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Chaotic transport in a laminar fluid flow in a rotating annulus is studied experimentally by
tracking large numbers of tracer particles for long times. Sticking and unsticking of particles to
remnants of invariant surfaces (Cantori) around vortices results in superdiffusion: The variance of
the displacement grows with time as ¢t” with v = 1.65+0.15. Sticking and flight time probability dis-
tribution functions exhibit power-law decays with exponents 1.6+0.3 and 2.34+0.2, respectively. The
exponents are consistent with theoretical predictions relating Lévy flights and anomalous diffusion.

PACS numbers: 47.52.+j, 47.32.—y, 51.20.+d, 92.10.Lq

Transport in a fluid flow can be characterized by the
variance of the displacement of a distribution of tracer
particles, 02 ~ ((Ar)2), which for normal diffusive pro-
cesses grows linearly with time: 02 ~t” with v = 1. Pro-
cesses with v#1 are termed anomalous diffusion [1,2].
Subdiffusion (0 < v < 1) occurs in flows with well-
defined “sticking” regions that retard the motion of fluid
elements or tracer particles. Sticking can occur in two-
dimensional cellular flows if molecular diffusion is large
enough (3] or if the flow is time dependent [4,5]. In the
latter case, trajectories of passive tracer particles are typ-
ically chaotic (exponential separation of nearby particles)
[6], and remnants of invariant surfaces (Cantori) cause
long sticking times with a power-law rather than expo-
nential distribution [4,5].

Superdiffusion (1 < v < 2) can occur if tracer trajec-
tories in the flow have long excursions (“Lévy flights”)
[1,2,7,8]. Lévy flights, defined by flight length proba-
bility distributions with divergent second moments (e.g.,
power-law distribution functions), are well known math-
ematically [1]. One signature of superdiffusion, fractal
scaling of trajectories, has been found in analyses of float-
ing tracers in ocean [9] and surface wave [10] flows, but
these flows were turbulent and difficult to characterize, so
the mechanisms responsible for the anomalous behavior
were unclear. Moreover, those experiments did not fol-
low enough particle trajectories to determine the sticking
or flight time statistics. Superdiffusive behavior was also
found in a recent experiment on micelles, and that be-
havior was modeled as a Lévy process [11].

‘We have made direct measurements of Lévy flights and
superdiffusion. The experiments study transport in a
time-periodic flow composed of a circular chain of vor-
tices in a rapidly rotating annulus; see Fig. 1(a). The flow
is almost perfectly two dimensional; hence the stream
function for the velocity field is a Hamiltonian and the
equations of motion for a tracer particle in the flow
are Hamilton’s equations [12]. Even though the veloc-
ity field is laminar, passive tracers in the flow can have
chaotic trajectories (“chaotic advection” [6]), intermit-
tently sticking near the vortices and then moving large
distances in the jet regions that sandwich the vortex
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chain. We have used digital image processing techniques
[13] to track simultaneously up to 100 neutrally buoyant
particles in the flow for times much longer than typical
time scales of the velocity field. Digitized trajectories
are used to calculate the variance of the displacement of
tracer particles and the sticking and flight time probabil-
ity distributions.

The apparatus is an annular tank rotating at a fre-
quency of 1.5 Hz. The inner and outer radii are 10.8 and
43.2 cm, respectively, and the depths at these radii are
17.1 and 20.3 cm [12,14]. The annulus is filled completely
with a 38% glycerol solution (by weight) in water with
kinematic viscosity 0.030 cm?/s. Fluid is pumped at 45
cm?/s into the tank through a ring of radius 18.9 cm and
from the tank through a ring of radius 35.1 cm; the source
and sink rings each consist of 120 holes (0.26 cm diame-
ter) in the bottom of the tank. The action of the Corio-
lis force on the pumped fluid results in a counterrotating
azimuthal jet with shear layers above each ring. Instabil-
ity of the inner shear layer is inhibited by inserting into
the tank a 6 cm tall annular Plexiglas barrier with inner
and outer radii of 10.8 and 19.4 cm, respectively. The
axisymmetric inner shear layer is then embedded in the
Stewartson layer at the edge of the barrier.

