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Abstract:

We critically discuss the various tools and methods which are used to describe the role of long wave length hydrodynamical
processes in the analysis of time-dependent correlation functions. We also review the various physical problems (long time behav-
ior of Green--Kubo integrands, 2 dimensional hydrodynamics, transport properties of the Van der Waals fluid, critical phenom-
ena ...) where these methods have received fruitful applications.
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1. Introduction

T‘he first important step towards an understanding of transport coefficients in terms of time de-
pendent correlation functions goes back to Einstein [ 1] when he developed his stochastic theory
for the diffusion of a Brownian (B) particle; he got the following formula for the diffusion coeffi-
cient D: -

1
D= lim — (A, (1)) (1.1)

t—>o 2f

where Ary (¢) = r,, (¢) — r,,(0) denotes the random displacement of the B-particle along the x-axis
in the time interval ¢, while the bracket (...) means an average over this random motion.
Let us cast this formula into a form which is closer to modern language. To this end, we write:

t .
Ar, () = f vy, (¢)dt’ (1.2)
(4]

where v, (') denotes the velocity of the B-particle. Inserting this into (1.1) and assuming that the
random process is stationary:

() v () = v, (= 1") v, (O (1.3)
we get:
11t |
D= lim — of dr’ of e’ (v, (' — ") v, (0)). (1.4)

With 7= ¢'—¢" as a new integration variable and assuming that (v, (7) v;,(0)) decays faster than
77! for large 7, the limit indicated in (1.4) can be taken and leads to:

D= [ dr(v,(r) v, (O). (1.5)
V]

More information can be obtained if we assume that v, (¢) satisfies the Langevin equation [2] :

ML E )+ le(T)

(1.6)

where £ is the friction coefficient, m, the mass of the B-particle and F,(7) is the random force
describing the fluctuating collisions of the Brownian particle with the fluid. Supposing F|,(7) un-
correlated with the velocity at time 7 = 0 (i.e., {F|,(7) v,,(0)) = O for 7 > 0), we immediately ob-
tain an exponential decay for the velocity correlation function:

(0, (1T) v, (0)) = exp{—-El7l/m, }. (1.7)

This, in turn, leads to the well-known Einstein relation D = k3 T/ (kg is Boltzmann constant,
T is the absolute temperature).
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Of course, these results have been derived within the frame of the theory of random processes.
Yet, it is very easy to guess how eq. (1.5) has to be interpreted in order to give it a purely micro-
scopic meaning.

a) The average (...) has to be interpreted as an average over the equilibrium ensemble describing
a N particle system (the B particle plus (N—1) fluid molecules) with Hamiltonian Hy,, in the limit
where the system becomes large:

. [drVdp" ... exp(—BHYy)
(...)=lim .
2 ZN

(1.8)

Here (Y, pV) symbolically denotes phase space coordinates (7, ... ry;p; ... py) and
B = 1/kgT; moreover limg denotes the thermodynamic limit N - =, £ (volume of the system) > o,
N/ = finite*; Z,, is the partition function.

b) The time evolution of the velocity of the B-particle is no longer governed by the Langevin
equation (1.6) but by the deterministic Newton’s equation:

do (N 1 X
Fra— ,ZJz Fy; (D (1.9)
where F, j,x(t) denotes the force exerted, at time ¢, by molecule j on the B-particle.

When interpreted in this way, eq. (1.4) becomes a typical example of a Green—Kubo formula,
as developed by Green, Kubo and many others (see for example {3—6]). More generally, one can
show that any transport coefficient X can be expressed as the integral of the time dependent cor-
relation function of a microscopic flow operator JX.** One has:

X = lim lim

t - -~
Jim lim — Tf(JX(T)JX(O))dT. (1.10)
—+ 0O B

0
We have, for given JX:
JX(1) = explilyT1J¥ (1.11)
where L, is the Liouville operator:
Ly=i{H,,..} (1.12)

({..., ...} denotes the Poisson bracket). Obviously, eq. (1.5) is a particular case of (1.10) with
JP =y, QKT

It is worthwhile to point out that eq. (1.5), which was derived here for a Brownian (large and
heavy) particle, remains valid when the observed particle 1 is mechanically identical to the other
fluid molecules: eq. (1.5) then gives the self-diffusion coefficient, which will often be used to
illustrate our discussion. However, in this case as well as for the other correlation functions, we

*As we shall not be able to say anything mathematically rigorous on this thermodynamic limit, we shall often keep it implicit,
assuming that it exists. R
**We shall often use the term “operator” for any quantity 4 which depends as a function or as an operator in the usual sense on
the dynamical variables of the system: A=A (rN, pN ).
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have generally no proof of anything like (1.7): this latter result is a consequence of the Langevin
equation (1.8) and not of the equation of motion (1.11).

Nevertheless, it was generally believed that a property analogous to (1.7) was valid in general,
at least far from the critical region and for uncharged systems. More precisely, defining the
Green—Kubo integrand X(¢) by:

1

JX(E) TX0)) (1.13)
o7

we can express this assumption by the following inequality:
| X(£)! < B exp(—t/t,) N (1.14)

where B and 7, are adequate constants.

It is true that (1.14) was supported by extremely few detailed calculations, and always on very
simple models (like the dilute gas [7]). Moreover, the discovery of the non-analytic character of
the density expansion of transport coefficient [8] already pointed out that these Green—Kubo in-
tegrands did not behave as smoothly as one could hope. Yet, it came as a great surprise when
Alder and Wainwright [9, 11] published the result of a computer calculation for the self-diffusion
Green—Kubo integrand D(¢) of a hard sphere system; they find a very slow decay which, for
times ¢ larger than about ten collision times, was well represented by:

D(t) ~ t79/2 (1.15)

where d denotes the dimensionality of the system (d = 2, 3) (see fig. 1.1). At the same time, by
carefully looking at the pattern of the molecular motion in their simulated system, they gave a
very simple interpretation of (1.15) in terms of hydrodynamics.

Their argument can be put in the following terms: suppose that, at £ = 0, we give velocity v,
to molecule 1 (fig. 1.2a). This particle interacts with its neighbours and, after a short (microscopic)
time 7, its initial momentum is shared by all the molecules lying in a small volume §2, around it
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Fig. 1.1. The decay of the velocity autocorrelation function at large times for hard disks at three densities: A/ = 2, 3 and 5. The
closed and open triangles refer to molecular-dynamic runs of 986 and 504 particles, respectively (taken from ref. [101]).
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(fig. 1.2b); it will then be at “‘local equilibrium’ with this volume and move with velocity*:

V1, (T) ~ v, (0)/n €2, . (1.16)

The further decay of v, (#) can only occur because this moving volume 2, grows larger and

larger. Now, how complicated the initial expansion of £, may be, we expect that, for long times,
this expansion will be described by hydrodynamics; the velocity field then propagates by two
mechanisms:

a) Sound wave propagation, which is a fast process and can be neglected here.
b) Shear mode propagation (or vorticity diffusion), which ensures that the radius R, ** grows

by a diffusion process (see fig. 1.2¢):

R(t) ~ /vt (1.17)

where v is the kinematic viscosity (v = n/p; n the shear viscosity; p = nm; m mass of the fluid par-
ticle). Thus

Q, ~ (v1)?? (1.18)
and
v, () = v, (0)/(v)¥/2. (1.19)

This last result immediately leads to:
D(t) ~ 1/(wt)¥2. (1.20)

However, in this rough argument, we have assumed that particle 1 was staying at the center of

€2,; we should more correctly take its own diffusive-motion into account. We get then:

D(t) ~ 1/[(v + D)t)9/? (1.21)

in agreement with (1.15).

As we shall see later, more refined theories confirm this result.
Of course the use of hydrodynamical concepts in the calculation of transport coefficients is

not new. It goes back to the thirties, when Debye, Onsager and Falkenhagen [12] computed

&
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Fig. 1.2. Schematic picture underlying the slow decay of D(f).

*Because the fluid molecules are at thermal equilibrium, with an isotropic velocity distribution which does not contribute to
transport phenomena, we may develop the argument as if these molecules were all initially at rest.
**[n a more exact calculation; one should take into account that the volume §2, is not a sphere (for instance, in 2d, it is bell
shaped). Yet our dimensional argument is not affected by this.
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the transport properties of dilute electrolyte solutions. Later these ideas were transposed by
Fixman [13] followed by Kawasaki [14, 151, Kadanoff and Swift [16] and many others, in the
field of dynamical critical phenomena. In these two problems there exists a natural length (re-
spectively the Debye length and the correlation length) which is large compared to molecular di-
mensions: hydrodynamical effects thus were not unexpected. Yet, as we shall see later, the “long
time tails” of the type (1.21) have precisely the same origin — although there is no natural large
length in the problem — and they are treated by the same formalisms, which are known as
mode—mode coupling theories.

The aim of the present report is to give a critical discussion of these various formalisms as well
as a general review of their applications. The need of such a synthesis was felt when the authors
tried to go through the literature on the subject: indeed, there is a great variety of apparently
different starting points; generally — and sometimes quite surprisingly ! — very similar conclusions
are reached; but very rarely can one find the interconnection between these different approaches.

Roughly speaking, one finds three types of approaches of increasing mathematical sophistica-
tion:

i) The phenomenological approach [11, 17, 18] : in this optimistic view point, one is ‘“‘a priori”
confident in the correctness of the picture described above and one puts it in a quantitative form
with the help of macroscopic hydrodynamics and equilibrium fluctuation theory.

ii) The fluctuating hydrodynamics approach [19, 26] : here, one first remarks that the linearized
equations of macroscopic hydrodynamics, which allow one to define the transport coefficients —
and thus the Green—Kubo integrands as well — are the result of the ensemble averaging of the
equations of motion for the fluctuating microscopic conserved quantities. Difficulties with the
Green—Kubo integrands thus manifest corresponding pathologies for the dynamics of these fluc-
tuating quantities; this dynamics is then reconsidered either on a purely stochastic basis or by
making suitable hypothesis on the microscopic Langevin type of equation which emerges from
the Zwanzig—Mori formalism [27, 28]. In both cases, an essential feature is that these fluctuating
conserved quantities obey coupled non linear equations.

iii) The kinetic approach [29, 36]: here, the program is, at least in principle, to make a detailed
many-body analysis of the Green—Kubo integrands. The hydrodynamical effects appear here as
contributions, dominant in the long wave length limit, to the “propagator” describing the exact
dynamics of the particles in the system.

Of course any classification of this type has some degree of arbitrariness; for example, some
works on critical dynamics [ 14, 16] are somewhat on the border line between (i) and (ii) while
taking the “‘microscopic” Langevin equation as a starting point still allows one a kinetic dis-
cussion [26]. However, this distinction will be pedagogically useful in sections 2 and 3 where
we shall respectively summarize the fools and the methods followed in these different approaches.
The methods will be illustrated by considering the velocity correlation function, already discussed
above. In section 4, we take a different view point and we try to summarize the type of results
which have been obtained by these various mode—mode coupling approaches; there we discuss
the different properties of the Green—Kubo integrands which have been discovered in normal
fluids (including the surprising non-existence of transport coefficient in 2d) as well as applications
to critical phenomena and to the transport properties of the Van der Waals fluid. Some conclu-
sions, in particular concerning the relevance of these calculations with respect to experiments,
are presented in section 5.

Let us add one remark about the references given at the end of the paper; we have tried
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to give a complete list as far as the mode—mode coupling problems are concerned. However, as
will appear clearly in the following, we shall also touch upon a great variety of related problems;
there, we have not attempted to be exhaustive by any means and, very often, we refer to existing
textbooks or review articles rather than to the original papers.

2. The tools
2.1. Phenomenological approach

In transport theory of fluids with a single component, a fundamental role is played by the five
conserved macroscopic quantities, namely the particle density n(r, ¢), the momentum density
g(r, t) and the energy density &(r, #) (this latter involves both the internal energy e(r, t) and the
kinetic energy mn(r, t) v*(r, t)/2). These conservation laws are formally expressed by*:

1 _ .
a,n(r, N +—V-g(r, 1) =0, o,8(r, )+ Vv -1(r,)=0, 3E(r, )+ V-j(r,)=0 2.1
m

where 7(r, t) is the stress tensor and j € is the energy flow. These equations tell us that the number
of particles, the momentum and the energy contained in a given volume « can only vary by flow-
ing through the boundary of w; yet, the detailed description of this flow requires supplementary
assumptions on the currents 7 and j¢ in order to make (2.1) a closed system of equations [37, 38].

Here, we limit ourselves to a system which is very close to absolute equilibrium; this allows us
to linearize all quantities around this equilibrium state. For example, we write:

n(r, t)=n+ én(r, 1), e(r,t)=¢€+ 8e(r, t) (2.2)

with the convention that when the (7, ) dependence of a given quantity is not indicated, its
equilibrium value should be taken. We also assume that thermodynamic properties can be defined
in this slightly out of equilibrium fluid and that they are interrelated in the same way as at
equilibrium; this so-called local equilibrium assumption will be used over and over again in the fol-
lowing. For example, the local pressure p(r, #) still exists and is

- p(r, ) =pn(r, 1), e(r, 1) (2.3)

where p = p(n, €) is the function of (n, €) which defines the equilibrium pressure. Finally we take
for 7 and j¢ the usual macroscopic expressions:

ov(r, 1) av]-(r, ) s 3 a1
rylr, 0= p(r, 08— (= ) 86 3w 2 = (2.4
(Newton hypothesis) and
jér, £) = hu(r, t) — kVT(r, 1) 2.5

(Fourier law).

*Throughout this paper vector symbols will not be explicitly displayed and scalar products will be denoted by a dot, asinv -w
orv-g
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In these formulas, n, ¢ and k respectively denote shear viscosity, bulk viscosity and thermal
conductivity; 2 is the equilibrium enthalpy density and v(r, ¢) is the velocity field which, in our
linear approximation, is simply:

wr, 1) =g(r, 1)/p; (2.6)
moreover the local temperature T(r, t) = T + 8 T(r, t) is defined by:

8e(r, 1) = nC,8T(r, 1) + (:—:) sn(r, 1) 2.7
T

(C, is the specific heat per particle at constant volume).
Collecting these results, we easily arrive at the following equations of linearized hydrodynamics:.

3,6n(r,t)+nv-ur, t)=0, (2.8a)
Lop 1 ot (3 v w1 =
o,u(r, t)+p(an )T voén(r, t)+p(aT)n V8T(r, t) —vVu(r, 1) ( )V(V u(r, 1)) =0, (2.8b)
T (%) . L _
38T(r, 1) + nC., (aT),,V u(r, t) nC, visT(r, t)=0. (2.8¢)

In order to get an explicit solution of these equations, we define the Fourier—Laplace trans-
form with respect to space and time; for example:

Raw = [ df exp(—iwnn,(0) (2.9)
0

n, (8= fdar exp(ig- r)én(r, t) (2.10)
Q

etc. ... and we arrive at the linear system of algebraic equations:

—iwn, , +ing-v, , = nq(t =0),

’ _ 1dp _lop ¢+n/3) o
_glqu""ﬂq;a_n an’w+1q;ﬁ an’w+ {quvq‘w+ qlq- vq,w] =y,(t= 0), (2.11)
L . T op K _ _

—iw T, ,*i nC. 3T nq- vq""+nCv q? T, =T,(t=0).

The solution of (2.11) can obviously be reduced to the calculation of the five eigenvalues
M(a =1, ... 5) and eigenvectors of the (non-Hermitian) homogeneous problem associated with
these equations. In the small ¢ limit, which is of interest to us here, one readily finds:

Ay, = ticqg - Tq?, A3 4= —19%/p, As = —kq*/nC, (2.12)

where:
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B

and c is the sound velocity:

C, /o
cz=_e(£) _ (2.14)
C,\on/,

Clearly, A, , describe damped sound-wave propagations, A, , express the viscous damping of
the transverse (or divergence free) velocity and A corresponds to the damping of the thermal
mode [38].

The corresponding eigenvectors are easily written down also but we shall not display them here.
Transformmg back to the time variable, one then derives the explicit form of #,(#), v,(f) and

T,(2). For example, we get for the transverse component of the velocity field:

Va0 = v, () — q(q - v, (D)/q* = v, (0) exp(—q*vr) (2.15a)
and for the longitudinal part:
v (1) =q(q- vq(t))/q2 = cos(cqt) exp(—l"qzt)vq,,(O). (2.15b)

Let us stress that the above derivation was done at the level of macroscopic physics; its range
of applicability is thus limited to phenomena which are slowly varying in space and time. The
way in which such a hydrodynamic description can be used in the analysis of the Green—Kubo
integrand (1.11) which involves an equilibrium average over microscopic time dependent fluctua-
tions, is by no means trivial and will only be discussed in section 3.

Yet, to suggest the possibility of using macroscopic concepts in a microscopic problem, it is
worthwhile to recall briefly here a somewhat analogous though much simpler problem, namely
the regression of the density—density correlation function S,(¢) defined by:

1 . .
S, () = <7\7 n (tn_,(0) > (2.16)
where 7 q is the Fourier transform of the microscopic density n(r):
N N
ar, t) = Z)1 8(r — r 1)), n, () = 231 exp(ig - r(1)) (2.17)
i= i=

and depends on the detailed motion of all the particles in the system. In order to analyze (2.16),
we use a somewhat modernized version of the Landau—Placzeck theory [39, 40]. We perform
the trace (see (1.8)) in two steps (such partial averages have been used in various contexts: see
for example [27, 411]):

i) we make a partial phase space average with prescribed density fluctuation (n,),*

ii) we then average over these fluctuations.

*To be complete, we should also prescribe four other conserved quantities: the velocity vg and, for example, the temperature T
defined in terms of the observable fluctuations ng and €q with the help of (2.7). However, these variables fluctuate independently
of ng and we shall neglect them from the beginning.
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With the help of (1.12), we write thus*:

I
So(0) = lim —{ fdn, Pynn, [ dr™ ap™i_gexp(—iLym)oh(n)] ] (2.18)
where
8(n,—n,) exp(—BHy)
ol (n) = ——ra~"q) KPCBHy (2.19)
Jdr¥ dpN 6(n,—n,)exp(—BH,)
Py(n) = [dr dp™e(n,—h,) exp(—BHy)/ Zy. (2.20)

It is clear from (2.19) thatp }V(n q) represents an equilibrium state except for the constraint that
the local density 7(r) (or 7 q) is prescribed. If q is small enough, we can split our system in cells of
size R such that ¢ € R™! < (molecular length)™ and, in each of these cells, we find an equilibrium
situation with constant density. Hence, the only time evolution of p’, comes about because the
density is not uniform from cell to cell. Identifying the density in each cell with the macroscopic
local density, we can suppose that its time evolution is governed by the equation of hydrodynam-
ics (2.8). At any time, we then assume that the distribution function p}v adapts itself to the local
equilibrium state characterized by the density n q(t); we write thus for large N:

pi(ng; 1) = explily t] py(n,) = piy(n, () (2.21)
with nq(t) determined by (2.9, 11). Inserting this result into (2.18), we readily obtain:
o1
So(0) = lim —fdng ngn_y(t) Py(ny). (2.22)

a remarkable result, though only valid in the small wavenumber limit: indeed it no longer de-
pends on the details of the microscopic motion of the molecules in the system.

As a matter of fact, even the calculation of PN(nq) (see (2.20)) does not require statistical
mechanics at a microscopic level. Indeed, in the small wavenumber limit, we can argue that n a is
a macroscopic deviation from the average density; Py (n q) can then be calculated from the well
known thermodynamic fluctuation theory [41—43]. One gets:

1 172

Py(n) = (m) exp(— I 14/ 29, Tn?xp) (2.23)

where X is the isothermal compressibility. Incidentally, let us point out a similar formula for the
probability distribution of the velocity fluctuations:

1/2

nm
Ppv,) = (m) exp(—Ilv, Znm/2Qk,T) (2.24)
which will be used in section 3.

*From (2.17), i ng = nq + mq is a complex quantity, whlch satlsfles nq = n__q, the integral over nq and the Dirac delta functions in
(2.18-20) should thus be expressed with the variables nq and nq We shall however ignore this point here.
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With the help of (2.23) and of the solution of the hydrodynamic equations (2.11) (with the
initial conditions v,(0) = T,(0) = O; see footnote on page 72), one readily gets the explicit form
for S (t):

q

C, C
S,(1) = nkTxy [( — Fv)exp(—q%ltl/nCp) +Fv cos(gct) exp(—I'q? Itl)] . (2.25)
P p

It would be out of place here to comment any further on the well-known Landau—Placzeck
formula (2.25). Let us simply point out that there is a big difference between the correlation
function Sq(t) and the Green—Kubo integra}nd (1.11): the dypamical variable 7 q(t) is conserved
(ie. lim,_, o {Hy, i, } = 0), while the flow J*(¢) is not ({Hy, JX} # 0); nevertheless, we shall find
striking similarities between the ideas leading to (2.25) and the mode—mode coupling treatment
of the Green—Kubo integrands, to be presented in section 3.

