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Theory of Many-Particle Systems. I*)
PAIIL C. MARTIN AND JIILIAN SCHWINGRR

Lyritars Laboratory of Physscs, Harvard UNsvcrsv'ty, Cambridge, iVassachgsetts

(Received March 20, 1959)

This is the first of a series of papers dealing with many-particle
systems from a unified, nonperturbative point of view. It contains
derivations and discussions of various field-theoretical techniques
which will be applied in subsequent papers, In a short introduction
the general method of approach is summarized, and its relationship
to other field-theoretic problems indicated. In the second section
the macroscopic properties of the spectra of many-particle systems
are described. Asymptotic evaluations are performed which
characterize these macroscopic features in terms of intensive
parameters, and the relationship of these parameters to thermo-
dynamics is discussed. The special characteristics of the ground
state are shown to follow as a limiting case of the asymptotic
evaluations. The third section is devoted to the time-dependent
field correlation functions, or Green's functions, which describe
the microscopic behavior of a multiparticle system. These func-

tions are defined, and related to intensive macroscopic variables
when the energy and number of particles are large. Spectral repre-
sentations and other properties of various one-particle Green's
functions are derived. In the fourth section the treatment of non-

equilibrium processes is considered. As a particular example, the
electromagnetic properties of a system are expressed in ternis of

the special two-particle Green's function which describes current
correlation. The discussion yields specifically a Quctuation-dis-
sipation theorem, a sum rule for conductivity, and certain disper-
sion relations. The fifth section deals with the differential equa-
tions which determine the Green's functions. The boundary
conditions that characterize the Green's function equations are
exhibited without reference to adiabatic decoupling. A niethod
for solving the equations approximately, by treating the corre-
lations among successively larger numbers of particles, is con-
sidered. The first approximation in this sequence is shown to
yield a generalized Hartree-like equation. A related, but rigorous,
identity for the single-particle Green s function is then derived.
A second approximation, which takes certain two-particle corre-
lations into account, is shown to produce various additional
e8ects: The interaction between particles is altered in a manner
characterized by the intensive macroscopic parameters, and the
modification and spread of the energy-momentum relation come
into play. In the final section compact formal expressions for the
Green*s functions and other physical quantities are derived.
Alternative equations and systematic approximations for the
Green's functions are obtained.

I. INTRODUCTION

'N any physical system the properties actually subject
~ - to measurement are few in number. These attri-
butes, energy, momentum, angular momentum, number
of particles, and the like, are distinguished by the
feature that each is related to an invariance property
under a simple group of transformations. In the case
of energy-momentum it is the group of space-time
translations, while for angular momentum, it is the
rotation group. Associated with each of these groups
there is a continuous unitary representation which is

characterized by a set of Hermitian generators. In
quantum field theory, these Hermitian operators are
constructed as space integrals of products of field

operators, P(rt)), P"(rt)) At a give.n time, the field

operators have simple commutation properties charac-
teristic of the particle statistics.

A many-particle system, in the context of quantum
field theory, is one for which the eigenvalue of the
number operator is large. In such a system, physically
recognizable changes in energy are so huge compared

to the energy intervals between neighboring states that
the energy levels may be assumed to vary continuously.

When a system is this large, the quantities of interest

naturally fall into two categories. The first concerns the
behavior of extensive quantities such as energy and

number for which only macroscopic changes are meas-

urable; the second refers to microscopic features in-

* A preliminary resume of this work was reported in Bull. Am.
Phys. Soc. 3, 202 (1958).

t We wish to acknowledge the hospitality of the University of
Wisconsin where part of the paper was written.

volving changes in energy and number that are neg-
ligible on the macroscopic scale.

The purpose of this paper is to develop general
methods for treating multiparticle systems from the
quantum field-theoretical viewpoint. In this discussion

it will prove useful to employ and extend the mathe-
matical techniques which were devised for application
to relativistic quantum field theory. These same tech-

'The many-body problem has been studied with the aid of
perturbation theory by many authors. This paper will not draw
on any results of these works but has various points of contact
with them. We mention the work of T. Matsubara, Progr.
Theoret. Phys. (Kyoto) 14, 351 (1955);K. M. Watson, Phys. Rev.
103, 489 (1956'); W. Riesenfeld and K. M. Watson, Phys. Rev.
104, 492 (1956), 108, 518 (1957),and other articles; K. Brueckner,
Phys. Rev. 100, 36 (1955), and other articles; K. Brueckner and
S. L. Gammel, Phys. Rev. 109, 1038 (1958); J. Goldstone, Proc.
Roy. Soc. (London} A239, 267 (1957);L. Van Hove, Physica 22,
343 (1956), and other articles; N. M. Hugenholz, Physica 23, 481
(1957), and other articles; Huang, Lee, and Yang, Lecture at
Stevens Institute Conference on Many-Body Problems, 1957 (to
be published); Lee, Huang, and Yang, Phys. Rev. 106, 1135
(1957};T. D. Lee and C. N. Yang, Phys Rev. 112, 1. 419 (1958),
and 113, 1406 (1959); Schafroth, Butler, and Blatt, Helv. Phys.
Acta 30, 93 (1957); E. Montroll and J. Ward, Phys. Fluids 1, 55
(1958); J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957),
and other articles; J. Lindhardt, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 28, No. 8 (1954); P. Nozieres and D. Pines,
Nuovo cimento 9, 470 (1958);A. Klein and R. Prange, Phys. Rev.
112, 994, 1008 (1958); C. DeDominicis and C. Bloch, Nuclear
Phys. 7, 459 (1958), and other articles; R. H. Kraichnan, Phys.
Rev. 112, 1054 (1958); S. T. Beliaev, J. Exptl. Theoret. Phys.
(U.S.S.R.) 34, 417 (1958) I translation: Soviet Phys. JETP 7, 289
(1958)g. A spirit similar to ours occurs in the work of V. M.
Galitskii and A. B. Migdal, J. Exptl. Theoret. Phys. (U.S.S.R.)
34, 139 (1958) /translation: Soviet Phys. JETP 7, 96 (1958)];
the note of L. Landau, J. ExptL Theoret. Phys. (U.S.S.R.) 34,
262 (1958) Ltranslation: Soviet Phys. JETP 7, 182 (1958)]; and
in E.S. Fradkin, J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 951, 1286
(1959).
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niques, it will appear, achieve in a natural manner the
above-mentioned separation of the macroscopic and
microscopic domains. In the former domain they lend
themselves to the discussion of the spectral densities of
the extensive constants of motion; in the latter domain
they provide a characterization of the local properties
of the system. It is only the second class of problem
which is usually considered in relativistic quantum field
theory where the vacuum appears as the natural
reference state.

The two aspects of the many-particle problem are
intimately related, of course. Indeed, the most feasible
method for determining the macroscopic properties of
the system is by integrating the differential equations
which relate them to the microscopic behavior. The
quantities that fully describe the local behavior, and
which thereby serve to characterize both the macro-
scopic and microscopic aspects of the situation, are
time-dependent field correlation functions, or, in the
language of field theory, Green's functions. With the
aid of these functions it is possible to present in a unified
manner all aspects of large systems, both static and
kinetic. The information thus provided is purely
dynamical, but it occurs in a form which is immediately
applicable to the statistical mechanical treatment of
equilibrium phenomena.

(2.1)

generates the spectral density of the commuting quan-
tities, energy and number. The expression (2.1) may
be written in terms of I'zz, the projection operator for
states of given energy and number, or, more explicitly,
as

es'=P e—'&"—'« 'rr P)i@——P e—'~"—i«Trying 1 (2 2)
NE NE

with the summation extending over energy eigenvalues,
E, and number eigenvalues, ' E. In terms of a formal
spectral density, p(XE), Eq. (2.2) becomes

ew(al, iT) —P e—iÃx dE e—igr (/E)J (2.3)

2 The use of the same symbol for the number operator and its
eigenvalue causes no difhculty in context.

II. MACROSCOPIC PROPERTIES. DENSITY OF STATES

The spectral measure of the commuting Hermitian
operators which describe the constants of motion is
most conveniently found in terms of the unitary
operator representation that originally determined these
Hermitian operators. More specifically, Fourier trans-
formation of the traces of the group of unitary trans-
formations yields the desired measure. For example, if
a system has a Hamiltonian, 8, and a number operator,
)7, the formal function

From it the spectral density is determined by Fourier
transformation,

p(SE) = f ZA f d7
eiN)+ i Jr+w (ix, ir) (2 4)

2m ~ 2m

However, the summation (2.1) of an in6nite number
of increasingly rapidly varying exponentials is only
formal and requires a summability procedure to give it
meaning. The most useful way of giving a rigorous
signiTicance to expressions like (2.4) is based upon the
interpretation of (2.1) as the boundary value of an
analytic function in the lower half X and v complex
planes. Since the spectra of energy and number are
bounded from below, and if, as is presumably true in
all physical systems, the density of states grows at most
a1gebraically with increasing energy and number, the
exponential decrease introduced by arbitrarily small
negative imaginary parts of ~ and A, is sufficient to
guarantee absolute convergence. If, furthermore, the
energy per particle increases without bound for suffi-

ciently large particle densities, as it does in a fermion
system with no attractive forces, or in any system which
cannot be indefinitely compressed, the exponential
factor in the energy produced by a negative imaginary
part of ~ assures absolute convergence whatever the
imaginary part of P.

For a large class of systems it is possible to evaluate
(2.4) asymptotically by taking advantage of the ana-
lytic behavior outlined above. This is most clearly
accomplished by first defining the result of the X inte-
gration, which projects out the trace with a given
number of particles,

expWN(ir)=—Tr I'~e '~'= Tr)i e '~', —

and then evaluating asymptotically the 7- integral,

di
p(EE) = —exp[iEr+W~(ir)].

Qo 2'

(2.5)

(2 6)

As a function of 7-, expW& is analytic throughout the
lower half-plane. Furthermore, along the negative
imaginary 7- axis, the second derivative of 8'& with
respect to i~ is real and positive, since it has the form
of the dispersion of the energy with respect to a positive
weight function. Consequently —BW&/Biz, which
approaches infinity as 7- ~ 0, decreases monotonically as
T —+ —i pp to t'he limit given by Ep(Ã), the minimum
energy of the system for E particles. It follows that on
the negative imaginary axis there is one and only one
solution, imp= p) 0, to the equation

E= &We(P)/&P, —E&~ Ep(Ã). (2.7)

The expression (2.6) may then be integrated by the
method of steepest descents, by deforming the contour
of integration into the lower half plane so that it passes
through P in the direction, parallel to the real axis,
along which the integrand decreases most rapidly from
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O'WN O'W O'W t'Bn )

Bp' Bp' BnBp (Bp) NO'WN/BP'= —(BE/BP) N &~ 0, (2.8)

its maximum. The contribution to the integral from the Furthermore, the second derivative satisfies
neighborhood of this saddle point is evaluated in terms
of the positive-definite second derivative

with the result

p(XE)=expLPE+WN(P)]L22rB2WN(P)/BP2j '*. (2.9)

O'W (B2W q' pB2Wq
—'

BP2 ( BnBP) ( Bn2)
(2.17)

A more detailed justification of the asymptotic domi-
nance of this neighborhood will not be given here.

The function, WN(P), is now written in terms of

W(ill, P), by making explicit the steps which led to (2.6)
from (2.4)

p7r dg
exp LW (P)]— e (N x+1(' ( k, e l

~ .2m

(2.10)

~V = —BW/Bn, E(P)»V& 0. (2.11)

Hy deforming the contour to pass through this unique

point of steepest descent along the imaginary A, axis, an

asymptotic value for (2.10) is obtained,

B'8'
expLWN(P)f=e N+'~( ~' 22r——,(2.12)

Bo!

The integral (2.10) can also be evaluated asymptoti-
cally. Under the assumption of a maximum particle
density, expt W(ih, P)j is analytic throughout the I(

plane. An argument similar to that employed for

BWN/Bi7 shows that as 1( decreases along the imaginary

axis —BW/Bil( decreases monotonicaly from g(P), the

maximum value consistent with the given p, to the

value zero. Consequently there exists a unique point,

Xo
———ie, lying on the imaginary axis, which satisfies

lnp(ATE) =nIV+PE+ W(n, P),

which is consistent with the differential relation

(2.19)

d 1np(XE) =ndÃ+PdE. (2.20)

The result (2.18) has been obtained in two stages. With
the assurance that the dominant contribution arises
from the vicinity of the one point n, p, the two-dimen-
sional integration can be performed directly. Using this
procedure, we are led to the quadratic form

O'W
B2W= ((ln)2+2

Bo!

O'8" B'8'
(B ) (BP)+ (BP)' (2 21)

BnBP BP2

This expression is shown to be positive definite by ex-
hibiting it as a dispersion

82W=((iVBn+BBP)2) e—((Ehn+HBP) e)2, (2.22)

with respect to the averaging process

so that (2.13) may also be written in the form

p (IVE) —eaN+eE+w (a, e)

1 O'W BRV (B2W ) '
X— —

] [ . (2.18)
22r Bn' BP' ~ BnBP )

Again, in physical systems the numerically significant
parts of this expression are the exponentials, so that

which, when inserted into (2.9) yields

O'W B'tV~
p(gP) eaN+ee+W(a, el

Bn' BP2
(2.13)

(X) e=(Tre N eNX)/Tre —N—eN

—Tr g
—ux—PH—tw (~,P)x (2.23)

The positive definiteness is fully characterized by the
three inequalities

BW/Bn &O, B W/BP &O,For the systems of physical interest, the exponential

factors in (2.12) and (2.13) are the numerically sig- B'8' O'-W B'kV ' BE B2H/'
nificant parts and consequently (2.12) may be written

( )
Bn' BP' (BnBP) EBP j N Bn2

This asymptotic approximation is consistent with the
indicated dependence of the functions since

(BiV ) B2W
&o.

Bn&s BP'

88'
dWN(P) =ndcV+ (n,P)dP, (2.15)

By deforming the contours to pass through the unique
point at which

7V= —BW'/Bn= (iV)"e, E= —BW/BP = (li) e, (2.25)
in virtue of (2.11). Equation (2.7) can therefore be

replaced by
(2.16)

and integrating the quadratic form in the neighborhood
of this point, we obtain the expressions (2.18) and (2.20)
directly.
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It is necessary at this point to describe an intensive
property characteristic of any spatially distributed
system —the pressure. This quantity is occasionally
introduced by referring to an external parameter, the
container volume, which is regarded as occurring in the
Hamiltonian. The negative rate of change of the energy
with respect to this volume is then used to define the
pressure. It is clearly preferable, however, to introduce
the notion of pressure in the more fundamental way
which relates it to the local transport of momentum.
Needless to say, the container walls are the agency
ultimately responsible for producing the locaL stresses
in the absence of other external forces.

Ke shall restrict ourselves to systems containing one
type of particle described by a field, P, for which the
momentum density operator is (f1= 1)

G(rt) = (1/2z) C P»(rt) ~P(rt) —(p'P»(rt))P(r, t) 7. (2.26)

We shall also suppose, for definiteness, that the Hamil-
tonian has the form

II= i dr vP»(rt) vg(rt)
2m~

+—,
'

' drdr' P» (rt)»t »(1't)v(r r')P(r—'t)P(rt), (2.27)

which is characteristic of instantaneous two-particle
interactions. From the equation of motion

double integral over identical regions for r and r'
vanishes since the integrand is antisymmetrical, a
property which reflects the equality of action and reac-
tion. The effective interaction stress tensor, To», is
constructed by integrating the term identified with its
divergence

~ T&'» = dr'»t »(rt)P(r't) p'v(r —1')P(r't)P(rt), (2.31}

over a region, V, large compared to the range of forces.
In terms of n, a unit vector normal to the surface of V,
we may write

f'
, dSin T"'(ri) = dri dry P»(ri)gt(ri)

aJ

1'» 8
X——v(rip)f(11)p(ri), (2.32)

where ri2 ——ri —r2 and rii ——
~ ri2~ . The contributions to

(2.32) come entirely from a region in which ri is inside
V, r2 is outside V, and r» is smaller than the effective
range of forces.

