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Motivations

Two types of initial value problem when we use QLT:

1 Wave spectrum in resonance with stable part of
distribution function, ∂ f0/∂v < 0

2 Bump-on-tail distribution with an interval of
unstable waves where ∂ f0/∂v > 0



Assumptions and Other Considerations

Quasilinear theory (QLT) applies for a broad and dense spectrum of modes.
Phases of modes are random and do not couple nonlinearly (weak turbulence
assumption, more subtle assumptions and limitations - later)
However, modes are dense δ (ω/k)<

√
eφk/m and resonant particles respond

strongly to a few waves, not one. Particle motion becomes chaotic. They migrate in
velocity space from one group of resonant waves to the next

The main subject of the QL theory is the backreaction of the excited modes onto the
particle distribution function.
However, it is treated self-consistently with the mode evolution. The fundamental
physical process here is the emission and absorption of waves by resonant particles at
(Landau, or Cerenkov resonance)

ω = kv

(limit treatment to 1D, kv → k ·v, etc. in simple 3D cases)



Qualitative Arguments
Mode overlapping means the phase velocities of the neighbor modes satisfy

δ

(
ω

k

)
<

√
eφ̄k

m
(1)

φ̄k is the characteristic wave potential, associated with the scale k−1

the main variable of the QLT is the energy spectral density E2
k , relates to φk :

φ̄k = k−1
√

E2
k ∆k

∆k is the mode spacing in the wave number space in a system of length L, ∆k = 2π/L.
particle motion may become chaotic if only two modes are present
Thus particles undergo Brownian motion in velocity space
random walk from one resonance to the next

expect them to become evenly distributed over the interval
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Expectations and more subtle assumptions

plateau forms is the waves from the interval maintain their amplitudes to meet the
condition (1) in course of the evolution
However, waves in the packet should not be too strong to create their own potential
well to make the particle dynamics quasi-coherent, akin to trapping phenomenon in a
single wave. This limitation means

∆
(

ω

k

)
≫
√

eφ0

m
=

√
e
m

(ˆ
E2

k dk/k2
)1/2

Otherwise, most of the particles from this velocity interval will be involved in a
collective quasi-coherent motion in the effective potential φ0.



Formal Description-1

decompose the particle distribution into
averaged, slowly varying part f0 (v , t)
and a small perturbation f ′ (v ,x , t) (averaging is over the random phases of modes that
are responsible for the perturbation f ′), ⟨f ′⟩= 0

f = f0 + f ′ = ⟨f ⟩+ f ′

Alternatively, averaging can be performed over rapid oscillations of the modes either in
time or in space, or both, whereas f0 changes only slowly in time and, possibly, in space
(ignore the latter for simplicity). Substituting the decomposition f = f0 + f ′ = ⟨f ⟩+ f ′

into the kinetic equation
∂ f0
∂ t

=
e
m

〈
E

∂ f ′

∂v

〉
(2)

∂ f ′

∂ t
+v

∂ f ′

∂x
=

e
m

E
∂ f0
∂v

(3)



Formal Description-2

’quasilinear’ character of approximation: the equations for f ′ and for E (given
below) are linear
nonlinearity is crucial in equation for f0, but not w.r.t. f0

describes backreaction of waves on particles, but phase- (or otherwise) averaged
decomposition

f =
1√
2 ∑

k
fk exp(−iωk t + ikx)+c.c.

E =
1√
2 ∑

k
Ek exp(−iωk t + ikx)+c.c.

Here ωk = ℜωk + iγk ≈ ℜωk is the solution of the appropriate dispersion equation,
ε (ω,k) = 0, with γk ≪ ωk . From (3) we thus have

fk = i
e
m

∂ f0
∂v

Ek (ωk −kv)−1



QL - derivation

random phase approximation

⟨EkE∗
k ′⟩= |Ek |2 δ

(
k −k ′) .

Thus, eq.(2) rewrites
∂ f0
∂ t

=
∂

∂v
D (v)

∂ f0
∂v

(4)

where

D =
e2

m2 ∑
k

τk |Ek |2 (5)

where a normalized particle scattering rate

τk ≡ γk

(ωk −kv)2 + γ2
k

, γk ≥ 0.



