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A theory of many-particle systems is developed to formulate transport, collective motion, 
and Brownian motion from a unified, statistical-mechanical point of view. This is done by, 
first, rewriting the equation of motion in a generalized form of the Langevin equation in 
the stochastic theory of Brownian motion and then, either studying the average evolution 
of a non-equilibrium system or calculating the linear response function to a mechanical 

perturbation. (1) An expression is obtained for the clamping function cp (t), the real part of 
whose Laplace transform gives the damping constant of collective motion. (2) A general 
equation of motion for a set of dynamical variables A (t) is derived, which takes the form 

t 

:t A(t) -iw·A(t) + ~ cp(t-s) ·A(s)ds=f(t), 

where w is a frequency matrix determining the collective oscillation of A (t). The quantity 
f(t) consists of those terms which are either non-linear in A (s), {;;;_s~~O, or dependent on 
the other degrees-of-freedom explicitly, and its time-correlation function is connected with 
the damping function cp(t) by (f(t1), f(t2)*) =cp(t1-t2) ·(A, A*). (3) An expression is 
obtained for the linear after-effect function to thermal disturbances such as temperature 

gradient and strain tensor. Both the conjugate fluxes and the time dependence differ from 
those of the mechanical response function. The conjugate fluxes are random parts of the 
fluxes of the state variables, thus depending on temperature. (4) The difference in the time 
dependence arises from a special property of the time evolution of f(t) and ensures that the 
damping function and the thermal after-effect function are determined by the microscopic 
processes in strong contrast to the mechanical response function. The difficulty of the plateau 
value problem in the previous theories of Brownian motion and transport coefficients is 
thus removed. (5) The theory is illustrated by dealing with the motion of inhomogeneous 
magnetization in ferromagnets and the Brownian motion of the collective coordinates of 
fluids. (6) Explicit expressions are derived for the thermal after-effect functions and the 
transport coefficients of multi-component systems. 

§ 1. Introduction 

One of the recent developments in the theory of irreversible processes is 
the derivation of closed formulas for the generalized susceptibilities or admit-

*l The main results of this paper were reported at the International Conference on Statistical 
Mechanics held in Aachen, June 15-20, 1964. This work was completed during the author's stay 
at Institut fur Theoretische und Angewandte Physik der Technischen Hochschule Stuttgart; 
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424 1-1. Mori 

tances to mechanical perturbations such as magnetic and electric fields and for 
the kinetic or transport coefficients in non-equilibrium systems in terms of the 
time correlation of physical quantities. These time-correlation expressions 
provide us with a basis for the study of irreversible processes in strong-coupling 
syste1ns for instance, and have been successfully applied to several interesting 
phenomena. 

There are thus two fundamental formulas which relate the dissipative prop­
erties to the thermal :fluctuations1

l. The first is the :fluctuation-dissipation 
theorem which connects the generalized susceptibilities with the thermal :fluctua­
tions of mechanical quantities2

l-
4
l. 

The second is the formula which connects the kinetic coefficients with the 
thermal :fluctuations of temperature dependent fluxes. A phenomenological form 
of this formula has been used in the stochastic theory of Brownian motion5

l. 

It assumes that the damping (or generalized friction) constant r of a dynamical 
variable A (t) is related to the time correlation of its randonz force f(t) by 

(1·1) 

where the angular brackets denote an average, and the asterisk the Hermitian 
conjugate. This formula differs from the :6rst one in two respects. First, the 
random force f(t) and the corresponding :fluxes are not mechanical quantities6

l. 

Another difference arises from a special property of the evolution of f(t), and 
will be clarified later. 

One of the recent problems is to establish the formula (1.1) or its equi­
valent from statistical mechanics in order to have a reliable basis for the study 
of transport phenomena. A number of investigations have been devoted to this 
problem7

)-lbJ. In 1946, Kirkwood attempted to derive a statistical-mechanical 
theory of a Brownian particle suspended in a liquid, and concluded that the 
random force f(t) can be replaced by the force F(t) acting on the particle in 
the time-correlation expression for r 7

). Here has arised, however, the difficulty 
of the plateau value problem. Namely, the time integral vanishes if the inte­
gration extends over an interval of the order of magnitude of the relaxation 
time r r ( 1/r) even in an infinite system. This difficulty will turn out to arise 
from the neglect of an essential difference between f(t) and F (t). Green has 
extended Kirkwood's result to general systems in a semi-phenomenological way 
by assuming a :Niarkoffian random process, and obtained general expressions for 
the transport coefficients in fluicls 8

l. Similar, but different, results have been 
derived by the present author from a (quantum) statistical-mechanical point 
of view. 9

l An interesting attempt has been made by Zwanzig to derive a gen­
eralized form of the Fokker-Planck equation. 13

> All these approaches have even­
tually employed an approximation valid only in the limit of rr~r0 , where rr is 
the macroscopic relaxation time and ro a microscopic time. Such an approxi­
mation, however, is not valid for the study of Brownian motion, since rr in 
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TransjJort, Collecti·ve Motion, and Brownian Motion 425 

this case is essentially finite. Even in the case of the transport coefficients, it 
is necessary to formulate the problem for finite 'i:r and then go over, carefully, 
in the limit of rr->co, since the transport processes in a closed system are due 
to the spatial non-uniformity with a finite relaxation time. Actually, a question 
has been raised about this limiting process. 14

> This question is related to the 
plateau value problem, and will be overcome by developing a method outlined 
elsewhere.15

) 

T'he stochastic theory of Brownian motion is usually based on the Langevin 
equation of motion/), 5

) which takes the form 

d A(t) -iQA(t) +rA(t) c:--"'f(t) 
dt 

(1· 2) 

in the case of a monochromatic sound wave or a spin wave with angular fre­
quency !2, where A (t) denotes the normal coordinate. The f(t) represents a 
random part arising from the interaction with· the other normal modes and is 
related to the damping constant r by (1·1). This equation may be derived, in 
principle, from the recent theories of many-body systems. In the method of 
linearizing the equations of motion/6

) one extracts relevant linear terms with 
the aid of the random phase approximation. T'hese linear terms will give the 
systematic part of (1· 2) if one goes up to a sufficiently higher approximation. 
Then the random part f(t) will represent the remaining terms usually neglected. 
The problem here is thus the separation of A (t) from the other degrees-of­
freedom between t and an initial time t 0• This spirit may be formulated in a 
general way as follows. Let us suppose that we have separated F(t) into two 
parts, 

s (1·3) 

such that F1 is a functional of A (s) depending also on the past history of A (t) 
and F2 represents the terms which depend on the other degrees-of-freedom 
explicitly. Now let us expand the functional F1 in terms of A (s), t 2: s > t 0• 

Then it is easy to see that the linear term thus obtained has a generalized form 
of the systematic part of the Langevin equation, (refer Eq. (2 ·1)), and the sum 
of the non-linear terms and F2 uniquely defines the quantity f(t). The collec­
tive description of many-particle systems by much fewer variables than the 
number of degrees-of-freedom is possible if and only if the fluctuations due to 
f(t) are negligible. Thus the study of the general type of Brownian motion 
would be useful for the investigation, not only, of transport phenomena, but 
also, of collective motions. 

A similar spirit has been developed in the quantum theory of damping 
· phenomena,17

) and has been employed in recent derivations of kinetic and master 
equations in order to single out the kinetic stage from the Liouville equation.18

-
20

) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/33/3/423/1925580 by guest on 03 D

ecem
ber 2020



426 H. Mori 

Therefore, our problem will also help to bridge the recent theory of irreversi­
bility21), 22) and the correlation-function theory of kinetic coefficients from a unified 

standpoint. 
The principal purpose of the present paper is therefore to determine the 

secular linear term and the non-secular random force explicitly from statistical 
mechanics. We shall rigorously derive a generalized form of the Langevin 
equation of motion and establish a generalized form of the second kind of 

fluctuation-dissipation formula (1·1). 
It will turn out that the non-secular force f(t) has the following properties. 

First, f(t) is a random part of F(t), thus depending upon the thermodynamic 
state of the system. Secondly, the time evolution of f(t) differs from that of 
the mechanical variables, and is governed by the propagator which describes 
the motion inside the subspace orthogonal to the variable A in a Hilbert space 
of dynamical variables with a temperature-dependent scalar product. This prop­
erty will lead to the fact that the secular variation of A (t) does not appear 
in the time correlation of f(t), thus ensuring a shortlived correlation (a random­
ness) like (1·1), and will remove the difficulty of the plateau value problem. 

An exact expression will be derived for the after-effect function to internal 
disturbances such as temperature gradient and strain tensor. This expression 
has a form of the time correlation of certain fluxes conjugate to the thermo­
dynamic forces. Its properties, however, differ from the mechanical response 
function. First, the conjugate fluxes are not simply the fluxes of the conserved 
variables defined by the conservation equations, but their randorn parts in the 
same way as f(t) is a random part of F(t). This difference does not vanish 
even in the limit of rr > r 0 , and the results agree with those derived by the 
present author. 6

) Secondly, the time dependence differs from that of the 
mechanical one. The evolution of the mechanical response function is governed 
by the usual propagator, whereas that of the thermal one is by the unusual one 
appearing in the evolution of f(t). Thus, whereas the mechanical response 
function includes macroscopic relaxation processes in accordance with the fact 
that one can produce a macroscopic non-equilibrium state by disturbing an 
equilibrium state with a perturbation, the thermal after-effect function does not 
include a macroscopic process, thus ensuring that the transport coefficients which 
are given by the Laplace transform of the thermal after-effect functions are de­
termined by the microscopic processes only. 