Before closing this subsection, let us still remark that we have treated here the linearized hydro-
dynamics of a fluid made of particles of one single species. Later on, we will also need the hydro-
dynamics of a binary mixture, in the very special case where one of the species is infinitely dilute.
Thus the properties of the second species are unaffected and are still described by the above
formulas. Yet for the dilute species, we find a single diffusive mode: if we denote by n,q the
Fourier transform of the density of this dilute species, we have:

3eny o (8) = —q°D n,y o(2) (2.26)

where D is the self-diffusion coefficient already considered in (1.5).
2.2. The fluctuating hydrodynamics approach

As already pointed out for the case of the density (see (2.17)), the macroscopic conserved varia-
bles are statistical averages of well defined microscopic operators. The unexpected behavior of
transport coefficients, which we indicated in the introduction, makes it worthwhile to reconsider
the assumptions underlying this averaging procedure.

That the problem is non trivial can be seen on the following example: consider the microscopic
momentum density, defined by:

N
g0, )= 2 p(H8(r—r,(1)). (2.27)

From Hamilton’s equations of motion for r (¢), it is readily seen that:

d8(r, )= —V-1(r, 1) (2.28)
where the stress tensor operator is defined by:

—vr(r,t)=iLygr, t). (2.29)

Assuming formally that 7(r, t) is slowly varying over the range of the forces*, we can get the
following representation:

*This assumption, which may appear very strong in view of the singular nature of 7(r, ), is really no more than a mathematical
convenience, as shown for example in references (44, 45].
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N
W, = 23 [vapa -1 2 Ll rab] 8(r—r (). (2.30)
a=1 b#adl,,

Eq. (2.28) is of course the microscopic analog of the conservation law (2.1b) and the con-
nection between these two expressions follows by averaging the former over an arbitrary time
independent ensemble. In both cases, apart from expressing the conserved nature of momentum
density, these equations are void of physical meaning.

What we really need is the microscopic analog of the Navier—Stokes equation (2.8b) and this
can only be obtained at the price of much stronger assumptions, which we now discuss.

Zwanzig and Mori [27, 28] have provided us with a particularly convenient formalism to do
this. To simplify, we shall discuss this formalism here for a hypothetical system with only one
conserved quantity, denoted a(r, t).* The generalization of the forthcoming results to a realistic
fluid, with its five conserved operators, requires no more than the use of a suitable matrix nota-
tion.

Following (2.10), we denote by dq(t) the Fourier transform of a(r, t). The conserved nature of
&q(t) tells us, that in analogy with (2.28):

3,0,() =i Lya, () =iq-j,); (2.31)

the explicit form of the current] will not be specified.
We then define an operator in phase space denoted by P

P, =aq(a_q...)/(a_qaq) (2.32)

where the bracket (...) has been defined in (1.8). Thus, for any phase function ..., Pq transforms it
into a function proportional to &, = a4,(0). One readily verifies that P, is a projection operator:

P:..=P, .. (2.33)
which projects any function on the subspace of the dynamical variable ag. In particular

~q.q -a,. (2.34)

We now use the identity:

iLya,(t) = ig- exp(iLyt)], (2.35)

with fq = fq(O), as well as:

-~ t - -
U,(®) = exp{i(l —Pq)LNt} =exp(Lyt)— ifexp (iLp(t—7)) P, L\ U, (1) dr (2.36)

which is readily verified by differentiation.
Inserting (2.36) into (2.35), we get after a little algebra:

t -~
3,a,(1) — 1w,y (1) = — [ B (t—1) a (At + F (1) (2.37)
0

*If the reader wants to make the following analysis more concrete, he can think of (7, ) as being the magnetization in an isotropic
spin system, or the transverse velocity field in an incompressible fluid.
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where the frequency w, is defined by:

_glpa_gap (2.38)

w,=—q-<a
and describes the non-dissipative part of the transport of a,.
With only one conserved variable, we have identically, as a consequence of the equations of

motion (and possibly of the symmetries of the system):

W,=0=0 (2.39)

q=0

although this is not true in general. For simplicity, we shall however always assume (2.39) in the
following. Moreover, the dynamical variable F q(t) is given by:

F ()= U (01 — P )(—ig-],). (2.40)
Finally, the so-called memory function <I>q(t) is given by:
D, (1) = (F_ (0 F JINa_qag). (2.41)

Although (2.37) is an exact consequence of the Liouville equation much as (2.31) is, it is never-
theless very useful because it is written in a way that suggests approximations. Indeed, we remark
that the structure of this equation is very similar to the Langevin equation (1.6); for this reason
(2.37) is often called the “‘generalized Langevin equation”. In particular, Fq(t) is analogous to
the random force of Brownian motion theory and one can easily check that it satisfies the familar
requirements*:

(F()=0 (2.42)
CE_ (1) @, (0) = 0. (2.43)

Moreover (2.41) is the fluctuation dissipation theorem [38, 41].

This analogy becomes even closer if we make an approximation on (2.37) whose eventual
validity will be crucial to the usefulness of this theory: let us remark that F (¢) is defined in a
space which is orthogonal to @, (because (1 — P, )a, = 0); similarly the memory function @, (1)
is also defined by an average over quantities orthogonal to a,. Thus if we assume that for small g,
a is the only slowly varying operator of our problem, we expect that (t) will be very
rapldly decaying, at least in the thermodynamic limit, on the time scale charactenzmg the decay
of a,(¢). With this assumption, eq. (2.37) exactly reduces to the Langevin equation:

3,d,() = —®,a, (1) + F (1) (2.44)
with

= f(bq(r) dr (2.45)

*Notice that (2.43) is not a trivial consequence of (2.42) because the two “random” variables ﬁq(t) and &q(O) are defined in the
same sample space, i.e. in phase space.
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and

(F_(0) F (1)) = 2@ (a_ ,a,)8(r). (2.46)

What is the relevance of this result to transport theory? As we already pointed out the
macroscopic variable a (¢) is defined by:

a ()= [dMdpVa (1) oy, PNy (2.47)

where pp (Y, p") is the initial non equilibrium N-particle distribution function in the system and,
for small initial deviations from equilibrium, we expect that in the long term we will have a
hydrodynamic behavior:

a, () =  exp(—q*tua,(0) (2.48)
q—>0
q2t finite

where u is the transport coefficient associated to the diffusion process for a,. Yet for arbitrary
initial conditions, eq. (2.37) is not very useful because:

F )= [V dpV F () o™, ) (2.49)

is non zero, and presumably a very complicated function of time. Nevertheless we may hope that
after a long time the role of the initial preparation of the system will be completely forgotten
(see discussion leading to (2.44)) and we are thus free of choosing the most convenient initial
state; then we take p, as describing a small local equilibrium deviation from absolute equilibrium

Py =Pyt a_gb,p3} (2.50)

where p3? denotes the canonical equilibrium distribution and b, is the parameter conjugate to d,,
which we do not need to specify here. Then (2.47) becomes

a,(t) = (@, () a_,(0)b, (2.51)

and we get immediately from (2.37) the following kinetic equation for the correlation function
(a (1) a_L0)):

t
3,1 a_g(00) = — [® (t—1) @,(t) a_o (Ot (2.52)
(1]

It is now easy to see how (2.52) may lead to (2.48) with an explicit definition of u; indeed
taking the Laplace transform of (2.52) (see the notations defined in (2.9)), we have:
G & (O (a,a_g) (2.53)
a,.a = .
T+ iw+e,
Because the random force (2.40) is proportional to g, we can write:

Do w =T Mg 0 (2.54)
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with:
f eIt dK]_ (1-P_ YU (t)(1-P ) Ma,a_) (2.55)

and this tells us immediately that, for small g, the singularities of (2.53) closest to the real axis are
only at a distance of order ¢* from this axis. Because we have assumed that (IJq(t) was rapidly de-
caying in time, we have

g 0 ~q2 =I~1q,0(1 +O(6[2)) (2.56)
and this leads us indeed to the exponential decay (2.48) with the following definition of u:
u= lim Mg w (2.57)
q—>0
w =0

provided that this limit exists. Now, from our assumption (2.39), we have

lim (1-P,), =/o (2.58)

q—>0

and the conserved nature of @ a implies that:

lim (1—P,)Ly = Ly . (2.59)

q—0
Defining now the static susceptibility
Xq =(@qa_p (2.60)

(which must not be confused with the isothermal compressibility x,) we can cast egs. (2.55, 57)
into the following form:

T {foexp(iLyT)o)
u=[dr JoexpULyTY o)
Xo

(2.61)

This is precisely the Green—Kubo formula (1.11) for our hypothetical model.

Yet our main objective is not so much to rederive the Green—Kubo expressions, but rather to
find the flaws which might occur in their derivation. One such difficulty now clearly appears: we
have assumed that dq was the only slowly varying quantity in our system: this is wrong because,
for small enough wavenumber, products of ¢ like dq,dq_q:, dq:dqudq _q'—q' - AT also slowly vary-
ing. Yet the part of these operators orthogonal to dq have nevertheless been included in the
“rapidly” varying <I>q(t) and F q(t)! Let us stress that this remark does not contradict the validity
of the exact equations (2.37) and (2.52); still, it now appears as plausible that the Markoffian ap-
proximations made in deriving (2.44) and (2.61) are unjustified. Notice moreover that this state-
ment may be too strong because the weight of the contributions of these products of @, to F(t)
and ®,(¢) may very well be negligible. As we shall see later, this latter possibility is partly sup-
ported for transport coefficients in three dimensional fluids far from the critical point where, for
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example, the Green—Kubo formulas (2.61) indeed define well behaved transport coefficients.
Nevertheless, the point made here indicates that we have to be extremely careful in dealing with
these non-linear effects.

One of the beauties of the Zwanzig—Mori formalism is that it can easily be adapted to take care
at least formally of the present difficulty. The basic idea [15, 46] is to derive a generalized
Langevin equation but now with the help of a projector which also eliminates products of modes
ag. In order to do this, we define a vector of infinite dimensions, A @ whose component A’ a;} is
given by the product:

H a, (2.62)

q Ziq;

minus some linear combination of products of (] 1), (j—2) ... operators a, . This linear combina-
tion is uniquely defined by the condition (A{IA’ y =0ifj# j'; moreover the wave-numbers g,
are all taken smaller than a cut-off value g,. The motlvatlon for this cut-off is that for |g}] > q,,
we expect the various products (2.62) to be rapidly decaying and of little interest; neverthe-
less, the introduction of this cut-off is rather artificial, as we shall discuss later on. For example,
the two first components of A are:

Atll=dq (2.63a)
Ac21+qi—q’=&q+q',d——q’ aq<aq qraqra_q>/( q —q (2.63b)

(q' arbitrary but smaller than g,).
We have then indeed

(A% gt _ g A = 0. (2.64)

Correspondingly, we define also the operator A o(8) = exp(iL Nt)/i e
We now introduce a projection operator ?, by an extension of (2.32):

=A, GA_ A" (A, ). (2.65)
With the help of (2.33), we can now write the analog of (2.37):

-~ - t -~ -
3,A4,(6) —iQ,- A (1) = ~f Y (t—1') - A (t)dt' + F (1) (2.66)
0

We shall not display here the explicit form of ¥ ¢() and of the matrices 2, and y ; they ex-
tend in an obvious manner (2.38, 40, 41).

A further formal simplification is reached when one realizes that (2. 66) is redundant*. For in-
stance, we have from (2.63b):

2, A%(t) = 8, exp(ilyt)[dg_qdg' — -]
= at[&q_qr(t) éqr(l‘) - ...]
= [8,a,_y (O] () +a,_y(O[3,a,(0)] — ... (2.67)

*Nevertheless, it is sometimes convenient to consider this whole set of equations [22].
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Hence, provided we are ready to face non-linear equations, we may as well consider only the
first component (i.e., a,&q(t)) of the vector equation (2.67). If we limit ourselves to bilinear
terms in @, which hopefully will already describe the relevant physical properties, we get

20 —i 2 QT AR, (0=
1<qo

t t

== [V a (1)t — qg WAz o e—)dE + F D) (2.68)
V] 0 0

together with the definition (2.63b). Here, we have used an obvious superscript notation to

characterize given elements of the matrices 2, and ¢, and of the vector ¥ a For example, we

have

£ @’ = %(dqLNA¢21+q’—q’>/<A2—q—q’;q’A¢21+4’ _— (2.69)
(ihe factor  is to avoid overcounting); usually this quantity can be approximately evaluated in
terms of simple equilibrium properties of the system, like the susceptibility (2.60) etc. ...

Except for its limitation to two mode couplings, eq. (2.68) is still an exact identity, just as
hopeless to solve as the starting equation (2.31); in particular, the complicated structure of the
projector ? , makes it almost impossible to get even an approximate form for the quantities d/q
and ¥ ;. Yet, we may adopt a more phenomenological attitude and repeat the argument which
first led us to (2.44): now that hopefully all slowly varying quantities have been eliminated, we
assume again that ¢ o(1) and F () are rapidly varying. Moreover, we use a set of assumptions
which are probably less crucial but which are nevertheless required to bring the theory into a
manageable form:

i) The dissipative part, \bg;q"q‘q', of the non-linear coupling is neglected, with little more justi-
fication than that of simplicity.

ii) One treats situations where:

a_n=0 (270)

(@_glqsqd_q

which is generally valid in the absence of a non-vanishing order parameter.
iii) Although the quantity:
Y= f dr y29(r) (2.71)
0
is in principle well defined in dynamical terms, one cannot evaluate it explicitly. However using
(2.35) (for t = 0), one easily verifies that Y& 9= q*; one writes then:
V&= q%u0 (2.72)

and p, is taken as a phenomenological parameter, often called ‘‘bare transport coefficient”’.
We arrive then at the following non-linear Langevin equation:

3,a,(t) — i q,?qo QLT g, (1) 3,1 = —qPuoa (1) + FU0). (2.73)
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As it stands there, this equation is not yet of any direct use, because the force F 2(®) is not
specified, except by a useless formal definition analog to (2.40). Moreover the “random variables”
a, and 7 are still defined with phase space as sample space. To overcome these difficulties, more
phenomenological assumptions are needed:

i) One approximates the probability distribution for the initial value a (O) a, by a Gaussian
(see (2.23), (2.24))

Py(a,) = exp(—a,a_,/2Aa,a_,)). (2.74)

q“-q
ii) One assumes that the random force F 2(2) is a stationary Gaussian random process, indepen-
dent of &q(O), and with second moment characterized by the fluctuation dissipation theorem:

(FZ3(H) FUL)) = 247 nod(2). (2.75)

Although the coherent nature of this latter assumption is supported by the fact that it main-
tains the stationary nature of the correlation function (d_q(t +7)a,(r)), we know of no deep
justification for its use. Once again simplicity is the guiding principle*.

Egs. (2.73—75) completely define the stochastic process ,(#), although the task of explicitly
solving the non-linear Langevin equation is not an easy one. Yet, in principle, we can calculate
from it the correlation function <&_q(t) &q(0)> and we can then investigate the ‘‘true” wave number
and frequency dependent transport coefficient Mg, > Which is now defined with the help of
(2.53, 64). This method will be illustrated in later sections but, presently, let us limit ourselves
to a few general remarks:

i) As is well known [47], when we have a Langevin equation for a stochastic process, we can
equivalently write down a Fokker—Planck equation for the time dependent probability distribu-
tion; this has indeed been developed, in particular in the elegant paper of Zwanzig [19]). To save
space, we shall however not discuss this viewpoint here.

ii) A comment is in place about the cut-off dependence of the Langevin equation (2.73): of
course, from the way this cut-off has been introduced, it is clear that the solution aq(t) of the
exact equation (2.68) is independent of g, for all times: this is simply because there is no such
parameter at the starting point, eq. (2.31). Yet this exact equation had to be mutilated in order
to bring it into the manageable form (2.73) and, in this procedure, the cut-off independence of
the theory has been lost. The best one can do is either not to bother about the cut-off dependence
of the final results (because one is only interested in model calculation) or to force a cut-off de-
pendence on o (notice that the exact Yais cut-off dependent) in such a way that the true zero
frequency transport coefficient wo,o (provided it exists!) is cut-off independent; but even if this
point of view is adopted, one cannot force the solution a,(t) to be q, independent for all times;
a third attitude would be to take g, = = but then, for large g, one cannot take u, to be w and
g-independent, which introduces extra complications in the theory. These remarks clearly show
that the definition of u, is rather arbitrary and that one cannot give a deep physical meaning to
this “bare’ transport coefficient: it has no unique purely mechanical definition as we have found
one (eq. (2.61)) for the transport coefficient. Of course we see formally on eq. (2.73) that u,

*Of course an exact result, analogous to (2.37) holds here, namely: (9 (t) 7 q(t)) = wq 9(¢) and, in the Markoffian limit, this
reduces to (2.75). However we have no reason to expect that the exact?orce g q(t) isa Gaussnan process and thus the correlation
function of 9‘1(1‘) only gives us a very limited information.
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is the transport coefficient which would be measured in a fictitious fluid where all fluctuations
would vanish. While this definition is perfectly meaningful in the frame of a stochastic theory,

it does not help us in giving any microscopic meaning to it: from this point of view, the analogy
of this bare transport coefficient with the bare charge in quantum electrodynamics — where this
latter can at least be formally defined in terms of a well defined Lagrangian — remains very vague.
Kinetic theory suggests [31—34] that this bare transport coefficient can be conceived as de-
scribing the short range and short time phenomena; yet, no precise identification has been made
until now.

2.3. The kinetic approach

Though we shall see later that the methods developed in the two preceding subsections are very
powerful to deal with the asymptotic behavior of the Green—Kubo integrands — and with a
variety of connected problems — their common feature is that they avoid to attack directly.the
detailed microscopic dynamics; this is achieved at the price of reasonable but not completely
justified assumptions.

To get a deeper understanding of these assumptions, one needs the detailed many-body analysis
which is provided by kinetic theory. Unfortunately, such an analysis becomes rapidly technically
very involved and, not to burden the reader with very awkward mathematics, we shall remain
rather sketchy: we shall try to pick up the relevant ideas of this kinetic theory approach and to
illustrate them on rather simple examples. We refer the reader to the original literature for the
details.

A first point we want to illustrate is how the evaluation of the Green—Kubo integrands can be
reduced to a typical problem of kinetic theory. In this aim, let us consider again the example of
the velocity autocorrelation function

D(t) = v, () v, (O)). (2.76)
Using the definitions (1.8) and (1.12), we may write this explicitly as: v

D) = lim [dr¥ dpV v, expl—iLyt]v,, o33 - (2.77)
Q

Noticing that v, only occurs on the left of the operator of motion, we may rewrite (2.77) as:

D(t) = [dp, v, 80,(p,: D) (2.78)
with the following definitions:
Soi(pi: 1) = lim [dpV='drY spp (Y, pV i) (2.79)
Q
Spn (Y, Vi 1) = expl—iLyt] 8pp (Y, PV; 0) (2.80)
Son (™, pV;0) = v, p32 . (2.81)

We now remark that §p, (¥, p"; ) satisfies the Liouville equation:
i9,6py = Lyopy (2.82)
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and, except that it has phase space integral which is zero, it can be interpreted as a time depen-

dent N-particle distribution function. Then 8¢,(p,; ) analogously represents a non equilibrium

one particle velocity distribution function. Obtaining a closed equation for this reduced d.f. from

the exact solution of the Liouville equation is precisely the central problem of kinetic theory

and there exists a variety of methods to solve this question (see, for example [49--53]).
Moreover, the simplicity of the initial conditions (2.81) makes the velocity correlation function

a particularly simple example to treat, for which an extensive literature exists (see for example

[54—56]). A suitable formalism is provided by Zwanzig’s projection operator method. Define

the operator Py :

" p]e\]q
P, .. drVdph-1 .. (2.83)
v eq(pl) f
where ¢*9(p,) denotes the Maxwellian:
1
¢*Up,) _(—ECW exp(—pi1/2mkyT). (2.84)
It is easily established that this operator is a projector (ﬁ,’v = IA’N), moreover, we see that:
eq A
Spi(py; £) =1lim tp_f:n) Py 6pN(rN, pY; 0. (2.85)
2 p§

It is then a matter of straightforward calculation to prove from (2.79—85) that 8y,(p,; t) obeys
the following non-Markoffian linear kinetic equation:

t
3,801(1; 1) = [dr Go(p137) Spu(py; 1-7) dr (2.86)
0

where the one-body collision operator is defined by

Golpr;T) = — lim [ dp™ "Ly exp{—i(1 —By) Ly H(1~Pr)Ly 038/0" ()] (2.87)
Q

This equation has to be supplemented by the initial condition:

8p1(p1; 0) = v, vi%p,). (2.88)

We defer a proof of eq. (2.87) to Appendix A and we rather limit ourselves here to a few
general remarks:

i) It is obvious from the definition (2.83) that the projection operator PN is a very complicated
object and, for this reason, no mathematically rigorous properties of Go(p,;7) are known. In par-
ticular there is no general proof that the thermodynamic limit involved in (2.87) exists.

ii) Because of this complication, one is always led to some kind of perturbative analysis of
(2.87) when explicit results are needed. We shall illustrate this point for the low density case in
Appendix B and also in section 3. It is comforting that these perturbation calculations always in-
dicate that, term by term at least, Go(pl, 7) is well defined in this thermodynamic limit.
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iii) A third point which is worth mentioning is the linear character of the kinetic equation
(2.86). This result is a rigorous consequence of the particular nature of the initial condition
(2.81)*; as is clear from the calculation of Appendix A, it is completely independent of any
molecular chaos assumption, which is not invoked at any stage. This point is often misunderstood
in the literature.

iv) As a last remark‘e let us stress the big difference between the projector P ,eq. (2.32) and
the present operator Py, eq. (2.83). In the former case, we have projected over the conserved
variable a,, which depends on the whole set of dynamical variables r, .. . In» Dy - Py and, conse-
quently, we have lost track of the detailed motion of the particles in the system. Here, on the
contrary, we study the velocity distribution of the tagged particle 1 which was put out of
equilibrium at ¢ = 0, keeping thus a detailed information on the dynamics of this particle; of
course, by the same token, we have lost the dynamical information on the other particles:
this dynamics is implicity kept in Go(p,; 7).