We now introduce a hypothesis of local uniformity,
asserting that within a physically small region the sig-
nificant expectation values of field operator products
are dependent only upon relative position vectors. The
integral (2.32) may then be written in the form

r

d51 n T"&(ri)= dri2 driL
aJ

and the adjoint equation, we then derive

+ d, ~».(,t) (,)~(,t)~( t) (2 28)
where, for fixed rii, the domain accessible to r, is a
shell of thickness —n r» so that dr2~ —n-r»d$2. As
a result of the restriction that r2 be outside and r~
inside V, only half the r» space is covered, and therefore

f
T&"(r) = ——',J driiriirii P(r+-', rii)4»(r ——',rig)

dr' P»(rt)P» (r't) Vv(r r')P(r't)P(rt)—, (2.29) 8
X—— v(rig)f(r —~rii) P(r+ —', 119)~ (2.33)

where the first term is the negative divergence of the
stress tensor for a noninteracting system,

T,;&'& = (1/2rN) [VyPV, &+V,f»V Q 'V,V (4'»4') 7, —-
(2.30)

while the second term of (2.29), because of the nonlocal
nature of the interaction, is not a divergence. Never-
theless, for short-range forces, the second term may be
replaced e6'ectively by a divergence since the contri-
bution to its integral over any volume comes entirely
from a region in. the neighborhood of the boundary of
that volume whose dimension is comparable in size with
the range of forces. This follows from the fact that the

The pressure, p(r), is identified as the average diagonal
element of the total stress tensor, 13 P, T... and thus
the appropriate. operator becomes

p(1) = 3
—Qlp» ~ Q1p —4J~drl2 p»(1+ ~ 112)p»(1 ~ 112)

Bv(rig)
Xr12— »t'(1 —2iru)4 (r+ 2ri2) . (2.34)

Bt'] g

The assertion of local uniformity has again been invoked
to justify the omission of the term containing V'(Ptf).
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We can now make contact with the viewpoint that
relates the pressure to the total volume occupied by
the system. For this purpose we consider the trace
definition of the function W(n, P, U), and perform the
coordinate scale transformation

r=0r', (2.35)

together with the operator canonical transformation,

f(r) =B 'tI'(r') (2.36)

expLW(a, P,B'V)j
=Tr exp —nN —PB '

~~

2m

In view of the invariance of the trace under a canonical
transformation we 6nd that with the new scale of
coordinates

p= (BEIBN)sv,

its derivative satisfies the relation

(2.45)

t'BE~ (») 1t'B& 't & (Bp l+—
]BN'.) sr (BN) sr P I BN) sr P' t.BN) Br

(2.46)

It is clear that thermodynamic systems may be dis-
cussed by interpreting the symbol 1/P as the absolute
temperature (multiplied by k), lnp as the entropy, 5
(divided by k), and —n/P as the chemical potential, p.
We shall for convenience use this thermodynamic
language without, in any way, confining ourselves to
domain of equilibrium processes to which thermo-
dynamics applies. The inequality (2.24) may be con-
veniently reexpressed in terms of the thermodynamic
variable p. In particular since the chemical potential is
given by

——',PJ Ptgtv(0r)PP . (2.37)
L(d-) (dA)+(dP) (dE)&

P(dN)'
(2.47)

1
--d'8'

&~ 0,
P (dN)'

BS' aP

V =p dr P(r) =pPV,
BV

which may also be writ:ten in the form
2.38

(B
(E—pN) I

(BN ) svand the numerical pressure so defined is given by

Differentiation with respect to 0 at the point 0= 1 now
yields

(2.48)

(2.49)

p = (1/P) (BW/B V). (2.39)

Furthermore, for the system being considered, which
involves no external forces, the operator P(r) describes
a local property independent of the total volume, so
that the pressure is an intensive variable, P(n, P). Hence
W(e,p, V) must have the form

In a homogeneous system, for which the energy density
is an intensive variable and P= —(BE/BV) s~, the rela-
t;ion (2.48) may be written in the form

(BP 't (B'Eq /Ny')B'Ey
&O. (2.50)

KBV) s~ t BV') ( V) t BN')

W= VPP(n, P), (2 40) It also follows from (2.24) that

and likewise the energy and particle densities are given
by the intensive expressions

(Bp/BN) pv&0,

which in a homogeneous system reduces to

(2.51)

—=-—(pp),
P Bn

A———(pp)
V BP

(2.41) f'BP ) (cV) (Bp)
&o.

t. BV) p,v 4 V) (BiV) py
(2.52)

For the purpose of introducing a conventional nota-
tion we note that the relation

dW= Ndn EdP+Ppd —V—
may be written as

d(W+nN+PE) =ndN+PdE+Ppd U,

or as the following extension of Eq. (2.20):

(1/P)d lnp= (a/P)dN+dE+Pd V.

Qne basic problem to which the techniques developed
in the remainder of this paper shall be applied in the
determination of the ground-state properties of an
interacting system. Such a state does not strictly fall
within the realm of the preceding asymptotic evalua-
tions. Yet the properties of this particular state are
obtained by taking the zero-temperature limit of the
expressions derived above. In particular we note first

(2.43) that in the limit as P —+ ~, lnp, which satisfies

(1/p) lnp = (&Ip)N+E+P U. (2.44)

We also note that (2.40) and (2.19) lead directly to (B Inp) (BE)
( Bp ) ~r &Bp) ~r

(2.53)
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(~p ) 1 ( oj

(~o (&)—») I
& o (2 55)

(az) V & az

Furthermore since p= 0 when E=0 and p is continuous,

p= —(1/V)(Eo(Ã) —»)~&0. (2.56)

A particularly simple situation occurs when the
ground state of the system is spatially localized by its
own forces and requires no container. For such a state
the pressure satisfies

p = —(BEp/8 V) H
——0, (2.57)

so that the asymptotic equation (2.54) reduces to

X' p= pX.

Turning from the asymptotic evaluation to the
direct discussion of the ground state we note that these
same results are obtained. In this case the essential
point is that, in a large system interacting by short-
range forces, the energy per particle in the ground
state is a function of the density only. From the
stationary property of the ground-state energy with
respect to the total occupied volume, which requires
that

(BEp/8 V) H 0, ——

it then follows, in agreement with (2.58), that

(2.59)

V )8&op )&&op ~o=-I
I +—=0

Ã(BV)H(81V)vE (2 .60)

Similar considerations may be applied to unbound
systems by including the work done by the container
wal ls.

III. MICROSCOPIC PROPERTIES.
THE GREEN'S FUNCTIONS

The microscopic properties of a system which are of
physical interest are those which are essentially identical
in a large fraction of the states with prescribed values
for the extensive constants of the motion. For this
reason, it must be possible to determine the properties
by averaging over al l states with the prescribed con-
stants. In the present section we shall be concerned
with a class of average values in terms of which all such
quantities may be expressed. It is the set of average
disturbances induced by the introduction of external
particle sources localized in space and time.

approaches its minimum value, zero, and 8 approaches
its minimum, Zp(X), both of which correctly charac-
terize the ground state. In this limit Eq. (2.44) reduces
to

pX= pV+Ep($).

The conditions (2.49) and (2.51), which are equivalent
for the ground state, may be applied to (2.54) where
they require that

In the previous section it was demonstrated that the
density of states as a function of energy and number
could always be determined from the function W(i1i,i~).
Indeed, in a many-particle system, the macroscopic
properties at each level of energy and number were
shown to depend upon W(n, P) for unique real n and P
determined by 8 and S. As a result the system was
characterized by intensive parameters denoted as tem-
perature and chemical potential, from which, con-
versely, the energy and number might be found.

In the determination of the class of averages which
describes the microscopic properties, procedures anal-
ogous to those of the previous section will be followed.
First a rigorous method for obtaining the averages,
independent of asymptotic considerations, will be indi-
cated. Then an asymptotic evaluation of these quan-
tities will be carried out. In this asymptotic evaluation
we shall find that the relevant macroscopic variables
are the intensive quantities, n and P.

The class of Green's functions associated with pre-
scribed macroscopic properties X and E are the set of
average diagonal matrix elements

6„'(ri4 r„~„;ri'4' r„'&„')

= (—i)" L&~l (4 (r & )" t(r.~.)
Xyt(r. '~.')" Pt(r, '~,'))+

~
XZj (3.1)

where

[SJr
)
X [ XJr j=Tr(PHHX)//Tr —PHH

=TrHHX/TrHH1 (3.2).
The structure of these Green's functions is related to
the dynamical description in terms of external dis-
turbances; consequently the operators P and Pt occur
from right to left in the order of increasing time coor-
dinates. LThis ordering is denoted by the ( )+ bracket. f
The factor p in (3.1) is identically +1 for boson fields
while for fermions it is the antisymmetrical function of
the time coordinates, which equals +1 when the
operators occur in the order exhibited in (3.1). The
subscript n refers to the number of field operators P or
Pt which occur in the function. Since the field operators
create and destroy particles, the number e represents
the maximum difference in the number of particles
between various intermediate states and the original
state with E particles. We shall refer to (3.1) as the
e-particle Green s function although, as just indicated,
the name actually refers to the number of particles
superimposed on the background. Finally, the coor-
dinates r should be understood to contain implicitly
the internal coordinates, like spins, which may also be
present.

As with the density of states, it is convenient to deter-
mine the function (3.1) by introducing a generating
Green's function characterized by ~ and P, which in a
notation generalized from (2.23),

{X)ii,r'r —5 r(p—icVi iHrX))/Tr p
—iNX—rHr —

(3 3)



P. C. MARTIN AND J. SCHWINGER

has the form

G„" ' = ( —i)"e((y(rtt, )".y(r„t„)
Xyt(r. 't.')" 4'(ri'ti'))+&'" ". (3 4)

These functions, 6'~ ", are defined as quotients of
traces so that the dominant rapid variation, asso-
ciated with the exponentials of the energy and number
of the entire system, is removed. From them, the
functions (3.1) are determined by the relation

Considerable information about the structure of the
functions G'"" is obtained from their definition as
traces and from the commutation relations for the Geld
operators. For example, the one-particle function Cj'" "
for t&t' is equal to the function

G A, ir(rt ~ rttr) —e
—w(i), ir)

XTrLe 'N" 'H'(1/i)P(rt)Pt(r't')5, (3.12)

and for t&t', it agrees with

fdic fdic G ix, t(rrt. rrtt) —~e—w(tk, ir)

(gJr)GNE etN)+(Er+w(i), ir)Gt)„ir (3 5)
XTrLe—t»—t«(1/i)Pt(r't')P(rt)5 (3 13)

While 8' and the Green's functions have been inde-

pendently de6ned it should be noted that the deriva-
tives of 8' are simply related to the Green's functions.
The X derivative of 8' satisfies

—(Atr)ii, ir

(I(iI(,)

From the cyclic properties of the trace, it follows that
(3.13) is equivalent to

G t), ir(rt. rttt) ~e—W(ti, tr)

X»I (I/')&(«)e-' "-'HV &("t')5. (3.14)

The evolution of the field operators in time is governed
by the relation

f
dr G tx, ir(rt ~ rt+) (3.7) P(rt ) —eiH(tt —tg)P(rt )e

—iH(tt —tg) (3.15)

where t is any time, and t+ indicates the ordering of the
field operators at equal times. The alternative signs,

+ and —,refer, respectively, to bosons (B.E.) and
fermions (F.D.). Similarly, the 7 derivative of W
satis6es

and the annihilation properties of the Geld operators
imply that

&fP)= f(&+1)0 (3.16)

In virtue of these relations, Eq. (3.14) may be rewritten
as

88' —(Q) '), ir

8 (ir)
(3 8) G i), ir(rt. r t )—~e—w Trfe tie tNx i—Hr(—1/i)—

Xg(r, t+ T) ijlt (r't') 5 (3.17)

so that when the Hamiltonian has the form (2.27), we

may write
=Re ' G)(rt+7; r't'). (3.18)

BS'
p

V'
=~i, dr lim — Gi'" "(rt; r't+)

()(ir) J " ' 2m

dridr2 t)(ri —r2)G2'" "(ritr2t; rit+r2t+). (3.9)

With the aid of the field equation (2.28),

(
I

'—+ I4(t)
E W 2m)

"dr' t)(r' —r)Pt(r't)P(r't)ttt (rt) = 0, (3.10)

the relation (3.9) may be writ ten in an alternative form
involving only 6&, namely

If Fourier transforms of these functions which depend
only on t—t' are introduced,

G i), ir e itt(t—t')g i), ir(—rrt~) (3 19)
oa 271 2'

then it follows from (3.18) that

t), tr(rr'~) =~e—+—t«g t&, tr(rr'~) (3 20)

Further information may be obtained from the com-
muta, tion relations, which require that

iI G(rt; r't ) G(rt; r't+)5=—'l)(r r') (3.21)— .

Since the values of these Green's functions are given by

dGO

G)(rt; r't) = g)(rr'cu)
2mi

and( (I Q2
=wi

~
dr lim —.',

I
t', IGi'" "(rt; r't'). —

( t)t 2m&
(3.11)

f dc@

G&(rt; r't) = g&(rr'co),
2m'i

(3.22)
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These formulas may be written in a more symmetrical
form by introducing the function A according to

A 'le, Lt(rr (g')

g
A, ir(rrl~)

f ~g
—'CX—'CRT

Q, ~r(rr~~)—

This function A satisfies

A'" "(rr'a))

~g t)E+ 'C 4) T'

(3.24)

the functions g& and g& satisfy

dc@—t.g) —g(]= ' —Live-'"-'"'jg) =b(r —r').
J—(+ 2X QQ 2X

(3.23)

So far in this section no asymptotic considerations
have been employed. With the aid of such considera-
tions we shall now show that G~~ reduces asymptoti-
cally to G'" "with iX and i7- replaced by the values of
n and p appropriate to the given N and E. As was
remarked after (3.4), the function G"" "is the quotient
of two terms possessing the same rapid variation, but
in which the numerator also contains functions that
vary only to the extent of exponential factors involving
the energy and number of e excitations. These factors
are of negligible importance compared to those involv-
ing Z and N and so the asymptotic evaluation of (3.5)
is essentially identical with that of (2.4). The only
difference lies in the fact that at the saddle point n, p,
the integrand is now multiplied by the slowly varying
function evaluated at that point,

Ao
A—(rr'(u) = ti(r r')—,

—QQ 2%i

(3.25)
G ~=—G'"" i)=n, i7=p. (3.33)

Equation (3.5) therefore yields the asymptotic identity

To obtain a single expression for the Green's function,
we write

G(rt; r t') = ~,(t—t')G, (rt; r t')

+~ (t—t')G, (rt; r't'), (3.28)

where
n+(t —t') = »

=0)

q (t—t')=0,
)

(3.29)

and employ the integral representation

Ma)(g g )

oo 2Ã GO&'l6
(e ~ 0+) (3.30)

together with the evaluation

and in terms of it, the G-reen's function may be written

1 t d(o A'" "(rr'(u)
G i her (rt ~ ,r&t ) — f e

—i(o ( t t ')—
i~ 2x $~g

—'GX—t(dT

(
1 t da& A'" "(rr'co)

~
—iso (t—t')

1~e'&+*- '

(3.27)

(3.34)

Ke note here the forms assumed by the derivatives
of g (n,p), as derived from the previously obtained
relations (3.7), (3.9), and (3.11):

8$' fO

— =(N) e=N=+i dr G ~i(rt; rt+),
Bn

(3.35)

Q2
=(H)~~=E=&i dr lim — Gi~~(rt; r't+)

BP & " ' 2m

aw

drdr' v(r r')G2 ~(rt—r't; rt+r't+), (3.36)

1( & v')
dr lim -( i—— (G,-e(rt; r't') .' 2( Bt 2m)

(3.37)

It is instructive to analyze the function Gj~~ rigor-
ously and to demonstrate how it reduces asymptotically
to the Green's function G~ t'. We begin with the
definition (3.1) which relates the Green's function
GP~(rt; r t') for t) t' to the function

G ~'~(rt; r't') = (1/i)LN&~/(rt)yt(r't')
~
Xzj. (3.38)

The result is

I =P—Ws iS((o).
07&zc co

(3.31)
iG~~~(rt; r't') = [iG&~E(r't', rt)]*, (3.39)

As a matrix in the coordinate indices rt and r't', the
function ~G~~~ is Hermitian,

G(rt; r't') =
dc@ f' du 1

p
~ 2m' 2Ã (d 4)

and positive de6nite. We shall use the notation

iG,~':(rt r t')&0 (3.40)

2X 2' T

—v i6 (cv —&v')

$ ~g
—tX—veeT

A + "(rr'(g').
to indicate this matrix property. Xo confusion will

(3 32) result from this notation since, when it does refer to
numbers, these will be the elements of a diagonal
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matrix. Equation (3.38) may be written in the form

iG&~e(rt; r't')

is also positive definite. For the ground state we infer
a frequency condition converse to (3.46); E' =Ep(N) (p-
is an energy for X—1 particles and consequently

If we take into account the creation and annihilation
properties of the field operators and the operator de-
scription of their time dependence, we may reduce
(3.41) to

As Eqs. (3.46) and (3.51) suggest, a certain simplicity
can frequently be achieved by adding a term, —poX,
to the Hamiltonian, which displaces the zero of energy
for the individual particles. Then conditions (3.46) and
(3.51) become restrictions to positive and negative
frequencies for positive and negative time diGerences,
respectively.

