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Abstract:

We critically discussthevarious toolsandmethodswhich areusedto describetherole of long wavelengthhydrodynamical
processesin theanalysisof time-dependentcorrelationfunctions.We alsoreviewthe variousphysicalproblems(long time behav-
ior of Green—Kubointegrands,2 dimensionalhydrodynamics,transportpropertiesof theVander Waalsfluid, critical phenom-
ena...) where thesemethodshavereceivedfruitful applications.
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1. Introduction

The first importantsteptowardsanunderstandingof transportcoefficientsin termsof time de-
pendentcorrelationfunctionsgoesbackto Einstein [1] whenhe developedhis stochastictheory
for the diffusion of a Brownian(B) particle;he got the following formulafor the diffusion coeffi-
cientD: -

D=lirn—~—(~.r~x(t)) (1.1)

where1.~.r1~(t)= ri~(t)— r1~(O)denotesthe randomdisplacementof the B-particlealongthex-axis
in the time interval t, while the bracket(...> meansan averageover this randommotion.

Let uscastthis formulainto aform which is closerto modernlanguage.To this end,we write:

~~~ix(t)= fv1~(t’)dt’ (1.2)

whereVix(t’) denotesthe velocityof theB-particle. Insertingthis into (1.1) andassumingthat the

randomprocessis stationary:

(v1~(t’)u1~(t”))= (v1~(t’—t”) Vix(O)> (1.3)

we get:

D = lim —‘fdt’fdt”(v1~(t’—t”)v1~(O)). (1.4)
t-~o2t0 ~

With r = t’ — t” as a new integrationvariableandassumingthat <vix(r) v1~(O))decaysfaster than
r’ for larger, the limit indicatedin (1.4) canbe takenandleadsto:

Df dr<v1~(r)u1~(O)). (1.5)

More informationcanbe obtainedif we assumethatv1~(t)satisfiesthe Langevinequation[21

dv1~(r) F1~(r)
(1.6)

dr m1 m1

where~ is the friction coefficient,m1 the massof the B-particleandF1~(r)is therandomforce
describingthe fluctuating collisionsof the Brownianparticlewith thefluid. SupposingF1~(r)Un-
correlatedwith the velocityat time r = 0 (i.e., (F1~(r)u1~(0))= 0 for r> 0), we immediatelyob-
tain an exponentialdecayfor the velocity correlationfunction:

= exp{—~IrI/m1}. (1.7)

This, in turn, leadsto the well-knownEinstein relationD = kBT/~(kB is Boltzmannconstant,
T is the absolutetemperature).
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Of course,theseresultshavebeenderivedwithin the frameof the theoryof randomprocesses.
Yet, it is very easyto guesshow eq. (1.5) hasto be interpretedin order to give it a purely micro-
scopicmeaning.

a) The averageC..) hasto be interpretedas an averageover theequilibrium ensembledescribing
aN particlesystem(the B particleplus (N—I) fluid molecules)with HamiltonianHN, in the limit
wherethe systembecomeslarge:

fdrNdpN...exp(—I3HN)(...)lim ZN (1.8)

Here (r”, pN) symbolically denotesphasespacecoordinates(r1 ... rN ; P~... PN) and
= 1/kB T; moreoverlime denotesthe thermodynamiclimit N -+ ~o,~2(volumeof the system)-÷ 00~

N/~2= finite*; ZN is the partition function.
b) The time evolutionof thevelocity of the B-particleis no longergovernedby the Langevin

equation(1.6) but by the deterministicNewton’sequation:

dv1~(t) 1 N
~ F11~(t) (1.9)

dt m11=2

whereF11~(t)denotestheforceexerted,at time t, by molecule/ on the B-particle.