Let us now see what the consequences of eq. (2.86) are for the velocity autocorrelation. func-
tion. To this end, we define the Laplace transforms

Copy, 2) = [ dr explizt] Go(py; ) (2.89)
0

D, = [ dt explizt1 D(r). (2.90)

Straightforward algebra leads then to:

1
Dz = fdsplle R ~ le‘peq(pl)- (291)
~iz — Co(py; 2)

This important formula shows that the frequency behavior of D, can be traced back in the fre-
quency dependence of the collision operator Co(pl, z). From the inverse Laplace transform:

1 .
D)=~ $exp(—izn)D, dz (2.92)

classical theorems of analysis [57] tell us that the long time behavior of D(¢) will be governed by
Co(p,, z) for small z: this is how the asymptotic behavior of Green—Kubo integrands is related to
the collision operator, which is the central object of kinetic theory.

In order to prepare the analysis of section 3, we still need to introduce some more concepts
of kinetic theory. Yet, in order to remain as simple as possible, we shall illustrate these ideas for
the dilute gas, indicating only very schematically how they can be generalized. This attitude is
largely justified by the key role of the Boltzmann equation in our understanding of the dynamics
of many particle systems, even for problems which require to go much beyond this low density
limit.

*Thls essential feature remains preserved even if the initial condition is of the form: & pN(rN pN 0)=

[}: =19,(ri D+ 2, > j@(ry, 13 pis Y] PI\? as is the case for the other Green—Kubo integrands (for the viscosity for example).
The important point is that the deviations from equilibrium can be represented as a sum of n-body (n finite!) terms, multiplied

by 3.
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To make the link with our previous discussion, let us mention that one can indeed show (see
[54—56]) that, at low density, the non-Markoffian equation (2.86) reduces to the Markoffian
equation:

3,80,(p,; D) = n A(p,) 8¢,(py; D) (2.93)

where C is the linearized Boltzmann—Lorentz collision operator, appropriate to describe self-
motion:

Opy) 801(ps, D) = [ dps [dQ21v,—0,10(R, 10,0, ) [80,(p}, D*UD) — 801Dy, DE*Upa)]. (2.94)

Here G(Q lv;—v, ) is the two-body scattering cross section with deflection into the solid angle
dS2 and p}, L p- denote the momenta after the collision process. Moreover, one shows that this
operator C is related in the following way to the formal density expansion of Co(pl, z) (see also
Appendix B):

Co(p1, 0) = n C(p,) + O(n?). (2.95)

An important property of the operator 5(p1) is its semi-negative character. More precisely, let
us use an abstract vector space notation in which any function f(p,) is considered as the momen-
tum space representation of the vector If):

) =<(pP. (2.96)
In this abstract space, we define the scalar product between two functions f{p,) and g(p,) by:
f1g) = [ dpye*3(p)) A epy). (2.97)
It is easy to prove from the definition that:

(fICIp< 0 (2.98)

and the equality sign only obtains when f = ¢°%. Hence if we define the eigenvalue problem:
CIBy = X°139) (2.99)

we see that all eigenvalues will be negative, except the one, denoted X‘l’ corresponding to the
equilibrium eigenfunction:

1$2) = 1p°9). (2.100)

More precisely, for the so-called “‘hard potentials”, increasing faster than »~* at short inter-
molecular distances, this zero eigenvalue is isolated from all the others but for ““soft potentials”
(slower than r~%) there is a continuum of eigenvalues which go up to zero [58]. To simplify, we
shall always assume in the following that we have hard potentials. Moreover, even in this case,
the eigenvalue problem (2.99) has both a discrete and a continuous spectrum. However, we shall
formally only consider the discrete part of this spectrum labelled by the indexj=1, ... .

This property of course ensures that the diffusion coefficient D = D, _, is positive (see (1.5),
(2.76, 91)).

Let us also point out that, long before the correlation function formalism was developed to
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describe transport coefficients, the calculation of these coefficients was based on the solution of
the inhomogeneous Boltzmann equation. For self-diffusion, one started from:

ofa(ry, pr;t) _
o0, (r. pis ) tuy _1_%_ = nC fi(ry, p1; 1) (2.101)
1

and looked for the solution in the long term for slowly varying spatial dependence of f;. In
modern language, one considers the Fourier transform of (2.101):

Py 1) +iquy, [ (p, ;1) = nafq(pl; 1) (2.102)
where:
[ = f d®r, exp(—iqr, )f,(ry, Py 1) (2.103)

(to simplify, we have oriented g along the x-axis), and, in order to solve this equation in the limit
of small g and large ¢, one studies the associated eigenvalue problem:

(—igu, + nCYI B = N7 19, (2.104)

Notice that the operator on the left-hand side is not Hermitian but this implies only small
technical difficulties (one has also to consider left-eigenfunction of this problem) which we shall
ignore.

One then remarks that, for # > « and g - 0, the only eigenvalues of (2.104) which will contri-
bute to the solution of (2.102) have to go to zero when g - 0; all the other eigenvalues lead to
asymptotically negligible contributions. We also notice that, at ¢ = 0, (2.104) becomes identical
to (2.99) and we conclude therefrom that there is only one eigenvalue, denoted A{, which has
the property of going to zero with q. For small g, we may expand it:

X7 =20+ g\ + g2 N (2.105)
and we write similarly:

139) = 130y + g 1By + ..
with X‘l’ =0, IEJ?) = |p*h). A straightforward perturbation calculus leads then to:

N\ = —¢*D? + 0(q?) (2.1006)
1
DB=< caly — vy, | eq>_ (2.107)
I R

Clearly, this slowly decaying mode should be identified with the self-diffusion for the dilute
gas, and, indeed, we may easily check that D? is identical to D, . , in the dilute gas limit (use
(1.5) and (2.76, 80, 95, 97)).

Besides providing a link between the Green—Kubo method and the traditional kinetic theory
description of transport coefficients, this simple calculation also has a deep interest because it
shows that, although the general solution of the linearized Boltzmann equation is very compli-
cated, its long time behavior is governed by the familiar transport coefficients. To illustrate this
point, suppose that, in some problem, we need an explicit representation of the following Green’s
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function:

X, (2)= : (2.108)

iz +iqu,; — n0(p))
Formally, this can be written with the help of (2.104)

X (2)= 2318 (@1, (2.109)
Y

iz — X
but, generally, this formula is of no much use because we do not know the eigenvalues A and

the eigenfunctions I<I>;!). If, however, we only need the low wavenumber, low frequency behavior
of X (z), then to leading order in g, we may use (2.100) and (2.106) to get the asymptotic result:

~ edqy —

X(@) g,z-0 A —iz + Dq?
which is a very convenient formula. Expressions like (2.110) will play a crucial role in the kinetic
analysis of the long time behavior of the Green—Kubo integrands.

The case of self diffusion, treated here in some detail, is particularly simple because the
Boltzmann Lorentz collision operator has one simple zero eigenvalue, corresponding to particle
conservation. Yet, a very similar analysis can be developed for the full linearized Boltzmann
equation [59—-61].

The starting point here is:

(9] (2.110)

3,8 f,(py; 1) +iquy, 8f (P 1) = C(p,) 8f (p,; 1) (2.111)
with

Clpy) 8A(py) = n [dp, [dQv,—v, l0(S2, |v;—v, 1)

X8RP DY) + BN DY) — SAp ) (pa) — 81Dl (p )] (2.112)

The analog of (2.92) holds here also, although the eigenvalue problem

Cle)=N1d) (2.113)

now has five (instead of one) eigenvalues, denoted A3 [ € (a); (e) = (1, 2, 3, 4, 5)]. Physically
this degeneracy corresponds to conservation of the number of particles, of their total momentum
and of their kinetic energy ina collision process. This is confirmed by the explicit form of the
corresponding eigenfunctions:

M): 0 (p11®) = *¥py)
7\(2),3,4 =0 (P19, 34> =y, (mkgT) " 0*%(p)), i=2,3,4,=x,,2
_ Pi s
=0 p,1®9) —\/%(MCBT ~3) o) (2.114)

Here again, the long time behavior of the solution of (2.111) will be determined by those
eigenvalues AZ of the problem:

(—iquy, + O 19D = N 1D (2.115)
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which tend to zero when ¢ = 0. From (2.114), we see that there are five such eigenvalues and, ex-
cept for minor extra difficulties connected with the degeneracy of the unperturbed zero eigenvalue,
the perturbation calculus sketched for the case of self-diffusion can be reproduced here. One finds

A, =2 icPq — I'P¢* + O(¢®) (2.1162)
7\3,4 = _VBq2 + O(q4) (21 l6b)
A = —kPq*/nCB + O(g*) (2.116¢)

where the only difference with (2.12) is in the superscript B: this indicates that the dilute gas
limit for the transport coefficients and for the thermodynamic quantities should be taken. The
eigenfunctions can similarly be calculated and, to lowest order in g, we get the following eigen-
functions:

1
197 ) == [VZ 1Dy £ 1®,) +/Z18,)]

V2
1B3 &) = 1Dy, (2.117)
1) =2[—1®)) + /2 1®9)]
which obey:
(B 1D = §K°, (e, B€ (1, ..., ). (2.118)
Finally, we gain also the analog of (2.110):
1 1
X (z)= = Z) 188y ————(®} 1. 2.119
O — | e V) (2.119)
q—>0
z—=>0

The interest of this eigenvalue method is that it can be formally extended to fluids at an
arbitrary density; the idea, which we now sketch, is very simple [60-62].

We have already seen that, for spatially homogeneous systems, the Boltzmann Lorentz collision
operator is the low density limit of the homogeneous frequency dependent operator Co(p,, z);
conversely one can show that, for an inhomogeneous system, the kinetic equation which
generalizes (2.102) is of the form (compare with (2.86)):

t
3.f,(p; ) +iqu [ (P = [G 0y fp,5 t—7) dr. (2.120)
0

The explicit form of the g-dependent non Markoffian operator 5q will not be needed here (it is
quite close to (2.87)). Accordingly, the study of this equation is related to the non-linear eigen-
value problem:

[—iquy, + Cy(p,; X1 18D = ¥ 139 (2.121)
where Eq extends to non vanishing ¢ the operator Co defined by (2.89).
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Although very little is known of this sort of problem in general [63], decisive progress can
be achieved by looking at the zero wavenumber problem:

Colp;ADI1B) = N1 P)) . (2.122)

Despite the fact that it does not exist any closed form for 5°(p,, z), one can show that, exactly
as in the dilute gas, the eigenvalue problem (2.122) for a tagged particle possesses one zero eigen-
value (for the same physical reason) and the same eigenfunction (2.100). Hence, the problem
(2.121) should again have one eigenvalue A{ which tends to zero when ¢ - 0 and this should be
calculable by expanding the operator C, like:

~ ~ ~

2

3°C
C(p,,Z) Co(p1,0)+q—(p.,0)+zCo(p1,0)+2q (p1,0)+qz (p1,0)+ z Co(PuO)"'
(2. 123)

where the dots denote derivatives with respect to z. Let us stress that we assume here that such
an expansion has a meaning; this is not obvious in view of the expected non analyticities of the
collision operator; yet we shall not justify this procedure here.

One finds then that the eigenvalue A is precisely given by the diffusive mode — Dq?, where D
is the proper diffusion coefficient for the dense fluid.

Similar conclusions are reached when one considers the case where the whole fluid is put slightly
out of equilibrium, instead of one single tagged particle. We now find five hydrodynamical modes
A2 which are precisely given by (2.12) where the transport coefficients and the thermodynamic
coefficients have their value for a dense fluid. The corresponding eigenfunction &%) can also be
calculated: they are still given, to zeroth order in g, by linear combinations of the states I®_):

5
1$9) = ‘_El Coo|®,) +0(q), (€ (a)) (2.124)

although the coefficients C, s are complicated functions of the thermodynamic properties of the
system, instead of simple numbers as in (2.117).

In this way, we have found a complete microscopic analog to the hydrodynamical modes intro-
duced first at the level of macroscopic physics; this analogy is one of the key steps toward the
microscopic analysis of the asymptotic behavior of the Green—Kubo integrands.

Before closing this section, let us make a few more remarks about the so-called potential con-
tributions to the transport coefficients; indeed, the case of self-diffusion which we treated here
in some detail is exceptional because the microscopic flow operator J? « v, ~does not depend
on the interactions. For the shear viscosity for example, one has:

N
)]

e (2.125)
j#i

N
= n n=
ig"i ’ Ji pzx iy if, x

ij,y

and, besides the purely kinetic term p;,v;, — which is very similar to v;, and can be treated by
similar methods — we also find two-particle terms which complicate a bit the kinetic description
of the Green—Kubo integrands: in particular, an equation for 8yp(p;; t) (see (2.86)) does not
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suffice. Yet the analysis presented above can be generalized (see for example [64]) to this case
and, although new operators have to be introduced in the theory, the frequency dependent colli-
sion operator Cy(p;; z) remains the prototype of the quantities which we have to study; hence
self-diffusion is indeed a good example to treat. In passing, it is also interesting to point out that
if one attacks the microscopic theory of transport coefficients from the point of view of the
hydrodynamic modes, the question of a separate treatment of these potential contributions does
not occur: we have mentioned already that the correct transport coefficients, including their po-
tential part, appear in the eigenmodes AZ; however, there is a price to be paid-for this apparent
simplicity: instead of having only the zero wave number collision operator to consider, as in the
Green—Kubo method, we now need the wave number-frequency dependent operator C,(p,;z) in
the vicinity of ¢ = 0 and z = 0. The respective virtues of the two methods thus depend both on
one’s taste and on the problem one has to tackle.

3. Mode—mode coupling illustrated

In this section, we wish to illustrate the methods presented in the previous section by discuss-
ing in some detail a particular example: the asymptotic behavior of the velocity autocorrelation
function. However, before dealing with this problem in the frame of time dependent statistical
mechanics, it is worthwhile to recall a purely stochastic analog as analyzed first by Lorentz [65]:
the generalization of Brownian motion theory to include frequency dependent effects; as we shall
presently see this generalization already introduces many ingredients present in the recent develop-
ments and is not burdened by technical difficulties.

3.1. Generalization of classical Brownian motion theory

~ As already mentioned, the Langevin equation (1.6) is the starting point of stochastic motion
theory. It is complemented by the assumption that the stochastic force F(7) is a Gaussian random
variable with white spectrum®* [2]:

(F(t) F(0)) = 1 8(¢—1")2EkT 3.1

(1 is the unit tensor), and the hypothesis that F(¢) is uncorrelated to the velocity v,(¢') of the
B-particle at earlier times (¢' < t). While eq. (3.1) is not required to get the second moment (1.7),
this assumption is necessary for getting the more general result:

m; 3 -
(S(u—,())8(—v,(0))) = ( - T) {1—exp(—2k1tl/m,) F*?
n, u—vexp(—£ltl/my)?
M 3.2
XeXp( 2, T [-(1 —exp(_2kltlmy) )" :l) (3.2

It is important to notice that the viscous force —£v, in the Langevin equation (1.6) is, by defini-

*In this subsection, the bracket <...) denotes an average over the stochastic variables, and not the canonical average (1.8); no con-
fusion should arise from this notation.



Y. Pomeau and P. Résibois, Time dependent correlation functions and mode—mode coupling theories 91

tion, computed as if the particle velocity v, was a constant. Lorentz was the first to point out a
difficulty with this latter assumption. Indeed, the viscous drag should be proportional to the
instantaneous velocity v,(¢) only if the relaxation time for this velocity, i.e. (§/m,)™?, is much
larger than the characteristic time for the evolution of the viscous flow around the molecule,
which is pR?/n (R = radius of the molecule). As, from Stokes law £ ~ Rn, the validity of the
Langevin equation requires:

m/R*> p. (3.3)

If the mass density of this particle is not much larger than the one of the surrounding fluid, one
should account for the time dependence of v, when computing the drag. The Langevin equation
(1.6) has then to be generalized into:

dvl_ ___1_ t ' ' ' E(L)
7y ——mlofdt E(t—1) vy(t) + t (3.4)

where the kernel £(¢—t') has to be determined from a solution of the linearized Navier—Stokes
equation in such a way that the linear functional:

t
fdt' E(t—1)vy(t) (3.5)

represents the viscous force exerted at time ¢ upon the B-particle when it has the non-stationary
velocity v,(¢') at earlier times.
The formal solution of (3.4) is:

t
v(8) = f dt’ M(t—¢') F(t), (3.6)

where M(#) is the solution of:

t
w__ L fdt' Er—t) M(t), 3.7)
dt m, o
with:
M(0) = 1. (3.8)

The condition that v,(¢) has a Gaussian distribution with constant width is satisfied by
choosing F(¢) a Gaussian random variable characterized by:

(F(t) F(t') = 1 kT E'(t—1). 3.9)

Yet, except for the requirement coming from (v}) = 3k T/m;:

f dt'f de” M) E(E —" Y M@ = 1, © (3.10)
0 0
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the function £'(¢) remains quite undetermined at this stage and so is the velocity correlation func-
tion:

k T o oo
WO ity = 1— [ [ de'de" M(t') §' (e~ —2"1) M(e"). 3.11)
m

0o o0

For a definite characterization of §'(¢), we need crucially the assumption — already needed in
classical B-motion theory, but not always clearly stated in the literature — that the random force
F(t) is uncorrelated to v,(t') at earlier times*:

(F(t)v,(0)) =0, t=20. (3.12)

Indeed, only in this case is the formal solution of (3.4):
t
v,(8) = M(¢) v,(0) + fdt'M(t—t')F(t’) (3.13)
]
the sum of two independent Gaussian variables; this feature, together with the stationarity of the
random process, d{vi(¢))/df= 0 yields then readily to the identification:

E@—t)=8t—-1", (3.14)

which is nothing else than an elementary version of the so-called *“‘fluctuation—dissipation
theorem”’.
From (3.13), we also have:

k.T
(0,(8) v,(0)) = 1—— M(D), (3.15)
and:
_ _ - m ? -3/2 _ m u—vM(s) : 2
(8(u—v,(2)) 8(v—v,(0))) (2ﬂkBT) (M(D) exp( T [( e ) +v]) (3.15)
with:
t t
M) = [df M(t—t) [de" M(e—t") §06 = £ 1) = [1 -ME(0)] 2. (3.17)
[¢] 0

Before looking at the explicit form of &(f) and M(¢), let us stress that, although the detail of
the velocity correlation function is of course modified by the non-local time dependence of the
viscous drag, the diffusion coefficient itself only depends on the time independent drag. Indeed,
we have:

*If F(r) was a physical force, time reversal invariance would imply: (v1(0) F(£)) = —(v{(0) F(—1)) and (v{(0) F(¢)) would thus
vanish at any time. This argument does not hold for the Langevin force which is only part of the physical force: to deduce the
former from the latter, one would need the instantaneous value of the viscous drag, which itself depends on the past history of
the B-particle.
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= kyT
D=5 [ droi® v (0 =—— [ dr M(»), (3.18)
0

1y

- and from (3.7, 8):

1=[fdtM(t)]/[fdtg(t)]. (3.19)

Hence:

D=kyT/ [ e ar (3.20)
0

which would follow from the usual Langevin equation (1 6) as f £(¢) dt is precisely the friction
coefficient & for a stationary motion.