Thus far the function 6&~E has been analyzed
exactly, with the exception of the replacement

iG, (rt; r t') = LTr~&1)-' Z TrP'x&P(r)
El

XP~i+~ ~qkt(r')je '(~' —&(' "& (3..42)

In this equation, the arbitrary common time of the
field operators has been omitted.

The Fourier transform of this expression is defined as Eo(N+1) Eo(1V)=—~Eo(N)/(IN.

= & t NEI&(»)P~ ~4'(r't') INEj (341) E (N) E(N 1) &E,(N) E,(N 1)

=BEo(N)/(IN =p (3 51)

where

d(0
NE(rt. rlt&) — i e ~&a(t v)g N—E(rr~~) (3 43)

27ri

g&" (rr'(p) =g&"~(r'r(p)*&&0 (3.45)

Furthermore, its form indicates the special properties
which apply to the ground state of the system with E
particles, for which E=Ep(1V). The energy E'=Ep(1V)
+(p must be a possible energy for the system with
N+1 particles, so that

g&~~(rr'(d) = 2m p(N+1, E+(p)
XTrP'~zP(r) P~+i, z+A'(r')]/

(Tr~gi) (Tr~+g, ~+~1). (3.44)

The transform, g~~E, has properties as a matrix in r
and r' which correspond to the conditions (3.39) and
(3.40),

To proceed further, however, it is useful to involve the
asymptotic properties in a more fundamental way to
derive a parallel to the exact relation (3.20). We note
that when many particles are present, the averaged
matrix elements will be fractionally insensitive to a
change of one in the total number, or to a change in the
total energy by an amount associated with a single
excitation. Equation (3.50) may then be replaced by

+g(Ne (rr'(p) =2~p(NE)
XT IP +. +A'(r')P N( )j/

(Trying, x+„1)(Tr~E1) (3.52)
' )r.(NE)/p(N+I, E+ )j.

(3.53)

The ratio of the density of states at infinitesimally
diGerent energies, for systems diGering by one in the
number of particles, is given by Eq. (2.43),

(p =E(N+ 1)—Eo(N) ~& Ep(N+ 1)—Ep(N)
=BEp(N)/KV (3.46)

d 1np= udtV+PdE —+ u+P(p. (3.54)

iG&~'(rt; r't) = [iG&"e(r t'; rt)]*,

WiG "~(rt; r't') &0.

If its Fourier transform is defined by

(3.47)

(3.48)

f dc'
G &@(rt ~ r~t~) —

~ e 2~(&—&')g &&(rr~(p) (3 49)
27ri

the Hermitian amplitude

and only frequencies greater than the chemical poten-
tial, p= BEp(N)/BN, appear.

Similarly, the Green's function for t(t' satisfies the
relations

Consequently Eq. (3.53) coincides with the form of
(3.20) obtained by the replacement iI( —+ u, ir —+ P:

g((rr'(p) =we——e"g&(rr'pp). (3.55)

A e(rr'pp)
g&(rr'~)=, g((rr'~) =-

A Pco

A e(rr'(p)
(3.56)

f ~erx+P07

We note that the conditions (3.46) and (3.51), rigor-
ously valid for the ground state, are reproduced by
these asymptotic representations as P —+ ~ with
—u/P= p held 6xed. The subsequent analysis proceeds
in exact parallel with (3.21) through (3.32) where the
function A ~, defined by

a g&~e(rr'pp) = 27rp(N 1, E co)— —
XTr/P~@gt(r )P~ y E „f(r)]/

(Tr~~l)(Tr~ j, s „1) (3.50)

satisfies
de

j —A e(rr'(p) =b(r —r'),
Qo 2'

(3.57)
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and occurs in the Green's functions in the form

G~e(rt; r't') —G e(rt; r't')

1 i d(u A e(rr'~0)
e
—ice(t—t') ])]~

i " 2m 1&e ~ e"

Equation (3.35) then reduces to

r r dy r d(u tr A e(pcs)
E= dr —,(3.66)

(2m)' " 2' e +e"W1
(3.58)

or in terms of the occupied volume,

1 p d(o A ~e(rr'co)
e
—ice (t—t')

z& 2x $ ~ecr+Pco
(3.59)

dy pd(u tr A e(p(0)

V ~ (2w)' ~ 2~ e +e"W1
(3.67)

dc'
tc0 (t—t )

2x
P—

oc 2X' M CO

dko 1 In these expressions summation of diagonal elements of—vri8 ((o—co') the internal coordinate matrices has been explicitly
denoted by the symbol tr. We may evidently identify
the frequency integral with the momentum distribution

X (tanh[-,'p(co —p)])+' A~e(rr'u'). (3.60) per unit volume of phase space,

The positive-de6nite matrix conditions g& ~&~0 and
Wg(~~&~0 imply that

A e(rr'cg) coth[i2P(a& —p)] ~& 0, B.E.,
A. (-.).0,

'

F.D.
'

For a large class of systems it is possible to simplify
the spatial dependence of the function Gi(rt; r't')
=Gi(rr'; t—t') by using the fact that in the interior of
a homogeneous medium the 6eld correlation functions
depend only upon coordinate differences,

i du& tr A e(y(o)
~(p) =

2m. e~&"Wj.

In a similar manner, Eq. (3.37) becomes

Z ~ dp 1( p )trAe(p )
GO

V & (2~)'2 0 2m) e +e"W1

The equality of the second derivatives,

BE O'S' 8Ã

Bn BuBP BP

(3.6S)

(3.69)

(3.70)

G, (rr', t —t') —G, (r —r'; t t')—(3.62)
imposes an additional condition on the numbers
tr A e(pcs), namelyIt is convenient to transform to momentum space by

introducing the Fourier representation
dy p d~d 1( y' ) e+e" trA e(p(o)

CO

(2ir)' & 2~ 2 (2m ) (e~+e"W1)'
(3.63)

dp
Gi(r —r'; t —t') =

)
e'i'. '—*'G(p; t—t,').

(2v )'
f dp p de 1 8——tr A e(p(o)

(2~)' ~ 2~ e-+e-~1 aP

1(p'
+-I —+~

I

—t»'(p~)
2(2m ) Bn

The momentum-space Green's function is then given

by [for definiteness we use the asymptotic forms
although identical formulas obtain for the functions
G ii, ir (p .

~ ~~)]
1 p da) A~e(y(u)

Gi e(y;t —t')= — —e *"&' 'i t)t'
i~ 2x A PGl

1 p d(o A e(p(o)
e
—ice (t—t')

i~ 2~ ] ~eer+Pco

(3.64)

where the amplitude A e(per), which is still a matrix in
the internal variables, obeys the additional relations

For noninteracting particles of either statistics the
function A e(ya&) has the particularly simple form'

A e(pid) =2m'((o —p'/2m). (3.72)

With this function, Eqs. (3.67) to (3.69) reduce to
familiar statements, and the integrability condition
(3.71) is explicitly satisfied. We also infer from (3.65)
the special restriction associated with noninteracting
bosons, o. ~&0 or p~&0.

p dc@—A~e(yco) =1,
2x

A.e(p~) coth[-',-(~+p~)] &0, g.E.,
A e(p(u) )~0, F.D.

IV. TWO-PARTICLE GREEN'S FUNCTIONS.
ELECTROMAGNETIC PROPERTIES

While it is possible to discuss some macroscopic
properties and the behavior of a certain class of "single-

'We defer the proof of this expected result to the later more
general discussion.
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particle" excitations in terms of Gi(rt; r't'), a treatment
of the transport properties of the system is most easily
carried out in terms of multiparticle Green's functions.
Typically, the transport of the quantity of interest
results from the application of an external field to a
system in which there is no Aux initially. The lux
induced by the disturbing field may then be computed
in two distinct ways. The first involves exact solution
of the field equations in the presence of the external
agency; the second treats the disturbance as a per-
turbation of the system which is still described by the
eigenstate basis appropriate to the unperturbed Hamil-
tonian. The quantities whose transport properties are
of interest (energy, momentum, matter, charge, and
the like), are all characterized by multilinear forms of
field operators and their derivatives. The Aux of these
quantities is consequently described perturbatively by
means of expectation values of products of these multi-
linear operator expressions at different space-time
points. Such expectation values comprise a special
subset of Green's functions in which some of the coor-
dinate arguments are set equal. In the present section
we shall illustrate this perturbation treatment of
transport phenomena by a detailed consideration of
one simple example, the Row of electric charge. Since the
electromagnetic field is coupled with the charge and
current densities, consideration of this problem leads in
particular to the discussion of the special two-particle
Green's function,

'(r~; r'i') =FEEI (j,(r()j, (r't, '))+
I
JVEj, (4.1)

where j is the current density operator in the absence
of the applied field. The corresponding correlation
function for the charge density does not require explicit
discussion since its coupling can be removed by working
in the gauge in which the scalar potential vanishes. The
gauge invariance which permits this choice is of course
intimately tied to the current conservation relation, by
means of which, conversely, the behavior of the charge
may be determined from that of the current.

In the presence of an external field, described in the
gauge in which the scalar potential vanishes, the kinetic
energy term of the Hamiltonian is altered from that of
(2.27) to

( 1 eAq )1 eAq
&=—

J «~ —&——lf"(r)( -&——~4(r) (42)
2mJ E i c) Ei c)

In this expression the operators P are solutions of the
field equations in the presence of the electromagnetic
field. The addition to the Hamiltonian, II& ', resulting
from the appearance of the vector potential' in (4.2) is

yg&a) — fA. J(o& A. J(i&~ ~
~

2cJ
(4.4)

To determine the linear induced electromagnetic prop-
erties of the medium it is necessary to evaluate, to first
order in the external field, the average current

LiVEiJ iXEj+P~EiJ iXEq (4.5)

I'

i
—JVE ( 1+i EI&~&(t')dt' ~j(rt)

r'
y~ 1 i II&"'(t')dt' —

~
JVE . (4.6)

«, )
Accordingly, this part of the induced current is

[iVE~ J~o&(r~) ~XEj

', J„j(rI), — dt' dr' j(r't') A(rV) JVE . (4.7)

Since the field can be represented by a vector potential
A(rt) which is identically zero for t(to, we may write

i
PVE~ J&»(rI) ~iVEj=

C oo

X t »«~ r.j(«), j(r'&') j ~

&~Ej A(r'&'), (4.8)

and then combine the two terms of (4.5) into

generated in those states which had energy E and
number Ã before the field was applied. The current
[ÃE

~
J"&

~

cVEj contains this 6eld linearly and is
therefore known to the required order, The current
$1VE(J&»~1VEj in the presence of the field may be
determined to the desired accuracy by inserting the
first approximation to the unitary transformation that
gives the accumulated effect of the external field for
the interval between to and t, during which the electro-
magnetic field acts,

[1Vr~~ J"'(rt)jlvEj

(In the case of fermions there are also effects resulting
from the spin magnetic moment which we shall omit. )
The current density is the coefficient of the first vari-
ation in —(1/c)A and is therefore equal to

e 1 28A
(&4')4+4' &4 ——~t'It =—J"'+-J"' (4 3)

2m C

$1VE~ J(rt) ~XEj= ' dr'dt'~(rt; r't') —A(r't'), (4.9)

where the polarization tensor„z, is expressed in terms
of the states and operators in the absence of the external

' In this discussion it is the external potential that is designated
by A. The electromagnetic interactions among particles are under-
stood to be included in the unperturbed Hamiltonian.
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field,

~l„i(rt; r't')
= n(t —t')tP'EILj («),j (x't') jlNEj

fl,—ib (r r')—ti(t t')—(e'/m)

X[NE~pt(rt)P(rt)
~

NEj. (4.10)

Here rt(t t')—is the function

'it(t t') —= n+(t t')— (4.11)

defined in (3.29). The asymptotic considerations which
led to (3.33) apply equally well to the commutator and
permit the replacement

~=~(t—t )i(Lj~(«) ji(x t )j)'—~ii~(r —x )

XS(t—t') (e'/m)Q (rt)P(rt)) . (4.12)

Although the current correlation functions occurring
in (4.1), (4.10), and (4.12) are determined from two-
particle Green's functions, their space-time dependence
is that of a single-particle function of a "current field, "
which in addition possesses symmetries consequent to
the Hermitian character of this field. Rather than
follow the example of Sec. III and first describe the
current correlations with the aid of the functions
Fki+ "(rt; r't') and Pi,P~(rt; x't'), we turn this time
directly to the function Five(rt; x't'). Similar manipu-
lations would appear in a direct analysis of Gi e(rt; r't')

When t) t', the function Fi,i e(rt; r't') is equal to

Fgi& e(rt ' x t )
= TrEe " e 'ji(rt)ji(r t') j, (4.13)

while for t & t', it is represented by

In consequence of the properties (4.15) to (4.19), we
have the corresponding statements

and

fii& & (rr u) =fig& & (r rag)

f i)i, &e(rr'(u) &~0,

fbi& e(xr ar) = fii, & e(r'r a—&)

= folio~(rr' ~)",-
fI i&(rr'co) = e "sf', i&(rr'~)

(4.21)

(4.22)

(4 23)

(4.24)

(4.25)

These relations are most conveniently presented by
introducing the real positive-definite combination, the
symmetrical product

S,i-e(rt; r't') =((j,(rt), ji(r t')))-e

= Pi,i)~(rt; r t')+FI, i& e(rt; r't').

Its Fourier transform, defined by

(4.26)

(4.27)

s(i rir'co) =sit(r'r —co) &~ 0, (4.29)

because 5 is symmetric and positive definite, and the
condition

si, i(rr'co) =si.i(rr' a))*,— (4.30)

because S is real. From (4.20), (4.25), (4.27), and (4.28)
we see that

f' dc@

5$$(rr'; t t') =
~

——e ' i' "isii(rr'id), (4.28)
QQ 2X

sa.tisfies the condition

Fit& e(rt; x t )
=TrLe—"—e — e ji(r t') ji(rt)). (4.14)

As matrices in the indices k, r, t and l, r', t', these functions
are each Hermitian,

si, t(rr'a) = fi, i&(rr'~)+f~i&(rr'~)
= (1+e "')f,i)(rr'-~)
= (1+e"e)fii,&(rr'~)

(4.31)

Pgi& & e(rtI r t ) =Pii&, & e(x t i «)*& (4.15)

and positive definite

Fii e(xt; r t') &0.