When interpretedin this way, eq.(1.4) becomesa typical exampleof a Green—Kuboformula,

as developedby Green,Kuboandmanyothers(seefor example[3—6]). More generally,onecan
showthatanytransportcoefficientX canbe expressedas the integralof the time dependentcor-
relationfunctionof amicroscopicflow operator~ Onehas:

X limlim 1 jJx~Jx(o)d (1.10)
cz

We have,for givenJ~v:

JX(r)exp[jL~r~Jx (1.11)

whereLN is the Liouville operator:

LN=i~HN,...} (1.12)

({ } denotesthe Poissonbracket).Obviously, eq. (1.5) is a particularcaseof(1.l0) with
JD =

It is worthwhile to point out that eq. (1.5),which was derivedherefor a Brownian(largeand
heavy)particle,remainsvalid when the observedparticle 1 is mechanicallyidenticalto theother
fluid molecules:eq. (1.5) thengivesthe self-diffusioncoefficient,which will oftenbe usedto
illustrateour discussion.However,in this caseas well as for theothercorrelationfunctions,we

*As we shallnot beableto sayanythingmathematicallyrigorouson this thermodynamiclimit, we shall oftenkeepit implicit,

assumingthat it exists.
* *We shall often usetheterm“operator” for anyquantityA which dependsasa functionor asanoperatorin theusualsenseon

the dynamicalvariablesof the system:A = A(r~RN).
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havegenerallyno proofof anythinglike (1.7): this latterresult is a consequenceof the Langevin
equation(1.8) andnot of the equationof motion (1.11).

Nevertheless,it was generallybelievedthat apropertyanalogousto (1.7) wasvalid in general,
atleastfar from the critical regionandfor unchargedsystems.More precisely,definingthe
Green—KubointegrandX(t) by:

X(t) = urn (jX(t)jX(O)) (1.13)

n

we canexpressthis assumptionby the following inequality:

IX(t)I ~ B exp(—t/rr) (??) (1.14)

whereB andTr areadequateconstants.
It is true that (1.14) was supportedby extremelyfew detailedcalculations,andalwayson very

simplemodels(like the dilute gas [7]). Moreover,the discoveryof the non-analyticcharacterof
thedensityexpansionof transportcoefficient [8] alreadypointedout that theseGreen—Kuboin-
tegrandsdid not behaveas smoothlyas onecould hope.Yet, it cameas agreatsurprisewhen
Alder andWainwright [9, 11] publishedthe resultof acomputercalculationfor the self-diffusion
Green—KubointegrandD(t) of ahardspheresystem;theyfind avery slow decaywhich, for
timest largerthanaboutten collision times,was well representedby:

D(t) -~ (1.15)

whered denotesthe dimensionalityof the system(d = 2, 3) (seefig. 1.1).At thesametime,by
carefully looking at thepatternof the molecularmotion in their simulatedsystem,theygavea
very simple interpretationof (1.15) in termsof hydrodynamics.

Their argumentcanbe put in the following terms:supposethat,at t = 0, we give velocityv
1~

to molecule 1 (fig. l.2a). Thisparticleinteractswith its neighboursand,aftera short (microscopic)
timer, its initial momentumis sharedby all the moleculeslying in asmallvolume~ aroundit

0 0.05 0.1 0.15
lit

Fig. 1.1. Thedecayof thevelocity autocorrelationfunctionat largetimesfor harddisksat threedensities:A/Ao = 2, 3 and5. The
closedandopentrianglesrefer to molecular-dynamicrunsof 986 and504 particles,respectively(takenfrom ref. (1011).



68 Y. PomeauandP. R~sibois,Timedependentcorrelationfunctionsandmode—modecoupling theories

(fig. 1.2b);it will thenbe at “local equilibrium” with this volumeandmovewith velocity*:

v1~(r) v1~(0)/n&2~. (1.16)

The furtherdecayof v1~(t)canonly occurbecausethis movingvolume ~ growslargerand
larger. Now, howcomplicatedthe initial expansionof ~ maybe, we expectthat, for long times,
this expansionwill be describedby hydrodynamics;thevelocity field thenpropagatesby two
mechanisms:

a) Soundwavepropagation,which is a fastprocessandcanbe neglectedhere.