In § 2, we show that extracting the linear term in (1· 3) is equivalent to 
projecting A (t) into the subspace spanned by A in a Hilbert space of dynamical 
variables. With the aid of this geometrical interpretation, we derive, in § 3, 
an exact equation of motion for A (t) and establish a generalized form of (1·1). 
Section 4 is devoted to the study of general properties of the frequency matrix 
and the kinetic coefficients, and time-reversal properties and other isotropic 
relations are derived. In § 5, as simple applications, we discuss the spin dynam-
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Transport, Collective Motion, and Brownian Motion 427 

Ics of ferromagnets and the collective oscillation of fluids in the isothermal 
approximation. 

In § 6 we derive explicit expressions for the thermal after effect functions, 
taking the hydrodynamical motion of multicomponent systems, and obtain an 
exact equation for the time evolution of the conjugate fluxes. The linear rela­
tions between fluxes and forces are derived from this equation. In § 7 explicit 
expressions are given for the conjugate fluxes and the transport coefficients. 
Section 8 is devoted to a brief summary and a comparison with other theories. 

§ 2. The linear term and the A subspace 

Expanding F 1 of (1· 3) in terms of A (s) ·and separating the linear term, 
we obtain 

t 

d 1 A ( t) = 0 ( t -- s) · A ( s) ds -+ f ( t) , 
dt 

(2 ·1) 
to 

where A (s) denotes the deviation from its invariant or diagonal part with 
respect t~ the Hamiltonian so that 

T 

lim ... Tlf A(t)dt=O, 
T-> oo J (2·2) 

0 

and we have assumed that the after-effect function 0 is a function of time in­
terval only, thus confining ourselves to a closed system without time-dependent 
external forces. In the present paper, we assume that there is no external field 
applied other than a uniform magnetic field. Now we shift the time axis so 
that t 0 0 and introduce the Laplace transform 

00 

A (z) == 1 A (t) e-zt dt. (2·3) 
0 

Then (2 ·1) can be integrated easily to give 

A(t) =E(t) ·A+A'(t), (2· 4) 

t 

A' (t) = J E(t-s) ·f(s)ds, (2·5) 
0 

where E(t) IS defined by its Laplace transform 

z 
1 
0 (z) 

(2·6) E(z) == 

According to (2 · 4) the variable A (t) is split up into two parts ; first, a secular 
part E (t) ·A whose time evolution is entirely determined by the linear after-
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428 I-I. A1ori 

effect function () (t), and second, a non-secular part A' (t) which describes non­

linear effects, the initial transient process, and fluctuations. This separation 
leads us to a simple geometrical interpretation of (2 · 4). 

Let us introduce a Hilbert space of dynamical variables whose invariant 
parts are set to be zero, and denote its scalar product of two variables F and 

G by the parentheses (F, G*). The scalar product will be defined in ~ 4. 
In addition to the usual properties 

(F, G*) = (G, F'i') *, (G, Go'') >o, 

(~f Cj Fh G*) = L=f Cj (Fh G*)' 

we requ1re that the Liouville operator L is Hermitian; 

(L F, G*) = (F, [LG] *). 

In the classical case, L is defined by the differential operator 

£L==-'£[( fJJJi) · ( fJ -) --- ( fJ!Jl) · ( fJ \ l, 
i=l fJpf . 8-ri , fJrrf fJpf ) J 

(2·7) 

(2 ·8) 

(2 ·9) 

(2 ·lOa) 

where !Jl is the Hamiltonian of the system and rrf and !Pf denote the coordinate 
and momentum of the j-th particle, respectively, and, in the quantal case, by 
the commutator 

Jl(t) 

* I 
I 
I 
I 
I 
I 

: A'(t) 
I 
I 
I 
I 
I 
I 
I 
I 
I , _____ ,... __ ,. 

(2.10b) 

In terms of this linear operator, the equation of 

motion can be written 

d Jl(t) =iLA(t), 
dt 

A (t) = exp [tiL] A. 

(2 ·11) 

(2 ·12) 

S(t) ·A !\. 

The variable !l defines a vector m the Hilbert 

space, as is shown in Fig. 1. ri'he projection of a 

Fig. 1. Projection of A (t) 
onto the A axis 

vector G onto this axis is given by 

fPG=(G, A*)·(Jl, A*)- 1 ·A. (2 ·13) 

This equation defines a linear Hermitian operator {Pin the Hilbert space, which 

satisfies _f/?(1- !.:P) = 0. \Ve shall define the scalar product such that the first 
term of (2 · 4) is the projection of !1 (t) onto the axis and the second term 
A' (t) is its vertical component; Namely, 

E(t) =(A (l), il*) ·(A, A*)-\ 

A' (t) = (1- ~C£) il (t). 

(2 ·14) 

(2 ·15) 

Since (2 · 5) and (2 ·15) hold at an arbitrary time t, f(t) should be orthogonal 

to the A axis : 
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Transport, Collective Motion, and Brownian Motion 429 

(f(t), A*) = 0. (2 ·16) 

Thus E(t) describes the time evolution of the projection of A (t), and (2 ·14) 
determines (} (t) uniquely. E(t) will be referred to as the evolution function 
of the secular motion. 

Thus extracting the linear term in the equation of motion for A (t) amounts 
to projecting A (t) onto the A axis. This treatment can be extended to the 
many-variable case straightforwardly. Let us represent a set of independent 
variables A1,···, .An by an n-dimensional column matrix A and denote its Her­
mitian row matrix by A*. The n variables span an n-dimensional subspace in 
the Hilbertspace, and the projection into this subspace is given by (2 ·13), 
where (A, A*) -l is to be regarded as the inverse of the n by n matrix 

(A, A*)==[(A-l, A/)], (i, j=1,-··, n), (2 ·17) 

and the dots are to be interpreted as the matrix multiplication. Similarly, (2.1) 
and its following are regarded as matrix equations, where A (t) and f(t) are 
column matrices, and 0 (t) and (!l (t), A*) are square matrices. It should be 
noted here that the projection (2 ·13) is invariant under a linear transformation 
of the n axis vectors A. 

The most important quantity associated with A (t) is iLA. Let us split it 
into the projection and the vertical component: 

li~=iLA=iw·A+K, (2·18) 

where 

i&)o=-.c::'[ d E(t) J =(A, A*)· (A, A*) - 1
, 

dt t; ,Q 

(2 ·19) 

J(_ (1--- g>) A. (2 ·20) 

The quantities @ and K have been introduced in the previous papers with an 
explicit definition of the scalar product,6

),2
3

) and it has been shown that the 
eigenvalues of the matrix @ determines the temperature-dependent eigenfre­
quencies of collective oscillations like sound waves and spin waves. It follows 
from (2 · 9) that 

(A, A*) ·W*=w· (A, A*), 

(A, A*) ·E* (t) =E( -t) ·(A, A*), 

(2. 21) 

(2. 22) 

where the asterisks of @* and E* (t) denote the Hermitian conjugate of the 
square matrices. 

§ 3. An exact equation of motion for A (t) 

Extending a spirit of the equations-of-motion method, we have derived a gene­
ralized form of the Langevin equation and given it a simple geometrical mean-
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430 H. Mori 

ing. This geometrical interpretation allows us to determine (} (t) and f(t) 
explicitly. 

Operating (1- .P) on (2 ·11) and then using (2 ·15), (2 · 4) and (2 · 20) we 
obtain 

d- A' (t)- (1- .P) iLA''(t) = E(t) · K. 
dt 

]'his IS integrated to yield 

where 

t 

A' (t) = \ E(s) ·f(t- s) ds, 
.; 
() 

f(t) -U(t)K, 

U (t) -exp [t (1- ~P) iL]. 

(3 ·1) 

(3 ·2) 

(3 ·3) 

(3·4) 

Equation (3 · 2) has the same form as (2 · 5), thus ensuring that (3 · 3) is the 
desired expression for f(t). The propagator (3 · 4) differs from the usual one 

(2 ·12) by the factor (1- fP). Propagators of similar kind have been intro­
duced implicitly in the damping theory17

l'
18

l and explicitly in recent derivations 
of master equations. 19

l'
20

J,
1

BJ It will be shown in Appendix A that, if f and fl 

are functions orthogonal to the A subspace, 

([(1-.P)Lf], g*) = (f, [(1-.P)Ly]*), 

(U(t)f, y*) = (f, [U(-t)y]*). 

(3·5) 

(3·6) 

Namely, (1- ~P) L is Hermitian in the subspace orthogonal to the A subspace, 
and U (t) is unitary inside this subspace. The physical meaning of this will 
be clarified later. 