Since the two functions F& and F& (unlike G) and G&)
are really the same function evaluated at diGerent argu-
ments, we have the connection

Fi,i(~e(xt) r't') =Fii,&~e(r't', xt))

which in virtue of (4.15) becomes

Fi,i e(rt; r't') =F„i e(rt; r't')~. (4.18)

The relation exhibiting the trace structure, which is
analogous to (3.18), can be written formally as

Fi,i( e(rr', t—t') =Fbi) e(rr', t—t' —ip). (4.19)

The I'ourier transforms are introduced here as

Hence the requirements on f),& are satisfied in terms
of those for s and conversely. We also observe that

(Lj («),ji(x't') 3)'
leo—e '" ' '

t fit&(xx 4)) —fbi&(xx ~)7, (4.32)
2~

which, in view of (4.31), becomes

t
dcd—e '"&'—'&Ltanh(P-ao/2) jsii(rr'co). (4.33)
2r

Ke shall restrict ourselves in the remainder of this
discussion to current correlation functions appropriate
to a homogeneous, isotropic medium. It is then possible,
as in Sec. III, to transform to momentum space by
introducing

kd
FI,i), & e(rt; r't') = '

f~i& & e(rr'ce)e ' &'—"' (4.20) sl,.i(rr'co) =si~(x —r', ~) = e'~'i' "'sk~(ka&), (4.34)
„27t " (2')'
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where st, t(k, &o) satisfies the analogs of (4.29) and (4.30),

SJc~ M =$~~& ——M (4.35)

= st, (k~)* &&0. (4.36)

According to our assumption, the tensor character of
ski(ken) must be expressed by

ski(kco) =t)t tsi(k'(d')+(ktkt —k't)kt)s2(k'oP). (4.37)

In writing (4.37), we have also observed that ski, as an
even function of k, symmetric in the indices, k and t,
must be an even function of M. Furthermore s
must be real and positive definite so that

si &&0, si —k's2 &~0.
An additional condition on sI,&, imposed by the com-
mutation relations at equal times, will be found sub-
sequently.

We can now evaluate the polarization tensor by sub-
stituting the expression (4.33) for the commutator
which occurs on the right-hand side of (4.12). With the
form (4.37) appropriate to a homogeneous isotropic
medium, this commutator becomes

(Ljk(rt), j i(r't') $)

dM
e
—iQ) ( t—t')

Bt „2~
dk tanh(-', Pa))

e
—ik (r—r') s (k2~2)

(2~)2 M

f dM

+(g V2 V V ) I e—i(a(t t')—
—QQ 2x

e'"'(' ")Ltanh( —',p(0)fs2(k'cu'). (4.39)
J (2~)2

Equation (4.39) may be written in the alternative form

t(kt(rt; r't')

8 p d(0= ——t')itrt(t t') —e —'"('
R ~ ~ 2m'

dk tanh (-',P(u)
eik ~ (r—r') s (k2~2)

(22r)2

f dM

+Q.tv' v,v,)~(t—t') ' ——e-*"('—')
QQ 2x

X ' e" (' "'iLtanh(-,'Pcs) js2(k'(o')
~ (22r)'

Equation (4.39) permits the replacement of the left-
hand side of (4.41) by

(I p &~ p dk tanh(~P~)
V e—i (t t') — eik ~ (r—r') s (k2~23

Bt & 22r ~ (22r)' M

(4.42)
and we thereby infer that

(Lp(r, t),j(r t') j)"e

dd(t) (' dk
e—itt(t —t') e ik ~ (r—r')

22r " (22r)'

tanh(22P(o)
s, (k2cv2). (4.43)

When t= t', the commutation properties of charge and
current density permit the evaluation

e2 f dM f dk—iv—8(r—r')2t= iv —~— eik (r—r')

m & 2rr & (22r)2

tanh (-,'Pcs)
X -s, (k' '-), (4.44)

and, finally we arrive at the relation referred to after
(4.39), and required for eliminating the last term of
(4.40),

(
"d(0 tanh(22Pa)) n, e2

si(k2(u2) =
Qt) 2' M m

(4.45)

We may now integrate (4.9) by parts with the ex-
pression (4.40) substituted for K. In the gauge we have
utilized, the fields satisfy

18A

c Bt

vXH= vX(vXA) =pvv —v'j A.
(4.46)

We thereby obtain

where e is the density of particles per unit volume. The
last term in this expression vanishes in virtue of the
following identities. From electric current conservation
we obtain

Bp(rt)
v &Lj(«),j(r't')3) = — —,j("t') . (4.41)

Bt

+tI(t —t')t~t, t, e "k ('—")
(22r)2

tr p" d(u tanh(-,2P(d)
si(k2(d2)—

Qo 271 M

ee')
I, (4.«)m)'

(J(rt)) = ~dr' dt' 2)I(t—t')Ltr(r —r', t—t') E(r't')

+c(8/Bt)y(r r', t—t') v'XH(r't')7, (4.4—7)
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where o.(k'io2) and y(k'co') are the functions

1 tanh(~pco)
o (k'io') =- — si(k'io')

2 Q7

(4.48)

which are related by
2 r

" o (k'io")
n(k'~') =—P de'

p M QP
(4.58)

1 tanh(-', Pro)
c'p (k io') =—— s2(k'io')

2

From the sum rule (4.52) we conclude that in the
(449) high-frequency limit the polarizability reduces to its

value for a system of free charges

t de t dk
o.(r—r', i—t')= — e ' &' "

2~ ~ (2')'

me'
lim oo'n(k'io') = —— (4.59)

p de i dk
y(r r —t—t')= I I e '"" ''

Similarly, from (4.55) and (330) we obtain the ex-
pression

i."dio' y(k'io")
g(kco) =

~ io' =y(k' i)oiio—y(k'io2) (4.60)
7I Gl io +1t

Xeik (r r')~—(k2~2)

2 f' dG)

x (k'io') = ——P i I"p (k'oo'2) (4.61)
7P 4 p 07 CO

12 2~(k'~') )0 e(k (v ) ) (kc) p(k cu2). (4.51)

for the generalized magnetic susceptibility, from which,
These functions satisfy the positive-definiteness con-
ditions (4.38) which assert that

The function o also obeys the sum rule (4.45),

2 p me'
dio o.(k'aP) =—,

m~p m

which in turn implies the inequality

use' 1
d~o y(k'oo') &

mc' k'

With the definitions

o (r—r', t —t') =2q(t t')o (r r',—t—t'), —

between its resistive and reactive parts, follows. From
(4.61) and (4.53) we also infer that the zero frequency
susceptibility is limited in its degree of diamagnetism,

(4.62)

(4 53) which limit becomes arbitrarily large as the wave
number approaches zero.

We may now construct an integral representation for
the current correlation function Fi, i ~(rt; r't') in a
homogeneous medium in terms of the quantities of
direct physical significance, o and p:

Eq. (4.47) may alternatively be written in the form

(J(rt))= dr'dt'$o. (r r', t —t')E(r'—t')

+x(r—r', t —t')c~')&H(r't') j. (4.56)

In view of the integral representation (3.30) for g(t —t')
the Fourier transform of the right side of (4.54) may
be separated into its resistive part, the conductivity,
and reactive part, proportional to the polarizability,

dio dk
e
—jcu ( t—t')

27' " (2ir)'

&(e'k &' "'f~i~e(ko), (4.63)

dco 1
f~i'(k~) =

~

oo 27'' co M

~i coth(~~ pro) 5 (io —io')

&(2iio'$o (k'(o")bi, i+

(khaki

—8i, ik') c'y (k'io")], (4.64)

which is similar in structure to the single-particle

o (kio) — d~& ~(k2~2) i~n(k2 2) (4 5'i) boson Green's function (3.60). Equation (4.64) may
~ J „io io'+ic

' '
also be written in the form

5The connection between conductivity and pair-correlation
function have been discussed in work of R. Kubo, Can. J. Phys.
34, 1274 (1956), and J. Phys. Soc. Japan 12, 570 (1957);W. Kohn
and J. M. Luttinger, Phys. Rev. 108, 590 (1957); H. Nakano,
Progr. Theoret. Phys. (Kyoto) 15, 77 (1956);M. Lax, Phys. Rev.
109, 1921 (1958); S. F. Edwards, Phil. Mag. 33, 1020 (1958).

fbi ~(kio)
= boa�(k2co2) coth(i2 pio) —jco2 (n (k'co2) + (tte2/mcu2) )]Bi i

+ t'y (k'(o') io coth (-,'p(o) +ix (k'oP)

)c'(khaki

—bi, ik').
(4.65)
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'.I.'he real part, of this expression may, through (4.26), By applying (4.70) to (4.65) we obtain. thc relation
be interpreted as the fluctuation-dissipation theorem, '

r' dM (' dk
Jl g '" ' '

ll
-e''" ' ' "k"L~rr COth(&pal) —tu"n J

2ir ~ (2ir)'
t dM f dk

g
—i~ t(t')—, eik ~ (r—r')L&(k2~2)g

" „2m. & (2ir)'

'1
+.(khaki

—k')$ )g~y(k~47'i)]2(g —+
2 eI'"—1

=——,&(p(«)p("t'))+) (4 72)
Bt Bt'

By integration, we then obtain the analog of (4.71) for
(4 66) the time-ordered product of charge densities,

Pi.i ~(r,t; rit')
(e )'

I (Vi —Vi).(V2 V2')1
rr'~rr, rr ~r2 (2))t)

e2

X((f"(ri't+)P(rit)i)ti(r2't'+)f(r2t'))~) (4.67)

=+ hm (Vi —Vi )1(V2 V2 )1
(2~)2 r|'~r|, rr'~rr

XG2 )'(ritrd', ri't+ri't+'). (4.68)

As we have noted, the condition of gauge invariance
and current conservation permit a determination of the
charge density correlation function from the current
correlation function:

V 'V: (j (rt) j (r't') )=——(p (rt) p (r't') ),
Bt Bt'

(4.69)

8
V'V: ((j(«)j(r't')) )=——((p(«)p(r't'))+)

Bt Bt'

—S(t—t') p(rt), —p(r't)
Bt

(4.70)

The method for calculating P' and thus determining
the physical properties associated with its weight func-
tion are based upon the connection of F with a two-
particle function. This relation follows directly from the
definitions (4.3), (4.1), and (3.1) for the current density,
the current correlation function, and the Green's
function:

V. DETERMINATION OF THE GREEN'S FUNCTIONS

In previous sections we have indicated how physical
properties can be expressed in terms of Green's func-
tions. %e turn now to the problem of constructing the
functions themselves. Of the several Green's functions
previously defined, the ones most conveniently deter-
mined are the generating Green's functions, 6„'~ ".In
this section we will derive a set of equations for them,
and discuss one method of approximate solution. The
set we shall derive consists of integro-differential equa-
tions coupling the various multiparticle functions. For
a variety of systems at low densities or with weak or
slowly varying interactions, solutions to the first few
equations yield Green's functions which satisfactorily
describe various static and kinetic properties.

The set of differential equations for the Green's
functions is generated directly from the equations of
motion and commutation properties of the field
operators. Thus, the equation of motion

i (8)fr(rt)/r)t) = —(V')2m)p(rt)+ I dr' 1)(r—r')

implies that'
XO'("t)a("t)a(«), (5 1)

&(p(«)p(r't'))+) —(1«)'

I
des

t
dk

'Lcd ( f f ) elk ~ (r—r')

2ir (2m-)'

coth(-,'P~)
Xk' n+io . (4.73)

+$ dr2 1 (rl r2)E(iit' (r2tl)$(r2tl)))t'(rltl)lp (r1 tl ))+

From these relations the structure of the density corre-
lation function may be inferred. Indeed, manipulations ~ (~~~ti)+(Vi t 2™)3(1)'(4(riti)4' (ri ti ))+
of this character have been employed in obtaining
(4.43) from which we may with one further step derive
a representation for the charge density commutator~:

Kp(«),p(r't')]&

des p dk 2k
e i~&' "

~l
— ei" 'r ")-—rr(k2~') (4 71)

2~ (2m)'

[f(rltl)f (rl tl ) WP (rl tl )$(rltl) 78(tl ti )
= tl(ri —ri')tl(ti —ti').

On multiplying this equation by the operator

(5.2)

Fluctuation-dissipation theorems are historically associated
with Nyquist and have been recently discussed by H. S. Callen
and T. R. Welton, Phys. Rev. 83, 34 (1951);J. Weber, Phys. Rev.
101, 1620 (1956).

The division by w is not valid if 0. contains a delta function of .

exp( —iNX —iH r),
In the remainder of this paper we continue the omission of spin

and other internal degrees of freedom which we instituted in Sec.
III.



THEORY OF MANY —PARTICLE SYSTEMS. I

and taking the trace, we obtain, with the definition (3.4)

[2(()/Btl)+ (Vl /2M)]Gl ' (rltl ' 1'1 tl )

functions the factor introduced in the definition (5.5).
Equation (5.8) indicates that Glf "(rt; r't') may, for
t) t', be identified with

dr2 ()(rl r2)G2 ' (rltlr2tl 11 tl r2tl )
= I) (rl —r, ') 5 (tl —t, '). (5.3)

Similar equations are derived by applying the differ-
ential operator of (5.2) to the multiparticle Green's
functions,

[2(B/Btl)+ (Vl'/2nt)]G„'" "(rltl . r„t„;rl'tl' r„'t„')

61&f "(rt; r't')

2 Tr[g—i (H fN)—(r t+—t')p(r)a —i(H fN) (t—t')p t(—rt)]
X[Tr a

—i(H fN)—r]—1 (5 9)
while for t & It', it becomes

6,&f "(rt; r't')

2 Tr[a—i (H fN) (r —t'+ t)P—t (rt) a
—t(H fN) ( t' —t)P—(r)]

X[Tr a f(H f—N)r]—1(—5 10)

XG„+1' ' (rltl 1'„+ltl ', rl tl . 1'„+ltl+)

i=1

XGn—1' '"(r2t2' ' ' r~trt; rl tl ' ' ' rt—1 t'-1

X r;+1't,+1' r.'t.'). (5.4)

6 ' (rltl'''r t;rltl ''r t )
—aif(tt ~ tn tl' ~ ~ .—tn')

XG„' "(rltl r„t„;rl'tl' r„'t„'), (5.5)

(5.6)

These functions satisfy (5.3) and (5.4) when the dif-
ferential operator is altered from

2(()/Rl)+ (Vl'/22)t) to 2(()/t)tl)+f'+ (Vp/2m). (O.7)

As this replacement suggests, the substitution of (5.5)
is equivalent to a change in the origin of energy for an
1V-particle system by 1 iV. This equivalence f—ollows

directly from the observation that a change in energy
origin induces an additional phase transformation in the
expression for the time dependence of the field operator,

Corresponding differential equations describe the de-
pendence of these functions on the space-time coor-
dinates of the Pt field.

Since the same equations are satisfied by any appro-
priately normalized matrix element of the time-ordered
field operators, it is necessary to adjoin boundary con-
ditions to characterize the desired solution. It is con-
venient, for this purpose, to discuss the function for a
restricted domain of its time arguments and then deter-
Inine its behavior elsewhere.