b) Shearmodepropagation(or vorticity diffusion), which ensuresthatthe radiusR~** grows

by a diffusion process(seefig. 1.2c):

R(t) ~vt (1.17)

wherev is thekinematicviscosity(~= n/p; ~ the shearviscosity;p = nm;m massof the fluid par-
ticle). Thus

(vt)d1~ (1.18)

and

v1~(t)~ v1~(0)/(~ty”2 (1.19)

This last result immediatelyleadsto:

D(t)-’- 1/(vtY’
12. (1.20)

However, in this roughargument,we haveassumedthatparticle 1 wasstayingat the centerof

we shouldmorecorrectly take its owndiffusive motion into account.We get then:

D(t)—~l/[(v÷D)t]d/2 (1.21)

in agreementwith (1.15).
As we shall seelater, morerefinedtheoriesconfirm this result.
Of coursethe useof hydrodynamicalconceptsin the calculationof transportcoefficientsis

not new. It goesbackto the thirties,whenDebye,OnsagerandFalkenhagen[121 computed

vx (0) ~

(a) (b) (c)

Fig. 1.2. Schematicpictureunderlyingtheslow decayof D(t).

*Becau~thefluid moleculesareat thermalequilibrium, with an isotropicvelocity distributionwhich doesnotcontribute to

transportphenomena,we may developtheargumentasif thesemoleculeswereall initially at rest.
**In a moreexactcalculation,oneshouldtakeinto accountthat thevolume ~t is not a sphere(for instance,in 2d, it is bell

shaped).Yet our dimensionalargumentjs not affectedby this.
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the transportpropertiesof dilute electrolytesolutions.Later theseideaswere transposedby
Fixman [13] followed by Kawasaki[14, 15], KadanoffandSwift [16] andmanyothers,in the
field of dynamicalcritical phenomena.In thesetwo problemsthereexists anaturallength(re-
spectivelythe Debyelengthandthe correlationlength)which is largecomparedto moleculardi-
mensions:hydrodynamicaleffectsthuswerenot unexpected.Yet, as we shall seelater, the “long
timetails” of the type(1.21) havepreciselythe sameorigin — althoughthereis no natural large
lengthin the problem— andtheyaretreatedby the sameformalisms,which areknownas
mode—modecouplingtheories.

The aim of thepresentreport is to giveacritical discussionof thesevariousformalismsaswell
as a generalreviewof their applications.Theneedof sucha synthesiswas felt whenthe authors
tried to go throughthe literatureon the subject: indeed,thereis agreatvariety of apparently
differentstartingpoints;generally— andsometimesquite surprisingly ! — very similarconclusions
arereached;but very rarelycanonefind the interconnectionbetweenthesedifferent approaches.

Roughlyspeaking,onefinds threetypesof approachesof increasingmathematicalsophistica-
tion:

i) Thephenomenologicalapproach [11, 17, 181: in this optimisticview point,one is “a priori”
confidentin the correctnessof the picturedescribedaboveandoneputsit in a quantitativeform
with the helpof macroscopichydrodynamicsandequilibrium fluctuationtheory.

ii) Thefluctuatinghydrodynamicsapproach [19, 26]: here,one first remarksthat the linearized
equationsof macroscopichydrodynamics,which allow oneto definethe transportcoefficients—

andthusthe Green—Kubointegrandsas well — arethe result of the ensembleaveragingof the
equationsof motion for thefluctuatingmicroscopicconservedquantities.Difficulties with the
Green—Kubointegrandsthusmanifestcorrespondingpathologiesfor the dynamicsof thesefluc-
tuatingquantities;this dynamicsis thenreconsideredeither on apurely stochasticbasisor by
makingsuitablehypothesison the microscopicLangevintype of equationwhich emergesfrom
the Zwanzig—Mori formalism [27, 28]. In bothcases,an essentialfeatureis that thesefluctuating
conservedquantitiesobeycouplednon linear equations.