Differentiating (2.14) and then inserting (2.18), 

d_-E(t) = iiil · E(t) + (K (t), A*) · (A, A*) - 1
• 

dt 

Since we have (J( (t), A*) = (K, A* (- t)) from (2 · 9) and K is orthogonal to 
A, use of (2 · 4) and (3 · 2) brings the second term into 

-t 

\'ds(K,f(-t-s)*)·E*(s')·(A, A*)- 1
• 

,; 
0 

Thus usmg (2 · 22) and changing the time variable s to s- t, 

where 

t 

d E(t) =io)·ECt) -fcpCs) ·ECt-s)ds, 
dt 

u 

(3. 7) 
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Transport, Collective Motion, and Brownian Motion 

cp(t)==(f, f(-t)*) ·(A, A*)-1
• 

The Laplace transform of (3 · 7) leads to 

E (z) = _________ ! ____ ~_ 
z-iw+ cp(z) ' 

431 

(3 ·8) 

(3·9) 

which confirms (2 · 6), thus leading to e (t) = 2iu)o (t) cp (t). This expression 
for E(z) can be applied to the magnetic resonance and neutron scattering prob­
lems. The real part of cp (z) then describes the line widths or the clarnping con­
stants. Therefore, cp (t) will be referred to as the clamping function or matrix. 

Let us summarize the results. Inserting the expression for 0 (t) into (2 ·1), 
we have 

t 

d A (t) - i@ ·A (t) + .f cp (t- s) ·A (s) ds = f(t), 
dt J 

0 

where 

(f(t), A*) =0, 

(f(tl), fCt2) *) = cp (t1- t2) · (A, A*). 

(3 ·10) 

(3 ·11) 

(3 ·12) 

Equation (3 ·10) is an exact equation of motion for A (t). Equation (3 ·12) 
leads to a justification and a generalization of the second fluctuation-dissipation 
formula (1·1). 

The random force f(t) differs from the force F(t) in two respects. 
First, f(O) is the vertical component of F(O). This difference arises when A (t) 
is capable of a collective oscillation. Secondly, the evolution off (t) is governed 
by the special propagator (3 · 4), and differs from K (t). This difference eluci­
dates an important property of cp (t). To see this, let us introduce 

r[J (t) == (K (t) ,!(*) · (A, A*) - 1 
•. (3 ·13) 

Then, as will be shown in Appendix B, 

(/J(z) ==cp(z) -cp(z) ·E(z) ·cp(z). (3 ·14) 

The second term of (3 ·14) describes the difference between cp (t) and (/) (t). 
For simplicity, let us consider the one variable case and assume that cp (t) 

decays in a finite time rc. As far as the time scale of our interest is much 
larger than rc, we may put cp (z) to be a constant; 

cp (z) = T, i.e. cp (t) = 2To (t). 

It follows from (3 · 9) that this is equivalent to 

E(t) =exp[(iw-T)t], (t':Prc). 

(3 ·15) 

(3 ·16) 

If r==Re(T) is much smaller than 1/rc, then (3·15) and (3·16) can be used 
for describing the slow relaxation. The slow relaxation corresponds to the 
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432 1-I. ]}fori 

pole of E(z), Zp=iw-r. Therefore, the identification of r with cp(zp) leads 
to the following expressiOn : 

OJ 

T=lim \cp(t) ·exp[- (iw+s)t]dt. 
E-Hl+ oJ 

(3 ·17) 

Since we allow a non-zero correlation time in (3 ·17), r IS complex and (1·1) 
is to be regarded as expressing the real part of (3 ·15). Insertion of (3 ·15) 
into (3·10) leads to the Langevin equation (1·2) with 2=w-Im(T). Now let 
us apply (3 ·15) and (3 ·16) to (3 ·14). Then we obtain 

(jj (t) = cp (t) - F 2 exp [ (£@- T) t]. 

This satisfies the identity 

CfJ 

lim \ (jj (t) · exp (- £U5t- u) dt = 0. 
S->0-t- ,; 

0 

(3 ·18) 

(3 ·19) 

Namely, (/) (t) includes the slow process with a long tail, and its time integral 

vanishes clue to the cancellation of the sharply-peaked initial area cp (t) by the 
negative tail. This is in strong contrast to cp (t) in which the slow process does 
not appear. The latter is a direct result of the elimination of the secular 
motion E(t) from f(t) and cp(t) by introducing the unusual propagator U (t). 

Thus we may expect, in general, that the clamping matrix cp (t) consists of short­

lived relaxational modes and are determined by the microscopic processes if 
the variables A and the scalar product are properly defined. 

In the case of rrc < 1, the fast process ({J (l) and the slow process E (t) 
are well separated. In such a case, (:3 ·17) may be replaced by 

r 

T=o~-=F(r) == \ (JJ (t) · exp( -£0t) dt, (3. 20) 
,} 

0 

where r is a time interval satisfying the inequalities r/;?>r>rc. Kirkwood's 
expression for the friction constant of a Brownian particle is a particular case 

of (3.20) ,7l and this kind of expressions have been successfully applied to several 
problems. 23

l'
2
*),

25
) In the actual calculations, however, (/J(t) has been replaced 

by functions qualitatively similar to cp (t). The elimination of the not too long 

and not too short time r is necessary for (3 · 20) to have a definite meaning. 
This is possible only when F(r) has a plateau value in the intermediate region. 
This condition, however, is not always obvious and prevents a generalization 

of (3 · 20). Equation (3 ·17) has another advantage that the general properties 
like the dispersion relation can be derived exactly. 

Equations (3 ·16) and (3 ·17) can be generalized to the many-variable case. 
Let us assume that the relaxation of E (t) is distinctly slow compared to that of 
cp (t). Then the time integration of (3 · '7) can be extended to infinity, and the 
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Transj>ort, Collective Motion, and Brownian Motion 433 

second term may be written as 
ct) 

--1 ds ({J(s) ·exp( -iws) ·B(t). 
0 

Thus we obtain (3 ·16) and (3 ·17) with the interpretation of r as the damping 
constant matrix and the clot as the matrix multiplication. It may be concluded 
from this derivation that (3 ·16) and (3 ·17) are also valid for high frequency 

phenomena as far as rr c < 1. 

§ 4. The scalar product and the time-reversal symmetry 

It will be shown that the following definition of the scalar product is most 
useful : In the classical case, 

(F, G*) =<F G*), ( 4 ·1a) 

and, m the quantal case, 

/] 

(F, G*) = ff f <exp(A${) F exp (- }..,_(}{) G*)dA., 
0 

(4·1b) 

where the angular brackets denote the average over the canonical ensemble 

p==exp ( -{1,_9'{)/Tr[exp (-Seq{)]. 

This scalar product satisfies, in acldi tion to (2 · 7- 9), 

(F, G*) = (G*, F). 

(4·2) 

(4·3) 

It should be noted that <F)=< G)= 0 since F and G denote the deviations from 
their invariant parts. 

If one neglects. f(t), then (3 ·10) will describe a smoothed-out, secular 
motion. The f(t) describes the actual deviations from such a secular motion 
due to non-linear effects, the initial transient process, and fluctuations. We 
now consider the elimination of such deviations by taking a particular ensemble 
average. The ensemble average is given by 

A(t)=Tr[A(t) p(O)], (4·4) 

where p (0) is the phase-space distribution function, m the classical case, and 
the density matrix, in the quantal case, at the initial time. ]'he average value 
depends on p (0). The initial and boundary conditions on the system, however, 
are very often not enough to fix the initial ensemble p (O) completely. Let 
us ask what initial ensemble will give the most probable value of ( 4 · 4) among 
ensembles subject to the condition that the average values of the extensive 
constants of motion and the variables A have prescribed values at the initial 
time. It is well known that such an ensemble is the equilibrium ensemble 
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434 H. Mori 

subject to the corresponding constraints and 1s determined by minimizing the 

Gibbs !-!-function. The result is 

(4·5) 

where A denote the deviations from their invariant parts and B the conjugate 
parameters, and we have omitted the invariant parts and the extensive constants 
of motion other than /H. In the linear approximation, 

f3 

Po= [1 + \ dl, A* (i/iJ,) · B] p, (4. 6) 
,) 

() 

where G* (ihl) ~exp ( -l"-CJ[,) G* exp (LCJO. The value of the random force 
along the most probable path is thus given by 

f3 

/(l) = .~ dX<f(t) il* (inA))· B. ( 4. 7) 

Now we require that this average value be zero. Then the identification of 
this requirement with the orthogonality condition (3 ·11) leads to the definition 
of the scalar product ( 4 ·1). In other words, we have defined the scalar product 
in such a way that, if one neglects f (t), then (2 · 4) and (3 ·10) describe the 
most f>robable path of A (t) in the linear approximation. 