The conditions on the function in this domain are
most simply expressed in terms of a slightly modified
set of Green's functions,

r ) [t—t'[. (5.12)

This observation suggests the utility of first construct-
ing the function within such a limited domain. The
limitation is conveniently enforced by restricting t and
t to the interval [O,r]. In this interval, the conditions
(5.11), applied to 61, become the periodicity properties

61(r,t') = &61(0,t') and 61(t,r) =&61(t,0). (5.13)

The rela, tions (5.11) which imply the boundary con-
dition on 6& implicitly require that 6& and 6'&, and
therefore C, be defined for suitable complex values of
the time difference. The necessity for this complex
extension of the Green's functions has its origin in the
small imaginary part of 7-. The domain of possible ex-
tension may be ascertained by examining Eqs. (5.9)
and (5.10). The former indicates that 6& is defined
whenever Im r ~&1m(t —t') ~&0; the latter that 6& is
defined for Im r &~Im(t' —t) &~0. These conditions are
summarized in the statement

Im r & Im(t& —t&) &~0, (5.14)

In these expressions, H and f's~tf occur only in the
operator combination II 1X.—Similarly, the multi-
particle Green's functions G„depend only on the
operator H PV. —

The boundary condition for the Green's functions
can be motivated and illustrated with the Green's
function, 61. From Eqs. (5.9) and (5.10) we see that

6 (rr', t t'+ r) =—aG, (rr'; t—t'),

or equivalently

(5.11)

In order that these statements about the two functions
0& and 6& serve to impose a boundary condition on the
single function 6&, it is necessary that t—t &0 imply
t t'+r)—0 and t —t')0 imply t t' 7&0. M—or—e con-
cisely, the variable t—t' must satisfy

where the complex numbers t& and t& are labelled by
the order of their real parts. The restriction (5.14) is
a,nalogous to the condition (5.12) we imposed on the
real time interval. Bath of these conditions are fulfilled

by making all times which occur in 6 complex by theThis phase transformation reproduces in the Green's

gi(is fN) (t t')p( r)ta
ti(ls ——fN) (t t') —

t tf (t t')
(1t)rt— —'—

(5.8)
ai (H—fN) ( t t')Pt (rtt) ~

—i (II f N—) (t 1') —g
—i f ( t t')yt —(rt)——
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In this equation X(1), , X(2n 1), represent the field
operators p(r, 0), j Wi, j=1, , n and tJrt(r, '0),
j=1, , 22, labelled from (1) to (2rt —1) in the order
(from latest to earliest) of the time coordinates, t, or t

Similarly, when t, = r, P(r, t,) is the field operator with
the latest time, and the Green's function is given by

6„(t,=r)=( i)"e—Tr[e ~P(r,0)e '&H rN'

y g~(~—CN) t(1)x g
—~(H—fN) (t(1)—t(2))(1)

i &tn—tl] (5.16)

In view of the cyclic property of the trace, and the
oddness of the permutation that relates the two values
of 6, Eqs. (5.15) and (5.16) imply the boundary con-
dition

transformation t Pt(1—ie) where —iver is the imagi-
nary part of ~.

Similar considerations apply to the many-particle
G-reen's functions. Thus, the boundary condition on the
equation for 6„ is also determined by the connection
between its values for t;=0 and I,;=7-. When t,=0, the
operator f(r,t;) is the field variable with the earliest
time. With the time dependence of (5.8) explicitly in-
troduced, the Green's function takes the form

6 (t 0) ( i)n& Tr[e—i(H rN)r w—ei—(H rN) t(t—)

)(X e
—i (II—fN ) ( t (1)—t (g) )y(1) (2)

XX&.. l~e-'H-"N"1-- lt('0)l. ('»)

which associates a set of 2n frequency indices, {v}, with
its 2n time coordinates. The Fourier coefficients are
determined by the formula

Gn(rivi' ' ' rnvn t rl Pi ' ' ' rn Pn )
r

=r "-,
~ dt, dt„'e xp[i r2(p vt —Q v't')/rj

Jo
XG„(rltl . r„t„;rl'tl' r„'t„'). (5.20)

The time translational invariance of the functions
6({t})implies that 6({v})vanisheswhenevergvW+v'.

The Fourier transform, 6,(rv; r'v'), satisfies the
equation

[(2rv/r)+/+(Vl /22It)$61(rivi rl Pl )

dr2 &(rl r2) P &vt —vt", vv —vt'

ttl V2V2

X62(rivi r2v2 rl Pl r2P2 ) exp(iv2'0+)

=8..., 5(rl —rl'), (5.21)
and similarly, 6„({v})obeys

[(2rvl/r)+{+ (Vi'/2nz)]G„(rivi r„v; rl'vl'. r„'v„')

%2r dr +1 'v(rl 1' yl)

6.(t,=r) =~6.(t,=o), (5.17)
5&1 —tIl, tIn+1 —vn+1 exp yzpn+1 0II I r. /n+i

with all other time variables arbitrarily fixed. As with
the one-particle function, the required complex time
extension is achieved by replacing each time variable,
including the variable r, by t —+ t(1—ie). With this
substitution and the condition (5.17) the solutions to
Eqs. (5.4) are completely specified.

The boundary conditions may be incorporated di-
rectly in the equations by converting the equations to
integral form or by restricting the equations to func-
tions which automatically satisfy the boundary con-
ditions. Since the imposed condition is one of periodicity
(or antiperiodicity) the second technique, making use
of Fourier series, is particularly convenient. All func-
tions with the required periodicity (antiperiodicity) can
be constructed from the following complete set of
functions labelled by the integer v, which ranges from
—oo to oo:

rIl Vn+l Vn+1
II I

// / / /XX~n+1(rlPl ' ' ~n+1Vn+1 l rl Vl ' In+1 Vn+1 )

/ / / I I / / /%1X~n—1(r2P2' 'FnPnl r1 Pl ' '~i—1 Pi—1 ran+1 Pi+1 ' In Vn )J.
(5.22)

To illustrate the inversion of these transformed func-
tions and to provide a tool for further manipulations we
determine the space-time form of the function

612= [(2rv/r)+t + (V2/22rt)) —'B(r—r').

This space-time function, which could be used to
convert Eqs. (5.4) to integral equations incorporating
the boundary conditions, satisfies the equation

exp (—ilr vt/r).
v even (B.E.)
v odd (F.D.)

(5.18) [i(8/Bt) 5+i]G,'(rt; r't') —=tI(r —r')tt(t —t'), (5.23)

and the conditions
Thus the function 6'„may be expressed as a multiple
Fourier series, 6'12(rr; r't') =a 612(r0; r't'), (5.24)

6 (rlt '11tv; rltl ' ' r t ')

= Q exp[ 22r(piti+' ' '+v t pl tl ' ' ' v t )/rj
(vJ

X r "6„(rivi . r„v„—; rl'vl'. .r„'v„'), (5.19)

where —V2/22n has been replaced by h. The function
61' is, therefore, the single-particle Green's function for
a system with no interaction. It is first obtained, in a
form which holds for all times, by solution of Eqs. (5.23)



THEORY OF MAN Y —PARTI CLE SYSTEMS. I 1359

and (5.24). In particular, we note that

ie—'
C,o(rt; r t') = — - S(r —r'),

e—i(h—f)~
(5.26)

y e
—i(h—f) ( t—t')

S(r—r'), «t' (5.27)
i 1 &e'(h—&)'

where the denominator is well defined in virtue of the
imaginary part of r Th.e two expressions (5.26) and
(5.27), may be combined as

G,o(rt; r't') =-', (a[cot((h —i)r/2)7+' —ie(t —t'))

)&e "" r&" "5(r—r'), (5.28)
where

e(t —t') =
& (t—t') —q (t—t'). (5.29)

Since these expressions represent the unique solution
to (5.23) and (5.24), they must be equivalent to the
Fourier series representation,

1
GP(rt; r't') = e

—ivrv ( t—t')/r

(rrv/r)+l It—
&&8 (r—r'), (5.30)

for t and t' within [O,rj. This equivalence may be
verified directly by exhibiting an integral whose evalua-
tion by two methods yields the pair of expressions above.
The desired integrand must have poles at the points
tv/r, with residues equal to the terms of the series
(5.30). When t) t', a suitable integrand is

may be extended to larger values of the time differences.
This possibility exists because 6 for real t and 7. is the
boundary value of a function which is analytic for
small negative imaginary values of each positive time
difference and small positive imaginary values of each
negative time di6erence. From its form in the interval
[O,rj, it may therefore be continued to larger time dif-
ferences by extension on the appropriate side of each
real time-difference axis within the strip

0&1m(t~ —t~) &Im r

of analyticity. This continuation determines 6„, and
therefore G„i~ ", for complex 7. and arbitrary real times.
From 6„, the function G„j' is then obtained by letting
7. become pure imaginary.

The nature of the continuation may be discussed in
more detail when the function, like 6&, depends only
on a single time difference. For such a function we may
compare the Fourier expansion (which depends on a
single frequency in view of time translational invari-
ance),

Gg(rr' t—t,') = r 'P e'~" ~—'-'&I'Cg(rr' v) (5.33)

with the generally applicable integral expression (3.32),

f der f des 1
G, (rr'; t t')=~' ——e '"&' '&

~ —P

err(cot ', cur)+'b(a) -a)') A(r—r'~'), (5.34)

—[2rr(&u+f h) (1&e—'"')] 'e '"" '&6(r r') (5—.31).
A (rr'(o) =A—'r' "(rr' (u+l ). (5.35)

The integrand vanishes exponentially at whenever
t&t' and t—t'& v-. By choosing a contour which passes
betweenthesingularitiesof (1&e '"') 'and (~+i It) ', —
and closing the contour in the lower half plane, we
obtain, for t t')0, the des—ired summation (5.30). On
the other hand, by closing the contour so as to encircle
the pole of (a&+f' —It) ', we obtain the expression (5.26)
which is therefore equivalent to (5.30) for 0&t—t'&r.
A similar procedure reduces the summation (5.30) to
(5.27) when r&t' t)0—

%hen there is no interaction we infer that

G~ e(r —r'; t —t'),

The &u integration of (5.34) may be performed as in
(3.30) and G~ written in the form

f du
G,(rr'; t—t') = —,'[w (cot-', (or)+' —ie(t —t')]

2m'

)&e *"" "A(rr'u)) (5.36)

We now make use of the equivalence of (5.28) and
(5.30) to write

e
—jn v(t—t')/v

G, (rr', t—t') = —Q — A (rx'(v), (5.37)
2'" v 7i p Q)7

obtained by multiPlying G by e'r" "' and rePlacing i and thus identify the Fourier coefficient with
by v, and ir by P, is given by

e—ih(t —t')

Gg e(rt; r t') =— b(r —r'), t&t'
z g~e—a—Ph

G~(xx'; v) = de T
A (xx'co).

oo 2' 7f'P M7
(5.38)

(5 32) By comparison of the form of solution obtained for the
differential equation (5.21) with (5.38), the function A

i e +/'hei may be inferred and the continuation achieved.
With the exception of the trivial example (5.28), the

Once the functions G„have been determined for all exact solution of Eqs. (5.4) or (5.22) is presumably not
values of the time variables in the interval [O,r], they possible. There are, however, a number of approxi-
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n&ation methods which 0&.;iy be employed. In the
remainder of. this section we shall confine ourselves to
particularly simple ones which involve the solution of
a. subset of Eqs. (5.4) or (5.22) in which the correlation
of more than e particles is neglected. The simplest such
approximation, and one we would expect to hold when
the forces have long range and are slowly varying, is
to neglect all dynamical correlations of the particles.
In this approximation, which may be called a generalized
Hartree approximation, we replace the two-particle
correlation function by its form at large space-time
separations, a product of single-particle functions.
Since the two-particle function must be symmetric (or
antisymmetric), it is natural to make this replacement
in such a way that the symmetry is preserved. We
therefore set

The Green's function therefore satisfies Eqs. (5.26) ancl

(5.27) which, in this case, define an equation for
Q„G i( rv; r v)e'" fl'olll wlllch Gi is determined.

In a uniform system, with

Gi(rr'; t t')—=Gi(r r'—; t—t'),

the approximation (5.40) is conveniently discussed in

momentum space, where

dp
6,(r—r', t t') —= e*'i -"i6,(p t—t'). (5.43)

The matrix (5.42) is then diagonal and its elements
satisfy

Gg(riti12t2 ii ti r2 t2 )=Gi(ri4; ri'4')Gi(r2t2 r2 4 )
~6,(r,t, ; r&'t2')Gi(r2t2, ri'4'), (5.39) 2m

which is, incidentally, always correct for noninteracting
particles. We are then led to the equation

dp

(2m)'

[t'(8/Bt, )+ (~i'/2m)+l ]6,(r,4; r, 't, ') The function v(p) occurring in (5.44) is defined by

v(rl 2)rd 2(r( «2)r) ' 61(rltl ll tl )
~J i (p) = t e

—'& 'i (r)dr, (5.45)

i (rl r2)dr2 61(rltl, r2tl )61(r2tl rl tl )

=5(rl 11 )5(tl tl ) (5.40)

and («(p))» "by

(5.46)

where («(r)) is a local particle density,

aiG, 'i "(rt; rt+) = aiG (rt; rt+).

The interaction terms in this expression may be viewed
as an effective potential which is nonlocal but time
independent. The corresponding equation for the
Fourier coefficient Green's function (5,21) may be
reduced to

$(r»v/r)+ (~i'/2m)+l jG, (r,v; ri'v)

Equations (5.26) and (5.27) then define an integral
equation determining h(p) and «(p) which may be cast
in the perspicuous form

(«(p)) ~= exp Pi +«v(p=0)
t' p

&2m

dp'
y~ tv(p —p')(«(p'))' —I+~ ~1, (547)

i (rl r2)dr2(«(r2)) 61(rlv rl v)

~~v(r1 r2)dr2 61(rlv r2v )
v' J

X61(r2v rl v)e ~(r1 ri ) ~ (5.41)

(r/h[r')

—(~'/2m)+ n(r —r") («(r"))» *'dr" 5(r—r')

+i P. r 'v(r r')G, (rv; r'v)e'—"'+. (5.42)

The equation is of the form (5.23), where h is the
matrix

by transforming to ir=P, l = n/P and se—tting the
particle density equal to «. Equation (5.47) is a special
case of (3.68) wherein the function

A (p~) = 2m.8((o—h(p))

associates a definite frequency with each momentum.
The last nonlocal term in the matrix h is an exchange
term which produces a velocity dependence in the
"effective single-particle potential. " For a long-range
force this exchange term is generally negligible com-

pared with the preceding direct interaction term; for a
short-range force they are approximately equal.

Although this association of a definite frequency with

each momentum is specific to the Hartree approxima-
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lim 2rv61(rv; r'v) =6(r—r') r
V~QO

(5.49)

may be used with (5.38) to rederive

f dc'—A (rr'(o) =6(r—r').
2'

(5.50)

Additional relations are obtained by keeping sub-
sequent terms in the high-frequency expansion. Thus
we determine a second identity by operating on (5.21)
frOm the right With Llrv —(hl' —{)r]:
{L2rvl (hl {)7]G1(rlvl 11 vl) 75(rl Il')}

&( fn-vl —(hl' —{)r]

~2 2 r
J

2 (rl r2)dr2L61(r2V2 r2V2)~ (rl rl )
V2

~61(rlv2 l2V2)~(l2 rl )]

n(rl —r2)dr2
2, , J

X63(l 1V112V21 3P3 1 1 P112V213P3)dr@ (r3—rl') (5.51)

and, as in (5.26), letting h= —V2/22m.

For a bounded potential, this expression explicitly
exhibits the v ' and v ' terms in the asymptotic ex-
pansion of the Green's function. Comparison of (5.51)
with (5.38) then yields the relation

p du
' —(cu —h) A (rr'co)

2'

tion, the integral statement

t der—a)A (pa&)
2x

t' dii3 p t den dp 1
A (p~)+&(0) — A (p'~)» 2m 22r (22r)3 e +&"~1

dp 1
~(p —p')A(p'~) (5 48)

22r (22r) 3 pcL+Peo ~ j

is more generally valid. The derivation of this result
exemplifies a class of relations based upon the high-
frequency behavior of the Green's function equations.
For any potential which is bounded, and whose effect
therefore vanishes at high frequencies, we may conclude
from Eq. (5.22) that 6„({v})behaves as v ' as any
argument v approaches infinity. Indeed the expression

which, in a homogeneous medium, reduces to the form
(5.48).