For the calculation of £(¢) and M(#), we may use the result of Stokes’ investigations on the
viscous damping of the oscillations of a ball pendulum [66] ; he showed that the complex drag
coefficient of a sphere of radius R is:

9 3wpR? 1
£ =5-1rpR3(l+ )iw+ (1+—) (3.21)
@ 2 > 4BR B, BiR
{we use the same notation as in (2.9}, where:
81 = (w/2v)'. (3.22)

Inverting the Laplace transform (3.21), we can in principle deduce &(¢); as pointed out by Landau
and Lifshitz [37], this latter function is singular at £ = 0 and yields a finite difference between
v,(0) and v,(0,) in the case of an impulsive motion. This unphysical result is a consequence of the
assumed incompressibility of the fluid and disappears when proper account is taken of the propa-
gation of sound waves in the medium.

Widom [67] was the first to point out the connection between the present theory and the
slow decay of the velocity correlation function found by Alder and Wainwright. His argument
goes as follows: near w = 0, £, expands like

£, = 6mR +V2vw(l +)pR?*+ O(w). (3.23)

Because the Fourier—Laplace transform of M(¢) is:
1

M, =—, (3.24)

—TwE g,
it expands near w = 0 as:

1 R\/72
M, = [1 VY 4 O(co)] , (3.25)
6mMR M
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and, from well-known Tauberian theorems [57], one can show that M(¢) decreases like 37 at
infinity, owing to the term of order v/ w in (3.25). From (3.15), one finds the explicit result:

0 | 2k,T 1
(w 1)y = —_—
1(0) vy(2) V50 Gamn

(3.26)

which indeed agrees with (1.22).

Once suitably modified to account for the finite compressibility effects, the present generalized
B-motion theory properly describes the velocity correlation function of a large spherical particle
of arbitrary mass; without doubt, it is the simplest example of the slow asymptotic decay of the
Green—Kubo integrands. '

In passing, it is worthwhile to point out that the generalized B-motion equation (3.4), which is
here the starting point of the theory, can itself be derived from the fluctuating hydrodynamics of
Landau and Lifshitz [37], taken as the starting point to describe the (stochastic) behavior of the
fluid. This fluctuating hydrodynamics is obtained by simply adding random terms to the equa-
tions of linearized hydrodynamics. For example, we add to the stress tensor (2.4) a “‘stochastic”
Gaussian stress tensor 7; With zero average such that, in the incompressible approximation:

Ty, T (s 1)) = 2kg T 8(2—1) 8(r—r')[8,308;,+ 8,8, 1. (3.27)

Then, of course the hydrodynamic variables themselves become random variables and if we cal-
culate the motion of the B-particle through:

dv,/dt = F\/m,,
where F) is the total force exerted by the fluid on the B-particle:

Fi=§dSnip1-nV-v—(V-0)T)}

(n is the unit vector orthogonal to the surface element dS of the B-particle and (a,.v,.)T = (0,v),

it is obvious that this force F, can be split into a systematic and a fluctuating part corresponding
to the similar decomposition of the fluid velocity field. This program was explicitly fulfilled by
Hauge and coworkers [68, 69] and leads indeed to the generalized Langevin equation (3.4), with
the proper properties of £(¢) and F(¢). We shall not dwell any further on this interesting viewpoint;
we shall however derive in section 3.3 the £ 32 behavior of the velocity correlation function from
fluctuating hydrodynamics, following the elegant method of Bedeaux and Mazur [21]. Recently,
much work has been done along the line sketched here [70—75].

We should realize that the present B-motion theory, though very illuminating, is not general
enough to tackle the various physical problems involving collective effects at a microscopic scale.
Indeed, at least at two stages, the large size of the B-particle was used in a crucial manner; hence,
we do not know yet anything about the motion of a particle mechanically identical to the rest of
the fluid, as in Alder and Wainwright’s experiment and in many other problems of physical inte-
rest. To convince ourselves that this point is not as academic as it may appear first, let us recon-
sider with some detail the points of the above theory where the large size of the B-particle is im-
portant:

i) Lorentz’s argument neglects the diffusion of the Brownian particle in the velocity field
created by its own motion; in particular, the calculation of the drag coefficient £ , (3.21) is
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purely linear. For a large particle, this assumption becomes rigorous because the diffusion coeffi-
cient for the velocity field, measured by the kinematic viscosity v, is much larger than the self-
diffusion coefficient:

v/D~ Rm, .

However, when the B-particle becomes similar to the fluid particle, this is generally no more true.
Then the calculation of the complex drag coefficient £ , becomes enormously more difficult be-
cause we have to jump from the linear problem of calculating the response of the fluid to a pre-
scribed velocity v, , of the B-particle, to a problem involving the non-linear coupling between
the fluid and the B-particle motion: one of the important merits of the mode—mode coupling
theories is precisely to allow for the treatment of such non-linearities. Notice moreover that even
if the ratio v/D is large when the B-particle and the fluid molecules become alike (as appears —
empirically — to be often the case), similar problems occur when dealing with other Green—Kubo
integrands which cannot be simply disposed of by invoking such numerical accidents.

ii) The drag coefficient (3.21) has been calculated with the help of hydrodynamics (in particular,
with a proper choice of the boundary condition on the B-particle) and, for small R, this proce-
dure obviously becomes doubtful. Yet, the independence of the final asymptotic result (3.26) on
the explicit value of R suggests that this difficulty can be overcome: this is a second merit of the
various mode—mode coupling theories which we now discuss.

3.2. The phenomenological (or Landau—Placzeck) method

A slight generalization of the Landau—Placzeck method explained in section 2.1 offers a very
direct procedure to analyze the asymptotic behavior of the Green—Kubo integrand for self-diffu-
sion [11, 17, 18], as well as for the other correlation functions.

Let us however immediately stress that this method will not settle the problem because the
assumption involved should be clarified from a more fundamental viewpoint.

An apparently innocuous “trick” allows the method to work: it amounts in formally replacing
the spatially homogeneous function:

D(8) = 5(vy(D) - v,(0)) (3.28)

by an integral over a spatially inhomogeneous quantity:
D(t) =%fd3rfd3r’(vl(t) 8(r—ry(1)) - v,(0) 8(r' —r,(0)) (3.29)

which introduces the current density operator of the tagged particle j,(r) = v,8(r —r,).

We now remark that two conserved quantities are relevant in the dynamics of the tagged par-
ticle:

i) its local density:

ny(r) = 8(r—ry); (3.30)

ii) the momentum density (2.27) of the whole fluid: indeed, only the momentum of the total
system (tagged particle + fluid) is conserved. Equivalently, we may take the local fluid velocity
which, in a linear approximation, is given by:
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N
== v, 8(r—r,). (3.31)*
ni=1
In the spirit of the Landau—Placzek method, we write then the canonical average in (3.29) by
performing first a partial average in which the local density of the tagged particle and the velocity
field (or their Fourier transforms {n,,,v,}) are fixed. Moreover, in order to avoid delicate but
irrelevant mathematical problems, we work in a finite, albeit large, volume £2; we have then dis-
crete Fourier components. In analogy with (2.18), we obtain:**

D@ = Il dn 1,qdvq{(q,EIQOP(n,,q')P(Uq')) ( faer [a3r [arV

q<qo
X [dp" 7P(r) exp(—iLyt) [PG) ply({n1.q }, {0, }))} (3.32)

where we have only taken wave number smaller than a small cut-off value gq,, in order to insure
that our local equilibrium state is slowly varying (over distances R > ¢q3'). Here pj'v({nl, als {vq 3]
is a self-evident generalization of (2.19): it describes a local equilibrium with fixed density for the
tagged particle and fixed velocity field for the whole fluid. Similarly, the probability Pp(v,) is
given by (2.24) while PI,N(nl,q) is defined by:

exp(—BH,)

Z (3.33)

P yn, )= Jar¥dp 8@, o —ny )

Noticing that ﬁl,q = exp(iq - ry) only depends on the location of particle 1, translation invariance
of Hy leads to the equivalent formula:

1 . ,
Py y(ny ) = 8Ghy o~y ): (3.33)

there is no need to evaluate this latter integral.
Consider now the average current density in the local equilibrium state; we have:

A = [dr dp¥ ju(r) ply({ny, o}y 10g}) = () (), (3.34)

where n,(r) and v(r) are respectively the inverse Fourier transforms of the given {n; 4} and {v,}.
Though this property is physically obvious, its formal proof is not immediate and, to simplify,
we shall merely assume its validity here. Thus we also have:

1
Joriin=< T ngv (3.35)
Q aq

*Delicate mathematical problems always occur in connection with the use of microscopic operators, which are singular func-
tions of position. This is particularly obvious with the velocity field which is formally defined by: A(r) v(r) = £(r)/m, where
£(r) is defined by (2.27) and 7(7) is the total density £;8(r—7;); of course it makes no sense to divide both sides of this equa-
tion by 71(r)! Yet, suppose that we average this equation over any smooth distribution function ppr(#) (this average is denoted
by (..0gp), We get: ) o@r) YoN = 44 )pN/m. Suppose moreovet that the fluctuation of the density from its average value
n is small; there we may replace this latter formula by the approximation: (3(r) Yon = & )pN/nm. Our formal definition
(3.31) precisely leads to this result.

**We assume from the very beginning that the probabilities of fluctuations of the {nl’ q} and {vq} are independent, a resuit
which is only legitimate in the Jong wavelength limit ¢ < qo.



Y. Pomeau and P. Résibois, Time dependent correlation functions and mode—mode coupling theories 97

Let us now consider the following decomposition:

1) ok =) ph + (o) — 7 () Py (3.36)

and let us examine the action of the operator of motion exp(—iL,¢) on this quantity; we make
here the assumption, which was not necessary in the original Landau—Placzeck problem treated
in section 2, that this operator will rapidly bring the second term of (3.36) to zero, for times
t > 7, where 7, is some finite relaxation time; this hypothesis, which is crucial for the further
development of the theory, is based on the idea that any non-equilibrium state rapidly relaxes
toward local equilibrium.

With the help of (3.35, 36), we can now cast (3.32) in the following form:

D(t) t:‘rr Q q2<qof(q I<_Iq dn ) [(q' L-[qul,N(nl,q') PN(UQI)) nl,q2v—th
X [fd3rfdr"’dp”i?(r) exp(—iLyt) pp({n, o}, {vq})]} : (3.37)

The remaining part of the calculation is straightforward; we use formula (2.21) to describe the
evolution of the local distribution function p,’v; as discussed previously, this formula, which is the
key assumption of the Landau—Placzeck method, is only reasonable for small wave numbers; we
shall thus have to a posteriori verify that indeed the small wave number contributions govern the
long time behavior of D(¢). Taking again (3.34) into account, we get:

2z [ (dnlqdv) H PIN(n,q,)PN(v Iy g (DV_g (D) 11, (0)V_, (0).

Qrq1<a0a2<490 a< g0
(3.38)

D) =

Retaining only the terms ¢, = —q, in the sums (because different wave numbers are uncoupled),
we arrive at the following result:

Py(v_)
D(r)=—QqZ) Jan, . Jav, P, vn, o) N(Q‘“ My, () V_g (1) 1y (0) v, (0). (3.39)
1<

The time evolution of the “macroscopic” density n, (#) was given in (3.26):
ny o() =exp(=Dg*tyn, ,(0). (3.40)

Moreover, although we have in principle a “mixture” made of the tagged particle 1 and of all the
other molecules in the system, this mixture is infinitely dilute; the hydrodynamical velocity
v,(¢) can thus be calculated as for a pure fluid:

V(D) = v, () +u,,(0), (3.41)
where the longitudinal and transverse parts of the velocity field are given by (2.15a) and (2.15b)
respectively.

With the help of these results, and of:

3
q TG fd q, (3.42)
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the calculation of D(#) reduces to trivial quadratures which we shall not reproduce in detail here;
the final result is:

2kgT 1

DI = 2 arr s Dy (3.43)

in agreement with (1.21). Notice that, in (3.39), only the transverse velocity field contributes to
the long time result (3.43); the oscillating character of the longitudinal field leads to a rapid ex-
ponential decay in the long term. Moreover, it is easily checked that the contribution (3.43) en-
tirely comes from wave numbers which are arbitrarily small for sufficiently large times: this justi-
fies the assumption made above.

This asymptotic result is slightly more general than (3.26) as it is valid independent on the size
of the tagged particle; if this latter is large, »> D and we recover our previous formula; moreover,
it clearly shows the connection between the t3? decay and the vorticity diffusion process. Finally,
it is easily extended to other Green—Kubo integrands [17, 18].

Although, as already pointed out in the introduction, it is rather arbitrary to classify the various
methods which have been used in mode—mode coupling theory, we feel it is a good place here to
mention the theory of Kadanoff and Swift [16] : although this theory has more of a microscopic
flavor than the present Landau—Placzeck method, it is also based on the central role of local
equilibrium; however here, linearized local equilibrium is introduced by the formal eigenstates
la, g) of the Liouville operator:

Lyla, @) =z,(q)la, @), (3.44)

(e €1, 2,3, 4, 5 labels the five conserved quantities in a system of identical particles, g is the

wave number characterizing the state), such that the corresponding eigenvalues z,(q) go to zero when
q ~ 0 (remember also the kinetic approach of section 2.3). Kadanoff and Swift then remark that
products of such states are also slowly varying:

Lyie, q';8, q—q") = [2,0q") *+ 25(g—q)] o, q'3 8, —q" (345)
with
N, Ve, ¢ 8, g—q = N, pVla, g XN, pNIB, g—q").

Retaining these product states to get an approximate representation of the Liouville operator:

exp(iLyt) = 2 la, @rexp{z(g)tKq, al+%2, Eﬁ la, q";8,q—q" exp{lz,(q")
[¢] q @

+z,(g—q )1t Ha, q':8,9q—q'1+... (3.46)

and inserting this representation into the Green—Kubo integrand (2.15)* leads to results which are
entirely equivalent to those of the Landau—Placzeck method. In particular, one exactly recovers
(3.43).

*Eq. (1.15) is spatially homogeneous and thus correspond to ¢ = 0; in this case, the first term of (3.46) does not contribute and
we are again left with “mode—mode coupling terms”.
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Although the present very sketchy presentation may not give full justice to the importance of
this theory of Kadanoff and Swift, which is particularly well adapted to and has been very success-
ful in the difficult problem of critical dynamics, we shall not discuss it any further here, to keep
this report within reasonable length. A more complete review — and a comparison with other
mode—mode coupling theories — has been given elsewhere [48].

3.3. The method of fluctuating hydrodynamics

In this subsection, we shall illustrate the use of fluctuating hydrodynamics by outlining the
derivation of the ¢ *2 law for self-diffusion as presented by Bedeaux and Mazur [21].

Their model takes, as a starting point, an explicit realization of the non-linear Langevin equa-
tion (2.73) and is thus, implicitely, based on the assumptions explained in section 2.2. However,
it is simple enough so that its solution can be obtained explicitly in a quite convincing manner.
Moreover this model deals exclusively with stochastic processes and not with microscopically
defined operators (no Hamiltonian needs to be specified); in particular, the Green—Kubo formula
for the correlation functions is not assumed at the beginning, a point which is of some interest.

The starting point is the continuity equation for the number density n,(r, ¢) of tagged particles
in a fluid:

:—tnl(r, H=—-v-J@ ). (3.47)

The current is the sum of a diffusion current —D,Vn,, plus a convective current v(r, t) n,(r, t),
plus a fluctuating current J:

J(r, ) = —DoVn,(r, ty +u(r, ) n\(r, t) + J. (3.48)

The term Jy is the source of the thermal fluctuations of n,; yet, it will be neglected in the forth-
coming calculation; moreover D, is a ““bare diffusion coefficient”, as was introduced in section
2.2: we have already discussed above how little precise is the physical meaning which can be
given to this quantity.

.Of course, precisely as in the general case sketched in section 2.2, the important term in (3.48)
is the convective term which involves a coupling between n, and the fluid velocity v(r, ¢); how-
ever the simplicity of the present model stems from the fact that the fluid is discernable from
the tagged particles; the velocity field v(#, t) can thus consistently be taken as known: we take it
as a Gaussian stationary random function obeying the usual linearized fluctuating hydrodynamics.
Hence the mode—mode coupling which appears here is “pseudo’’-linear, in contrast with the
truly non-linear equation (2.73) which is the starting point of many other works on the subject
[19, 21-26]. This simplicity of the model leads to a particularly simple and elegant solution.

If we take the Fourier—Laplace transform of (3.47, 48), neglecting /5, we get:

(iw+Dog)ny, g o, =1q ARy, o+ 1y, (£=0), (3.49)

where A is a vector operator which depends linearly on v, , and acts on any function ¢, , as:
1
(2m)*

Ay, , = fdaq' dw' Vg—o' o' P o (3.50)
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Setting:

Go= —(iw + Dog®)™! (3.51)
and:

n%iq,w=1Gony q (1=0), (3.52)
we get from (3.49):

Migqw=(+iGeq-A)"'nY g, (3.53)
and:

Jow =(A+igD)(1 +iGog- A1l . (3.54

We now have to relate the mean values of J, , and n,,, ; for a given n},, . the fluctuating
quantity being 4. This will provide us with a 11near relation between (J 7w and(n,,, . and
hence with a value of the macroscopic, or “dressed”’, diffusion coeff1c1ent which will account
for the fluctuations of the fluid velocity. Simple algebra leads to:

L, ligs ACL +iGog - AN
((1+iGeq- AV

D=D,+ (3.55)
Notice that, in this way, we are led quite naturally to a q, w-dependent diffusion coefficient,
without recourse to any Green—Kubo formula.

To make the w'/? dependence of D apparent, let us formally expand the right-hand side of
(3.55) in increasing powers of A:

D=Dy+q%q-AGyq- A)+ higher order terms. (3.56)

The average involved in this expression is very close to a mode—mode contribution, since A4 is
proportional to the fluctuating velocity field. From (3.50):

(q-AGoq-A) = S [dw @ vy_g reur G, 4XA=4) Vgt oo (3.57)

(2 )?

From space—time translation invariance:

(Vg g omw' Vg'—q", oo = 2m)* 8(w—w") 8(g—q") S,(g—q', w—w") (3.58)
where, from the Wiener—Khintchin theorem [41], S, aw S the Fourier—Laplace transform of
the space—time correlation of the velocity field fluctuations. From the usual linearized hydro-
dynamics, we know that these fluctuations decay according to sound modes and to a vorticity
mode. Retaining this latter only, we have:

(1 _2‘1) kT 1 (3.59)

q’) p iw+vg?

S,

vig, w
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Inserting this expression into (3.58), one readily gets a contribution to D which has the familiar
mode—mode form. Expanding around w = 0, one finds at once a w' term in the frequency ex-
pansion of D: it exactly agrees with the previous results except that the bare self-diffusion coeffi-
cient D, appears instead of the physical (or dressed, or renormalized) transport coefficient D,
which appears in other theories. However, this difference is actually due to the neglecting of the
“higher order” terms in (3.56): when these are properly taken into account, one recovers the
physical diffusion in the final result. Due to the simplicity of their model, Bedeaux and Mazur
were also able to obtain many results at small but finite ¢ but we shall not discuss them here.

3.4. Kinetic theory method

Let us now indicate how the asymptotic behavior of the velocity autocorrelation function can
be studied by the methods of kinetic theory, sketched in section 2.3. As already mentioned, such
calculations are always based on expansion in some smallness parameter, like the density or the
strength of the potential, although such expansions can sometimes be formally pushed to infinite
order and thus allow for the treatment of arbitrary dense fluids.

To simplify, we shall explain with some detail how to recover the 2 behavior of the Green—
Kubo integrands from the beginning of a density expansion only [29, 30] ; the extension to
arbitrary densities has been done but is 1nvolved [31—34] and we shall merely sketch the main
ideas of this general proof.