Let us assume that F and G are linear combinations of the Hermitian 

functions of particle coordinates rh momenta Ph and spins sf and are either 
even or odd with respect to time reversal (trr-'?rf, pj-> ---Ph sf->- sJ. The 
mass density and momentum density in fluids are such quantities. The normal 
coordinate of sound waves does not satisfy this condition. From the time­
reversal symmetry /][(H)->/}[ (-H) we obtain4

) 

(F(t)' G*) -,... (F( ·) G*) If- cp f:a -; - [ , -liT, (4 ·8) 

where cp or C.a is + 1 or -1 according as F or G is even or odd and - H 
indicates the reversal of the external magnetic field H. Here, ( 4 · 3) has been 
used. In the absence of a magnetic field, therefore, the even and odd variables 
are orthogonal to each other ; 

(F, G*) = 0, if cp E:a= -1. (4·9) 

Let us assume that each variable of the set A is either even or odd with re,.. 
spect to time reversal, and denote the sign function of Af by E:j. Since the 
determinant of (A, A*) is invariant under time reversal and the cofactor of 
the (i, j) element changes its sign by E:,;E:j, the (i, j) element of the inverse 
matrix of (A, A*) is transformed similarly to (Ai, A/). Therefore, the pro­
jection operator (2 ·13) is invariant under time reversal ; 

UPG(t)] u~ca[.PG(- t)] -If. ( 4 ·10) 
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Transport, Collective Motion, and Brownian Motion 435 

For simplicity let us rearrange the set A. in such a way that the first m varia­
bles are even and the rest are odd, and denote the even and odd parts by Ae 

and A 0 , respectively. Then the frequency matrix (2 ·19) has the following 
property: 

[w]u=[ ( 4 ·11) 

where Wee is the submatrix of &5, consisting of the elements of the first m rows 
and columns, and Wco the submatrix of the first 1n rows and last (n -- m) columns, 
Woe and W00 are defined similarly. 

Applying ( 4 ·10) to (2 · 20) and (3 · 3) we obtain 

Separating the real and imaginary parts, 

Re (jj (t), f~*) n = ei ez Re (j~ (t), jj*) -H, 

Im(jj(t), fz*) u= -si ez Im(ft(t), jj*)-u. 

These relations determine the symmetry of the kinetic coefficients 

(f) 

Li1 ((J))o.== 1 lim I (jj(t), ft*)exp(-£(J)t-et) dt, 
k!J c->0+ J 

. 0 

( 4 ·12) 

( 4 ·13) 

( 4 ·14) 

(4·15) 

where !zB 1s the Boltzmann constant. The damping constants are simply related 
to Li1 (cu) by (3·12). From (4·12), we obtain 

L 1z (u>; H) = ei ez L;j ( -- (J); - Ii). ( 4 ·16) 

If A.1 are Hermitian, then (f.~ (t), j~*) are real and ( 4 ·16) reduces to 

( 4 ·17) 

Equations ( 4 ·16) and ( 4 ·17) prove Onsager's reciprocity theorem2"l in the 
general case. 

There exists a simple relation between the real and imaginary parts of the 
kinetic coefficients. Let us define 

00 

gi1 ((J)) =, 
1 

lim I (jj(t), fz*)exp( -£(J)t-c.Jtl)dt. 
2kB HO+ J 

-0) 

Inserting the inverse Fourier transform into ( 4.15), 

00 

L ( ) -· ( ) £ f gjl ({))') d I jt u) -Yjt (J) - ..... ~ ···· · ··· · (J), 
n (J)- u>' 

-oo 

(4·18) 

( 4 ·19) 

where the principal part of the integral is to be taken. Since gj~ = rJz1 and, 
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436 H. Mori 

therefore, its symmetric part gj1 is real and its antisymmetric part g}t is imag­
mary, we obtain 

Re L]t(w) = [g.it(w) +.'lt.i(w)]/2, 

Im L]t(w) = [.'l.it(uJ) -gt.i(w)]/2i, 

OJ 

Im Lit (cu) = - l I I-(eL}t (w') dcu', 
rc J w - w' 

-ro 

(f) 

1 I ImLj~~ ( w
1 

') 
Re L}t (uJ) = \ dcu'. 

TC .; U)- (}) 
-(J) 

(4·20a) 

(4·20b) 

( 4 ·21a) 

(4·21b) 

These equations correspond to the Kramers-Kronig relation for the generalized 
susceptibility. 1 >' 4

J 

There are another kind of symmetry relations. Let us denote the Fourier 
components of the local densities of physical quantities by Fk and Gff. Since 
there is no inhomogeneous field applied, we have, from the translational in­

vanance, 

(F~, (t), Gr/) = 0, if k=)=q. (4 ·22) 

Namely, the Fourier components with different wave vectors span disjoint 
subspaces orthogonal to each other. This is a characteristic of the linear 
phenomena. If one assumes the inversion symmetry (F(r), G* (O)) = (F(- r), 
G* (0)), then 

(F" (t), Gh*) = (F_,. (t), G'!.,J. (4 ·23) 

In most applications, we start from the Fourier components of local Hermitian 

quantities. Then 

AL~=AJ, -h, f!:~c(t) =Ji,-h(t), (4·24) 

and it follows from ( 4 · 23) that (A,~ (t), A~r*) and (f~~ (t), j~/) are real ma­
trices. In such cases, the trace of the frequency matrix w~c is zero, and the 
kinetic coefficients satisfy the reciprocity ( 4 ·17). 

In the case of no magnetic field, the symmetry relations are simplified. It 
turns out from ( 4 · 9) that (A, A*) is split into two disjoint submatrices and 
the projection takes the form 

fPC= (G, Ac*) · (Ae, Ae*) -l. Ae 

(4 ·25) 

The diagonal parts of the frequency matrix ( 4.11) vanish. Therefore, the origin 
of the collective oscillation and the difference Jf--f- F can be classified into 
the following two : 
1) the coupling between the even and odd variables, 
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Transport, Collecti7.)e Motion, and Brownian Motion 437 

2) the broken symmetry due to the magnetic field or other external parameters 
odd with respect to time reversal. 

A typical example of 1) is the sound waves. The spin waves in ferromagnets 
belong to the second class. 

The scalar product ( 4 ·1a) agrees with the usual definition of the correla­
tion function. 5> The function (4·1b) differs from the quantal correlation function 

< ( L' ('*'\ 'tl', r r ~ < (FG* + G*F) ), ( 4. 26) 

and has been introduced by Kubo and Tomita in a general theory of magnetic 
resonance absorption. 3

> The relation between them is given by4
> 

CD 

\ < {F(t), G*} )exp (- iuJt) dt 
,; 

(f) 

= (3E13 (w) .f (F(t), G*) exp ( ioJt) dt, (4·27) 

where 

E (uJ) ~::=: 1 hoJ coth (· 1 (.) hw \ 
(3 2 2 jJ ) ' 

( 4. 28) 

(4 ·29) 

The correlation function ( 4 · 26) also satisfies the conditions for the scalar pro­
duct (2 · 7)- (2 · 9) and the relation ( 4 · 3) and, therefore, the foregoing symmetry 
relations. However, the difference between them is important, in particular, in 
discussing the quantal collective motions. 6>.n> Therefore, a question may arise; 
which one is relevant as the scalar product. We now require that f(t) should 
vanish for the average of linear processes. This requirement removes the pos­
sibility of taking the quantal correlation function. The scalar product ( 4 ·1b) 
satisfies this requirement if the system have actually started from an equilibrium 
state described by the ensemble ( 4 · 5). It is also quite plausible that the most 
probable path describes the average evolution for almost all initial ensembles 
after a short initial period, if the set of variables A are relevant. 

§ 5. Simple examples 

A set of variables A will be called a good set of collective variables if 
their evolution matrix (2 ·14) or (3 · 9) satisfies 

E(t-+-s) =E(t) ·E(s) (5 ·1a) 

in a certain time scale. This translation-operator property states that the evolu­
tion along the most probable path is deterministic in that time scale. This is 
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438 I-I. 1\!Iori 

equivalent to the condition that the relaxation times rT of E (t) are distinctly 
large compared to the decay times rc of the damping matrix cp(t) ; 

(5 ·lb) 

As has been discussed in § 3, application of this condition to (3 · 7) leads to 
(3 ·16) and (3 ·17), which satisfy (5 ·1a). Inversely, the solution for (5 ·1a) IS 

an exponential matrix like (3 ·16), and this form is possible only if (5 ·1b) is 
satisfied, as can be seen by inserting it into (3 · 7). 

There are three types of such collective variables. One is the set of the 
extensive, conserved variables in a nonuniform system. Since the Fourier com­
ponents with different wave vectors do not couple with each other in the sense 
of ( 4 · 22), the evolution matrix of the Fourier components of the conserved 
variables with wave vector k are characterized by k, and its relaxation times 
tend to infinity as /::.->0. Any other extensive quantities, coupled with them, 
change more rapidly with decay constants insensitive to k, thus ensuring (5 ·1b) 
for small k. The second is the equalization between two weakly interacting sys­
tems. Typical examples are the energy transfer between two systems at different 
temperatures, and the relaxation of the total magnetization in ferro- and antiferro­
magnets due to small anisotropy. The relaxation of these quantities are very slow, 
and we can find two time constants satisfying (5 ·1b). The third is microscopic 
variables employed in the equations-of-motion method in the theory of many 
particle systems. 16

l The time scales concerned here are finer than those of 
the first two types. 