A second approximation, in the chain in which Kq.
(5.40) is first, is obtained by considering only two-
particle correlations. In addition to improving the
treatment of those systems for which the generalized
Hartree approximation is a satisfactory starting point,
this extension should apply to systems in which strong
correlations do occur but at distances small compared
to the mean interparticle spacing, where two-particle
correlations should predominate. Since the inhomo-
geneous term and boundary conditions of the differential
equation for the two-particle correlation function are
the same as those of the symmetrized product of single-
particle correlation functions, we write the equation
determining the measure of correla, tion as

Pi(B/Rl) —hi+{']{62(12; 1'2')

—Pgl(1; 1')Gi(2; 2') +gl (1;2') gi(2; 1')]}

li(1,3){63(123; 1'2'3) —
t 62(13; 1'3)61(2; 2')

F62(13;2'3)61(2 1')]}=0. (5.53)

In this equation space-time indices have been sup-
pressed, 2i(1,3) represents li(rl —r3)8(tl —t3), and inte-
gration extends to all additional space-time variables
under the sign of integration. Equation (5.53) admits
an approximation one step beyond (5.39). We recognize
that the right-hand side involves the difference between
a three-particle Green's function in the space-time
region where two particles interact, and the product of
Green's functions which take into a,ccount the corre-
lation between this pair neglecting their correlation
with a third. For long-ranged slowly varying forces and
for short-ranged forces at low densities we would expect
that G& might be replaced by a sum of functions of the
form G~G~, which agrees with G3 at large separations
and also approximately within the range of the inter-
acting pair. The function with this desired behavior

63(123 1'2'3)

~62(13 i 1'3)6,(2 i 2')+ 6,(13;32')6, (2; 1')

+62(13;2'1')61(2; 3), (5.54)

leads to an approximate form for (5.53),

Pi (8/Bt, ) h,+{]{—G2(12; 1'2')

—Lgl(1; 1')61(2; 2') ~6,(1; 2') g, (2; 1')]}

V(1,3)62(13; 1'2')6,(2; 3)=0. (5.55)

=
J

—li(r —r )dr A(r r ~) fi(r —r')
2' e+~ W1

(Ao 1—li(r —r')A (rr'(u), (5.52)
~ 2~ e.+&"~1

In the remainder of the section we shall make the addi-
tional replacement of 61(2; 3) by 013(2;3) in (5.55).
This replacement will be a permissible first approxima-
tion in the determination of the combination li(1,2)
&&62(12; 1'2') that occurs in the one-particle equation
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whenever the interaction of a pair of particles with
others may be neglected while their mutual interaction
is producing correlations. The error entailed in the pair
of approximations is given by the right-hand side of
the rigorous equation,

[z(8/Bti) hi—+{][z(B/R2) h2+$]{G2(12;1'2')

—[Gi(1) 1')Gi(2; 2')+Gi(1; 2')Gi(2; 1')]}
—iv(1,2)G2(12; 1'2')

= —)~v(1,3)v(2,4) {G4(1234;1'2'34)

—[G2(13; 1'3)G2(24; 2'4)

&G2(13I 2'3)G2(24; 1'4)]}, (5.56)

obtained by applying [i(8/Btz) h2+—f'] to (5.53).Much
of the subsequent analysis of the simplified equation
obtained by neglecting this remainder carries over to
more accurate equations derived in Sec. UI.

It is convenient to introduce a matrix notation in
which multiplication involves integrating the coor-
dinate matrix indices over all space and over the time
interval [O,r], the potential matrix is given by

(12
I

v12
I

1'2') = v (1,2)8 (1,1')5 (2,2'), (5.57)

and the appropriately symmetrized unit matrix is repre-
sented by

1,2 ——8 (1,1')8(2,2') +8 (1,2')8(2,1'). (5.58)

The approximation to (5.53) or (5.56) is then succinctly
expressed as

G12 G1G2112+zG1 G2 v12G12) (5.59)

with the subscripts on the Green's functions denoting
particle coordinates. A convenient auxiliary for dis-
cussing this equation is the matrix 012 which satisfies

II12 112+zG1 G2 v12II12

=112+[(612) '(622) ' —iv12]
—

'zv12112, (5.60)
~12 ~12~1~2~

By employing the relation,

G12620= [612+G2'][(Giv) '+ (622) ']—', (5.61)

we may rewrite (5.60) in the form

II12—z[G1'+G2'][(GF) '+(G2') '] '».II» ——112. (5.62)

The matrix 0 occurs in the Gi equations (5.3) and (5.21)
in the form ~Q, where e is an instantaneous interaction.
Consequently, for determining 61, it is sufhcient to find
the submatrix in which the time variables of the two
left indices of 0 are set equal. Since the second term
contains, as we read from right to left, 0 with equal left
time indices, the operator (G ') '+ (G2") ' which
translates the total time but does not alter relative
times, and the combination Gi'+G2', which, on the
One hand, changes either of the time arguments but not

by removing a 6-function from the equation for

(rirzt
I
&

I
ri'ti'r2'tz') = (rirzt

I

&
I
ri'rz'ti')&(ti' —t2').

Since the single-time functions refer to a pair of equal
times, the differential operator and the matrix 0 satisfy
periodic boundary conditions in the interval [O,r] for
fermions as well as bosons. This property is auto-
matically built into the equation by understanding that
i8/Bt is represented by z(rv+iv )/2r= vzr/r, and that v

must be even. In terms of this frequency zrv/r, Eq.
(5.63) becomes

[( zrv/r) +2t hi h2—](rl—r2I &(v)
I
»'r2 )

—2{[coth(zz(hi —{)r)]"+[coth(2z(h2—{)r)]"}
xv(ri —r2)(rir2I0(v)

I
ri'rz')

= [(zrv/r)+2{' —hl —h2][b(ri —ri')8(rz 12 )
+8(ri —r2')8(r2 —ri')]. (5.64)

Because of the spatial translational invariance of 0,
and its simple dependence on the center-of-mass coor-
dinate , (ri+ rz)—, this equation is best discussed in terms
of the variables

and the operators

2 (r1+ r2) r rl r2 (5.65)

P= (1/z) (&1+») p= (1/») (&1—&2) (5 66)

Indeed the essential problem is construction of
g(rr'; P, v) which satisfies

t zrv P2 V2)
I
—+2{'— +—IcJ'(r, r', P,v)

m)
—

—.,'[{coth[((-', P+ p)'/2m —{)-;ir]}+'

+{coth[((-',P—p)'/2m —{)-',i ]}+']
&&v(r)g(rr', P,v) =6(r—r'), (5.67)

both, and, on the other hand, leaves the pair of time
arguments equal, we may conclude that it is only the
combination Gio+G22, at vanishing time difference,
which occurs. This combination has a well-defined limit
as the time difference approaches zero (reflecting the
continuity of the Green's function as the difference in
time indices of two f or two Itt field variables passes
through zero). The equation for this submatrix may be
written explicitly in the form

(r,rzt
I
0

I
r, 'rz't')&-', i{[cot(-',(hi —{)r)]+'

T

+[COt(-', (h2 —{)r)]+'} dt dri" dr,"
Jo J J

x (rirzt
I
[i(B/Bt)+2{' hl—h2—] '

I

ri"r2"t)

&& v (r1"—r,")(r,"r2"t
I
0

I
r, 'r2't')

= P(r, —r, ')b(r2 —rz')

+5(ri —rz')6(r2 —ri')]8(t —t'), (5.63)
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t (o) = i)+i)Cn(0)t(o)

in the momentum-space representation for the total determines t(') such that
momentum P. In terms of (i, 0 is given by (5.74)

(rirg
I
Q(v) I

ri'rg'&

f
e' ("—"')Lg(rr'; Pv)wg(r, r—', Pv)]

(2~) '

(harv

P'
xl —+2l — + —

I, (568)(r 4m m)'

where the differential operator acts on the primed
variable from the right.

The function g is, of course, also a Green's function.
Indeed, it is very similar to the Green's function
ordinarily encountered in the two-particle problem.
More specifically, if we make the replacements
E=(rrv/r) (P'/4—m), ir=P, g=(tt, and ttt= —n/P we
recognize (i as the inverse of

Together with (5.73), this equation implies that

t=t(')+t(i(')(Lexp(i(hi —t)r)+1] '
+Lexp(i(h2 —|)r)~1] '}t"). (5.75)

The latter equation, from which the potential has been
removed, permits an iterative solution when there are
strong repulsive short-range forces. Indeed in some cir-
cumstances, it is possible to solve (5.75) approximately
by other than iterative means, and also to set up an
effective-range theory for operator t.

As we have indicated, a major reason for determining
t is to obtain an approximate equation for the single-
particle Green's function which takes certain two-
particle correlations into account. Such an equation now
follows from (5.21), (5.60), and (5.71), in the form

E+2p, —(P'/m) ——', [(coth-,'LP (—',P—p)'/2rrt+n]} +' tnt v

+{c()th-'P(-'P+ p)'/2im+a]}+'}it (5.69) ')
In this form physical interpretation is possible. As 0.

approaches ~ (which corresponds to vanishing density),
the operator reduces to the one occurring in the
Schrodinger equation for the relative coordinate of a
pair of particles. Kith p fixed, the equation describes
interaction in the presence of a medium which results
in an effective potential whose value depends qualita-
tively on the relation of energies of the individual
particles to the chemical potential, p.

Following conventional scattering theory, we intro-
duce the useful auxiliaries

z
"L(ri—r2I(t&t')(P v+v) lri" —r2 &]

Xe' '(" "") dr, "dr2"driGi(r2"v' r2v')
(2ir)'

XGi(ri"v; ri'v) =tI(ri —ri'); (5.76)

(rjt'I r')=(rjtl —r').
where

in a matrix notation in the relative coordinate spatial
variable. In virtue of (5.68), the matrix t satisfies

(rlt(P, v) Ir'&+(rlt(P, v) I
—r')

Xe tnv(t t')/nei—p ~ (r—r') (5 7—7)

The effective one-particle potential in this equation is
frequency or time dependent, and consequently the

t(P, v)g' (P,v)=it(i(P, v), one-particle Green's function can no longer be de-
scribed, as in the Hartree approximation, by an effective
single-particle Hamiltonian.

As in the Hartree approximation, this equation is
particularly tractable for systems which may be treated
as uniform, that is, for which the Green's function is
given by

f dp
Gi(r —r'; t —t')= ~ r 'P Gi(p, v)—

=i)(r) (rir2IQ(v) I
ri'r2')d(R —R')e 'v (" "'. (5.71)

'
g (2ir)3

Ke may also write t as

t= it+ it(i (Lcoth (-,' (h,—f )ir)]*'
+I coth(-', (h, —|')ir)]+'}i),

or in terms of the equation

t=i pter«)-', (Lcoth(-', (h,—|.)ir)]+'
+Lcoth(2 (h2-f )ir)]"}~t (5 73)

which is exactly soluble for several interesting problems.
Equation (5.73) also provides a, basis for various ap-
proximation techniques. For example, the solution to
the ordinary Schrodinger equation for any potential

For such systems, Eq. (5.76) reduces to

xP P & f dP
G (p v)= +f-

2trt r " j (2ir)'

x (-,'(p —p')
I
(t~t') (p+p', .+.') I-,'(p —p')

&

XGi(p'v') exp(iv'0+), (5.78)

where

(pit(P, v) lq&= e "'(rlt(P, v) lr'&e" "dr«' (5»)~ ~

~
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By employing Eq. (5.38), we conclude

d(o' A (p'(o')

2m harv
—or'7.

by the general complex variable a=(o+i(). Since these
functions agree on a set of points which have a limit
point at ~, and the functions are analytic at ~, they
are equal everywhere and

degv p i f' dp
+—f

2m r " ~ (2a.)'
is given by

I'(y~)
A (p(o) =-

[ (p )]'+L I'(p )]'

x (-,'(p —p')
I
(&+&') (y+y', .+.') I-,'(p —p') }

(5.86)(m.v'

xl —~'
I

A(p' ') exp(iv'0+) . (5.80)
where

1
A (p(o) = ljm I d(o' —— A (p(o )

2''1 l) . (o (o '8 (o (o +18
(5.85)

In order to proceed with the analysis of this equation
we suppose that the eigenfunction expansion of () is
known. In the n, P formulation as n —+ oo, this ex-
pansion would be the familiar one for (E—H(2) ' where
II~2 is the Hermitian operator tha, t characterizes two-
particle interactions. The existence of such a represen-
tation more generally is inferred by treating any poten-
tial as the limit of a sum of factorizable potentials for
which its existence can be explicitly demonstrated.
From the expansion and Eq. (5.72) a representation for
t(P, v) may be obtained:

(rl&(» v+v)lr)="(r)()(r r)
a(r) ~-(«') p(r')

+rP, (5.81)
'll (v+v ) E~r

in terms of coeKcients, p„(rr'), and poles, E„, which,
in general, need not be real. With the aid of this ex-
pression the summation that occurs in (5.8) may be
evaluated. We obtain for the inverse of G~,

av p' $ av) '

[& (p )] '= —+i — —Vl p, —I, (5.82)
&
', ).'

where

p
e(y~) — +t'=lim —,'[V(p, (o+il))+V(p, (o—ii))] (5.87)2'

and

r dp
N(p') [p(y= 0)~a(y —p')]

" (2 )'

dp f d(o rll(pp )+
(2a)' " 2a co+(o' E—

X ([exp(i(o' r) W1]—'

W [exp(iE„r)—1] ')A (p'(o'), (5.88)

r-(yy')
Xp ([exp(i(o' r) W1] '

((o+(o' E„)'+b'—

a[exp(iE„r) —1]—')A (p'~') . (5.9O)

1
I'(p(o) =lim —[V(p, co —it)) —V(p, (o+i())+2i()] (5.89)' 'i

dp p de
=lim 2i') 1+

(2~)' ~ 2~

The latter approaches zero when the denominator,
(o+co' E„does not v—anish for any choice of (o' and E„
for which the numerator is nonvanishing. On the other
hand, if I„—or'=or for some or' and E„ for which the
numerator is finite, the limit is

dp t' dor
I'(y(o)= I 2a-P'6(E„—(o—(o')r (pp')

~ (2~)» 2~
xl ( [exp(ico'r) W1] [exp(iE r) —1]J

XA (y'~'), (5 83)

1 1
X I

~ IA (p'(o'). (5.91)
( a1cdT —1 el(Ql+ld )T—1 )

and

av) ( dp'
vl p —I= i e(p')[v(p=o)+p(p —p')]

r ) ~ (2a.)'
dp' t' d(o' r„(p,p')

(27r)P ~ 2a. ~ (av/r)+(o' E„. —

f
r„(p,p') = e-'-'*(p-') "(r)p„(rr')a(r')

aJ

X
[a'-', (p—p') ~ r'~e —'-,'(p—p') r'] (5 84)

We may now reduce (5.80) to an integral equation for
A(y(o). This reduction is immediately achieved by ob-
serving that both the left- and right-hand sides of
(5.80) define analytic functions when mv/r is replaced

The prime on the summation indicates that it contains
only those poles, E„, which lie on the real axis, since
these are the only ones for which limit of the second
term of (5.90) is nonvanishing. Special consideration
must be given to any real (o, which satisf)es (op= E(p, pco)

and I"((o())=28 ~ 0 since at; such a point, (5.86) becomes
A(p(o)=2m. ()((o—c(yco)). This special case applies, for
example, to the noninteracting system.
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where the contour of integration is chosen to pass above
the singularities of $&u 0—+f V—(y,~)] ' (which lie on
the real axis since they represent the possible energy
differences of the system) and below the poles of
(1&e ' '). By closing the contour in the upper half
plane so that it encircles in a counterclockwise sense the
points at which (1 We '"') vanishes, we obtain the sum-
mation (5.77), provided 0&3—t'& ~. By encircling the
singularities of [&u

—h+l' —V(y, &o)] ' we obtain 6 for
all t—t'&0. Comparison of the latter expression with
(3.26) leads to the relations (5.86), (5.87), and (5.89).

We note that expressions of the form (5.86) and (5.92)
follow for the rigorous single-particle function as well
as the approximate Green's function discussed above.
Consequently these equations and those subsequent
ones which do not employ the forms (5.83), (5.88) and
(5.90) for V are generally valid.

If we replace ir by P and f by p, we obtain for the
real function A ~(p,~)

I'(y~)
A ~(p&u)= (5.93)

[~-"'(y~)l'+[21'(y~) j'
where

and

p2

e ~(y, (u) = +Re V e(y,a)+i0),
2m

I' e (p(v) = 2 Irn V e(p, (u —i0).