QL -derivation-2

Eq.(4) describes diffusion in velocity space
need add an equation for D, which is

∂

∂ t
|Ek |2 = 2γk |Ek |2 (6)

where

γk =

(
∂ℜε

∂ωk

)−1 ω2
p

n0k

ˆ
∂ f0
∂v

πδ (ωk −kv)dv (7)

NB: growth rate of the waves is determined by the current distribution f0 (v , t) which
itself evolves in time under the wave backreaction on particles.
τk has two simple limits:



QL- non-resonant heating
1

τk → πδ (ω −kv) , γk → 0+ (8)
Physically, this means that particles are kicked by the resonant waves when they are
near the points v = ω/k .

2 ωk ≫ kv , e.g. bulk electrons and the spectrum of Langmuir waves with Vph ≫ VTe.
We have τk ≈ γk/ω2

p . (Similarly, one can consider kv ≫ ωk )

∂ f0
∂ t

=
∂

∂v
1

2m

(
∂

∂ t ∑
k

|Ek |2

4πn0

)
∂ f0
∂v

This equation can be easily solved by introducing a new variable instead of t

T̃ = ∑
k

|Ek |2

4πn0
+Te (9)

where Te is the electron temperature, so that the last equation has the solution



QL-non-resonant heating-2

f0 (v , t) =
√

m
2πT̃

exp

(
−mv2

2T̃

)
Without waves T̃ = Te, electrons have a Maxwellian distribution with the
temperature Te

When waves are excited, the only effect is a reversible increase of the temperature. It
is caused by electron nonresonant oscillations in the wave field,
Indeed, from the equation of motion of electrons in nonresonant plasma waves with
ω ≈ ωp, v̇ =−(e/m)E ,

mv2 = ∑
k

m |vk |2 = ∑
k
|Ek |2 /4πn0

Therefore, the heating effect disappears together with the waves as there is no
entropy production



QL-resonant interaction

Consider resonant wave-particle interaction in γk → 0 limit (8)
δ function in the QLT equations (4,6) allows one to eliminate k as an independent
variable

∂ f0
∂ t

= π
ω2

p

mn0

∂

∂v
W (v)∣∣v −Vg (v)

∣∣ ∂ f0
∂v

∂

∂ t
W = 2π

ω2
p

n0

(
ωk |k |

∂ℜε

∂ωk

)−1

k=ωk/v
v

∂ f0
∂v

W (v)

Here Vg (v) = ∂ωk/∂k and W (v)

Wk = ωk

(
∂ℜε

∂ω

)
ω=ωk

|Ek |2

8π
(10)

is the wave energy density (10), both calculated at k = ωk/v .



QL-Enefgy and Momentum Conservation

total energy´
mv2f0dv/2+

´
Wkdk =

´
mv2f0dv/2+ωp

´
W (v)dv/v2

and momentum´
mvf0dv +

´
Pkdk

are conserved. The wave momentum density is
Pk = kWk/ωk = W (v)/v and ω∂ℜε/∂ε ≈ 2.
Note, that the quantity Nk = Wk/ωk may be interpreted as a number of wave quanta.
Indeed, the energy of a quantum with the wave number k (sometimes called
plasmon) can be written as ∆Wk = h̄ωk , so that the number of such quanta is
Nk = Wk/∆Wk . The momentum of the quantum is then ∆Pk = h̄k . As the
phenomena, we are interested in are purely classical, we may use the units in which
h̄ = 1.



“Quasi-linear” integral
Consider Langmuir waves propagating at phase velocities
ωk/k ≈ ωp/k ≫ Vg ∼ k2λ 2

Dωp/k . The QL equations are simplified to

∂ f0
∂ t

= π
ω2

p

mn0

∂

∂v
W (v)

v
∂ f0
∂v

(11)

∂

∂ t
W = π

ωp

n0
v2 ∂ f0

∂v
W (v) (12)

Apart from the velocity-integrated phase space density, particle energy, and momentum,
also the following ’local’ quantity is conserved

∂

∂ t

(
f0 −

ωp

m
∂

∂v
W/v3

)
= 0 (13)

The latter result is the so-called QL integral, a powerful tool in solving wave-particle
interaction problems



Q-L integral -2
from the initial conditions, f0 (t = 0) = f 0

0 (v), W (t = 0) = W0 (v), also the final
stage of the evolution, when the system reaches a steady state, can in many practical
cases be determined without further calculations.