iii) Thekineticapproach [29, 36]: here,the programis, at leastin principle,to makea detailed
many-bodyanalysisof the Green—Kubointegrands.The hydrodynamicaleffectsappearhereas
contributions,dominantin the longwave lengthlimit, to the “propagator”describingthe exact
dynamicsof the particlesin the system.

Of courseanyclassificationof this typehassomedegreeof arbitrariness;for example,some
workson critical dynamics[14, 161 aresomewhaton theborderline between(i) and(ii) while
taking the “microscopic” Langevinequationas a startingpoint still allowsonea kinetic dis-
cussion[261. However,this distinctionwill be pedagogicallyusefulin sections2 and3 where
we shall respectivelysummarizethe toolsand themethodsfollowed in thesedifferentapproaches.
The methodswill be illustratedby consideringthevelocity correlationfunction,alreadydiscussed
above.In section4, we takea differentview point andwe try to summarizethe typeof results
which havebeenobtainedby thesevariousmode—modecouplingapproaches;therewe discuss
the differentpropertiesof the Green—Kubointegrandswhich havebeendiscoveredin normal
fluids (includingthe surprisingnon-existenceof transportcoefficient in 2d) as well as applications
to critical phenomenaandto the transportpropertiesof the Van der Waalsfluid. Someconclu-
sions,in particularconcerningthe relevanceof thesecalculationswith respectto experiments,
arepresentedin section5.

Let usaddoneremarkabout the referencesgiven at the endof thepaper;we havetried
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to give a completelist as far as themode—modecouplingproblemsareconcerned.However,as
will appearclearlyin the following, we shallalsotouchupon a greatvariety of relatedproblems;
there,wehavenotattemptedto be exhaustiveby anymeansand,very often,we referto existing
textbooksor review articlesratherthanto the original papers.

2. The tools

2.1.Phenomenologicalapproach

In transporttheoryof fluids with asinglecomponent,a fundamentalrole is playedby the five
conservedmacroscopicquantities,namelythe particledensityn(r, t), the momentumdensity
g(r, t) andthe energydensityë(r, t) (thislatter involvesboth theinternal energye(r, t) andthe
kinetic energymn(r, t) v2(r, t)/2). Theseconservationlaws areformallyexpressedby*:

a~n(r,t) + 1 v~~r, t) = 0, a~g(r,t) + V~r(r, t) = 0, 8~~(r,t) + V~/~(r,t) = 0 (2.1)

whereT(r, t) is the stresstensorandj ~is the energyflow. Theseequationstell us that the number
of particles,the momentumandthe energycontainedin a given volumew canonly vary by flow-
ing throughthe boundaryof w; yet, the detaileddescriptionof this flow requiressupplementary
assumptionson the currentsr and/ ~in order to make(2.1) aclosedsystemof equations[37, 38].

Here, we limit ourselvesto asystemwhich is very closeto absoluteequilibrium; this allowsus
to linearizeall quantitiesaroundthis equilibrium state.For example,we write:

n(r, t) = n + ~n(r, t), e(r, t) = e+ 6e(r, t) (2.2)

with the conventionthat whenthe (r, t) dependenceof a given quantity is not indicated,its
equilibrium valueshouldbe taken.We alsoassumethat thermodynamicpropertiescanbe defined
in this slightly out of equilibrium fluid andthat theyareinterrelatedin the sameway as at
equilibrium; this so-calledlocal equilibrium assumptionwill be usedover andoveragainin the fol-
lowing. Forexample,the local pressurep(r, t) still existsandis

p(r, t) = p(n(r, t), e(r, t)) (2.3)

wherep = p(n, e) is the functionof (n, e) which definesthe equilibrium pressure.Finally we take
for r and/~theusual macroscopicexpressions:

iöv
1(r, t) av.(r, t)~ 3 av,(r, t)

r.1(r, t) = p(r, t)~11— +—‘ ~— ö.1(~— ~n)2I~ (2.4)
\ ar1 ar1 / 1=1 ar1

(Newtonhypothesis)and

/~(r,t) = hv(r, t) — KVT(r, t) (2.5)

(Fourier law).