(5.94)

(5.95)

When (5.88) and (5.90) are introduced, the functions
e ~(yco) and I" ~(y~) become

p2 dp

dt's

"(y~)= + "
2m i (2m)' ~ 2m.

x«[(l(y —p') Iv&(y+y', i '~so)

~&"(p+ p', ~+~'++)
I l (y —y'))3

A ~(p'(u') ~ dp' p d(u'

X ~ P
e +e"'%1 & (2')' & 2m

v-'(yp') A'(y'~')
(5.96)

(5.97)

~ co+co' E„~e2'+~v" 1— —
and

dp t d(a)

I'(y )=

x 2 Im(-', (y —p')
I
me~ ~'-&) I-;(y—p'))

1
A e(p'ar'),X

&eyP&' ~ ~ &2&gP (&+&')

Equations (5.86) to (5.89) may also be derived by
using the summation techniques employed with (5.31).
When t) t' we infer from (5.82) that

g
—i(o ( t—t')

G, (p, t—&') =
4, 2~ (1&e ~')[(u —h —V(p(o)+l]

(5.92)

Z(~oh (~0)
A'(y~) =—

(~—»)'+[5~(~o)j'
(5.99)

Z= y/I'= [1—(de/d(o) Oj
—'. (5.100)

When (5.99) continues to be a good approximation to
A(p~) for values of ~—coo which are sufficiently large
multiples of y(coo), the frequency integral of A(y&u) in
this neighborhood equals 2m.Z(~0). Since the entire
frequency integral of A (p&v) has the value 2~, a neces-
sary condition for the dominance of the region is that
Z(&oo)=1, or equivalently that Ide/dkvI«1. For fer-
mions, the additional restriction A (y~) )&0 insures that
there can be only one such point and that at this point
Z(coo) &1 and de/dM&0. The limiting case of this be-
havior arises when A(yco) is rigorously 2m'(cv —coo(p)).
We shall call any solution of Q)p=6(p, coo) a resonance
and y(&vo) the resonance width. When the statistical
factor in the expression for G~ e(p, t) also varies slowly
in the neighborhood of its resonances, their contribution
to G& is given by

+~Gi'(p~) =2'Z'{+&+[exp(~+P~'(p)) ~1j '}
X~

—icos(P) t—~aye t ])0
(5.101)=2' Z'[exp(~+I~'(y)) ~1j '

Xg—iotas(P) t—-', y$[ t] ](0
We have here allowed for the possibility of several
resonances, whose weights in the fermion example must
satisfy P, Z;&1.Equation (5.101) exhibits the relation
between the widths of single-particle resonances and the
corresponding lifetimes. These lifetimes reflect the
approximate rate at which equilibrium is restored when
a particle of momentum p is suddenly introduced or
removed from the medium. We shall not enter here
into a detailed discussion of the dominance of (5.101)
but merely observe that it can be the major contri-
bution only for a restricted time interval. This interval
cannot extend to very short times since the discon-
tinuity at t=0 of the approximate form (5.101) does
not generally reproduce the unit discontinuity of iG.
This error in the discontinuity reQects the importance
of the entire frequency spectrum of A(y, &u) for very
short times. The influence of the complete spectrum is
only transient, however, the nonresonant contribution
decreasing rapidly with time. Nevertheless, at suffi-
ciently long times, this contribution overshadows the

In these expressions, we have introduced the function
t e(P,co) =t e(P, v= (~—2p)r/m) and utshzed the rela-
tion t ~(z')=-t ~(s)* which follows from the reality of
(5.69) when s is real.

As the notation is intended to suggest, the quantities
e and F have simple interpretations, at least in the
neighborhood of those points ~o(p) for which

e(y, (vo) =(oo and (di'/d(o) ~p&&[1—(de/d(o) p]. (5.98)

In the neighborhood of these points we may write
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exponentially decreasing term (5.101).As long as p(o&0)

is not exactly zero, the resonances wi. ll have lifetimes
characteristic of the interaction strength and the par-
ticle density. If y(ceo) ~ 0 when 8 —+ 0, that is, if the
second term in (5.90) vanishes identically, the lifetimes
will be limited only macroscopically and superQuid
properties will result.

In the low-density limit (n —+ ~), I' reduces to the
anticipated collision rate. The function F is then
expressed in terms of the imaginary part of the diagonal
element of the scattering matrix t. The latter is related
to the total cross section 0- by the optical theorem which
states tha« l1 —I'l i2~= Im(l (1 —I ')

I
~~ ~'l 2 (p —I')).

In terms of the velocity, v= p/m, of the pa, rticles we
obtain the elementary low-density result

dp
I'(p)= t o(~ v —v'~)

~

v —v'~ri(p'). (5.102)

A (p, (u) = 2~8(co —coo(p)). (5.103)

With this weight function, Eq. (5.94) implies that

The expressions (5.96) and (5.97) also contain a term
which indicates through its characteristic statistical
denominator Lexp(2n+P (sr+co')) —1] ' the Bose nature
of a composite system formed by two fermions or
bosons. This term also contributes to the width when
we depart from the limit in which n —& ~.

We note, finally, that Eqs. (5.94) and (5.48) may be
used to test the validity of a single-level approximation

led to (5.94) and (5.48). In the latter case we considered
high frequencies and correspondingly short times; in
the former we were concerned with frequency poles and
long time behavior.

Considerations similar to these apply to the multi-
particle Green's functions, and in particular, to the
special density correlation function which we described
in Sec. IV. Thus, when o. is a continuous function the
conductivity is determined microscopically, while when
a- contains a 6 function the system exhibits supercon-
ductivity.

VI. FORMAL SOLUTIONS. OTHER APPROXIMATIONS

In previous sections we characterized the Green's
functions of the system by an infinite sequence of
coupled equations and showed that numerous properties
of the system could be obtained from approximate solu-
tions of the first few of these. We turn now to the more
general investigation of these equations and their solu-
tions. We shall carry out this analysis with more power-
ful field-theoretical techniques, which permit concise
expression and formal solution of the Green's function
equations. From these solutions we shall then derive
alternative methods of systematic approximation.

In order to express the Green's function equations in
compact form, it is convenient to introduce arbitrary
functions of space and time ((rt) and q(rt), called source
functions, which are completely commutative when the
P field obeys Bose statistics and completely anticom-
mutative when the P field obeys Fermi statistics. By
means of these functions, a Green's functional may be
defined: ~;

p p dp
+ (I ~~"

I
)~(p')

2m & (2m)'

Similarly the relation (5.48) for the mean value of the
frequency yields

p f dp
(uo(p) + (i vai'

i
)e(p'). (5.105)

2m ~ (2m)'

The difference of these expressions is therefore a
measure of the dispersion in A. What frequency, if any,
can be approximately associated with a given mo-
mentum excitation when (5.104) and (5.105) differ,
depends upon the time during which that excitation is
important. This is rejected in the investigations which

In this equation, we have employed the conventions of
Sec. V. Thus, the integration sign applies to all 2e
coordinates and extends over all space and the time
interval [O,r]. The individual Green's functions are
thus characterized as coefFicients in the expansion of the
functional, or equivalently as its functional derivatives:

bg

&L~ ~]
S~(~') Sq(1') SP(1) SP(~)

=G„(1 e; 1'. e'). (6.2)

The distinction between left and right variational
derivatives which is necessary for the anticommutative
fermion source functions is indicated by the subscript l
or r. With the aid of (6.2), it is easy to verify that the
set of Green's function equations (5.4) is equivalent to
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the single functional differential equation

8
~

i —hi+i
~

Wi -e(1,2)—. ( 84 J 6$(1) & 6q(2+) 5$(2)

and determine the pair of functions. by requiring that
the coeKcients of the two lowest powers of $ and g in
the functional equation (6.3) vanish. As a. third ap-
proximation we would include three-particle corre-
lations, determining the coeKcient functions in a
functional

or its adjoint,

( 8
(

—i——hi+)
~

wi ' v(1,2)
gati ) 87](1) " 8$(2 ) 8r/(2)

X —$(1) G[p, rl]=0. (6.4)
bg(1)

(
G[g,q]=exp(ggiq) exp[(2!)—'$$(g, —2g,g,)qq(2!)—']

Xexp[(3!)—'$$$(g,,—9G,G,+12g,g,g,)
X~~~(3!)-i], (6.11)

by satisfying (6.3) to third orders in P and g; and so on.
The pair of equations for 6& and 62 which result from

(6.10) are readily determined. The first equation is
identical with (5.3),

[i(8/Bti) hi+—l ]Gi(1; 1')In the interval [O,r] to which (6.3) and (6.4) are
restricted, the boundary condition (5.17) specifies the
particular solution of the differential equation in time.
The additional condition necessary for the normaliza-
tion of these equations is determined from (6.1) b
relation

G[0,0]= 1.

y the
and would be exact if the correct 62 were inserted. The
second equation is

A simple illustration of the functional technique is
aRorded by the direct integration of the differential
equation in the trivial example with no interaction. In
that case we obtain

)z(B/Bt, ) h,+—f]G,(12; 1'2')

Wi v(1,3)[G2(13; 1'3+)Gi(2; 2')

G[k,~]=exp(kgi'n) (6.6) +G2(13; 3+2') Gi(2; 1')+G2(13; 2'1') gi(2; 3+)]
for the Green's functional. This functional serves to
generate the multiparticle Green's functions in the form

n perm (n) or det (n (6 7)

Wi v(1,2)[gi(1; 1')Gi(2; 2+)

where perm(„~ and det~ ) are the permanent and deter-
minant of the n, Xe coordinate indexed matrix Gio (i; j').

A successive correlation approximation for treating
interactions may be introduced within this framework.
As a first approximation we take a Green's functional
which contains no dynamical correlations,

GLS n] exp[Ã& I]. (6 8)

YVe then determine the function Gi so that Eq. (6.3)
is satisfied to the lowest order in g and g. The equation
for G~ thus obtained is the expected one,

[i(B/Bti) —hi+i ]6'i(1; 1')

wi v(1,3)(G2(32; 1'3+)—[Gi(3; 1')Gi(2; 3+)

agi(3; 3+)Gi(2; 1')]}Gi(1;2')

+cyclic permutations of 1', 2', 3+

v(1,3){Gg(21; 1'3+)—[Gi(2; 1')gi (1;3+)

&Gi(2; 3+)Gi(1; 1')]}Gi(3;2')

+cyclic permutations of 1'2'3+

=6(1,1')Gi(2; 2') &5(1,2') Gi(2; 1'). (6.13)

For weak interactions or low densities the last two sets
of terms on the left-hand side of (6.13), which contain
the interaction of one pair and the correlation of
another, are relatively unimportant. If these terms are
omitted, the equation may be re-expressed as

+Gi(1 i 2+) Gi(2; 1')]=6(1,1'). (6.9) [~(~/~&i) —hi+i](G2(12 ) 1'2')

~ ~ —[Gi(1; 1')Gi(2; 2')~g, (1;2')G, (2; 1')]}As a second approximation we take an exponential
form which reproduces correctly the first two powers
of $ and rl, i gi(2—; 2")v(1,2")62(12";1'2') =0. (6.14)

G[~,n]= expug ~)
Xexp[(2!)—'($(G,—26,gi)qg(2!)—'], (6.10) which we encountered as (5.55). Application of a low-
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density or weak-interaction approximation again leads
to the replacement of Gi(2; 2") by Cia(2; 2") and thus
to (5.57). We note that terms suggestive of an improved
equation, in which the converse replacement is partially
introduced, are included in (6.13). Thus, one term in

(6.13) is

w I e(1,3)G(3; 3+) f G2(12; 1'2')

presence of this potential by

d[U]=A& ~t U(11')' ~n(1) &t(1')

we obtain the identity

(6.19)

—[G(1 ' 1 )Gi(2 i 2 )+G&(1 i 2 )G&(2 i 1 )])~ (6

which is the direct interaction term that must be added
to (Gio) ' in a Hartree approxima, tion for Gi '. With
no further approximations, Eqs. (6.12) and (6.13)
represent a second step in a systematic method whose
6rst step is the Hartree approximation. In general,
each step of this procedure differs from the corre-
sponding one in the previously outlined scheme through
the method of approximating the (e+1)-particle
Green's function in the first e coupled equations. In
(6.13), unlike (5.54), the arguments of the Green's
function in the interaction term are treated sym-
metrically. Indeed, it is the terms in (6.13) not present
in (5.54) which permit discussion of long range collec-
tive motions.

The great advantage of the functional formulation
(6.3) lies in the possibility of obtaining formal ex-
pressions for the multiparticle Green's functions and
for the trace. One form for the formal solution of the
differential equation is easily obtained. We note that
the equation contains p and a differential operator
which can be expressed as [D,p], where 6 is defined by

( 8

gg(1+) L Bt i 6$(1)

i
v(1,2) (6.16)

2 " 5rt(1+) 8rt(2+) 8$(2) 8$(1)

Since [6,[h,p]]=0, we may write Eq. (6.3) in the form

elite —~G[(,g]=0, (6.17)

and infer that qe ~6 vanishes. From this equation and
the analogous one for g we obtain

e(1,2)
bit(1+) 8q(2+) 8&(2) b&(1)

by
~

v(1,2) (6.21)
5U(1) b U(2)

in (6.19). (A local potential U has been employed to
simulate the local interaction v.) We then have the
expression

~i e bq
G[P,„,U]=exp(—

&28U 8U)

B(B
Xexp W—

~
i——h+'f U~ —b[),q]. (—6.22)

hat & at ) sp.

The effect of the source derivatives on the 6-functional
is readily obtained since it is, apart from a functional
of U, the Green's functional for a noninteracting system
subject to an external potential. This functional is the
analog of (6.6) with Gi' replaced by Gi'[U],

Gio[U] = [i (8/Bt) It+f U]—'— —
=- [1—G oU]-iG o

and therefore it follows that

(6.23)

5t 8 yb-
exp w—

~

i &+i U—
~

—S[g—,g]
Sit 4 Bt 2 8g

GL f.,q, U] = GB,q, U]. (6.20)
Sit(1) 5((1') 6U(11')

The description of the interaction effects is transferred
from the source dependence to the potential dependence
by using this relation to replace

G[P,~]=e~S[g,~], (6.18)
=D[U] exp($Gio[U]rt), (6.24)

where 8[),g] is a functional which satisfies it5[j,g]=0
and $8[(,iI]=0.

We arrive at a more useful expression for the Green's
functional by a rearrangement of (6.18) which utilizes
the possibility of describing the effect of the interaction
potential v in terms of the behavior of the system in the
presence of an external, single-particle, generally spati-
ally nonlocal potential U(11').Using a four-dimensional
matrix notation in which the time dependence is given
by &(t&—ti' —0") and defining G[g,q, U] in the

where D[U] is a functional of U. A differential equation
for this functional is obtained by applying the relation
(6.20) to (6.24) and setting )= it=0,

~D[U] =& ~D[U]Gi'[11'; U]6U(1'1). (6.25)

By means of (6.23) this equation may be written in the
form

~ »D[U]= ~tr[(1—G,'U) —'h(1 —GioU)], (6.26)
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B ln det X= tr(X 'BX), (6.27)

where tr indicates diagonal summation of the coor-
dinate-indexed matrix. In view of the relation

In this expression the trace is the sum of diagonal
matrix elements obtained by letting the left time index
approach the right time index from earlier times. The
corresponding derivative of %" is given by

the sol&ition of (6.25) is, apart from a constant,

D[U]= det+'(1 —GioU). (6.28) Bl

(iB Bq
=aexp( —&[U]) exp~—

E2 BU BU)

An equivalent expression is obtained by letting U —& ~U
and BU —+d~U in (6.26)

d lnD[U] = atr[(1 —~G&oU) 'GioUd~], (6.29)

whence, on integrating from f(:=0 to ~=1, we obtain

Xdetw'(1 G,oU) tr[(1 GioU) 'giogioU], (6.36)

which, by (6.23), is equivalent to

)iB Bq
aexp( —W[U]) exp~ — v

(2 BU BU)

D[U]= exp[in tr ln(1 —Gio U)]. (6.30) Xdet+'(1 —Gi'U) tr(gi'[U] —Gi'). (6.37)

Apart from a constant, the functional g[$,», U] is
therefore given by

(' '
G[g,», U]=exp( — v

~

det+'(1 —Gi U)
(2 BU BU$

Xexp(gG&o[U]v). (6.31)

In particular, to within a. constant,

G[0,0,U] =—exp (VP [U])
B B q

=exp~ — v ( det+'(1 —Gi U). (6.32)
(2 BU BU)

If we redefine the constant in g[g, », U] so that

(iB B)
g[(,»,U] = exp( —~[U]) exp

~

— r,

L. 2 BU BU)

Xdet+'(1 —Gi'U) exp (ggio[U]»), (6,33)

Substitution of (6.34) in (6.37) leads to an expression
analogous to (6.35), and thus to the relation

(8/o&f') (W—'N) =~ tr G '. (6.38)

The right-hand side of Eq. (6.38) may be replaced by
its known value (5.27),

Wtrgi'= is tr&'&[exp(i(h —
l )r)%1] '

= W—tr&'& in[1+exp( —i(h —f') r)], (6.39)
d

where tr(3) is the trace of the spatial coordinate matrix.
Integrating with respect to l and determining the
constant by noting that W, 'K, and tr(3) all approach
zero when f' —+ ioo (effectively the limit of zero particle
number), we finally obtain

(iB B

expW=expWo exp~ — v
~
det+'(1 —Gi'U), (6.40)

&2BU BU)

we see that this expression satisfies the analog of (6.5),
~ ~ or its equivalent

and that its expansion in sources generates the Green's exp+"—exp+"0 exp
~ ~ )ib By

functions E2 BU BU)

G„[1, e; 1' e'; U]

(i B b

=exp( —'@[U])exp~ — v
(

det+'(1 —Gi'U)
& 2BU BU)

Xperm~„& or det~ &
Gi'[i j'; U]. (6.34)

When U is set equal to zero, these functions become the
previously de6ned Green's functions.