We have seen (eq. (2.91)) that the exact evolution of the time correlation function can be re-
duced to the study of the frequency dependent linearized collision operator Co(p,;z). As indi-
cated in Appendix B, the first few terms of the density expansion of this operator are:

Cop1;2) =n CO(p,;2) + n2CP(py; 2) + 1 C(py;2) + ... . (3.60)

The leading term of this expansion, a(,°)(p, ; 2), is the finite frequency generalization of the
Boltzmann—Lorentz collision operator (2.94); whenever the two-body interaction has a finite
duration, it is explicitly frequency dependent {76] ; however, to simplify, we shall completely
neglect this type of frequency dependence because we are interested in phenomena varying over
a relaxation time, much longer than the duration of a collision; hence, we shall put:

C%py; 2) = Clpy), (3.61)

where the right-hand side is defined in (2.94); note that (3.61) is rigorous for hard spheres, a fea-
ture which makes this latter model very attractive in many calculations. From (3.60), (2.91) and
(2.99), we readily see that, in the dilute gas limit, the velocity correlation function D(¢) decreases
at least like exp(—pu,#), where u, is some finite relaxation frequency (approximately the collision
frequency ~ n), in the case of hard potentials which we consider here*.

This simple exponential bound is lost when the higher terms in the density expansion (3.60)
are considered. Consider first the correction C(‘)(pl, z); it describes two types of effects:

i) modifications of the two-body dynamics by the equilibrium static correlation,

*To our knowledge, no general result of that kind is known for soft potentials. In particular, an interesting limiting case would
be the one of Coulomb potentials where, in the case of a hot plasma, the Balescu—Guernsey —Lenard kinetic equa‘ion may be
applied [50], especially in connection with the recent computer results by Hansen et al. [77].
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ii) genuine three-body dynamical effects.

It can be shown that the short range equilibrium correlations do not play any important role
in the long term (this point is discussed, for instance, in Appendix A of ref. [78]), and we shall
thus limit ourselves to the three-body collisions, which are described by the finite frequency
generalization of the so-called Choh—Uhlenbeck [79] collision operator; we shall not display
this operator here (see Appendix B) but we shall rather discuss its main features in purely
qualitative terms, keeping in mind that it describes the dynamical correlations created by the
collisions between three particles. From our viewpoint, the most important characteristic of this
generalized Choh—Uhlenbeck operator is its non analyticity with respect to z nearz = 0. In 2d,
we shall see presently that:

Cp,;z) = Inz (3.62)

zZ

-0
and, similarly, in 3d, one finds:
C{V(p,;z) = C(p,; 0) + O(z In 2) (3.63)
which suggests the following extension at arbitrary dimensionality:
C(p,;2)=CP(P,;0)+0@) + ...+ 0(z% ) + 0% 2Inz) + ... . (3.64)

From the theory of Laplace transform, these results correspond to an asymptotic time behavior
like'# ~(9~; such a slow decay of three-body processes can be understood as follows: consider
the probability for particle 3 colliding particle 2 in the time interval (¢, ¢ + d¢) after a first colli-
sion (12); we want this collision (23) to be such that 1 and 2 will collide again in the future,
leading to a correlated sequence of dynamical events. As usual in this sort of problem, we work
in the frame where 1 is at rest after the first collision (12). The probability of an arbitrary colli-
sion (23) in d¢ is of course given by na® ~'v dt (a is the interaction range; v the average thermal
velocity); if we furthermore impose that this collision throws 2 back onto 1, the velocity of 2
after (23) has to point into the solid angle under which 1 is seen from the location of this colli-
sion (23): this leads to a supplementary factor a®~!/(vt)® ! for ¢ large. Hence the collision events
happening in the time interval (¢, ¢ + dt) contribute a factor

de/td! (3.65)

to the Choh—Uhlenbeck collision operator.

What is the asymptotic behavior of the time correlation function at this order of approxima-
tion? To get a hint to this problem, we suppose that we may merely replace the velocity opera-
tors C§? and C§V by c-numbers. From (2.90), (3.61) and (3.63), we get in 3d:

D(z) = v*[—iz + p, +i(na®)?*zInz]™? (3.66)

(we have formally included 5((,1)(p1; 0) ~n* in u,).

By inverting this transform, we find two contributions: a pole term, behaving like v? exp(—u, )
at large ¢, and a cut term of order [(na®)*/(u,#)*1v? in the same limit. These asymptotic values
are both reached for times of order u;*; thus, for times u;' < ¢ S p;' In(1/na®), the relaxation re-
mains essentially exponential but, for much larger times, it behaves like £72. Let us stress however

that these results only obtain in the very formal limit where all post Choh—Uhlenbeck terms in
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the density expansion (3.60) are neglected. Notice also that this 72 decay is fast enough so that
the Green—Kubo integral (1.5) still exists in this approximation for d = 3. However, in the next
order, involving C§?(p,; z), and denoted super Choh—Uhlenbeck (S.C.U.) this Green—Kubo
integral no more exists; indeed, reproducing the dimensional argument which led us to (3.63),
we find:

CO0p;z)~Inz  (d=3), (3.67)

due to long living dynamical events between four molecules. At this order, we would then find,
instead of (3.66):

D(z) ~ v -iz+p, +i(na®)*p, Inz]™! (3.68)
z—>0
and the diffusion coefficient D = D(0) vanishes!

This paradoxical result is of course quite formal because the density expansion (3.60) is mean-
ingful iff:

in CP(p,;2)1 > In2CP(p,;2)1 > 1 CP(p,; 2)) ... (3.69)

when n - 0, whatever z is. Clearly this ordering is violated near z = 0: a straightforward density
expansion is thus meaningless.

As is immediate to see from (3.62), the same difficulty already occurs at the Choh—Uhlenbeck
level at d = 2; as we shall see later, it is generally believed that here the difficulty is of a deep
nature and not simply due to an illegitimate density expansion.

Keeping in mind the formal character of the results based on (3.68), let us nevertheless analyze
the time correlation function at S.C.U. order; we now find that, for ;' < ¢ < ;' In(1/na’), the
time correlation function is dominated by v? exp(—u, ), coming from the pole near z = iu_; for
ptIn(1/na®) < t < (afv)exp(—1/an®), the S.C.U. contribution already dominates the C.U. one
and leads to a decay like ((na®)?/(u,£))v%. Finally, for ¢ > (a/v)exp(—1/na®), the dominant con-
tributions arise from values of z so close to zero that the logarithmic term dominates the
Boltzmann contribution in the denominator of (3.68); the result is a decay like
v2[(na®)*(u,t) In(tv/a)]17*. This discussion is summarized in the following diagram:

t: 0 u! u; ' In(1/a’n) (a/v)exp(—1/an)
, >t
D(®: 1 “exp(—u,f) (na)?/u,t [(na®)*(u H)In(tv/a)]

Note that nothing remains from the C.U. decay #2; it is always dominated by the S.C.U. terms.
Coming back to the vanishing of the diffusion coefficient in this S.C.U. approximation, we re-

mark — as indicated by (3.65) - that this property is a consequence of the unbounded duration

of the collision processes involving four isolated particles. Yet, if some collision event exceeds

substantially a mean free flight time, the chance will increase for a collision of anyone of the

four given particles with a fifth, sixth, ... one. Such a collision will destroy the dynamical correla-

tion existing between these four particles and will hopefully eliminate the divergence of the colli-

sion operator. This qualitative point may be embedded into a systematic “‘renormalization program”

and it will turn out that the diverging S.C.U. collision operator will be replaced by a new operator,

the so-called “ring collision operator” [80], which is free of divergence at zero frequency for 3d
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fluids; nevertheless this new ring operator will still be non analytic at small frequency z and this
non-analyticity will precisely give rise to the £ asymptotic behavior for the Green—Kubo
integrand; hence there is a strong connection between the difficulties involved in straightforward
density expansions and the problem of the long time tails.

It is unfortunate that, even in the moderately dense gas considered here, the explicit realiza-
tion of this renormalization program requires a non trivial formalism. In order not to burden the
reader with too much technicality, we prefer to report the general principles underlying this re-
normalization in Appendix C. Here, we limit ourselves in presenting the result of this renormaliza-
tion applied to the particular case of the C.U. and S.C.U. (to dominant order, these are both re-
normalized together) and we then interpret this result in intuitive terms. Moreover, we limit our-
selves to the simple case of hard spheres. As indicated in Appendix B, these are conveniently de-
scribed with the help of the binary collision operator t;;, which is an operator depending on r;,
vy, 1 V) Its Fourier transform which remains a velocity operator is defined by:

(ktq, k'—qit, |k, —k' =a?ﬁ13rifd3’i exp{—il(k+q) ' r,—(k'—q) -r;}}t;;exp{i(k-r—k"-r;) } (3.70)

and has the following representation:

Cktq;k'—qit; Ik, —kN(v;, v;) = azfdzx K- v;0(k - v;) [exp(—iq- ka)p(v;, v))—exp(iq- ka)p(v;, v))],
(3.71)
where @(v;, v;) denotes an arbitrary function of the velocities v; and v;, and where v;; = v;—v;.
Moreover « is a unit vector, ©(x) is the Heaviside function and v;, vlf denote the velocities after
the collision process which are given by
v; = v; — K(K V), v; = v+ (K vg); (3.72)

finally a is the diameter of the hard spheres.
The Boltzmann—Lorentz operator C (see (2.94)) and the linearized Boltzmann operator C (see
(2.112)) are simply related to this binary collision operator; for hard spheres again, we have:

Cpy) 8p(py) = [dp, g, Oitralq, O) Sp(py) v*(py), (3.73)
and:
Cpy) 80(py) = [dp,[Kq, O1t,;1q, 0% 8p(py) ¥*p)+Kq, 011,10, gW¢*(py) 5(p,)]. (3.74)

In terms of this binary collision operator, the so-called ‘“‘ring collision operator’ which re-
normalizes both C.U. and S.C.U. to dominant order is* (d = 3):

d3q
(2m)3
X {liz +ig- v1o+ nC(py) + nC(p)] ™" — [iz+ig- v1,] 1 }g, —q1t1510, 0) 8p(p,) ¢*Up,). (3.75)

aR(p,; z)bp(p)=n fd3pz<(0, Olt;lq, —q»

*The free particle contribution [iz + ig* vy,] ™! is subtracted to avoid an unphysical term where particles 1 and 2 collide twice
successively with each other; see also (B.15) and footnote thereafter.
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The reason for the termmology ring collision operator” is rather clear from the above expres-
sion: CR corresponds to any “cycle” of collisions starting with a collision (12) (the ¢,, operator
at the extreme right); then, the motion of particle 1 and 2 instead of being a free motion, is de-
scribed by a “Boltzmann propagation”: one considers that they collide an arbitrary number of
times with other gas molecules. Hence, the usual free motion propagator [iz + ig- vy,]” lis re-
placed by [iz + ig- v, + nC + nC]™'; finally, the tagged particle 1 collides again with a particle
connected to the particle entering the first collision (i.e., 2) through a set of binary collisions;
that this particle is generally different from 2 itself comes from the fact that the Boltzmann opera-
tor (3.74) involves one contribution in which the non-equilibrium distribution function is the
one of the dummy particle i, not of 1.

For example the sequence:

Op,) Up2) 8e(p2) (3.76)
does not imply that particle 2 is the non equilibrium particle; indeed, it corresponds to four
terms, which we write schematically as:

fd3P3 A3palt23 124 80(P2) O°UP3) P°UP) t 123 t2a 8A(Pa) °Up1) 0" Up>)

+ 1531340 UP2) 80(p3) P°UPa) + ta3 320 U(p,) SP(pa) 0 Y(p5)] 3.77)

and only in the first term is particle 2 out of equilibrium*.

Yy

time »

Fig. 3.1. A ring collision.

Figure 3.1 illustrates, in a self-explanatory manner, this ring structure.

It is difficult to extract general analytical results from (3.75), as the operator
[iz+ig- v, + nC(p,) +nC(p,)] 7! involves at least the explicit solution of the linearized
Boltzmann operator, a very complicated problem indeed! However, it is possible to extract the
first term in the expansion of CR(p,; z) near z = 0 — and the corresponding contribution to the
asymptotic time correlation — with the hydrodynamical eigenmodes introduced in section 2.

Indeed, with the help of (2.104) and (2.115), we gain the formal representation:

liz+ig- v+ nC(p) + nC(py)]™" =j’ZI> |‘I’;~l, QI_Q)W(@‘I l_qL (3.78)
where )
Wy, 0,1B9, &7 = B(v,) B;7U(v,). (3.79)

The connection with the previous theories — which all rely upon the hydrodynamic behavior of the
time correlation functions — is now made by noticing that only a finite number of eigenvalues

*In this respect, there is an abuse of language in speaking of the linearized Boltzmann operator as being a one-particle operator.
This terminology is used because of the symmetrical role played by all the particles in the system.
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)¥l and A7 go to zero with g. More precisely, we have found the self-diffusion mode (2.106) for

e self-motlon and (d + 2) hydrodynamical eigenvalues for the Boltzmann case (they are dis-
played in (2.116) for d = 3). In particular, symmetry arguments show that, in the present problem,
the interesting eigenvalue is the mode (2.116b) of vorticity diffusion.

Let us assume that, in the small z limit, the dominant contribution to (3.75) comes from small
wave numbers ¢; * we limit then the domain of integration over q to a small sphere of radius gq,,
much smaller than any inverse molecular length; in the region g < ¢q,, the existence of hydro-
dynamic modes can be ascertained. Moreover, as all non-hydrodynamical eigenvalues (F ¢ (1),

1 ¢ (&)) tend to a finite limit when ¢ - 0, it is readily verified that their contribution to the ¢
integral in (3.75) is analytic in z; schematically we have:

(CP132) = CXP1; O on nya. = 7> (3.80)
where the subscript “non hyd.” indicates that we retain all terms in (3.78) with at least one of

the two eigenvalues Mor A, 9 taken as non hydrodynamic.
Hence, as far as asymptotic behavior is concerned, we are left with:

CRp1; D |nya. = nE [d fd 2«0, Olt1,1q, —g vy, v, 1 DI B9

a=1q<qo(2m )3
1

X _————iz + X‘,’ A (DD 21y, v)g, —qlt,210, ON. (3.81)
It is very easy to show on (3.81) that:

i) CR(p,, 0) is finite in 3d; hence the divergences associated with the S.C.U. operator have
been removed by the ring collision operator.

ii) CR (p., z) expands near z = 0 like:

CR(p132) — CR(P1; 0)|pyq, ~ 27 (3.82)

In order to do this, we neglect the g-dependence of the matrix elements of ¢,,; moreover, we
only retain in (3.81) the vorticity mode a = 3 which, because of the symmetry of the eigenfunc-
tions (2.117), turns out to be the only term which can contribute to the velocity correlation
function**, -

Thus, we immediately get for CR(p,; 0):

~ d’q
C ;0 ~ _, (3.83)
R(Pl )lhyd. q<fqo 7

a finite integral. Moreover, we have:

*It is a trivial matter to check that the region of integration ¢ > g, while generally giving the main contribution to the full CR,
and thus to transport coefficients, is both non diverging at z = 0 and analytic in z for small z: it is thus irrelevant in the present
discussion.

**In order to make the explicit calculation, one needs to generalize the eigenfunctions (2.117) for arbitrary direction of g. This
elementary problem is solved for example in ref. {81].
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~ ~ d3 ~
CRP152) — CRP1; 0)|yy g = nfawi)afdap,«o, 012,10, 03v,, v, DY BY)

iz ~
X = = (P BYluy, v K0, 01£,,10, ON. (3.84)
liz+ M+ +a9 *
Setting q z™"? as integration variable, one readily obtains for (3.84) the estimate:
(C@;2) — Cp1; 0 fnya, = (2/1) @), (3.85)
Inserting this into the general formula (2.91), one gets:
D, — Do = v(z/u )" (na)*/u, (3.86)
z—=>0

and this leads in turn to an asymptotic behavior:

D(t) = v*(na®)*/(u)*? (3.87)
t —> oo

for the time correlation function. This behavior dominates the Boltzmann exponential behavior
for t > u.' In(1/na?) and it replaces for any time ¢ > u;' the cut contribution from the S.C.U.
term. .
A more careful calculation allows one to take into account the operator character of ¢,, and to
get the explicit form of this z'2, or £ 32 contribution. One recovers then, with the same coeffi-
cients, the result found by the other methods provided that one considers the dilute gas regime
where the present theory is applicable.

Of course the question remains as to whether the asymptotics deduced from the ring collision
term is the right one. This question is particularly pertinent if we remember that by adding more
and more terms in the virial expansion for Cy(p,; z), we have found qualitatively different results.
Perhaps, by adding more terms, could a new behavior appear? Although the question is still quite
open in 2d, this conjecture is very unlikely in 3d. Indeed, although this calculation offers no
guarantee as far as mathematical rigor is concerned, it is possible to analyze the complete collision
operator C,, to infinite order in any perturbative parameter, and one recovers the > behavior
with the correct thermohydrodynamical coefficients at finite density [31—-34]. We cannot give
here a detailed account of this work, as it involves a number of non-trivial technical points. The
starting point is a “renormalized” expression for the collision operator, as is briefly discussed in
Appendix C. By establishing bounds to the various contributions of this renormalized operator,
it is then shown that to dominant order at low frequency*, the generalized collision operator can
be written in a form quite analogous to (3.81) with the substitutions:

«0, Olt,lg, —g» ~ KO, 01C(py, pa;2)lq, —q», ‘ (3.88)

involving a frequency dependent operator C which, roughly speaking, represents the most general
short range collision process involving particles 1 and 2, and:

)\? - )\:lz,full’ >\‘—¥—q > )\;q,full , (3.89)

*In the same sense that (3.81) is dominant at low frequency in the ring approximation.
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where the superscript “full” indicates that we now have the correct transport modes at finite
densities. A careful study indicates that, to order £ **%| the wave-number and frequency depen-
dence of C can be neglected. Obviously, these substitutions leave the estimate (3.83, 85) un-
changed except for the constant coefficients, which now refer to the dense system, as obtained
previously by the Landau—Placzeck method for example. A remarkable feature of the theory is
that the operator C, although unknown in explicit form, entirely disappears from the final result,
which only involves thermodynamical coefficients.

Though the difficulties involved in this type of N body analysis are quite considerable, as com-
pared to the other methods developed above, we nevertheless believe that such calculations are
of interest because they show that, beyond the ring contributions, the asymptotic decay of the
Green—Kubo integrand becomes “stable” and its qualitative form is not affected by higher densi-
ty effects; more precisely, the only modification to the 2 law is in giving the thermohydrody-
namical coefficients their correct value for a dense system. Moreover, this theory shows that all
“multiple mode couplings”, involving the simultaneous excitation of an arbitrary number p of
modes (p > 2) lead to terms at least of order 3¢, As, at the same order, contributions appear
which depend on the detailed dynamics of the system, we are then left with a hopeless problem.

However, below this order, the asymptotic contributions have all the same structure as already
encountered with the “‘ring term”; in particular the details of the dynamics are irrelevant and
only macroscopic properties play a role; this point is of course assumed in the more phenome-
nological approaches.

4. The applications

Up to now, we have considered mainly the velocity time correlation function; this problem is
of particular interest because, as already stressed in the introduction, it goes back to the founda-
tions of non-equilibrium statistical mechanics; moreover this quantity is the most accurately
known from molecular dynamics computer simulation experiments, because an independent
calculation may be performed for each of the N particles in the system.

Here, we consider a variety of other problems, where the same methods can be applied: all are
characterized by some parameter, related to time, which becomes large. The first case which
comes to mind is a discussion of the asymptotic behavior (¢ ~ ) of the Green—Kubo integrands
corresponding to the other transport coefficients: shear and bulk viscosity and thermal conduc-
tivity as well as diffusion and thermal diffusion in mixtures without chemical reactions. Second
we shall consider the still conjectural problem of 2d systems as well as a brief discussion of the
higher order corrections (<€ ¢73%) to these Green—Kubo integrands and to the hydrodynamical
normal modes (here the wave number g ~ ¢ '/ is the smallness parameter).

A third non-trivial application of mode—mode coupling theory is furnished by the transport
properties of the Van der Waals fluid: here, one supposes that the two-body interaction can be
split into a short range part and a long range part with the inverse range 7. In the limit y ~ 0, we
expect that the effects of this long range potential will be fully felt by the system only for long
times, of the order v '/, and thus hydrodynamical considerations should again be applicable.

Finally, we briefly explore a field where mode—mode coupling theory led to the most spectac-
ular successes, namely critical dynamics: here the equilibrium correlation length ¢ becomes large
when T approaches the critical temperature 7, and again we can expect important hydrodynami-
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cal effects in the time regime ¢ ~ £2 — . As however this problem is rather far from our general
plan and has moreover been reviewed recently from different points of view [46, 82, 83], we
shall remain rather brief, indicating simply how it can be related to the general ideas discussed
here. This should however not be considered as a prejudice against this type of application of
mode—mode coupling: as mentioned in the introduction, the modern aspects of mode—mode
coupling have emerged from this field; moreover, the present understanding of critical dynamics
is without doubt one of the great achievements of modern statistical mechanics.