1 The first such case is when f0 (t = ∞) = f ∞

0 (v) = const where W (v) ̸= 0 (this nulls
both r.h.s. in [11,12]).

2 The second case is when W (v) = 0, where f ∞

0 (v) ̸= const . Then, integrating (13)
in time, we can determine either W or f0 in the final state, or we can relate them at
any moment of time.

Assume at t = 0, a Langmuir wave packet, having phase velocities 0 < v1 < ωp/k < v2,
is launched into a plasma with ∂ f0/∂v < 0 for v1 < v < v2 (therefore, the waves can
only be damped). From (13) we obtain

W (v , t = ∞) = W ∞ (v) = W0 (v)+
m
ωp

v3
v̂

v1

[
f ∞

0 − f 0
0

]
dv (14)



QL-integral, wave damping

f ∞

0 is obtained from the final ’plateau’ and particle
conservation requirement

f ∞

0 =
1

v2 −v1

v2ˆ

v1

f 0
0 dv , (15)

provided that W ∞ > 0.
The opposite case, W ∞ < 0, simply means that the initial wave
energy is insufficient to form a plateau.
Time asymptotic solution is W ∞ = 0, while f ∞

0 (v) ̸= const .
The latter quantity can be determined from (14)



QL Integral: Beam Relaxation

consider a ’warm’ beam instead of a wave packet
assume waves to be initially weak for all v ’s they
resonate with
those waves where ∂ f0/∂v > 0 are unstable.

amplification of unstable waves will result in diffusion of particles to lower
velocities, accompanied by the further wave excitation
Finally, a plateau forms where ∂ f0/∂v was positive during the beam relaxation.
Its height is (15), with v1 being an intersection point of the f ∞

0 level with the thermal
core distribution (v1 ≃ VT ). v2- is the intersection point with the right side of the
beam distribution, where ∂ f0/∂v < 0
The wave energy density W ∞ (v) comes from (14) where W0 can be neglected in
most cases.



Time-dependent Beam Relaxation: Qualitative Considerations

Fact
wave energy in region is very small, ∼ Wth

Corollary
sharp front f (v) propagates to lower velocities

waves are rapidly excited within the front where ∂ f0/∂v is large
plateau forms behind the front,

f0 = f+0 = f0 (u+0, t)

where u (t) is the front coordinate in velocity space
at v ≈ u, the time dependence of f0 takes the form f0 (v , t) = f0 (v −u) and similarly
for W (v −u)



Time-dependent Beam Relaxation: Dynamics-1

dividing eq.(12) by W and integrating across the front we approximately have

−u̇ ln
W+

Wth
= π

ωp

n0
u2f+0 = π

ωp

n0

u2nb

v2 −u

where W+ = W (v = u+0, t), v2 is the right edge of the plateau (approximately
equal to v2 discussed earlier for a narrow beam) and nb is the beam density. We also
used the particle conservation to obtain the plateau height f+0 .
Integrate the last equation

v2

u
+ln

u
v2

= π
nb

n0
ωp

tˆ

0

dt
Λ(t)

+1 ≈ π
nb

n0
ωp

t
Λ
+1



Time-dependent Beam Relaxation: Dynamics-2

Proof.
quantity Λ(t) = ln

(
W+ (t)/Wth

)
≫ 1 is large, so we can neglect the slow dependence

W+ (t) and took it out of the integral

characteristic beam relaxation time, when u becomes u ∼ VT ≪ v2 ≃ Vb is
τrel = ω

−1
p Λn0/nb. The factor Λ is close to the Coulomb logarithm LC (see lecture

on binary collisions in plasmas)
The total energy transferred from the beam to the waves can be obtained from (14)
and it is equal to beam energy loss:

∆Eb = Wtot = nb
mV 2

b
2

−
vmaxˆ

vmin

f∞
mv2

2
dv ≃ nb

mV 2
b

3
(16)