For illustration we discuss simple examples. Let us first take an isotropic 
Heisenberg ferromagnet which consists of a periodic lattice of N spins in the 
presence of a uniform magnetic field l-l in the negative direction of the z axis, 
and consider the time evolution of the Fourier component of the density of 
transverse spin component with small wave vector k 23

) 

(5 ·2) 

In this system, the extensive, conserved quantities are the Fourier components 
of the spin density and the energy density. Since our Hamiltonian conserves 
the spin quantum numbers, Sic does not couple with any other such conserved 
quantities. Therefore, S j~ by itself forms a good set of collective variables. 
Therefore, from (3 ·10), (3 ·16) and (3 ·17) we obtain 

d s~- c· + r~-)s+ -t~-
l 

k - ZU)J.; - k k- k, 
ct 

where 

wt= (St, St*)/i(S/c, SJ;;*), 

and putting r t = r1- iJwt, 

(5·3) 

(5·4) 
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Transj>orl, Collective Motion, and Brownian Motion 439 

w 

--
1 .r (ft (t)' f"k *) exp (- iu>;~ t) dt' 

2 (S 1;;, Si~*) J 
-00 

(5 ·5) 

co 

1 r L1(ut = \ 
TC ,, 

(5 ·6) 
-OJ 

where the dispersion relations ( 4 · 20a) and ( 4 · 21a) have been used. It follows 
from ( 4 ·11) and (1·16) that*l 

(u~- (a; H) = - u>;~- (-:- u; -II), (5 · 7a) 

Lieu~ (u; H)= --L1oJ~- (--u; --H), (5·7h) 

r ~~ c a ; H) = r ~- c a ; -- H) 2 o, c 5 · s) 
where (5-~- (J indicates the reversal of the spontaneous magnetization below 
the Curie point. Equation (5 · 4) gives the frequency spectrum of spin waves. 

Equations (5 · 5) and (5 · 6) give the spin wave damping constant and a 
shift of frequency. They agree with the previous results 23

) if one uses the same 
approximation as from (3 ·17) to (3 · 20). This approximation is valid as far 
as one retains the terms of the lowest order in !? only in evaluating the time 
integral. In the low temperature li1nit, a straightforward reduction of (5 · 4) 
and (5 · 5) leads to the spin wave frequency and damping equivalent to Dyson's 
theory of spin wave interactions. 

Above the Curie point and in the absence of a magnetic field, the frequency 
is zero and rt is identical with the damping constant of the longitudinal com­
ponent S 0

k, i.e. the spin diffusion. Below the Curie point, the longitudinal 
damping has a quite different feature. This has been investigated in a previous 
paper. 23

) 

Let us next consider a collective motion which can be described by a 
coordinate 0 and its time derivative Q. \Ve assume that the variable 0 is 
even or odd with respect to time reversal ~nd there is no magnetic field applied. 
Let us start from an orthogonal set 

Ale:~_,()+ i f2o 0 A2=0 -- i f2o 0 
~ ___ , ;-..- ,..;._..' 

where 

f2o2~ (Q, (J*) / (Q, Q*). 

Since (Q. 0*) =--= C() 0*) = 0 we have ' ,......,._. ___ , ,..._, ' 

(A1, ~12*) = (llr, A2 *) = 0, 

(AJ, A1 *) = (A2, A2*) = 2 ((J, (J*). 

(5 ·9) 

(5 ·10) 

(5 ·11) 

(5 ·12) 

*l In a previous paper,23l there is an incorrect statement about the time reversal property. 
Equations (5 ·11) -(5 ·14) of this paper are not correct. The results, however, are correct. 
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440 I-f. Jl.1 ori 

It follows from (5 ·11) that the frequency matrix U5 IS diagonal and the 

random forces are given by 

(5 ·13) 

For times sufficiently larger than the correlation time r" of f(t), therefore, the 

equations of motion take the form 

where 

where 

1 
r :c~= 2 (Q, O*) 

d Aj+ ~l Ajl Al=f, 
dt 

(j) 

\ (f(t) , f*) exp ( -- iJ20t) dt, 
2 oJ 

1 

(5 ·14) 

(5 ·15) 

(5 ·16) 

(5 ·17) 

and we have neglected the imaginary part of the damping constant matrix 

r The matrix A can be easily diagonalized, and its eigenvalues turn out to 

be 

where 

g2=~Q02_r.2 

The corresponding eigenvectors are 

l1=A1+ (ir/f2o+f2)A2, 

12 = (- ir I f2o + .2) A1 + A2. 

(5 ·18) 

(5 ·19) 

(5 ·20a) 

(5. 20b) 

Since () and 6 can be written as linear combinations of the normal modes 11 
and 12 , their relaxation functions can be easily obtained ; 

(0 (t), 0*) c cQs/!*) e ,, [cos (S2t) + ~ sin (.Qt) J , 

(O(t), Q*) = (Q, O*)e-7 fcos(.Qt)- ~ sin(SJt) J. 

(5 · 21a) 

(5·2lb) 

Equations (5 · 21) have the same form as the correlation matrix in the stochastic 

theory of the Brownian motion of a simple harmonic oscillator. 5
l It should be 

noted here that these equations have been derived without any stochastic assump­

tion. 
The above model can be used for the study of the sound waves and the 

plasma oscillations in the isothermal approximation by taking as Q the Fourier 
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TransjYort, Collective Motion, and Brownian Motion 

component of the mass density of the fluid 

which yields 

Pk==\ p(r)exp(ik·r) dr=m2 .. :.ii exp (ik·ri), 
,) 

v 

(Q. 6 *) = V k2 p k T 
. '~ B ' 

441 

(5. 22) 

(5. 23) 

where p denotes the mass per unit volume. Then (5 ·17) gives the sound 
attenuation constant and the plasma clamping. If one uses the same approxi­
mation as from (3 ·17) to (3 · 20), then (5 ·17) agrees with the previous result6

) 

which has been applied to the first sound attenuation in liquid helium at low 
temperatures. 25

; In a normal fluid of one component, the extensive, conserved 
quantities are the Fourier components of the mass density Pk, the momentum 
density j~c and the energy density 1-I~,;. Since Ph couples with H" as well as 
ih~ = ik · j10 we have to take (Pk, P~c, Jlk) as A in order to obtain a better 
approximation. *l This is particularly important in studying the neutron scatter­
ing by liquids. To determine the frequencies, the line widths and the intensi­
ties of the three resonance lines of the neutron scattering, we can proceed 
similarly to the above treatment. 6

l 

It would be worth while to discuss what happens if one does not take a 
good set of variables. If one takes Sic and Sic in the first example, then the 
relaxation time r r of the corresponding evolution matrix becomes insensitive to 
k and (5 ·1b) is not ensured. Actually it can be seen easily above the Curie 
point that, as k goes to zero, rr tends to a finite time of the same order of 
magnitude as rc. If one takes P~c only in the sound wave case, then rc is of 
the same order of magnitude as r n and tends to infinity as k->0. If one takes 
p~;; and p10 then (jJ~;; (t) includes a slow relaxation arising from the coupling with 
Hk. Only by neglecting this slow relaxation, one can have (5 ·lb) and obtain 
the isothermal sound waves. In this way, the condition (5 ·1) rules out not-good 
sets of collective variables. 

§ 6. 'Thermal after-effect functions 

]'ransport coefficients can be obtained by calculating the damping constants 
of relevant collective motions in the same manner as in the preceding section. 
It is customary, however, to define them with the use of the linear relations 
between fluxes .~~ and forces Xv ; 

(6 ·1) 

*) In liquid helium at very low temperatures, the isothermal approximation gives a better 
agreement with experiments on attenuation.25) This seems to be due to the special situation that 

Hk and Hk form the second sound waves whose coupling with the first sound waves may be neg­
lected at very low temperatures. 
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442 I-I. 1\1 ori 

The typical forces, giVmg nse to thermal disturbances, are the gradients of 
local temperature T (r) and local velocity ~~, (r) in non-uniform fluids ; 

uu.v ) /2T. 
uy 

(6 ·2) 

(6. 3) 

In order to determine the linear coefficients L"''' therefore, it IS necessary to 
introduce the state parameters, such as T (r) and u (r), which specify the 

macroscopic, statistical state of the system. These parameters which we denote 
by B (t) are associated with conserved quantities A and are defined with the 

aid of the constrained equilibrium ensemble ( 4 · 5), built up at time t, which is 

identical with the local equilibrium ensemble. Let us consider a non-uniform 
fluid of [I components. The Fourier components of A and B(t) with non-zero 

wave vector i"' are given by9l·"0
J 

P
et 
I> 

(/ 

A,,== J-h. -- L ha pj~. 
ctc·l 

fit 1- s" T, -~ 

, 1!, (t) ~ T,/1' I ' 
u,._ 

(6 ·4) 

where p/:;, I-lk and jh are the Fourier components of the mass density of com­

ponent a, the energy density, and the momentl!m density defined in the same 
manner as (5 · 22); P'k the local chemical potential per unit mass of component 
ct; sa and ha are the equilibrium entropy and enthalpy per unit mass of com­

ponent a. In (6 · 4), P'k, pf., and sa: are to be regarded as g-dimensional column 

matrices. One may choose, as A and B (t), any other linear combinations which 

leave A*·B(t) invariant; for instance, (p;:., l-l1,:,}~r) and (!l'k-;ta(T~r/T), Tk/ 