As we have indicated in detail in previous sections for self-diffusion a series of different
methods can be applied to deal with these problems. The only formalism which works for self-
diffusion (at least for a large particle) and not for the other cases is the generalized Brownian
motion theory of section 3.1, as there is no smallness parameter analogous to R™! (inverse of
the Brownian particle radius) in a fluid of identical molecules®. Otherwise, the Landau—Placzeck
method, the fluctuating hydrodynamics approach and the kinetic theory approach can be equally
well applied to these other problems, with their merits and defects, and lead to equivalent results.
Hence, to remain as concise as possible, we shall generally limit ourselves to the Landau—Placzeck
method, pointing out merely the main differences with self-diffusion.

4.1. Asymptotic behavior of the Green—Kubo integrands

As an example of the general Green—Kubo integrand (1.15), consider the thermal conductivity
k; define:

k(1) = lim (J*(r) J*0)), 4.1
Q B

where )

Je(r) = J'¥(r) = I"(r), | (4.2)
j”‘(‘r) being the x-component of the microscopic energy flow:

N
3V (ri (1))
Je(r) = Z) u,x(r)( ) 41 E V(r,,(r))) LY um T, () (4.3)
i%j#1 or;; o

while J"%(7) is the “counterterm”**:

. Nop

Jre= 23 —0,(0), (4.4)

i=1

which guarantees that J* is orthogonal to the invariants of Ly. With the exception of the trivial
factor 7%, the thermal conductivity k is then given by the analog of (1.11), namely:

1 o0
=_ (4.5)
K Tofx(t) dr.

*Let us recall here that the virtues of the generalized Langevin equation of Mori—Zwanzig (section 2.2) have been exploited in
justifying the stochastic theory of section 3.2; yet, this formalism is quite different and more elaborate than the simple
Brownian motion approach developed for self-diffusion.

**Here we consider canonical averages only; it is well-known that the explicit form of this counterterm depends on the ensemble
chosen [84].
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The main differences between the flow J* and the self-diffusion flow v,, is the appearance of
potential terms. However, as in the latter case, the local equilibrium value J* ! of J* is easily ob-
tained as: '

TNy = 20 nh(f)v_g (0, (4.6)
q4<4q0

where £, is the Fourier transform of the local enthalpy density; it is of course a function of n a
and T:
q

oh
on

oh
n, +—

PR T,+0Wm2, T n,T,). 4.7)
T

n

ho(t) =

Notice that, in writing (4.6), we have retained only quadratic terms in the fluctuations; the cubic
terms (i.e. « n b v_o o0 q' # 0) lead to negligible contributions to the asymptotic behavior of
K(1).

We now write, in analogy with (3.32):

0 = lim { S angaogary) T pytng) Pytog) Pu(Ty)
X [fdrV dpN J(0) exp(—iLyt) -J(0) piy({n,}, {v,}, {T, D], (4.8)

with obvious definitions for pj( {nq}, {v, 1, {Tq}) and Py (T ).
Here again the major step is the replacement, for ¢ > 7, (where 7, is some finite relaxation
time):
exp(—iLyt) J4(0) pty > exp(—iLyt) J*I(0) pb .
[

Taking into account that J*'! only depends on {nq}, {vq}, {Tq} and may be pulled out of the
phase space integral, we get: v

k() = lim [T (dn,dv,dT,Pyin,) Pytv,) PAT NI ({ny, v, T, 1
t>r, @ QkBT a<dqo q-"q q q q q q

X [ [dr dp™ J40) exp(—iLyt) piy({ng, v, T, D1}, (4.9)

Using now the approximation (2.21), we immediately get:

~ i K, 1
K(t) t}frhgrln kT {fqpqo(dnqdudaqP(nq)P(vq)P(Tq))J ({ngs v, Ty

X J€ 1 {n (8), vy(0), Tq(m)} , (4.10)

which is completely analogous to (3.39) despite the difference in nature of J* and v,. The rest
of the calculation is mere computation and follows closely the self-diffusion case. Let us repeat
the main steps:
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i) the conserved variables n q(t), vq(t), T q(t) are evaluated with the help of the linearized hydro-
dynamic equations (2.8), with the hope — verified a posteriori — that only small wave numbers
contribute to the sum (4.6);

ii) the static fluctuations are averaged with the help of standard formulas (see (2.23, 24)),
keeping in mind that the fluctuations at different wave numbers are decoupled;

iii) one performs asymptotically the g-integral, taking into account the symmetry of the
various modes when performing the angular part.

The result of these straightforward manipulations is:

kgD [ 1\ 2C.T 2
K = —(—) [ P + ] (4.11a)
tow 3\t ‘ v+ fc/nCp)3’2 (2r)3~
Similarly, one finds for the shear viscosity Green—Kubo integrand:
(kgT) ( 1 )3’2 7 1 )
H =~ . — +—). 4.11b
n( ) f oo 15 87rt (V3/2 l"3/2 ( )

One sees on these two examples that the 732 behavior is recovered; the only differences with the
self-diffusion case are: .

i) more complicated mode couplings, because of the different symmetry properties of the
flows;

ii) the occurrence of non trivial thermodynamical quantities, like the specific heat at constant
pressure C, and sound velocity ¢. These are consequences of the thermodynamic derivatives
which appear in the expansions of the type (4.7). Notice however that no such thermodynamic
derivatives appear in (4.11b), which is particularly simple. On the contrary, the formula for bulk
viscosity, which also has been obtained, involves higher order derivatives because, in the analog
of (4.7), we now have to expand to second order in the conserved variables n a and Tq. The result
is{17, 18]:

HOBEIEYOREELOEXS (I} (4.11c¢)
t > co

with

y - 1 372 1 « Cp

e =407 (s-) [ +5(§ -1)],

2/C 2 nC, \**rr oC aC | 7

9 :.‘.x_ P _ 2 p L. 7P P

£ 2(cv 1) (k) (Sm‘ic) [Cp or|, " ap TJ ’
and

oo KkeD? 1 VPr1 dp| nadc

$O== (811'1"1‘) [3_5 . con S]’

where



112 Y. Pomeau and P. Resibois, Time dependent correlation functions and mode—mode coupling theories

_naT

T on

P
Similar formulae have also been obtained for binary non-reacting mixtures. For concentration
diffusion in a mixture of particles of species 1 and 2 one finds [89] :

D(t) = 3J.(r, 0)- T, (1))

- 3/2 K +DT*u2+2D, Ty, .
- } (4.12)

~ _i 2 P 3! -372
7 ke ( 41”) (m, — 1) ;A_Za(n‘rna) [ C

t—
p

where

1
Jr7) = E m;v;8(r —r) — 7, Em,.v,.a(r — 1)
i ]

is the flux of concentration of particles of species (1), as the sum X runs over the whole set of
particles of species 1, while Ej runs of all particles, either of species 1 or of species 2. Further-
more 7, is the mass concentration of particles of species 1 and

J(t)=[drd (r 1)

is the local concentration flux integrated over the whole system.

In the asymptotic formula for D(¢), a number of thermohydrodynamical parameters appear,
which need to be defined. Let u = u, — u, be the difference between the dynamical potential per
unit mass of species 1 and 2, then = /0y, |z p and pp = ap/aT|p’ vy furthermore D, is the
thermodiffusion coefficient which is defined in such a way that the linearized hydrodynamic
equation for v, is

M D,

—=DAu+—AT.
ot T

The quantities n, are the roots of the equation
2 K 2 ""Y 2\ —
n2 +n, -]:+ 2D,y + DTy /CP+D/.17 +7—‘6;(KD_D‘)_0

and C, is the heat capacity per unit mass (contrary to the convention used throughout the whole
paper, where C, is the heat capacity per particle, which is obviously meaningless in a mixture).
Let us only point out that one may recover from (4.12) the asymptotic formula given in (3.43),
as in the limit of a low concentration DT?u%. = D,Tu; = 0, n, = k/TC, and uyD becomes the
self diffusion coefficient defined from the Einstein formula.

4.2. Higher order terms in the Enskog expansion and in the asymptotics of time correlation
functions

Up to now, we have focused our attention on the dominant part of the long time behavior of
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the Green—Kubo integrands. Here we discuss the higher order corrections. As usual in any search
for such terms, one has to consider a number of possible sources of corrections, each of them
arising from improving one of the assumptions made in deriving the main contribution. Correc-
tions to the £*2 behavior of the Green—Kubo integrands may be computed up to order £ 2*°, i.e.
by keeping terms of order ¢t~ with % < a < 2, and these corrections are intimately connected
with the so-called Enskog expansion of the hydrodynamical frequencies. More precisely, the
usual frequency of a diffusive mode, say

A = ug? (4.13)

is the beginning of an infinite expansion (the Enskog expansion) of A? near g = 0.

Our starting point will be the definition of frequency-wavelength dependent transport coeffi-
cients given in (2.55). In this formula, the projector Pq appears, which can be set equal to zero
when g = 0 with a proper choice of the fluctuating current. However, in the two-mode coupling
theory at the approximation considered here, it plays no role even for g # 0 and we shall com-
pletely neglect it from now on.

We have seen that, in the low frequency limit, the transport coefficients expand like (in this
section, we write u(q, w) = My, W)

g =0, w) — u(0, 0) = (iw)'?, ’ (4.14)

due to mode—mode contributions. A straightforward extension of any one of the methods
leading to (4.14) provides the more general expansion of u(q, w) near w and g = 0; this leads to
a sum of well defined integrals over the wave numbers of two interacting modes. These integrals
can be performed analytically without restriction on the respective value of w and ¢ near 0; how-
ever, this general result is complicated [85, 87]. The most interesting limit corresponds to the
case of hydrodynamics, where the frequency and wave number are related to each other by:

i) w™ ug? for diffusive processes
ii) w = icq + 'q? for the sound modes.
In both cases, accounting for the mode—mode contribution leads to:

u(q, w) —u(0,0) ~gq'2. (4.15)
w~q?
or w ~ticqg
The coefficients in front of the g'* factor in (4.15) are given in refs. [86, 87].

Now, we may expect that this wave number frequency dependence of transport coefficients
will modify the hydrodynamical frequencies themselves. The definition of these frequencies re-
quires some care; indeed, the very notion of hydrodynamical modes is intimately connected with
the exponential time behavior of long wave length perturbations. In the usual case, this is ob-
tained by taking the Laplace inverse of (iw + ug?)™'; with frequency-wave number dependent
transport coefficients, we now have to consider the Laplace inverse of:

liw + u(g, w)g*17, (4.16)

which is a very difficult problem because u(q, w) remains largely unknown. Yet, as indicated by
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(4.14), its expansion near w and g equal 0 begins with a w'”? term: this manifests the existence
of a cut in the w-plane near w = 0 (this cut is exactly at w = 0 for g = 0, but, in the simplest
two modes approximation, it is slightly shifted below w =0 if g # 0).

To be more precise, consider again a model with a single diffusive mode and let us suppose
that the mode—mode contribution to this diffusion coefficient p(q, w) is built of two such
modes; we have:

2 -1

d3q’ [ (q : (q
, . . +1X+ ! +|—— 4 , 4.17
uwq, w) ,mode—mode 4 <fqo 2m)? ! 2 1 ) H \ 2 7 ) ”} ( )

where, as in (2.57), u = u(0, 0). As usual the quantity p(q, w) lmm — #(0, 0)|mm can be made
cut-off independent:

du(q, w) = ug, W)|mm— #0,0)|pnm

d3 ’ ) w 2 o, -1 ' 2. 172
« f—-“@:;a [(uu +_2“"— + 2ug z) — (2uq z)-l} « (w +—2—) Ty, (4.18)
w,q>0

where I'; is some constant.
The time dependence of the amplitude of the hydrodynamical mode is given by the Laplace
inverse of:

2, 172_-1

[iw+pq2+r‘,q2(iw +_2_) ] . (4.19)
This function has a pole at:
w =ilug? £ iCq3u/2)* + .1, (4.20)

but, owing to the square root, it also has a cut at w = —% iug? which is closer to the origin than

the pole. Hence, at fixed g, the cut contributions dominate the pole, being of order

gt exp[—q°ut/2] compared to exp(—q3ut). Yet, the pole still dominates in the hydrodynamical
limit:

-0 t—> oo (q*?) finite. (4.21)

Albeit this non-uniform behavior of the hydrodynamical amplitude is rather unexpected and
quite interesting {30, 34], we shall not discuss it anymore here because, when evaluating the
mode—mode contributions to time correlation functions, we are precisely working in the limit
(4.21). We are thus left with the calculation of the generalized hydrodynamic frequencies A?
which are solutions of the dispersion equation:

A =q*u(q, —iN?) (4.22)
or

N — @*u = [p(q, —iA?) — w(0, 0)1¢* =" (4.23)
from (4.15).



Y. Pomeau and P. Resibois, Time dependent correlation functions and mode—mode coupling theories 115

This result of course suggests an iteration procedure: starting from the usual Navier—Stokes
value for the hydrodynamical frequency and from the mode—mode contribution to the
Green—Kubo integrands, one is able to get the next order term in the Enskog expansion for A9.
Inserting back this last value in the mode—mode contribution to A%, we now generate a ¢”"* term
for A9, and so on. In this way, one gets from (4.22) an infinite series:

A gt g g (4.24)

The three sets of coefficients u, (one set for each of the three distinct hydrodynamic modes)
are given by means of coupled linear recurrence relations. The infinite series (4.24) are given by
the solution of coupled linear integral equations, which have not been solved in full generality,
although some progress has been made toward their solution [89, 90]. Let us still add that our
derivation of (4.24) has been very sketchy; in particular, we have tactily neglected any correc-
tion arising from:

i) the wavelength dependence of the equilibrium fluctuations,

ii) the three- and more mode couplings,

iii) microscopic processes which cannot be described in terms of hydrodynamical modes.

The discussion of these points is given in refs. {31 —-34] where it is shown that, to the order con-
sidered here, the present simplified treatment is legitimate.

The existence of these infinite expansions has various consequences. The most direct one is a
similar expansion near w = Q for the Laplace transform of the Green—Kubo integrands; from the
so-called Tauberian theorems [57] one deduces that for long times these correlation functions
behave like:

X~ 21 xPp7-1 (4.25)
i=1
This property holds, in particular, for the velocity correlation function of a tagged particle in an
equilibrium fluid. By time integration, we obtain a generalization of the Einstein formula (1.1):

(Ar}(2)) = 6Dt + -21 o). (4.26)
j=

These expansions also provide a natural framework for extending the results of the Navier-
Stokes equations to smaller distances and shorter times. In any problem of hydrodynamics, a
large length or a small frequency does appear; for example, in a stationary drag problem, one
must assume, usually implicitly, that the characteristic size of the drifting body, say R, is much
larger than any molecular length. Roughly speaking R™! plays a role similar to the wave number
q in expansion like (4.24). Hence, we expect that the drag coefficient C of an object of size R
should expand like: :

C=R [1 + nél O(R‘r"):| . 4.27)

This could be relevant, for example, in computing the diffusion coefficient of a Brownian particle
in a critical fluid, wherein the correlation length can be made very large.
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More phenomenological approaches to the calculation of the corrections discussed in this sec-
tion have also been proposed [91].

4.3. Mode—mode coupling in 2d fluids

As explained at the beginning of this review, the velocity time correlation of a particle seems
to decrease like ~9/2 at large times. Hence, in 2d fluids, the self diffusion coefficient, which is
the integral of this time correlation, should diverge logarithmically; this is one more of the many
peculiarities of 2d many-body systems. This same divergence should hold for any other transport
coefficients in a 2d fluid, for example the shear viscosity. Yet, this shows that the “proof” of
this divergence is just invalid, because it needs as a basic ingredient the very existence of trans-
port coefficients and the conclusion is precisely that these coefficients do not exist!

This strange behavior of 2d fluid was first discovered by two different approaches: Alder and
Wainwright [9—11] deduced it from computer experiments on hard discs; they presented at the
same time an explanation of this phenomenon which is essentially the one we have given in the
introduction. Approximately at the same time, one of the authors of this review (Y.P.) studied
[92] the renormalization of the virial expansion of the collision operator, as proposed by
Kawazaki and Oppenheim [80] ; he concluded that this renormalization fails for a 2d gas of
identical particles, due to hydrodynamical modes; he also pointed out that this new divergence
was non renormalizable, due to the absence of any low frequency—low wave number cut-off for
hydrodynamical phenomena.

However, a striking difference appears between the two approaches: the Landau—Placzeck
analysis leads to a divergence of the transport coefficients themselves, while kinetic theory shows
a divergence of the collision operator (see (3.62)) so that the transport coefficient which is,
roughly speaking, the inverse collision operator (see (2.91)) should vanish! In fact, there is no
real contradiction, as both methods are inconsistent: the Landau—Placzeck theory assumes from
the beginning the existence of transport coefficients and concludes that they do not exist; the
kinetic theory assumes that the ring collision term is small compared to the Boltzmann collision
operator and concludes that it is infinite! Thus, one is left with the qualitative properties of 2d
fluid: transport coefficients in 2d fluid cannot be both finite and non vanishing. Yet important
questions remain to be answered:

i) What is the long time behavior of the Green—Kubo integrands? and are the corresponding
transport coefficients zero or infinite?

ii) What does replace the usual linear and local (in space and time) relations between fluxes
and thermodynamical forces, as the Fourier law for the heat flux?

Attempts to answer these questions have been made by Kawazaki [25] and Alder and co-
workers [11]. Their analysis goes as follows: in the Landau—Placzeck approach the mode—mode
contribution to a transport coefficient is:

dq 1

S (4.28)
2m? iw + 2ug?

B, )| =M [
q<qo
where we consider again a hypothetical fluid with a single diffusive mode ug?; M is some
parameter which depends on static fluctuations only. For d = 2, the right-hand side of (4.28)
logarithmically diverges at w = 0 but, at the same time one is no longer allowed to take u as a
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constant, since it diverges at w = 0. Accounting for this dependence, we should obtain instead of
(4.28):

d*q’ 1
a<aqo (2m)?* iw +N(lq/2+ q'D)+ N(Ig/2 — q'1)

where the hydrodynamical frequency A(q) is related to u(g, w) itself by (4.22). Equation

(4.29) is extremely complicated to solve, even if we disregard any non mode—mode contribution
to u(q, w). Hence, Kawasaki and Alder and coworkers have not only neglected such contributions
but they also assumed that u depended on w only: u(g, w) = u(w). This allows one to replace
(4.29) and (4.22) by:

wq, W) |pm =M (4.29)

_ d*q’ 1
M) =M <fq o TN TG (4.30)
with
Ng) = ¢* pul—iNg)]. 4.31)

A further assumption takes place, which is checked a posteriori: one replaces u[—iA(q)] by u(w)
in (4.30); this gives:

M % q dq M nw
o — ~— 4.32
Hew) 2”6[ iw+2¢*°u(w) 87 u(w) ( )
which leads to the self-consistent solution:
M 172
ww) = (—) (In w)'2. (4.33)
w—0 8”

This corresponds to a long time behavior of the inverse Laplace transform (i.e., of the Green—
Kubo integrand) presumably of the type (In £)"'2/t; notice that the coefficient in front of this
(In £)"*2/t only depends on equilibrium properties. The validity of replacing u[—iA(q)] by u(w)
is easily checked; indeed, from the final result (4.33) we have:

M 172
~ 2| —
Mq)q*oq (&T) Ving (4.34)

which, once inserted into (4.30), preserves the answer (4.33).

Alder et al. have tried to check this behavior on computer experiments but this turned out to
be too difficult in view of the very weak logarithmic dependence which was looked at.

The assumption leading to (4.33) could be checked more easily in a one-dimensional fluid.
Supposing that generalized hydrodynamic modes still exist, the divergence of u(w) is expected
to be stronger than at d = 2, since (4.30) is now replaced by:

dg

M
_M , 4,
Hw) 2nq<fqo iw+ AN + N—9) (4.35)
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Supposing:
Ng) = g**? (4.36)
q—>0
where « is to be determined self-consistently, we get:
ww) « @ @D/t 4.37)
w=0

and from the dispersion relation (4.31)

o= ﬁ% (4.38)
and hence:
w(w) = w3 (4.39)

this corresponds to an asymptotic behavior like 72”2, instead of the £"!? decay obtained when
taking A(g) « ¢*. :

Recently a model of lattice fluid has been proposed [93] where the vorticity diffusion is essen-
tially a one-dimensional process: the result of computer experiments agrees fairly well with the
t?? asymptotic law. However this one-dimensional result is certainly not universal, as shown by
the exact calculation of Lebowitz et al. [94] for the hard rod fluid: they find a 73 law for the
decay of the velocity correlation function; the discrepancy of this result with (4.39) is obviously
due to the absence of fluid hydrodynamic modes in this model.

