
CSE 224:
OVERVIEW AND INTRODUCTION
George Porter
Jan 10, 2023

ATTRIBUTION
• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0

Unported (CC BY-NC-SA 3.0) Creative Commons license

TODO
1. Go to Canvas and take the “Onboarding Survey”
2. Start project 0 (due Jan 17)

WELCOME!

CSE 224: NETWORKED SYSTEMS

• Add networking support to software

• Between two computers

• Between computer and datacenter (“The Cloud”)

• Develop software that is:

• Scalable (handles 100s of M to 1+ billion users)

• Fault-tolerant (survives failures)

• Evolvable (how to update services without making them
unavailable to end users)

MODERN SOFTWARE INCREASINGLY NETWORKED

Endhost / Front-end
(phone, laptop, game console,

electric vehicle, …)

Networked services / Backend
(cloud computing)

Application protocols

NETWORKED SERVICES DRIVEN BY DATA

Data + = Product
Recommendations

Data + = Custom
Stations

Data + = Personalized
Search

DATA-DRIVEN, PER-USER CUSTOMIZATION + ML

Data + = Product
Recommendations

App 1
App 3

App ...

App 2

App ...App ... App ...

App ...App ...
App ...

App ...

App ...

App ...

MAJOR THEMES OF THE COURSE

• Programming abstractions for communicating over the
Internet through various network protocols

• Naming and indexing to find services and connect clients
with servers (or clients with other clients)

• Managing scale; scale-out design

• Replicating and updating “mutable” data over the network

• Replicating and caching “immutable” data over the
network (think Netflix, Disney+, Youtube, etc)

• Accessing and managing networked storage

• Managing fault tolerance

HOW CAN YOU WRITE SOFTWARE THAT
WORKS DESPITE ADVANCEMENTS IN
UNDERLYING TECHNOLOGY?

Think about the first computer you remember using…
- Can we find the oldest example here in class today? The most recent example?

Think about the first network you used (modem? Fiber optics? Mobile network?)
- Can we find the oldest example here in class today? The most recent example?

Discuss with the 3-4 people nearest you for 2 minutes and let’s find out!

THINK ABOUT HOW ONLINE NETWORK SERVICES
HAVE CHANGED OVER THE PAST 20-ISH YEARS…

GOOGLE (1998)

NETFLIX (2002)

TWITTER (2007)

YOUTUBE (2004)

YOUTUBE (2005)

FACEBOOK (2004)

SURVEY

• When was the web protocol created? When was
the first graphical web browser released?

1. 1968 / 1972

2. 1974 / 1976

3. 1989 / 1993

4. 2001 / 2002

THE DEPLOYMENT OF “THE WEB”

RISE OF THE WEB

1989 1993 1997 2001 2005 2009 2013

RISE OF THE WEB

1989 1993 1997 2001 2005 2009 2013

Web
Created

1989 1993 1997 2001 2005 2009 2013

WHERE DO NETWORK SERVICES EXECUTE?

THE FIRST WEB SERVER (NEXT WORKSTATION, 1991)

THE RISE OF THE “DATACENTER” (AKA CLOUD
COMPUTING)

1989 1993 1997 2001 2005 2009 2013

Web
Created

1989 1993 1997 2001 2005 2009 2013

Google’s 1st cluster
(15 years)

DATACENTERS:
THE HOME OF ALL THIS COMPUTING AND STORAGE

Google Facebook

Microsoft

26

Google 2012

27

Microsoft

28

Google

29

Facebook

30

HARDWARE HAS EVOLVED AS WELL. STARTING WITH
CPUS…

TO GPUS…

TO PROGRAMMABLE FPGAS…

TO CUSTOM DESIGNED CHIPS

CHUSTOM VIDEO TRANSCODING CHIP

CLUSTERS OF CUSTOM ASICS FOR AI/MACHINE
LEARNING

Source: google.com

FULL CLOUD NATIVE LANDSCAPE

CLOUD NATIVE LANDSCAPE IN A 10-WEEK QUARTER

BACKEND DEVELOPMENT ROADMAP

BACKEND DEVELOPMENT ROADMAP

BACKEND DEVELOPMENT ROADMAP

BACKEND DEVELOPMENT ROADMAP

THE ENVIRONMENTAL IMPACT OF CLOUD
COMPUTING

• Carbon/energy footprint:
• 1-2% of global energy

consumption1

• 140 billion kWh (50 power
plants)2

• 100 metric tons of carbon
pollution per year2

1. LBNL, 2013
2. NRDC report

Google’s energy
footprint

SCALING ACROSS TECHNOLOGY IMPROVEMENTS

• Network primitives are designed to scale

• Techniques we learn are directly applicable to
global-scale services like Google, Facebook, …

• Your projects will be tested in small scale

• Yet could scale immensely with minimal to no
modifications

HOW TO BUILD SUCH LARGE SYSTEMS?

HOW TO BUILD SUCH LARGE SYSTEMS?