T, u 1J where ;/' = ha -- Tsa. The choice (6 · 4), however, w_ill turn out to be 

more convenient for practical applications. Now our problem is to know the 

non-equilibrium density matrix p (l) in terms of the state parameters in some 

detail. 
Let us denote the deviation of p (l) from the local equilibrium ensemble 

Pt by p/ (t), 

p(/) cccc=(Jr.J(J
1 (l), (6. 5) 

and put 

p (t) 1 + 0 (t) 

1-+ 0t exp U/J{) p, (6. 6) 

p' (t) 0' (t) 

introducing new quantities 0 (t), 01 and 0' (l). Then we have 
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(6·8) 

where (6·8) has been obtained by comparing with (4·6). In terms of </J(t) the 
average value of a dynamical variable G can be written 

(J(t) ==Tr[Gp(t)] = (G, <j.J(t)), (6·9) 

where G denotes the deviation from its invariant part, and the parentheses denote 
the scalar product ( 4 ·1). The parameters B (t) are defined in such a way that 
the average of A over p (t) is equal to that over Pt. This leads to 

Jf(t) == Tr [Apt]:= ;3 (A, A*) · B(t), (6 ·10) 

which allows us to write (6 · 8) in the form 

</Jt =A*· (ll, A*) -l • (A, <jJ (t)). (6 ·11) 

According to (2 ·13), (6 ·11) is equal to the Hermitian conjugate of .P¢* (t). 

Thus denoting the complex conjugate of _rp by !P, 

1)t =-c f.P</J (t), 

¢' Ct) (1-- ~P) ¢ (t). 

(6 ·12) 

(6 ·13) 

If one extends the set of variables A so as to include il_,.,, then P= S:P and 
the Hermitian property of </Jt is ensured. Equations (6 ·12) and (6 ·13) enable 
us to solve the Liouville equation in a similar manner as from (2 ·11) to (3 · 2). 
The Liouville equation for p (!) is brought into 

a </JCt) = --iL<f.JCt). at 
Operating (1- .sf) on this, and then using (6 · 8) and (2 · 20), 

a </J' Ct) + (1-- D)) iL</J' Ct) = - f3K* · B Ct). at 
This IS integrated to yield 

[ 

</J'(t) := -(]f[U(--t+s)K]*·B(s)ds-+U(-t t 0)</J'(t0) 

to 

(6 ·14) 

(6 ·15) 

(6 ·16) 

where U (t) is. defined by (3 · 4). Equations (6 · 7), (6 · 8) and (6 ·16) provide us 
with an exact ·expression for the density matrix <jJ (t) or p (t) in terms of B(s), 
t > s > t 0 , and the initial deviation ensemble ¢' (t0). ]'he non-linear effects and 
the ipitial transient process are included in the second term of (6 ·16). 

The state parameters B (t), multiplied by K *, are brought into the ther-
modynamic forces X., by the relation · 

1 K*·B(t) :=- ,, J* X (t) 
1

., ,Wv v v ' (6 ·17) 
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where .fv denote the vertical components of the fluxes of the state variables A. 
This relation can be obtained m the following manner. Let us consider (6 · 4). 
From (2·20) we have 

ik ·Jrk 

ik · .fvk 

where 

J <X = (1- CO)j"<X dk- ~1- I~, 

I (6 ·18) 

(6 ·19) 

(6 ·20) 

(6. 21) 

where j%, im~ and II1,; denote the mass flux of component a, the energy flux, 
and the momentum flux, respectively. Since j~c== ~a ja~r is one of the vectors 
spanning the A subspace in the Hilbert space, 

Therefore, ]a'f. = 0 in the one-component system. Now use of (6 ·18) leads to 

1 K* B> (t)- ,-lJa* xa J* X .J* · X--k • k - - L.J dk • elk - Tk • Tk - vk · vk T a 
(6 ·23) 

where 

(6 ·24) 

andXk=ikB1jT. Xn and Xv1,; are theFouriercomponentsof (6·2) and (6·3), 
and xdk are the thermodynamic forces responsible for the diffusion of particles. 
Equation (6 · 23) can be written in the form of the relation (6 ·17). Since .J" 
are orthogonal to the A subspace, 

(6 ·25) 

The quantities .fv differ from the fluxes of the state variables by the projective 
components of the latter, and will be referred to as the conjugate fluxes to the 
thermodynamic forces. 

From (6 ·16) and (6 ·17), we thus obtain 

t-1- 0 

J~ (t) = ~ f L~"" (s) Xv(t- s) ds -1-- R# (t, t 0) 

0 

where 

Ljtv (t) =/?]/ (!} # (t), /Jv *), 

R~"(t, ta)==(/J~"(t-t0), </J'(t0)) =Tr[Jlfh(t-t0)p(to)] 

(6. 26) 

(6. 27) 

(6 ·28) 
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Transport, Cvollective Motion, and Bro·wnian 1\llotion 445 

where 

/).'"(t) =-U(t)Jfk. (6. 29) 

R'" (t, t 0) represents the memory ~f the fine details of the initial ensemble. 
The thermodynamic forces X" (t) can be expressed as linear functions of 

)f (t) with the aid of (6 ·10). Therefore, we ~an introduce linear functions of 
A (t) whose ensemble averages are equal to X" (t); denoting the j-th component 
of Ak by Afk, 

(6. 30) 

Since (6 · 26) is valid for any initial ensemble p (to), we can take off the aver­
aging and obtain 

t 

Jfk(t) =~f L'""(s)X"(t-s)ds+!J'"(t), 
0 

where 

(/):'# (tl), g·v (t2) *) = kB Lfk" (tl- /2) • 

Application of ( 4 · 24) and ( 4 ·13) leads to 

L'"" (t; I-I) = e'" e" L'"" (- t; -H) = e'" e" L"'" (t; -H) 

(6. 31) 

(6. 32) 

(6. 33) 

where e'" and s" denote the sign functions of J'" and .fv with respect to time 
reversal. L'"" (t) describes the after effect of the thermodynamic force X" (t) 
on the flux J'" (t), and therefore will be referred to as the thermal after-effect 
function. The transport coefficients are given by the Laplace transform of these 
functions. Equation (6 · 31) is thus the most general form of the linear relations 
between fluxes and forces, and gives not only the molecular expressions for 
the transport coefficients, but also a justification and a generalization of the 
phenomenological theory of fluctuations in fluid dynamics. 27

> It is worth noting 
that (6 · 31) can be derived also from (3 ·10) by using (6 ·18) and (6 · 30). 

Let us assume that L'"" (t) decays in a finite time r c, and shift the initial 
time t 0 to - oo in (6 · 26). This corresponds to extending the time integration 
in (6 · 31) to oo Thus, taking the Fourier transform with respect to time, we 
obtain 

where 

(f) 

L'""(o>)=dim \ L'""(t)exp(-iwt-et) dt. 
8.--)>0 + •' 

0 

(6. 34) 

(6. 35) 

Equation (6 · 34) describes the fluctuations of the fluxes from the most probable 
path after an initial period of the order of r c· From (6 · 33), we have 
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446 11. Mori 

(6. 36) 

There are thus two ways of arriving at the linear relations (6 ·1); 
1) from (6 · 26) by observing a non-equilibrium system, 
2) from (6 · 34) by looking at a large fluctuation in an aged system. 
Equation (6 · 34) is exact for an aged system. Therefore if one admits Onsager's 
postulate26

> that the average regression of spontaneous fluctuations in aged 
systems obeys the same laws as the corresponding irreversible processes, then 
one can get (6 ·1) from (6 · 34) by a) neglecting the fluctuation term !J ~OJ and 
then b) assuming that rc is much shorter than any typical values of 1/oJ so 
that (6·35) can be replaced by 

V L~v==L~v (w = 0). 

The first way is more directly related to the recent attempt to reconcile macro­
scopic irreversibility with microscopic reversibility. 21 >' 22> It is well known that 
in order to derive an irreversible process, it is necessary to introduce a relevant 
contraction of the description of the system. 28> The projection into the Jl sub­
space in the Hilbert space of extensive quantities will provide us with such a 

contraction. Namely, it will be thus possible to set up an appropriate initial 
ensemble and to remove improbable motions for a large system. Such an initial 
ensemble will be provided by the constrained equilibrium ensemble ( 4 · 5), since 
starting from any initial condition consistent with the prescribed values for the 
macroscopic state variables one will almost always get the same physical process 
after a finite time r 0• Thus we may take the local equilibrium ensemble at t 0, 

</J' (Lo) = 0, i.e., R~ (t, to) = 0, (6. 37) 

in order to determine the average behavior after an initial transient period r 0• 

For a stable system, r 0 will be at most of the order of the decay times of the 
thermal after-effect functions L~" (t). Since (1) Ak's consist of and exhaust the 
extensive conserved variables, (2) there is no coupling between the Fourier 
components with different wave vectors in the sense of (4·22), (3) the time 
evolution of L 1<v (t) does not include the secular motion of Ak(t), we may expect 
that the relaxation of .1l"' (t) with small k is distinctly slow compared to the decay 
of L~" (t). Thus we obtain (6 ·1) for describing the average behavior of the 
system in the final stage of evolution. 