The study of the asymptotic decay of the Green—Kubo integrands does not suffice to settle
all questions in 2d transport theory. Of course, this allows one to find, in the linear approxima-
tion, the behavior of a thermodynamical flux, say Y(¢), due to a time varying force, say F(¢); Y
being for example the heat current and F the temperatue gradient, we have, in this linear approxi-
mation:

t
Y(8) = f dr’ k(t—1t') F(t), (4.40)
—t

with, presumably, k(¢) =, , (In £)"2/t. Hence, if F(¢) starts at £ = 0 and remains constant at any
positive time, the flux Y(¢) grows indefinitely like (In #)'/? for large times. Of course, the linear
approximation cannot be maintained indefinitely. If a steady stage is reached in the long term,
then we must admit that Y, in this stationary state, is a function of F which cannot be propor-
tional to F near F = O (otherwise, the constant of proportionality would be a well defined trans-
port coefficient) and could behave like F(In F)*? near F = 0, or something like that [86, 95]. But
it is also possible that no stationary relation between F and Y exists. Perhaps size effects should
also be taken into account; for instance, it is known that in a one-dimensional harmonic chain
the heat flux does not depend on the temperature gradient but on the temperature difference be-
tween the ends [95].

To conclude, we see that the transport properties for 2d and even 1d fluids are far from settled;
in particular, as long as the phenomenological and stochastic approaches have not been shown to
be consistent with the kinetic theory results, some doubt remains as to the validity of the results
derived above. For example, it is not excluded that in the very long time limit, the 1/¢ behavior
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in 2d (or the “self-consistent” (In #)'?/¢t) ceases to be valid. This last remark is born out by the
fact that, if we take as a model the 2d Choh—Uhlenbeck result for self-diffusion (see (2.91),
(3.62)):

D, |c.y. = 1/(~iz + p, +ip(a®n) In(za/v)), (4.41)

we find indeed an asymptotic behavior « 1/¢ for the inverse Laplace transform in the “inter-
mediate” time regime u;' In(1/a%n) < t < (a/v)exp(—1/a*n) because, for such times, it is legiti-
mate to use the expansion:

1 i(@a*n)p,In(za/v) N
—iztp, TEFE)

D, | cu. (4.42)

Yet, in the very long term, the logarithmic factor dominates in the denominator of (4.41) and
leads to a different behavior, of the type [#(In #)]'; moreover the whole time integral of this
Green—Kubo integrand is such that the transport coefficient D, vanishes! We shall not dwell on
this example any further, in particular because the logarithmic term in (4.41) should more
realistically be replaced by a much more complicated self-consistent expression; we nevertheless
feel that this model illustrates nicely the type of difficulties and the kind of surprise which may
very well emerge from a more careful analysis of 2d and 1d system.

4.4. Transport properties of the Van der Waals fluid

The Van der Waals theory for the equilibrium properties of classical fluids is based on the idea
of separating the pair interaction between the particles into a short range repulsive part VX and a
long range small attractive part ¥*. In modern language, one writes:

V=VR@r)+ v Vi(yr) (4.43)

where the parameter v measures the inverse range of V™ and is such that the average attractive
energy:

7 f d3r Vi(yr) (4.44)

remains finite in the limit oy > 0; y plays the role of a smallness parameter and can be used to
develop various perturbation methods for the thermodynamical properties and the correlation
functions of the system. In these calculations, the properties of the short range reference system
are assumed to be known [98—100].

In particular, it has been rigorously proved, under very general conditions, that the vy~ 0
limit leads to the Van der Waals type equation of state combined with the Maxwell equal area
construction [101].

It is of course of much interest to get analogous results for the transport properties of the
Van der Waals fluid; because the parameter v introduces a small wave number, we may expect
a priori that long wavelength contributions, described in terms of hydrodynamical modes, will
play an important role in the dynamics of this Van der Waals system. This conjecture has been
verified by the kinetic theory method briefly sketched in section 3.3: using the renormalized
form of the collision operator, it was shown that the dominant correction to transport coeffi-
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cients due to V! is of order v, and arises from a coupling between two modes quite analogous
to the one leading to the +*? decay for the Green—Kubo integrands [62, 81, 102]. However as
already stressed, the kinetic approach involves an enormous amount of technicality and we shall
limit ourselves here in sketching how the results can be recovered by using the much simpler
phenomenological Landau—Placzeck approach.

Consider again the example of the Green—Kubo formula (4.1, 5) for thermal conductivity.

Of course the flow J*, eqgs. (4.2, 3, 4), now depends on the long range potential V*.

To dominant order in vy, we assume that the correction to k due to this long range potential
arises from slowly decaying long wavelength phenomena for which the Landau—Placzeck
method of section 3.2 may be applied. Three modifications occur as compared to the short range
reference system:

i) the long range potential explicitly occurs in the flows (4.3, 4);

ii) the long wavelength static correlations are still of the Gaussian type but their explicit form
has to be slightly modified. Consider for example the density fluctuations probability (2.23).
This formula is valid only if g is smaller than any molecular inverse length, including v; however,
it was shown by Van Kampen [98] that Gaussian fluctuations persist in the range g ~ y provided
that x; is replaced in (2.23) by the wave number dependent susceptibility*:

R

d
Xr = Xr(qv'") = [ES + nV{‘;y—l] (4.45)
T

where the superscript R refers to the short range reference system. Due to this difference in the
statistical weight, we see that the equilibrium fluctuations of the Van der Waals fluid differ from
the reference system for gy '~ 1. A similar modification occurs for the energy fluctuations
while, of course, the velocity fluctuations are unaffected (see (2.24));

iii) similarly, we have to modify the equations of linearized hydrodynamics obeyed by the fluid
conserved variables. For doing this, we simply assume that the presence of the long range poten-
tial induces an average field term in the Navier—Stokes equation [103—105]; although a detailed
justification of this procedure is quite delicate [62], it can be understood by analogy with
another long range force problem — namely the Coulomb potential — where it is known that the
dominant dynamical effect of these forces is precisely to introduce such a mean field (or Vlasov)
term [50].

In the Navier—Stokes equation (2.86), we substitute therefore:

R ]

L
) + -~ qu.l . (4.46)

19p

o) 1o
pon

r pon

We now write the long wavelength part of the local equilibrium form of the flow (4.3) as (com-
pare with (4.6))

1 1 a
IO = D [0 ¢ 0+ Vhgan @000+ in 00 5@ Vi | @4

where we have introduced a small cut-off wave number g, such that q,> . Indeed, we expect

*We use the convenient definition V},’ = f d3r VL(r) exp(iy - r), for the Fourier transform of the long range potential.
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that for ¢ 2 q, the reference system and the Van der Waals fluid behave exactly in the same way
and the region q > q, should therefore not contribute to the correction due to VL. Moreover, the
first two terms represent the approximate enthalpy flow where only quadratic deviations from
equilibrium are retained; it can be shown again that cubic deviations (as nahyv nq, q # 0)
lead to negligible contributions for y - 0.

Expressing AR in terms of n q and T, in (4.47), we are now in a situation allowing us to apply
the Landau—Placzeck machinery in a straightforward manner; we merely have to account for
the above remarks ii) and iii). We shall not reproduce here the details of these calculations. Sub-
tracting the corresponding contributions from the reference system, we obtain:

—q—q

kg ( n Vi1 mc*(y) micR)? G, Cy }
_gR= _ —
T erm of v [1+2c’(y)my ay} 2P0y 2R +2T|:IIR+KR/nCp(y) uR+xR/nc§] !
(4.48)

where the cut-off has been pushed to infinity.
Similarly one finds for the shear viscosity:

1ksT YW0=17%, V\1nC, () ny AVI\' 1 1}
—nR= 2.2 I O
T Gon? of v [" x’“’)[v(y) ] (" ay) wE (1+2c2(y) ay) ry) =) ¢4

the corresponding formula for the bulk viscosity is too long to be displayed here (see [81]). In
these equations, we have introduced the dimensionless variable y for the quantity gy™*; all y de-
pendent quantities in (4.49) then represent finite y generalization of the corresponding thermo-
dynamical coefficient of the Van der Waals fluid; on the other hand, the Onsager transport coeffi-
cient themselves remain the ones of the reference system to this order of approximation. For
example, the sound velocity:

R 2
p= (& L) =S w" I (4.50)
Cv NXp/ Van der Waals mCll} on T m
is generalized into:
ap R n2
2 -__P L
) RRRAa 7 9 4.51
“0) mCRon |, m ” @31
Similarly:
2
T/op\R
0=+ ( 57” [0 — xR (4.52)
C,»)=C® (4.53)
) = C,»/C,» (4.54)
4nR/3 + ¢R 1 1 R
P 50 G/ n



122 Y. Pomeau and P. Reésibois, Time dependent correlation functions and mode—mode coupling theories
with

xr(y) =

n—l

_— (4.56)
ap/on|R +nVi

Of course, the remarkable feature of this result is that it only requires the knowledge of the
equilibrium and transport properties of the reference system (and of course of V;) but is totally
independent of the detailed properties of the short range dynamics; this is a feature which is
common to all mode—mode coupling calculations.

Results similar to (4.48, 49) were obtained previously by Zwanzig and al. and by Kawasaki
[103—-105] ; their method was very similar to the one displayed here but they assumed more-
over that the short range part of the flow J* was rapidly decaying and did not contribute to the
corrections studied. With our present understanding of the Green—Kubo integrands, we
know that this assumption is in error: the purely short range part decays slowly for long times,
due to coupled hydrodynamical mode propagation. As this propagation is different in the
reference fluid and in the Van der Waals fluid, we get thus an extra-contribution. As a matter of
fact, the reader can easily check that eqs. (4.48, 49) are nothing else than the time integral of
the difference between the asymptotic behavior of the corresponding Green—Kubo integral for
respectively the reference and the Van der Waals fluid; yet, in this latter case, no £ behavior
is recovered (except for times ¢ > 472) because of the complicated wave number dependence of
Vt.

yLet us point out that, to the order of approximation considered here, the first correction to
the self-diffusion coefficient vanishes identically:

. D — DR
lim

Y 0 Y

=0. 4.57)

The reason for this is apparent in (3.43): the dominant mode—mode coupling involves the com-
bination of ¥R and DR:

which both are y-independent; hence, their contribution is the same in the presence or in the ab-
sence of VL. The first non trivial correction appears to be of order 4?; as it is of little more than
academic character, we shall not reproduce it here [107, 108].

This theory has also been extended to binary mixtures [106].

4.5. Critical dynamics

As already stressed, critical dynamics is a vast subject and it is out of question to review it here
in detail (see [46, 82, 83]); we shall limit ourselves in indicating how mode—mode coupling
plays a prominent role in this theory.

To illustrate this point, consider again the correction to the viscosity of the Van der Waals
fluid due to the coupling between two heat modes; we denote it 8nss; from eq. (4.49), we have:

5

dnss 7f dy[nxT(y)]z(
0
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It is easily seen that, when the temperature is decreased, we finally reach a temperature T,
such that, for a well defined density n_, the zero wave number compressibility x,(0), eq. (4.45),
becomes singular; we then have:

—n V% =dp/on |r., (4.60)

which defines the critical point of our model.

Of course, it is known that the equilibrium y-expansion fails to converge close to the critical
point [100] ; moreover, eq. (4.59) was derived under the assumption that all thermodynamical
coefficients were well behaved, and this is also invalid near (n_, T_). Nevertheless, let us provision-
ally forget about these difficulties and let us investigate, in the most naive way, the consequences
of (4.60) on (4.59). We consider a temperature T such that

T-T

C

0<

=e<] (4.61)

c

and we look, in the integral (4.59), at the region where y € 1. Expanding the denominator in
(4.56) with the help of:

ap |R ap |R e 2L

P2 her ., VE=VEeprd o, (4.62)

an,|r o |p, Y y? |,
we get the well known Ornstein—Zernike equation:

1

Xr(y) = E:,’ +? (4.63)

where
€
£ = (V « ) x /el (4.64)
= Woamma, ) “V°

defines the correlation length in units of y™!; the usual correlation length is simply & = ‘577"; ¢
and 27 diverge at the critical point.
From (4.13, 15), we have the estimate:

) ~ 1 (4.65)
and
y avtjay ~ y*. (4.66)

Hence the contribution to (4.59) coming from the region y < 1 (or g < %) is of the order:

5 f°° dyy* G, vE'C,(0)
n s ™ 7 ~ ’
5 ; 0}2 + E‘—yZ)2 KR KR

(4.67)

where we have found it convenient not to use the result of (4.52) CP(O) « £2. For vy small but
finite, this “correction” becomes infinite when T, is approached and dominates the short range
term n®. Similarly we would find that 6k = k—«R is not small when T, is approached.
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Strictly speaking, these results indicate that our simple theory is inadequate close to T .. How-
ever, qualitatively, it is quite easy to ‘“‘repair’ this inadequacy: we have simply to put the full
transport coefficients in the mode—mode term, instead of their value in the reference fluid. Then
(4.67) becomes a self-consistency condition:

nlssk~ £1C,(0), (4.68)

where we have dropped the factor v which is a small but finite constant. If we use Cp(O) ~ &2,
we get instead of (4.68):

Nlssk ~ &, (4.69)

the indication of a necessary divergence either in k or in 7.

Though the above argument, based on the unjustified use of the Van der Waals model, is ad-
mittedly very crude, the final result — in particular in the form (4.68) — is not as bad as it might
appear first. As we shall see soon, the more adequate theory of Kadanoff and Swift reproduces
similar results [16].

We have already sketched, in section 3.2, how these authors built up a formalism which intro-
duces mode—mode coupling effects at the level of the formal solution of the Liouville equation.
A second ingredient of the theory is the model independent definition of wave number dependent
thermodynamical coefficients*. This is very simply done when we realize that a formula like the
fluctuation theorem [43]:

nksT xp = lim Gi_p (4.70)
q-—)

can be extended to define a wave number dependent compressibility:
nkgT X7(q) = A h_,). “4.71)

Of course, in general, such a definition is of no much help because the right-hand side cannot be
evaluated explicitly. Yet, close to T, when £ (which can still be defined for realistic systems) >
any molecular length, we can use the idea of “static scaling” to assume that the generalized com-
pressibility, which generally depends separately on the parameters ¢ and £, is in fact a homo-
geneous function:

xr(q, £) = 4" f(q¥), (4.72)

where f{X) is an unknown but well defined function which tends to a constant for X > 0. A justi-
fication of (4.72) falls out of the scope of the present work (see for example [831); let us simply
stress that, in estimating the divergence of integrals of the type (4.59), the explicit form of the
function flq§) is irrelevant. Moreover the exponent u can be determined from purely thermody-
namical properties because, for ¢ < §7':

xr(q, §) = & (4.73)

as an immediate consequence of the homogeneity of the function f.

*An explicit realization of such quantities is of course offered by (4.52, 56) in the Van der Waals limit.
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With these ideas, the Kadanoff—Swift theory runs along lines very parallel to all the previous
examples. Let us simply mention the few points where differences appear:

i) because the wave number g is not necessarily the smallest parameter of the problem (very
close to T, we may very well have a regime g¢ > 1), the transport modes cannot be written in
the simple form:

A= g2 ug(b) (4.74)

where y, solely depends on temperature (see (4.64)) but one should retain the complete wave
number and frequency dependence of u,, (see also (2.55)):

A(q w)=q*u, (¢ q, w); (4.75)

ii) because of the absence of a smallness parameter in the problem, one is not allowed to re-
tain only two mode terms; as a matter of fact, there is good indication that many mode terms con-
tribute equally to the diverging transport coefficients. Fortunately, simple dimensional arguments
show that this does not affect the nature of the divergence (and, especially the value of the dynam-
ical critical exponents), found by taking only two and three modes couplings.

iii) As already illustrated by (4.68), this divergence is determined by solving self-consistently
homogeneous mode—mode coupling equations. Indeed, the regular term (as n® in the Van der
Waals fluid), which describes the short range effects, remains finite at T, and is thus irrelevant*.

With these remarks in mind, the mode—mode coupling machinery can be applied straightfor-
wardly; the only difficulty is the large number of equations (corresponding to the various trans-
port coefficients and to the various frequency regimes) which have to be solved simultaneously.
We shall not display these equations here; let us simply mention that our naive estimate (4.27)
turns out to be one of these equations provided that we substitute:

Nlss > n(&, 0, 0)|ss; k> k(& £, £2K). (4.76)

Of course, in this model independent calculation, one should take the actual — and not the Van
der Waals — critical behavior for the static quantities; roughly speaking, one has:

£~ €3, C,~ €43, 4.77)

It would be out of place to present here the detailed results of this theory;let us simply men-
tion that it has been remarkably confirmed by experiments (see [ 109]) for an exhaustive list
of references). Moreover, it has been extended with success to binary mixtures [46, 110].
Finally, similar ideas have also been applied to magnetic systems [14, 15,46, 111, 112] and to
phase transitions in superfluids [46, 113, 114]; we shall not discuss these problems here.

5. Final remarks

Although we have thus far given a fairly complete review of the theoretical aspects of mode—
mode coupling problems, very little has been said about the relevance of these calculations to

*This regular term is “theoretically irrelevant™ because one looks at the nature of the singularity; yet, it is “experimentally rele-
vant” in governing the regular background to which the singular part is added.
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experimental problems. First of all, we should stress that hydrodynamical phenomena are of
such a fundamental importance in the understanding of time dependent correlation functions,
that the purely theoretical aspects of the problem are of an enormous interest in themselves.
Yet, it is also essential to inquire about the experimental relevance of these effects.

The most spectacular success of mode—mode-coupling theory is without doubt the correct
prediction of the singularities of some of the transport coefficients close to the critical point
(see [ 109] and references quoted therein, as well as [ 145—148] for some key experimental
papers on simple fluids and binary mixtures). However, a detailed analysis of these results would
fall out of the scope of the present paper and it would require by itself a whole review. Thus,
we shall limit ourselves here to a discussion of non-critical systems. Two difficulties appear in
this case: — for some apparently accidental reason, the numerical coefficients which weight the
decay law of the correlation functions for long times are generally quite small and the effects
are thus hard to put in evidence; — as is clear from the previous sections, the only thing theory
can predict is the asymptotic behavior of these correlation functions in the limit of long time
but no estimate exists yet of the time after which this asymptotic stage is reached; in particular,
the occurrence of the sequence t7%2, 177 ... for the first few terms does not help in making a
clearcut separation between the initial exponential like (or Gaussian like) relaxation and the
final asymptotic behavior. This makes that any simple dimensional argument (based on the idea
that the £32 behavior becomes correct as soon as the contribution to integrals over wave numbers
(see (3.42)) come from g values much smaller than inverse molecular dimensions) is very doubtful.

Probably for these reasons, very little has been reported on experiments on realistic systems
which would support the slow decay of the Green—Kubo integrands; let us mention a remark
by Andriesse [115] suggesting that inelastic neutron scattering data on argon are best fitted by
a theoretical model including a non-analytic w!? behavior (see (4.14)) for the Fourier trans-
form of the velocity correlation function; the moderate accuracy of the data does not lead how-
ever to conclusive evidence. Another, more recent, result concerns the verification of the gen-
eralized Brownian motion theory discussed in section 3.1 [116] by observing the motion of
latex particles in air and argon after they have been trigged by a shock wave: the relaxation
starts to be exponential, with a characteristic time 7, but for times ¢ 2 2.5 7, the decay of the
velocity is consistent with a £73? law; though, here also, no definite conclusion has been reached.
Let us moreover stress that, even if such an experiment would lead to complete agreement with
theory, it would still be far from proving the existence of microscopic mode—mode effects
between the molecules in a fluid. Finally, we may still point out an interesting suggestion by
Harris [117] which indicates the possibility of proving the slow decay of the Green—Kubo
integrand for diffusion by electrical conductivity measurements.