The outer shear layer is unstable, leading to the for-
mation of a circular chain of vortices that slowly ro-
tates with respect to the annulus. The resultant flow
has a periodic time dependence as measured by hot film
probes mounted in the lid of the tank. In a reference
frame corotating with the vortex chain, this flow would
be time independent with all particle trajectories follow-
ing closed stream lines—there would be no chaotic tra-
jectories. This basic flow is perturbed to obtain the flow
that we have studied, one with chaotic particle trajecto-
ries: nonaxisymmetric forcing is produced by pumping
through one 60° arc of holes (both outer and inner rings)
at a rate less than 50% of that for the remainder of the
holes. Thus as each vortex moves around the annulus, it
undergoes an amplitude oscillation with a period equal to
its propagation time around the annulus (70.0 s); this os-
cillation period is comparable to a typical vortex turnover
time (25 s). The resultant flow is simply periodic in the
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FIG. 1. (a) Streaks formed by 90 s long trajectories of 40
particles reveal the presence of six vortices. (b)—(f) Individ-
ual particle trajectories of duration 800-1500 s. The begin-
ning of each trajectory is marked by a circle, the end by a
triangle. Long sticking events can be seen in each case, and
flights of length at least equal to one rotation around the an-
nulus can be seen in each case except (b). Hyperbolic fixed
points, near which the particle motion is particularly sensitive
to transitions between flights and sticking events, are evident
in (c) and (e). In each of these figures, the tracer motion is
viewed from a reference frame that is corotating with the vor-
tex chain, which rotates with a frequency 0.01429 Hz slower
than the 1.5 Hz rotation frequency of the annulus. The inner
and outer circles represent the annulus boundaries, and the
dashed circle denotes the outer edge of the Plexiglas barrier.

corotating reference frame of the vortex chain, but par-
ticles advected by this flow can have chaotic trajectories.

Neutrally buoyant tracer particles are suspended in the
flow and are tracked for up to 30 min. The particles are
made from mixtures of fluorescent crayons and concrete
powder, ground and sieved to a size of approximately 1
mm. The Stokes number [15] for the particles is approx-
imately 0.002 for vortex length scales, insuring that they
follow the flow faithfully on these length scales. The vis-
ibility time is limited by a very slow vertical drift of the
particles through the illuminated section, due mainly to
Ekman pumping in the vortices [14].

A chain of six vortices is clearly visible in Fig. 1(a).
Figures 1(b)-1(f) show individual particle trajectories of
duration 800-1500 s. In a plot of the corresponding az-
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FIG. 2. The azimuthal displacement as a function of time
for the particle trajectories in Figs. 1(b)-1(f). Oscillations
about horizontal lines are sticking events; e.g., in the first long
sticking event for trajectory (d), the particle makes 10.5 rota-
tions about a vortex before escaping. Diagonal lines are flights
between the sticking events. The starting angle 6(t = 0) is
arbitrary in this plot.

imuthal displacements (Fig. 2), flights appear as steep
diagonal lines and sticking events are oscillations about
horizontal lines. Note the long flights, particularly in
(f), and the long sticking times, particularly in (b) and
(d). The velocity of a particle is approximately con-
stant, except when it slows down as it passes near hy-
perbolic points. The approximate constancy of the az-
imuthal component of velocity can be seen in the slopes
of the plots in Fig. 2. There are many more flights in
the corotating direction (corresponding to motion outside
the vortex chain) than in the counterrotating direction;
this asymmetry is probably due to the curvature of the
system, which causes the separatrices outside the vortex
chain to be longer and more curved than those inside the
chain [16].

Transport in this system is analyzed in the azimuthal
direction, with the variance given by o2(t) = ((8 —
(6))2); see Fig. 3. In the calculations, the initial angle
6(t = 0) is defined to be zero for each trajectory. Only
those trajectories that display both sticking events and
flights are used in the calculations of 2. The data are
less accurate at large ¢ since there are more short flights
than long flights. The slope v of a log-log plot of o2(t)
has a plateau at v = 1.65 & 0.15 for long times (> 20 s),
indicating superdiffusion.

Sticking and flight time probability distribution func-
tions (PDFs) of tracers are determined from analyses of
data for 6(t). A flight is identified by A8 > 7/3 (an-
gular width of one vortex) between successive extrema.
The sticking events are then simply the intervals between
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FIG. 3. Variance of the azimuthal displacement of a dis-
tribution of tracer particles for a time-periodic laminar flow.
The slope, shown in the inset, has a plateau that yields the
exponent for the power-law growth, v = 1.65+0.15 (superdif-
fusion).

flights. The PDFs are determined from normalized his-
tograms of the duration of these events. A small correc-
tion is required to compensate for the finite duration of
the measured trajectories, which biases the data in fa-
vor of shorter sticking/flight events. This correction is
determined by creating artificial (numerical) trajectories
with algebraic flight and sticking PDF's, chopping them
(randomly) into finite trajectories with durations compa-
rable to those observed in the experiment, and comparing
the PDF's obtained from these finite trajectories to the
expected PDFs (for infinite duration trajectories).