The linear response to a mechanical disturbance can be expressed in terms 
of the relaxation function of the corresponding flux!>' 111 L~- (t) has a similar 
form. However, there are two differences which exactly correspond to those 
between f(t) and F(t). First, J" are not mechanical quantities, but the vertical 
components of the fluxes of the state variables. Some examples are found m 
(7 ·18) in ~ 7. The second difference is the difference in time evolution. A 
simple transformation of (3 ·14) leads to 

(K(.z), K*)= . 
1 

·" 
1 

·(f(z),f*). 
l+cp(z) · (.z-wJ)-

(6. 38) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/33/3/423/1925580 by guest on 03 D

ecem
ber 2020



Transport, Collective Motion, and Bro··wnian Motion 447 

Denoting the non-secular force and flux of A 1k by f 1k and !f11~, we have, in 
the· isotropic case, 

(f. ( ) j"*) - k2 ( {/JJ ( ) {/JJ*) 
jk t , lk - r)jk t , o tlr ' (6. 39) 

where !J J denotes the x component of the vector //1 in the coordinate space. 

The right-hand side of (6 · 39) gives the thermal after-effect functions. Denoting 

this by k2 
L.itk (t) and defining the corresponding mechanical response function 

(6. 40) 

we obtain*) 

(6. 41) 

This equation shows the second difference clearly. This difference, however, 

vanishes in the limit of k->0 in the case of the normal system. Let !? tend to 

zero after making the volume V of the system infinity with the fixed values of 

the intensive quantities. Then we have 

1 lim lim - [¢~c (z) - L~c (z)] = 0, 
lc~O V~oo V 

(6 ·42) 

where z:/=iw~c. Here, however, we have assumed that L~c/V is finite and the 

second term of the denominator vanishes in this limit. Plasmas and several 

quantum systems like phonons in liquid Helium II and magnons in ferromagnets, 

however, do not always satisfy this assumption. 

~ 7. 'I'ransport coeft'icients 

We now proceed to determine the vertical components of the fluxes, J,, 

explicitly and find expressions for the transport coefficients. We assume that 

no external field is applied. From ( 4 · 25) we obtain 

({)• . ·_ ( .•. '*) (. '*) -1 • 
;;J.]Ifk- ]Illo ]k · ]lo } k • ]k, 

Pllk = (Ilk, A:/,;) · (Aek, A~~~) -r. Aek. 

Since the system IS isotropic, we have 

( •a: '*) 1 ( 'ct • *) jk2 1 ( ., JIJJJJ*) J k' J k = p k' p k = p /,; ' k ' 

( • '*) 1 ( L[• • *) / 12 1 (}J Jl'":u*) 
} Hk' } k = L k ' p k !? = ·- k ' k , 

(7 ·1) 

(7 ·2) 

(7 ·3) 

(7 ·4) 

(7 ·5) 

where 1 is the three-dimensional unit tensor and II// denotes the x-- x com-

*> A similar equation to (6 · 41) has been obtained by P. Martin and discussed at the Inter­

national Conference on Statistical Mechanics in Aachen, .Tune 15--20, 1964. 
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448 1-1. J\!Iori 

ponent of the momentum flux tensor. 

Let us introduce the average of a quantity G over the local equilibrium 

ensemble; 

<G)t==Tr[Gpt] =/3(G, A*) ·B(t), 

=(G, A*)·(A,A*)- 1 ·A(t), 

(7 ·6) 

(7 ·7) 

where (6 · 8) and (6 ·10) have been inserted. Differentiating this with respect 

to B(t) and .A (t), 

(3 ( C, A/') = [a( G)tfaBj], 

SPG= l..;.i A.i[a<G)tju)lj]. 

(7 ·8) 

(7 ·9) 

These identities can be employed to calculate (7 · 4), (7 · 5) and (7 · 3) by taking 

as G the momentum flux tensor9
! 

Ih,= ~.l{P.i P.l exp (ik·r.i) + pj exp (ik·rJ P.l 

+ [p.l exp (ik · r.l) P.l]i + exp (ik · r 1) P.l P.l} / 4m.l 

+! :L;j,ZrjzFjz[exp (ik·r.l)+exp (ik·rz)], (7 ·10) 

where r.lz=r.l- rz, and l}z denotes the intermolecular force between j and land 

1- means the transpose of the tensor. Equation (7 ·10) is valid for a short-range 

force when ak < 1, a being the mean linear force range. According to the 

virial theorem, the equilibrium pressure p is given by 

p= < [Jl%x]k=o)/V. (7 ·11) 

This may be generalized to the case of local equilibrium state. Denoting the 

local pressure by p (r) and taking the Fourier transform of its deviation from 

the equilibrium value, we have 

(7 ·12) 

where E is the equilibrium energy density. Let us now take the combination 

Ak = [p%, Hk] and Bk = [To (!J.a jT), -To (1/T)]. It follows from (7 · 3) and 

(7 · 7) that (II%x)t is the linear combination of the same form as (7 ·12) . There­

fore, we may identify p~,; with (Jl]./)t!V as a generalization of (7 ·11). From 

(7 · 9) and (7 · 8) we thus obtain 

gJri XJ: = (.· up) I-I _1_ y1 ( up ) pc: 
k ~E k .L...i ~ a I~' 

· u _, a up 

(3 (II%x, p%*) /V = (ap ja fJ.a) r, v = pa, 

f](Il'k", 1-IX)/V= --/3(apja(3)sa,v=~paha, 
a 

(7 ·13) 

(7 ·14) 

(7 ·15) 
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Transport, Collective Motion, and Brownian Motion 449 

where pa is the mass of component a per unit volume, and (a=(3;f. T'herefore, 

use of (7 · 4) and (7 · 5) leads to 

CD"<l! ( a; ) • ~:L.)k = P P ]lo 

SJ?jHk=hjk, 

p= ~a pa' 

ph= ~a Pa ha. 

(7 ·16) 

(7 ·17) 

Equations (7 ·13), (7 ·16) and (7 ·17) provide us with the explicit expressions 
for the projections of the fluxes. Inserting these results into (6 ·19)- (6 · 21) 
we obtain the following expressions for the conjugate fluxes .], : 

J~k = j% -- (pa / P) iTo 
JTk= juk ~aha j%, 

(7 ·18a) 

(7 ·18b) 

(7 ·18c) 

Denoting the fluxes of the state variables Ajl,; defined by (6 · 4) by G'" (u-) 
In the coordinate space, 

(7 ·19) 

The first term is determined from (7 ·13), (7 · 16) and (7 ·17) . The second term 
is given by the linear relations (6 ·1) with the following expressions for the 
linear coefficients : 

00 

L'"" =lim [lim lim--!-- I (J'"k (t), J ~~) exp( et) dt] , 
c-+0+ le-+o V-+co kn V J 

0 

(7 ·20) 

where J'"k are the conjugate fluxes given by (7 ·18). Since the system IS ISO­
tropic, the linear coefficients are characterized by a few parameters, i.e. the 
familiar transport coefficients. 29

> Denoting the integral (7 · 20) by L ( J'", J, *), 
the thermal conductivity JC, the thermal diffusion constant Da and the constants 
D' a/3 related to the diffusion constants9

> are expressed by 

IC=L(J~, .T~*)/T\ 

f)a=L(J~·JJ, J"f,*)/T, 

D~(J=L(J~:~:, J~·JJ*) /T D~~" 

(7. 21) 

(7. 22) 

(7 ·23) 

where x indicate the x components of the conjugate fluxes. Similarly, the 
shear viscosity r; and the bulk viscosity cp are given by L (F, F*) /T with the 
following expressions for F : 

(7. 24) 

(7. 25) 

Thus, for instance, the average value of the energy flux is written, in the linear 
approximation, as 
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where 

II. 1\dori 

j H(r, t) = hj (r, t) + h (r, t) + ~ha J~ (r, t), 

1 JT=n; T X1·+ L_;a IJa X~, 
T 

1 J"'-D X I_"\ 
1 D/ XfJ T d- a 1' 1 k.......J/J ct/J d . 

a 
(7 ·26) 

(7 ·27) 

(7·28) 

If there is no flow of the total mass element, then the first term of (7.26) 

vanishes. 
Inserting (7 ·19) into the conservation equations, one gets the hydrodynam­

ical equations in the linear approximation. The non-linear terms with respect 

to the local velocity u (r) can be obtained by starting from the local equilibrium 

ensemble without the linearization and then rewriting the local fluxes in terms 

of the thermal momentum Pi- miu with the aid of a Galilean transformation 

pc~Pi- m,:U.
30

> The average of the Galilei transformed fluxes over the deviation 

ensemble p' (t) can be calculated in the linear approximation to yield the same 

results for the linear relations as the foregoing. 