As one can see, the balance with theory is quite meager on the “truly” experimental side and
to get more results, we have to come back to the “computer experiments” which, as discussed
in the introduction, started the whole problem, for non-critical classical fluids at least. As the
field has been reviewed quite recently by Wood [118] we shall be rather brief. The most salient
results are the following:

i) For hard discs in 2d, the Alder and Wainwright data clearly show a 1/¢ behavior for the
velocity correlation function D,, for times of the order of 10 to 30 collision times [9], up to
packing fraction v/v, (v is the volume per molecule, v, the volume at close packing) of the order
2, for which computer experiments have been carried out. Moreover the value of the coefficient
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Fig. 5.1. The ratio lim, _, DO/ +~9/2 a5 a function of density (taken from ref.[29]): crosses indicate computer experiment data.
(V is the volume per particle and V¢ this same volume at close packing.)

a defined by:
D(t) = aft (5.1)

agrees well with the theoretical predictions [29], as is illustrated in fig. 5.1. These results are also
confirmed by an interesting calculation of Erpenbeck and Wood [119] who computed the diffu-
sion coefficient, at time ¢, as the ratio:

D(D) = T (r, AV, ny(r, D), (5.2)

where (J,(r, £)) denotes the average flow of tagged particles and (V_n,(r, £)} their average density
gradient. Clearly, for a “normal’ situation, D, should tend to a constant for large enough times;
however, the experiment is consistent with a growing of D, like:

dt

t
D(t) « f7=ln ¢ (5.3)

Let us stress that the times for which (5.1, 3) have been verified are not very long and these re-
sults do not refute the possibility of a more complicated behavior at larger times.

Finally, Carlier and Frisch [120] have performed an interesting calculation for hard squares
which displays a similar ¢! behavior.

ii) For hard spheres, the situation is less favorable (precise calculations are harder) but, never-
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Fig. 5.2. Comparison of the velocity autocorrelation function as a function of time (in terms of mean collision times) between
the hydrodynamic model (circles) and a 500-hard-sphere molecular-dynamic calculation (triangles) at a volume relative to close
packing of 3 on a log—log plot. The straight line is drawn with a slope corresponding to £3/2. (Taken from ref. [10].)

theless, at not too high densities (v/vo = 3), one can see quite convincingly the 73?2 behavior for
the velocity autocorrelation function, as illustrated in fig. 5.2. The line corresponds to hydrody--
namical theory, neglecting however the self-diffusive motion of the tagged particle.

Notice moreover that at higher densities (2 2 v/v, 2 1.5), the t>2 behavior is certainly not yet
reached for the largest time considered by Alder and Wainwright (z/7, = 30) because D(¢) is still
negative, while theory predicts it should be asymptotically positive.

Similar, but less precise, data exist for the other transport coefficients.

Recently, very interesting results for Lennard—Jones potentials have been obtained by
Levesque and Ashurst [ 143] which indicate a behavior analogous to that of hard sphere systems.

To end up this very brief review on computer results, let us still mention studies of the Lorentz
gas [121], which was unsuccessful in detecting the ¢~ prediction for this model and of Wood
and Lado [122] on the wind tree model.

All these results might give the depressing view that mode—mode coupling effects play only a
very minor role in the determination of correlation functions and transport coefficients. How-
ever, we should stress again that the calculations reviewed here only discussed the asymptotic
behavior of these correlation functions. A still unanswered question is whether or not these hydro-
dynamical effects also play a role in the intermediate region (let us say ¢ ~ 3—10 relaxation times);
in this case, of course, an asymptotic evaluation based on:

[k? dk exp(—ak?t) & 1/(a)* (5.4)

would no more be valid, because the wave numbers which would contribute to the integral would
not be small enough (see the approximation leading to (3.87)). Yet, that “precursors” to the long



Y. Pomeau and P. Résibois, Time dependent correlation functions and mode—mode coupling theories 129

Fig. 5.3. The deviations of the velocity correlation function from Enskog approximation at various densities (taken from ref.
[123]). (r denotes the relaxation time (4</n pg, (@) a2~/KgT/m)~! where g4 (a) is the pair correlation function at the contact
distance a.)

time tails do exist at such intermediate times is strongly suggested by Alder et al. [123] in their
analysis of the hard sphere fluid in 3d. Considering again the velocity correlation function, we
see clearly on fig. 5.3, where the deviations 8DE= D, — Df from the Enskog result D} are quite
important at these intermediate times: it is hard to understand how such effects could be ac-
counted for by purely “relaxation” processes, which should have a much smaller life time.
Similar effects exist for Lenard—Jones fluids [ 124]. Although a thorough discussion of these
questions would be out of place here, it is worthwhile to point out that partially successful
attempts in this direction have been made {125—127]: it is our optimistic view that such “extra-
polations” of long time tails effects at intermediate time will be an important ingredient of
future transport theory.

Finally, let us make three more remarks:

i) little, if any, has been said here about quantum systems. However, there is little doubt that
similar effects exist for these systems. Indeed, for wave lengths much longer than the De Broglie
wave length there is little difference between a classical and a quantum system (except of course for
superfluids) and, precisely as the quantum equivalent of the non-analyticity of the virial expan-
sion for classical gases has been established [128, 129], there should be no basic difficulty in
deriving the ™32 behavior, as well as the related aspects. Moreover, let us repeat that in quantum
critical dynamics, mode—mode coupling has already been successfully applied;

ii) even for classical systems, we have limited ourselves here to fluids with no internal degrees
of freedom. However, the same type of approach has been developed for internal rotation relaxa-
tion [130, 134]; also a series of special models have been analyzed, like the Lorentz gas [35], the
wind tree model [135, 136], or magnetic relaxation in solids [ 137]. For lack of space, we shall
not discuss them here; suffice it to say that they clearly show that a slow decay of the
Green—Kubo integrands for long times seems quite a universal phenomenon although the 173
discussed here is not generally valid, even in 3d;

iii) it is often said that mode—mode coupling theory is a non-linear transport theory. Though
this point is of a rather semantic nature, let us stress that such a statement certainly needs some
qualification. Indeed, whatever the method we have used, we have only considered correlation
functions which are defined within the frame of linear response theory and all deviations of the
macroscopic quantities from their equilibrium value are small. Yet, it is true that in describing
the time evolution of these macroscopic quantities, we have used formalisms (in particular the
phenomenological and the fluctuating hydrodynamical approach) in which non-linear micro-



130 Y. Pomeau and P. Résibois, Time dependent correlation functions and mode—mode coupling theories

scopic fluctuations appear. Yet, as should be clear from all this work, the introduction of these
non-linear fluctuations simply furnishes a convenient way for describing the microscopic dynamics
of the system in an approximate way. If we were clever enough, we could have computed the

time dependent correlation functions by solving the exact Hamilton’s equation (which of course
also are enormously non linear!): yet nobody would speak then about a non-linear transport
theory. Moreover, we have seen that, in the kinetic approach, only linear operators appear,
although these again involve — in some approximation — products of hydrodynamical modes.
Thus this distinction between linear and non-linear effects is rather superficial; what is really im-
portant is the final result and, fortunately, we have seen that all the existing methods — whether
“linear” or “non-linear” — lead to equivalent results.
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APPENDIX A
Derivation of eq. (2.81)

Acting with f’N on both sides of eq. (2.82), we get:

18,8, 50y (1) = Py Ly Py dpp(8) + Py Ly(1 — By) 8pu(0). (A.1)
Similarly, acting with (1— AN) on the same equation leads to:

i8,(1—Pyy) 8pp(8) = (1 =P Ly (1—By) 8pp(8) + (1—P) Ly Py 8pp(0). (A.2)

Formally, the solution of (A.2), considering I3N5pN(t) as given is:
A A A 1 ! A
(1-Py)8pp(1) = exp[—i(1—Pp)Lyt1(1—-Py) 6pp(0) +i—fexp[—i( 1—Py)Ly(t—t)]
[

X (1—-Py)Ly Pydpp(#)dt’ (A.3)

as can be checked by differentiation.
With the help of the initial condition (2.81), we have:

(1-P,)8p,(0) = 0. (A4)

Inserting (A.3, 4) into (A.1) and using the readily checked property:

PyLyPy =0 (A.5)
we arrive indeed at (2.86) with the help of (2.85).
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This five line derivation of a kinetic equation is of course extremely elegant. Yet, it has ob-
viously told us very little about the extremely complicated dynamics of many particle systems:
all the difficulties are still present in the formal expression for the kernel Go(p;; 7) and the real
job of the many body physicists starts when unravelling the structure of this kernel, with any
method he is able to use, in particular perturbative methods [49, 52, 54, 55]. Refusing to do
this amounts to replace an unknown quantity, 8¢,(p,; t), by another unknown quantity G(p,; 7)
ind then the kinetic equation (2.86) provides us with little more than a definition of the kernel
Go(p:; 7), as was stressed by Martin in a different context [6]. Moreover, rough and uncontrolled
approximation on this kernel or on the choice of the projector often leads to completely
erroneous results (for an example of incorrect use of projection operator techniques, see [138]).
These remarks are illustrated in Appendix B and C.

APPENDIX B
Formal density expansion of the collision operator 6o(p; z)

It is clear that the definitions (2.87, 89) are very formal and in order to extract any informa-
tion from them, one needs some kind of expansion method for treating the many body operator
exp{—i(1-Py)LyT}.

The most straightforward method is based, as usual, on the splitting of the Hamiltonian H,,
into two parts:

Hy=H}y+\Vy (B.1)
where HY, describes the kinetic part of the energy, while V,, describes the interactions:

Vy = ?b V(ir,,1). (B.2)

This latter term is weighted by a dimensionless parameter A. Correspondingly

Ly=L% +\sL, (B.3)
with:
)
L8 =—i2iy, - — ’ B.4
N 1 Ua ara ( )
8Ly = g)b 5L, (B.5)
5L =ii‘i.(_?___a__ (B.6)
@ or,, \op, op

Inserting (B.3) into (2.87), we may formally expand the exponential operator in powers of A
according to the well-known formula:
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A AS A
expl—i(1—Py)Ly7] = exp[—iLy7] +der' expl—1iL{T—7")1 (1 —Py)8 L yexp[—iL3r] + ... (B.7)
0

where we have used the easily established property:
PyL,=0. (B.8)

We arrive then at the expansion:

Colp1:2) = 42‘32 A" Colpy; 2) (B.9)

if we also expand the equilibrium distribution p®? in powers of A (it is easily checked that the con-
tributions of order A° and A! identically vanish). We may now systematically analyze the (infinite)
series (B.9); diagram techniques prove very useful in this aim [49—-51]. Although this procedure
has been successfully applied even in arbitrary dense systems, it is true that the expansion (B.9)
is not very convenient for explicit calculations in realistic systems, because the interaction is
strong and the simplest limits (for example the Boltzmann limit of the dilute gas) already require
infinite partial resummations. This is avoided by an alternative procedure, the so-called binary
collision expansion [139, 140].

We shall not present this formalism in detail here but the basic idea is easy to grasp by analogy
with quantum scattering theory [121]: it is well known indeed that while the potential
V(lr;!) furnishes a valid approximation (Born approximation) to the scattering amplitude when
this potential is weak, it has to be replaced by the so-called 7;; matrix for strong potentials:

1
V,-j - 7ii(Z) = Vii + Vij FI: gij(z); (B.10)
this J,; matrix is generally frequency dependent. The comparison of (B.1) and (B.3) then imme-
diately suggests that the classical collision process between two particles (if) should be adequately
described by the so-called binary collision operator T;(z), solution of an integral equation:

1
6Li/‘ - Tii(z) = —SLU — 5Lii i:: Ti]-(Z) (B.11)

1
=1, 5. (B.12)

The minus sign in (B.11) have been introduced for convenience; moreover, the definition (B.12)
makes the Fourier transform of #,,(z) with respect to the coordinates r; and #; volume indepen-
dent in the large volume limit.

Although the explicit calculation of ¢;,(z) for arbitrary potential V(ir;1) is an exceedingly diffi-
cult problem, it poses no question of principle (it is a two-body problem); moreover ¢#;; can be
evaluated simply in the case of hard spheres where it turns out to be frequency independent (be-
cause the hard sphere collision is instantaneous); in this case, a representation of the Fourier
transform of #;; is given by eq. (3.70) in the text.
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We now have to express the generalized collision operator (2.87, 89) in terms of these #;;, in-
stead of the original §L,;. Here again the formal proof is rather tedious but the final result is trans-
parent, especially for hard spheres [140]. In agreement with the naive picture that hard sphere
dynamics can be described as a succession of binary collisions one finds:

Golps 1) = —lim [dr dp™ = [~ Ty8(0+ Ty exp{—ilLy—(1-By)(Ty)1H(1-P)Ty1 10330 (py). (B.13)

Except for the first term, the right-hand side of eq. (B.13) is obtained from (2.87) by replacing
everywhere 8L, - —Ty:

Ty = ?} T, (B.14)

The necessity for this first term is easy to understand: indeed, a hard core two-body collision
takes essentially no time and an instantaneous contribution (« §(¢)) is possible; on the contrary,
eq. (A.5) tells us that a soft force cannot give rise to a collision process with zero duration.

By comparing (B.13) and (B.12) with (2.87), the attentive reader will however have noticed
an apparent “overcounting” in (B.13): indeed, contributions involving two (or more) successive
T; with the same pair (i) are allowed in (B.13) and such physical processes are by definition
already accounted for by one single T;;; however there is no contradiction because for hard

ij
spheres, one can prove the property*:

1

TijLT-:_Z T,-]-=0 (B.15)
which expresses the geometrical fact that two successive collisions between the two same isolated
particles is impossible.

This property (B.15), as well as the z-independence of T;, are particular features of hard
spheres systems which make them particularly convenient to analyze.

With (B.13), we are ready to attack the problem of the formal density expansion of the
generalized collision operator. The idea is very simple: we first insert in (B.13) the analog of

(B.13) for the exponential factor:
ao(Pl;T) =— lgnfdrN dpN [Ty 8() + TNexp(—iLj’vr)(l—ﬁN)TN

1 7 ' . ' A A
— = [ & Ty expl—ilir—r)) (1B Tyexpl-iLgr | (1-P Ty + .1 0§8p*).  (B.16)
0

In principle, we should also make a cluster expansion for the equilibrium distribution; however,
to illustrate the procedure, it is sufficient to approximate p3? by its perfect gas limit; hence we
shall take here:

1 N
P I eopp. (B.17)

*We are a little sketchy here. Strictly speaking, one should define T; by a limiting procedure which is not explicit in eq. (3.11) of
the text. As this point plays no important role here (see however (3.75) and the corresponding footnote), we refer the reader to
the literature [140] for a careful treatment. '
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Inserting (B.14) into (B.16), we get an infinite set of contributions which all involve particle 1
at least once (in the extreme left T, otherwise the integrals over pN¥-1lead to zero), but also
“dummy particles” (# 1). In a term involving m dummy particles (i, i, ... i,,,), we can choose
these in (N—1)(N—2) ... (N—m~1) ~ N™ ways; moreover, it is readily verified that such a term
is proportional to 7" (because the probability of a collision between (m+ 1) particles randomly
distributed in the volume £ is proportional to £27™): hence, we shall obtain all the contributions
of order n™ by picking up in (B.16) all the terms involving m dummy particles. In order to do this
systematically, it is very convenient to use some kind of diagram technique. For the simple
examples we want to treat here, it is however possible to work directly on the analytical formula
(B.16).

To first order in #, we need one and only one dummy particle and it is immediate to check
that the first term of (B.16) is of that type; moreover, eq. (B.15) guarantees that no other term
of order n may appear.

Writing:

Go(py;7) =nGD(p,; 1) + 2 GP(p,;7) ... (B.18)
we have thus:

N
nG§ps; 1) = — lim [ar¥ apt [~ Tu8(n)1 [T goo(p,)/Y
. i=2
: N 3 3 3 eq
= lim = [ &, &, &2 T129*(pa) 8(r) (B.19)

and with the help of (B.12) and (3.70), we get readily:
nG§(py;7) = nC(p)8(r) (B.20)

whose Laplace transform is the frequency independent Boltzmann—Lorentz collision operator
for hard spheres. '

At the next order, we retain the term involving two dummy particles; the second term in (B.16)
vanishes identically in the approximation (B.17) as a consequence of the definition (2.83) for P,
and we find the first contribution of order #n? in the third term of (B.16); we have:

~ N?
PGP (py; 1) = i lim [&r, &y &3 dp, dps

X {T1aexpl—iLYr—7 )1 [(1—P)Ty3expl—iL87' 1(1-P ) (T1s+ Ts)
+ (1=Py) a3 expl—iL37 11 =P )(T1y + T15)1 } ¢°%(p2) 9°%ps) + ... (B.21)

The dots here correspond to the “‘higher order” terms in (B.16) which involve similarly two
dummy particles; these terms are of no importance for the asymptotic time behavior considered
in this work.

The Laplace transform of (B.21) is the frequency-dependent Choh—Uhlenbeck collision opera-
tor, n? az)(p 1; 2) discussed in the text; a tedious calculation based on (B.12) and (3.70) allows to
cast (B.21) into a more explicit form; we shall not write it here but it can be easily obtained as
the n? term of the density expansion of (3.75) in the main text.
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We could similarly obtain the super-Choh—Uhlenbeck operator by collecting the terms of
(B.16) involving three dummy particles.

APPENDIX C
Structure of the collision operator

Schematically, we may summarize our discussion of Appendix B by saying that the generalized
collision operator can be expressed as a functional of the binary collision operator ¢,, and of the
free particle Liouville “streaming” operator exp(—iL 7).

From the definition (B.4), we can write this latter as:

5 d
exp(—iLy7) = I1 exp (—‘rva . ;) (C.1)

a=1 P

If we now introduce the Fourier transform of the free particle “propagator” exp(—7v, - 3/dr,):

(0) . - 1 3 : 9 s - : Kr
G, 1) = 5fd r.exp(ik - r)exp| —7v, - o exp(ik’- r,) = exp(—ik- v, 78, %, (C.2)

a

5o(p 1> ) appears thus as a functional of ¢, and Gy(v,; 7)*
Colp132) = Colps; 21 {1 }, G2V, D). (C.3)

Suppose now that, for some reason — examples can be found in the text — low wave numbers
k play an important role in the functional dependence of C, on G}; this means that we describe
the motion of the particles in the fluid by free motion over large distances ~ k™!. Clearly, such a
description makes no physical sense in a dense fluid, and we may expect all kind of difficulties
with such an unrealistic (though formally exact!) formalism. What we should rather do is to
describe the motion of each particle in terms of a “dressed propagator”, which takes into account
the presence of all the particles in the fluid.

The necessity for such a renormalization appears mathematically in the following way: the
Fourier Laplace transform of G$(v,; #) which is:

Gv,;2) = (C.9)

ku—2

a

is only very weakly divergent at k = 0, z = 0; yet, it is easy to find a whole class of terms which
diverge arbitrarily strongly at low k and z: they are obtained by considering, instead of free
propagation of particle “a”, the contributions where particle “a” collides an arbitrary number of
times with other fluid molecules. This situation is schematically depicted in fig. C.1, where free
propagation is represented by a thin line and the dots represent collisions with the fluid mole-

*To simplify, we again neglect the effect of the equilibrium correlations pf\ﬂ, which would lead to a further renormalization of the
t;7; this point is of no much conceptual importance here.
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Fig. C.1. Schematic representation of the propagator renormalization.

cules. As is familiar from field theory [142], we can however put together all the contributions
depicted in the figure and obtain the dressed propagator G, (v,; f) represented by the thick line.
We have:

I
Golvgi =5 Pdz exp(—izH) X, (v,; 1) C.5)

where X, (v,; z) is given by:
X (v,;2)=[k v, —z+iC(p,;2)]7". (C.6)

Here C.(p,; z) generalizes to non vanishing k the collision operator introduced in section 2. We
shall not need its explicit definition here.

It is now possible to write, in an unambiguous way, the collision operator a,(pl ;z) as a func-
tional of this renormalized propagator*

Colp1; 2) = Cop1; 212}, {G, (0, 1) D) (C.7)

(50 is of course different from 50). The only difficulty in dealing with (C.7) — as it a~lso is for (C.3) —
is to have a proper. book keeping of the still infinite number of terms appearing in C,; here again,
diagrammatic techniques are very useful.

The main merit of this new expansion (C.7) is that the strong divergences at £ = 0 indicated in
the first line of fig. C.1 are no longer present. Indeed, the analysis sketched in section 3 (see eq.
(2.16) and foll.) indicates that, at small k, the divergence of (C.6) is at most of order k7 (in 3d at
least) and this is weak enough to make an analysis based on (C.7) meaningful.

This remark is illustrated in the text for the special case of the ring collision operator. More-
over, it is very easy to see that this ring operator emerges as a renormalized form of the Choh—
Uhlenbeck operator. Indeed, using (C.1), (C.2) and substituting

G~ G, (C.8)
transforms the Choh—Uhlenbeck operator (B.21) into the ring operator (3.15), provided we use

the low density approximation C,(p,;z) = nC(p,; z). The proof of this remark is left to the reader.
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