• Systems…

• Built on top of
abstractions…

• Built on software…

• Built on hardware…

We will cover the software abstractions to
enable you to write networked software

IT’S NOT JUST WEBSITES AND SOCIAL MEDIA
THOUGH!

SELF-DRIVING CARS AND SMART CITIES

https://www.electronicproducts.com/wp-content/uploads/automotive-fig1-automotive-5g-c-v2x-qualcomm.png

SMART CITIES AND SMART GRIDS

https://innovationatwork.ieee.org/wp-content/uploads/2018/04/bigstock-127573223.jpg

CSE 224 VS {221,222A,223B}

• Research-focused depth sequence

• 221: Operating Systems

• 222A: Networking

• 223B: Distributed systems theory

• Deep dives into peer-reviewed
literature

• Learn through close readings and
in-class discussion of 4 research
papers per week

• 221/222A/223B Target audience:

• Systems MS ”thesis” and Systems
Ph.D students

• 224: Graduate Networked Systems

• How to program networked software

• Socket programming, RPC, protocol design
and implementation, consensus and
consistency, security, TLS, …

• Designed as a broad survey of systems
thinking

• Learn through hands-on, programming-
based projects

• 224 Target audience:

• MS “comps” students and BS/MS students

• Non-systems MS “thesis” and non-systems
Ph.D. students

• Note:

• Cannot receive credit for both 124 and 224

THE CHALLENGE OF NETWORKING

• CS undergraduate curricula includes:

• Algorithms

• Programming languages

• Architecture

• Data structures

• Etc...

• How does the network change each of these
areas?

RESOURCES

• Website
• https://canvas.ucsd.edu/courses/43955

• Gradebook, links to assignments + deadlines, PDFs of
lecture slides, in-class demos and exercises

• Piazza discussion board (linked off Canvas)
• Github (for managing your projects)
• Gradescope (for submitting your projects)
• Two books
• TA discussion section (1x week)

TEACHING ASSISTANTS (PAGE 1)

TEACHING ASSISTANTS (PAGE 2)

CLASS MEETINGS

• Mostly putting the material that you read into
context

• Live coding demos, activities, some “mini lectures”
on algorithms, protocols, etc.

• You are responsible for everything that happens
during class

• Will podcast, but can’t guarantee that system works
flawlessly

• Will be asking for feedback on what works and what
doesn’t work a lot during the class

BOOKS

Free if accessed through the
UCSD library

Free if accessed through the
UCSD library

PROGRAMMING SKILLS FOR THIS CLASS

• We’ll be using the “Go” language

• golang.org

• Designed at Google in 2007

• Goals: improve programming productivity in an era of multicore, networked
machines, and large codebases

• Kernighan (of ‘C’ fame) co-created

• Why?

• Simple, readable, no mem allocation (similar to Python)

• High-performance networking

• Concurrency/parallelism

• Static typing and efficient runtime

• Industry-quality and deployed at massive scale

CLASS ROADMAP / PROJECTS / GRADING

1. Pre-lecture review question sets [5%]

2. Projects [60%]

1. [5%] Single-node sort

2. [10%] Distributed network sort

3. [15%] Build your own web server

4. [10%] SurfStore “Dropbox clone”

5. [5%] Scaled-out SurfStore backend

6. [15%] Fault-toleranct SurfStore backend

3. Exams [35%]

1. [15%] Midterm (Thu Feb 9 during class time)

2. [20%] Final exam (Tue Mar 21, 3-6pm)

DEFAULT UCSD GRADING SCHEME

COURSE AT A GLANCE

• Basics of networking, sockets API, DNS

• Remote procedure calls w/ Google RPC (gRPC)

• Distributed storage as an application

• Scale-out techniques and methods

• Replicating immutable state via CDNs

• Replicating mutable state with two-phase
commit and replicated state machines (+ deep
dive on the RAFT protocol)

IMPORTANT CONTEXT

• In this course you’ll learn some things in class
(mostly tested via the exams), and you’ll learn some
things by doing—working on the projects.

• We’ll cover the big themes and high-level ideas in
class, but you’ll be learning a lot of the details in the
projects

• That’s why the projects are NOT designed to be done in
one long session or all-nighter—you should work on them
a bit each day so you can research what you need to
complete them, or to talk to the TAs/myself, etc.

• Start early—start often!

TAKE THE ONBOARDING SURVEY

• Required by UCSD for some reason or another
regarding Federal financial aid

• BUT also, there is a very important question for
those of you who need this class to graduate and
plan to graduate this term…

• I’m going to export more of you this term, not less

• While I’m not going to enforce it, you really need to
be physically attending class every time, not just
relying on podcasts

COMPUTING RESOURCES

• You can use the lab computers in the building, or
the “ieng6” servers that can be accessed via ssh

• ssh <username>@ieng6.ucsd.edu

TODO
1. Go to Canvas and take the “Onboarding Survey”

2. Start project 0 (due Jan 17)