We turn now to the determination of the trace,
exp'. The form of the Green's functions suggest that
exp'K[U] is related to the trace, expW. This relation
is made precise by introducing a functional W[U]
which satisfies the analog of (3.7),

Xexp[1&tr ln(1 —Gi U)]. (6.41)

These expressions identify exp''0,

expWo ——det&o&+'(1&e '&" r')
=g [1Wexp( —i(h —f') r)]+', (6.42)

as the trace for a system with no interaction.
Just as the occurrence of exp[&i(B/Bq)U(B/Bg)] in

(6.19) allowed conversion of source derivatives to
external potential derivatives (6.20), the appearance
of exp[(i/2) (B/BU)v(B/BU)] permits the replacement of
external potential derivatives by interaction potential
(lerivatives. By employing the relation

—W[U] = WtrG&[U].
t9

(6.35)
i

~W

Bv(12) 2 BU(2) BU(1)
(6.43)
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and the identity that follows from (6.2) and (6.20),

[|/SU(g+1)7ewG„[1," g; 1' "g', U7
=+ewG„+([1, ~ .g+1 1' . (g+1)+; U7, (6.44)

whose arguments iI, admit a partition in which i~, i2,
~ ~ ~ i2g ~&21 for some l&e. The eliminated terms are the
ones whose integrals

we obtain

8W/8v(12) =-,'iG2(12 1+2+).

~v(1,2) v(2g —1, 2g)GP(1; ig)

(6.45) XGp(2g; i2„) (6.50)

Equations (6.43) and (6.44) may also be employed to
evaluate higher derivatives of 8". For its second
derivative, they yield

R(1,2)R(3,4) 8v(1,2)8v(3,4) 8v(1,2) 8v(3,4)

= (-'i)'[G4(1234; 1+2+3+4+)

—G2(12; 1+2+)G2(34; 3+4+)7, (6.46)

and for the higher derivatives, they generate analogous
but successively longer expressions.

If we consider variations in the strength of an inter-
action potential Kv, we may specialize (6.45) to

dW(e)
=-',i) v(1,2)G,"(12;1+2+), (6 47)

= (-,'i)" v(1,2). v(2g —1, 2g)

where expW(K) is the trace and G" the Green's functions
for the system with potential ev. Since W(e) is propor-
tional to the occupied volume for all potential strengths
zv, the right-hand side depends linearly on the volume.
The expressions for the higher derivatives of 8" are
likewise linearly dependent on the volume. On the
other hand, individual terms in the expression for
d"W/da" need not be proportional to the volume. In
particular, the various terms subtracted from the first
one encountered in the evaluation of d"W/Ch" by the
procedure (6.46),

dn
~-W'( ) ~lF(~) —~

—8'
~ ~. . .~ ~g

dry" bv"

may be factored and therefore behave as powers of
the volume higher than the erst; the remaining ones
yield integrals depending linearly on the volume. We
designate the latter terms as the connected part
Cq„'(1, . . .2g; 1, .2g) of G2„'(1, .2g; 1+, . 2g+). If
the interaction potential is one which admits a Taylor
series expansion of 8'—8"0 about zero potential, the
combinations C2„which characterize the potential
strength derivatives of 8'—H/'0 provide the expansion,

1 f'(i)"
W —W, =g —

l

—l.(1,2) "
i g!~ (2i

Xv(2g —1, 2g)C2„'(1, 2g; 1, 2g). (6.51)

By setting r= iP, —i = —n/P, we obtain for the
pressure, particle density, and energy per unit volume,
expansions in powers of the potential which are ex-
plicitly independent of the volume. Special examples of
expansions of this character (linked cluster expansions)
have been derived from perturbation theory by several
authors. Unfortunately, such expansions of 9", which

imply similar expansions of all the Green's functions,
are not generally permissible.

We continue the more general discussion by recasting
the expressions for the Green's functions in differential
form. For this purpose we employ the relation

Pi 5 5q f 1B 8q
exp — v l (U) exp —— v

E2 8U 8U) ( 2 bU BUJ

(
=f1 U+iv

l
«.52)

SUj

and Eq. (6.32) to write (6.34) in the form

XG2 "(1, . 2g; 1+, 2g+), (6.48)

serve to eliminate its dependence on the second to eth
powers of the volume.

In the special case ~=0, all derivatives may be
expressed in terms of products of noninteracting single-
particle Green s functions. Under this condition, we
verify by induction that computation of the eth
derivative of 8' involves the subtraction from

perm(„)
G —e

—w [U] GP i,j'; U+iv
det(„) 8U

ew'~& (6.53)

From this expression we derive differential equations
for Green's functions by applying

(i 8/@+i h U ivy/8 U—)——

to e~G„and using the identity (6.44),

G2„'——perm&2„& or det&2„&(P(i; j),

of those terms and only those terms

GP(1; iq)GP(2; i,) GP(2g; iq„) (6.49)

[(GP) ' —U7)Ci wi v(1, g+1)(i„+g

=P(—1)" '8(1 j')G„g. (6.54)
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We may also employ the relation

SWAN
e w—f] /ew f] +

& gU) E 8U SUP

to express (6.53) as

since we also have

(6 55) X'(1,2) =8(1,2)+i v(1,3)[G(23; 2+3+)

—G(2; 2+)G(3; 3+)],} (6.63)

perm(„) 8 6W
G„= Grs i, j', U+iv +iv

det( ) bU 8U
(6.56)

This form leads to the difkrential characterization

Eq. (6.61) determines the single-particle

Green�'s

function and X'
~ The latter represents the change in

potential produced by an alteration of the external
potential, together with the induced change in the
direct interaction potential. It may therefore be loosely
described as an inverse dielectric constant. In a 6rst
approximation, which sets

g s;G.= 1„,
j=l

where

7= (Gre) ' —U svB/6U —i vnW/n—U,

1„=perm&„~ or det&„&5(j,j').

In particular, the one-particle function satisfies

(6.57)

(6.58)

bG,—'(1; 1')/5V'(2) = —5 (1,1')5 (1)2),

X' satisfies

X'(1,2)—8(1,2)ai) v(1,3)X'(4,2)

)& Gg(3; 4)Gg(4; 3), (6.64)

and 6 correspondingly satisfies

FrGg[1; 1'; Uj=b(1,1'). (6.59)
[(G '(1)) ' —V'(1))G (1; 1')—s v(1,2)G (1;3)

Approximate solutions to these equations may be
determined by methods other than those discussed in
Sec. V. For example, it is sometimes convenient to
separate the eGects of direct interaction from those
due to exchange and correlation. The former appear in
the equation for 6~ through the average local potential
associated with the density,

(svbW/5U) (1)=+iJ'v(1,2)Gr(2; 2+);

XX'(2,3)Gr(3; 1') =h(1,1) (6 65)

This approximation is useful for treating the high-
density electron gas. ' In particular, a knowledge of
X'—1 at equal times, which we denote by (X'—1)(0),
serves to characterize the dependence of lV on the
interaction strength and exhibits its linear dependence
on the total volume, (V):

the latter, constituting the difference between the
&

. ~~ z
direct eRect and J'iv(1, 2)Gs(12; 1'2 ), arise from v(1 2) ——G(1; 1+)G(2; 2+)
(iv8Gr/8U)(1). We may introduce an eRective local ~ 5v(1,2) 2
potential, V',

( SWAN
V'(1) = U(1)+'I ~

I (1),( SU)
and rewrite (6.59) as

(6.60)
v(1,2)[G(12; 1+2+)—G(1 1+)G(2 2+)j

= r (V) (X'—1)(o) (6 66)

8V'(3)
(G~) '(1)—V'(1)—s I v(1; 2)

~U(2) ~V (3)

XG[1;1'; V'i=8(1,1'), (6.61)

where we regard 6 as a functional of V' rather than U.
Together with the equation for

X'(1,2) =—5V'(i)/5U(2),

X'(1,2) =8(1,2)+i v(1,3)X'(4,2) err(3; 3+),
8 V'(4)

(6.62)

[(G,s)-i V7G (6.67)'

While V' is inappropriate to the discussion of strong
short-range interactions for which (8W/b U) G~ and
8G&/5U are separately large and compensating, the
effective potential V is generally applicable. Associated

The modihcations in the interactions characterized
by X occur in the expressions for all the Green's
functions. So do terms like those discussed below (6.14)
which describe the eftect of the medium on propagation
over long periods of time. One method for exhibiting
these features is to introduce an effective potential
V[Uj of the type encountered in Sec. V:

' K. Sawada et u/. , Phys. Rev. 108, 507 (1957); 106, 372 (1957).
{which is related to the density correlation function M. Ge)]-Mann and K. A. Brueckner, Phys. Rev. 106, 364 i1957).
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with V is a response function X,

b V(1,1')
X(1, 1'; 2) =

bU(2)

or more explicitly

bG, '(1; 1') 8$'
(6.68) V(1,1') = U(1)+i I v(1 2) b(1 1')

bU(2) bU(2)

+i t v(1,2)g~(1; 1")X(1",1'; 2). (6.77)

1—i, v(,a)gg gi—' G„[Ui=1„. (6.78)
bU( )-

which also satis6es the equation

bgg(11'; U)/bU(2) =[GgX(; 2)ggf(1; 1')
=&[g~(12 1 2+) g~(1i 1~) g&(2i 2+) j~ (6 69)

By applying 6.75 to 6.57 we obtain
where the unspecified indices of X are understood to
fit into the matrix multiplication. This response function
is explicitly given by

X(1,1'; 2) =b(1,2)b(1,1')ai) n(1,3)-
bU(2)

X[g,(13 1"3)g;~(1";1')j, (6.70)

We shall henceforth adopt a summation convention for
repeated literal indices and omit the integration sign
in expressions like (6.78).

The equation for 62 is then given by
and may be determined by approximately solving the
equation analogous to (6.62),

X(1,1'; 2)—b(1,2)b(1,1')=&i v(1,3)X(4,4'; 2)

{[1—in(, a)Ggb/bU(u)egg ') g

x {[1—zv(, b)g&b/bU(b)7G& ') 262[U) —1/2) (6.79)

and is reduced to

Xb/bV(44')[G2(13; 1"3)gg '(1";1')j. (671) (gg ')g{[1—iv(, b)ggb/bU(b)fgg ')2G2[U)=1)2 (680)
In the weak-correlation approximation we may make
the replacement

t d1"G2(13; 1"3)Gg '(1";1')

—b(1,1')Gg(3; 3)& Gg(1; 3)b(3,1'), (6.72)

on multiplication by the inverse of the functional
derivative expression for particle 1. When the corre-
sponding derivative expression for the second particle
is moved to the left, (6.80) becomes

{[1—$n( )b) Gyb/bU(b) 12(gl )2(gl )1

+iv(»b)[b(g~ ')~/~U(b)3G2[Uj=1» (6 81)
and utilize the exact relation

Gg(1; 2) =Gg(1; 4)Gg(4'; 2),
b V(4,4')

which, by the argument applied to (6.79), is equal to

(6 73) {(g&
—

')&(g&
—')2—[1—iv(,b)g&b/bU(b)gp

x .(2, )fx(»', )1,)g,[U7=1„. (6.82)

thus obtaining

X(1,1', 2)—b (1)2)b(1)1')&i v(1,3)Gg(3; 4)

To approximate the exact (6.82) it is convenient to
prove an identity which we shall apply to the inter-
action term. We note that (6.75) implies

F 'X= gy[1 —zv(, b)g]B/bU(b)$ 'X. (6.83)Xgy(4'; 3)X(4,4'; 2)b(1,1')

+i v(1,1')G~(1; 4)G, 4' 1'
If we set X= V' we obtain an equivalent expression

for the combination

The equations for the Green's functions may be written
in terms of X by regarding them as functionals of V
rather than U. We first introduce the identity which may be written as

S 'V'(a) = fV'(a)+iv (a,b)b/b U(b) 7Gx, (6.86)rX=SGgGg —'X= 1—i ~' n(,a)gx Gx 'X (6.75)
bU(a) in the virtue of the commutativity of the two operators

in (6.85).
The identity obtained from (6.83) and (6.86),

(6 76) [V'(a)+iv(a, b)b/bU(b)$Gi
=G)[1—in(, b)g)b/bU(b) J 'V'(a) (6.87)

for arbitrary X. If we set X=1, we obtain

8$'
V= U+iv +i)"v(,a)ggx(; u),

BU

( )
8 'V'(a) —= f(GP) '—V' —ivb/BU$ 'V'(a) (6.84)

= f(g,')-' V' ivb/bUg— —
X [V'(a)+in(a, b)h/b U(b) j, (6.85)
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The matrix equivalent of this identity, X'e=vx',
implies this symmetry since

may be reduced to

iv(a, b)BG)/b U(b) =w(a)b) CgX(; b) Gg

=GO[1 —iv(, c)Ggb/bU(c)] '

Xiv (,b) G)b V'(a)/b U(b)

v= X'—'v= v(X'r) '= v(X'—')r = (X'—'v)'= vr. (6.93)

by subtracting V'(a)C&, so that

[1—iv(, c)Ggb/bU(c)] 'iv(, b)G,X(a,b)

=iv(a, b)X(; b)Gi. (6.89)

An equation for G2 is obtained from (6.82) and (6.89)
by two approximations. The first involves neglecting
the dependence on U of the function X', in (6.89), and

leads to

IG2 =—[1—w( )b)G~b/bU(b)]2 'iv( )a)2

XX(;a))G2[U], (6.94)
by

IG2= f [1—n (,b)G)6/bU(b)] 'w(, a)G)) 2

XX(;a)g(Gg ')2G2, (6.95)

(6.88)
The second approximation involves replacing the inter-
action term in (6.82),

[1—iv(, c)Ggb/bU(c)]-'n( )a)Gg
ix—' '(a, c—)v(c,b)X(; b)Gg. (6.90)

Ke describe by v the symmetric combination

v(a, b) =X'—'(a, c)v(c,b) (6.91)

in which the differential operator acts only on the
bracketed expression, thus ignoring the U dependence
associated with the other particle.

From (6.90) and (6.95) we obtain an approximate
symmetrical interaction kernel,

occurring in (6.90), and prove its asserted symmetry

by observing that

I=ix(; a)gv(a, b)X(; b)2,

and an equation for 62,

(6.96)

G2= (Gl) 1 (Gl) 2112+~ (Gl) 1(G1)2IG2) (6.97)
v(2,4)X'(1,4) =v(1,2)+i v(1,3)v(2,4)

b U(3)bU(4)

v(1,4)X(2,4).

which indicates more explicitly than (5.56) modifying

(6 92) effects of the medium on the interaction characteristics
of particles.


