENDING DATA (BOTH CLIENT AND SERVER)

char *data_addr = “hello, world”;
int data_len = 12;

int sent_bytes = send(sock, data_addr, data_len, 0);
if (sent_bytes < 0) {

perror(“send failed”);
}

• send(): sends data, returns the number of sent bytes
– Also OK with write(), writev()

• data_addr: address of data to send
• data_len: size of the data

• With blocking sockets (default), send() blocks until it sends all the data.
• With non-blocking sockets, sent_bytes may not equal to data_len

– If kernel does not have enough space, it accepts only partial data
– You must retry for the unsent data

RECEIVING DATA (BOTH CLIENT AND SERVER)

char buffer[4096];
int expected_data_len = sizeof(buffer);

int read_bytes = recv(sock, buffer, expected_data_len, 0);
if (read_bytes == 0) { // connection is closed

…
} else if (read_bytes < 0) { // error

perror(“recv failed”);
} else { // OK. But no guarantee read_bytes == expected_data_len

…
}

• recv(): reads bytes from the socket and returns the number of read bytes.
– Also OK with read() and readv()

• read_bytes may not equal to expected_data_len
– If no data is available, it blocks
– If only partial data is available, read_bytes < expected_data_len
– On socket close, expected_data_len equals to 0 (not error!)
– If you get only partial data, you should retry for the remaining portion.

CLOSING CONNECTION (BOTH CLIENT AND SERVER)

// after use the socket

close(sock);

• close(): closes the socket descriptor

• We cannot open files/sockets more than 1024*
– We must release the resource after use

* Super user can overcome this constraint, but regular user cannot.

CLIENT AND SERVER SOCKETS (SYSTEM CALLS)

Client /
Server
Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close EOF

open_listenfd

acceptconnect

open_clientfd

GO DEMO: DAYTIMESERVER.GO

DIGGING INTO SEND() A BIT MORE

AFTER 3 SEND() CALLS

AFTER FIRST RECV()

AFTER ANOTHER RECV()

WHEN DOES BLOCKING OCCUR?

• SendQ size: SQS

• RecvQ size: RQS

• send(s, buffer, n, 0);

• n>SQS: blocks until (n – SQS) bytes xfered to RecvQ

• If n>(SQS+RQS), blocks until receiver calls recv()
enough to read in n-(SQS+RQS) bytes

• How does this lead to deadlock?

• Trivial cause: both sides call recv() w/o sending data

MORE SUBTLE REASON FOR DEADLOCK

• SendQ size = 500; RecvQ size = 500