Thus the transport coefficients can be expressed in terms of the time cor­

relation of the conjugate fluxes. The conjugate fluxes (7 ·18) are algebraic sums 

of the molecular quantities of one or two molecules. For small k satisfying 

a1~<1, they all take the same form as (7 ·10). Thus in the classical case, their 

explicit expressions are given by 

(7 ·29) 

where 

(7. 30) 

· _ [ P/ , 1 ·a" · J P.i 
] 11.(;)- .. -m/~h o (;,a) · , 

2mj a JJlj 
(7 · 31a) 

(7·31b) 

(7 · 32a) 

(7. 32b) 

where oj,l is the Kronecker delta; r) (j, a) is unity when the molecule j belongs 

to the a component and zero otherwise; u.il is the intermolecular potential be­

tween j and l. Inserting (7 · 29) into (7 · 20), we obtain 
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Transf.>ort, Collecth}e ltfotion, and Bro·wnian Motion 45i 
00 

.~ dt.~ dpj f(pi) [Jlv (j a)£\. ()a; t) 
0 

(7. 33) 

where na is the molecular density of component a; )a represents an a molecule 
whose momentum and coordinate are denoted by pj and ri ; f(l>) and g (r) 
are the momentum distribution and the pair correlation functions, respectively. 
The quantities t; P are defined by 

!;1/J-(j; t)===lim lim L..:<exp[(iL-c)t] [.ltp(j')o.r.z'+J2p(j', l')])(j), (7·34a) 
E~O~:- V->co f',t' 

where < .. ->en or ( · · )u,t> denotes the conditional average with the given values 
of the coordinates and momenta of molecule j or pair (j, l). The summands 
in (7 · 34) are non-zero only when the space-time correlation between (j) or 
(j, l) and (/, l') exists~ 

In order to see the relation with the kinetic theory, let us consider a dilute 
gas of one component. Since mh = 5/~n T /2, (apjaE) = 2/3 and (aj.>jop) = 0, the 
kinetic parts .hP agree with the conjugate fluxes of the linearized Boltzmann 
equation. 29

> The intermolecular parts J;P- and, therefore, the second term of 
(7 · 33) can be neglected. ·we can calculate t; lp and its time integral (7 · 33) in 
the same manner as in the previous paper.:so) An analysis of molecular motion 
in terms of binary collisions leads to 

(7. 35) 

where D is the same collision operator as in the linearized Boltzmann equation28
> 

l)h (p) ~:= --I dp1 fn (Pt) .f dQ !7 U (r;, 0) [h' + h/ h- h1J, (7. 36) 

where j~ (p) = nf(p) is the Boltzmann distribution, f/ the relative speed, and 
u (Y, 0) the differential scattering cross section. Inserting (7 · 35) into (7 · 33) 
and then evaluating the time integral with the aid of a variational principle, 
we can obtain l<:nskog ancl Chapman's equations for the viscosity and thermal 
conductivity. 

~ 8. Short su1nmary and some remarks 

Our particular intention was to establish some fundamental equations for 
describing time-dependent phenomena. Separating the linear term in the equa­
tion of motion, we derived an exact equation of motion (3 ·10)- (3 ·12). This 
has a generalized form of the Langevin equation. Rewriting this equation for 
the conjugate fluxes with the aid of (6 · 30), we obtained a generalized form of 
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452 H. Mori 

the linear relations (6 · 31) ~ (6 · 36). These equations describe the evolution of 
the collective variables Aj (t) and the conjugate fluxes 1v (t), including their 
fluctuations from the most probable path. These equations give us not only 
the molecular expressions for the random forces and the kinetic coefficients, 
but also serve to investigate the limit of validity of stochastic assumptions and 
approximations involved in various theories of many-particle systems. 

On the basis of these equations, we discussed the Brownian motion, the 
collective motion and the transport coefficients by taking simple examples. In 
particular, explicit expressions were derived for the thermal after-effect func­
tions and the transport coefficients of multi-component fluids. 

The transport coefficients were expressed in terms of the conjugate fluxes. 
Since the projective components of the fluxes are non-zero as can be seen 
from (7 ·13), (7 ·16) and (7 ·17), the conjugate fluxes, in general, differ from the 
fluxes themselves. The significance of this difference was discussed in §§ 3 and 
6. This difference is particularly important for the thermal conductivity and the 
bulk viscosity. Let us consider a dilute gas of one component. Due to the exis­
tence of the difference, ~"'s are orthogonal to the collisional invariants which 
have the zero eigenvalue of the collision operator D. This orthogonality ensures 
that the time integral of (7 · 35) have definite values. *l 

The expressions for the transport coeH-icients should be independent of the 
total ensemble used, as can be seen most clearly from (7 · 33). Therefore it 
turns out that Green's commene1

) on the difference is not relevant. 
This difference vanishes for the shear viscosity flux. It has been shown 

by Montroll11
l that the same expression for the shear viscosity can be obtained 

by treating the shear flow as the linear response to a mechanical perturbation. 
Even in this case, however, if one considers the non-uniform processes with 
non-zero k, then another difference comes up as discussed in §§ 3 and 6. These 

two differences between the thermal after-effect function and the mechanical 
response function originate from the fact that the mechanical external forces 
can be controlled by outer bodies irrespectively of the state of the system, 
whereas the thermodynamic forces are the state functions, thus evolving together 
with the system. 

Recently Zwanzig13
J has derived a generalized form of the Fokker-Planck 

equation for the probability distribution of the state variables by assuming a 
particular initial ensemble which corresponds to ( 4 · 5). His projection into the 
A subspace differs from ours, thus leading to results different from ours. The 

*J If one of real variables A(r) and B(r) is conserved, then 
co 

1. 1' 1 lm lm 
k-+0 V-+co V 

I (Ak (t), B!f*)e-ct dt=_(;_ 
j E 
0 

where Cis a real number. Therefore, if one uses the both-sided Fourier integral representation,12J 
then the projective components can be omitted in the limit of k-->0. 
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linearized version of his final, approximate equation of motion for .1l, Eq. ( 40) 
of reference 13) , differs from our corresponding equation (3 · 7) in two respects. 
Namely, his equation has an additional term, the derivative of kinetic coefficients 
with respect to A, and his thermal after-effect function has a difficulty of the 
plateau value problem. A further investigation is needed to clarify the rela­
tion between his exact master equation and our exact equation of motion. 
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Appendix A 

IJeri'L,ation of (8 · 5) and (8 · 6) 

Since the projection operator (2 ·13) is Hermitian, 

( [ ( 1 -- P) L f] , g *) = ( L f, [ ( 1 - .P) y] *) . 

Since g IS orthogonal to the A subspace, this is equal to 

= (Lf, g*) = CJ: [LrJ] *), 

where (2 · 9) has been used. Since f is orthogonal to the A subspace, this can 
be brought into 

= (f, [ (1 P)Lg] *). 

Thus we obtain (3 · 5). Equation (3 · 6) can be obtained by expanding U (t) in 
powers of t and then using that every term is orthogonal to the A subspace. 

Appendix B 

Derivation of (8·14) and its generali.zation 

From (3 ·10) and (2 ·18) we obtain 

t 

f(t) =K(t) + \ds ({J(t--s) ·A(s). 
oJ 
0 

(B·1) 

Inserting (2 · 4) and (2 · 5) and multiplying by K * · (A, A*) -l from the right, 
we obtain 

t g 

({J (t) == r/J (t) + r ds} ({J (t -- s) · E Cs- s') · ({J (s') ds'. (B·2) 
() 
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454 II. Nfori 

Since the second term has a convolution form, the Laplace transform readily 

leads to (3 ·14). 

Equation (B · 2) can be generalized. Namely, if f and rJ are .functions 

orthogonal to the A subspace, then 

(f(z), r;*)=(U(z)f, y*) 

- (U(z)/, K*) ·(A, A*) - 1 ·E(z) · (U(z)K, g*). (B·3) 

This is useful in discussing the relation between the mechanical and thermal 

after effect functions in the anisotropic case. 
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Note added in proof : Recently Luttinger [Phys. Rev. 135 (1964), A1505] derived the same 
expressions as ours for the transport coefficients L~""(w=O) without the explicit use of the local 
equilibrium ensemble. We wish to discuss here the role of the local equilibrium ensemble by 
reversing the reasoning of § 6. 

As noted in the text, the generalized linear relations (6 · 31) are equivalent to the exact equa­
tions of motion (3·10), and in fact can be derived from the latter directly. Namely, taking Ak 
defined by (6 · 4) as A and comparing with (2 ·18), we obtain 

Klf.(t) =- ~ >7c(s) ·Ak(t-s) ds+fT.-.(t). 

To rewrite this for the conjugate fluxes J ~"' we substitute (3 ·12) for 'PrcCs) and then apply 
fk(t)=U(t)K~.o and insert (6·18). Then separating ik and using (6·30) we arrive at (6·31). 

Now we introduce the local equilibrium ensemble (6·8) supplemented by (6·10) in order 
to define the macroscopic state parameters Bk(t) and relate the average values X~" to them. 
Then it is easy to show that X~"'s are equal to the usual thermodynamic forces (6 · 2), (6 · 3) and 
(6·24). Therefore, on the basis of (6·31), we can identify the quantity L"'"(w) with the transport 
coefficients, since the second term of (6·31) does not contain any linear term of X~"'s. 
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