A histogram of sticking times [Fig. 4(a)] indicates a
power-law relation, Ps(t) ~ t™Y, with v = 1.6 + 0.3 [17].
There is a slight dropoff in the PDF for ¢ > 300 s, possi-
bly indicative of a transition to exponential decay at large
times. Theoretical studies [5,18] predict that long-term
sticking (power law PDFs) in Hamiltonian systems is a
consequence of a characteristic hierarchical island struc-
ture. The dropoff in our PDF for large ¢ probably arises
because noise and the finite tracer particle size [15] mask
the island structure beyond the second or third genera-
tion of islands. Numerical studies of sticking in a variety
of systems have yielded a wide range of values (0.7-3.8)
for the sticking exponent [4,5,19].

The flight times also have power-law distributions [Fig.
4(b)], Pf(t) ~ t~H* with p = 2.3+0.2 [17], which indicates
that the trajectories can be described quantitatively as
Lévy flights. The PDF in Fig. 4(b) includes data from
both corotating and counterrotating flights; the coro-
tating and counterrotating flights both have power-law
PDF's with the same decay exponent. Flight length dis-
tributions are also algebraic with the same exponent, fur-
ther indicating that the flight lengths and durations are
linearly related.

The connection between Lévy motion and anomalous
diffusion has been analyzed theoretically for model sys-
tems [7,20] and these analyses yield an exponent v =
4 — p, assuming constant flight velocity. Our measured
values of 1 (2.3) and vy (1.65) are in good accord with this
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FIG. 4. (a) Sticking time probability distribution, which
exhibits power-law decay for ¢t < 300 s with exponent (slope)
v = 1.6 £0.3. (b) Flight time probability distribution func-
tion, which is a power law with exponent = 2.3 £ 0.2.

relation, which assumes that v is dominated by the flight
statistics. A recent analysis of a Hamiltonian model [21]
yields a dependence of the growth of the variance on both
flight and sticking statistics: v = 2v/(u — 1). This result
is also consistent with the experimental data, given the
uncertainty in our exponent values.

For contrast we have also examined transport in a
weakly turbulent velocity field that contains no persis-
tent vortices and no jets encircling the annulus. The
turbulent flow was produced by pumping through only
the outer circle of holes with the direction of pumping
alternating for successive sectors of 60° width; the to-
tal pumping rate was fixed at 45 cm3/s, as before, but
the water-glycerol mixture was replaced with water (kine-
matic viscosity 0.009 cm?/s) to achieve a larger Reynolds
number.

The absence of well-defined flights and sticking events
in the turbulent flow is evident in Figs. 5(a) and 5(b),
which contrast with Figs. 1 and 2 for the laminar flow.
In the turbulent flow the slope of the variance of the
azimuthal displacement, shown in Fig. 5(c), decreases
monotonically with time and appears to approach the
value expected for normal diffusion, v = 1, but we cannot
track particles long enough to determine the asymptotic
behavior.

In conclusion, by following the trajectories of large
numbers of particles for long times we have been able
to obtain direct evidence for Lévy flights and anomalous
diffusion. Chaotic advection of passive tracer particles
in our laminar flow results in alternating sticking events
and long-range flights, each with power-law probability
distributions. For the particular case we have considered
in detail, the transport of an ensemble of tracers is su-
perdiffusive with a variance that grows with time with
exponent v = 1.65. Future experiments will examine the
dependence of the power-law exponents 7, u, and v on
parameters for flows ranging from periodic to fully tur-
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FIG. 5. Transport in a weakly turbulent flow with no jet
region. (a) Two particle trajectories of about 500 s dura-
tion. (b) The azimuthal displacement as a function of time for
the particle trajectories in (a). Since there are no long-range
flights, the total displacement in 500 s is typically an order
of magnitude smaller here than for the laminar flow; compare
Fig. 2. The starting angle 6(¢t = 0) is arbitrary in this plot.
(c) Variance of the azimuthal displacement of an ensemble
of tracer particles. The slope, shown in the inset, decreases
monotonically toward unity and has no plateau, in contrast
to the case for superdiffusion; compare Fig. 3.

bulent. We hope that this work will stimulate theoretical
studies of anomalous diffusion in both Hamiltonian and
dissipative systems.
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