*Tl.Joughoutthis papervectorsymbolswifi not beexplicitly displayedandscalarproductswill bedenotedby a dot, asin u w

orV g.
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In these formulas, r~, ~ and ic respectivelydenoteshearviscosity,bulk viscosityandthermal
conductivity; h is the equilibrium enthalpydensityandv(r, t) is the velocity field which, in our
linear approximation,is simply:

u(r, t) = g(r, t)/p; (2.6)

moreover the local temperature T(r, t) = T + ~T(r, t) is definedby:

.Se(r, t) = nC0.5T(r, t) + (~-~-).Sn(r, t) (2.7)
\an ~

(C0 is the specificheatperparticleat constantvolume).
Collectingtheseresults,we easilyarriveat the following equationsof linearizedhydrodynamics:

a~.Sn(r,r)+nV~v(r,t)0, (2.8a)

ô~v(r,t)+-~-(~-) V~5n(r,t)+-’-(-~-) ¶ThT(r, t)—i-’V
2 v(r, t)_(~~~3)V(V. v(r, t)) = 0, (2.8b)

panT paT,, p

a~&T(r,t) + —~- (.~-)v~v(r, t) — —~--- V2 ~T(r, t) = 0. (2.8c)
nC

0 8T ,, nC0

In order to get an explicit solutionof theseequations,we definethe Fourier—Laplacetrans-
form with respectto spaceandtime; for example:

dt exp(_iwt)nq(t) (2.9)

flq(t) = fd~rexp(iq~ r)~n(r,t) (2.10)

etc. ... andwe arriveat the linear systemof algebraicequations:

~lC~iflqw + inq~Vq,L, = nq(t= 0),

1 ap 1 op (~+,~/3)

(2.11)

~ uq ~ Tqw = Tq(t= 0).

The solutionof (2.11)canobviously bereducedto the calculationof the five eigenvalues
X~(a= 1, ... 5) andeigenvectorsof the(non-Hermitian)homogeneousproblemassociatedwith
theseequations.In the smallq limit, which is of interestto ushere,onereadily finds:

= ±icq— Fq
2, X

34= —~q
2/p, = —~q2/nC~ (2.12)

where:
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(2.13)2L P \C
0 C~JnJ

andc is the soundvelocity:

C~,lOp \
c
2=—~—) . (2.14)

C
0 \On ‘T

Clearly, X12 describedampedsound-wavepropagations,X34 expressthe viscousdampingof
the transverse(or divergencefree)velocity andX5 correspondsto the dampingof the thermal
mode[38].

The correspondingeigenvectorsareeasilywritten down alsobut we shallnot displaythemhere.
Transformingbackto thetime variable,onethenderivesthe explicit form of flq(t), Vq(t) and
Tq(t). For example,we get for the transversecomponentof the velocity field:

Vqj(t) v~(t)— q(q~vq(t))/q
2 = Vqj(O) exp(—q2~t) (2.1 5a)

andfor the longitudinalpart:

Vqii(t) = q(q~vq(t))/q2 = cos(cqt)exp(—Fq2t)vq,(0). (2.l5b)

Let usstressthat the abovederivationwas doneat the level of macroscopicphysics;its range
of applicability is thuslimited to phenomenawhich areslowly varying in spaceandtime. The
way in whichsucha hydrodynamicdescriptioncanbe usedin the analysisof the Green—Kubo
integrand(1.11)which involvesan equilibrium averageover microscopictime dependentfluctua-
tions, is by no meanstrivial andwill only be discussedin section3.

Yet, to suggestthe possibility of usingmacroscopicconceptsin amicroscopicproblem,it is
worthwhile to recall briefly herea somewhatanalogousthoughmuchsimplerproblem,namely
the regressionof the density—densitycorrelationfunctionSq(t) definedby:

Sq(t) =(~ñq(t)ñq(0)) (2.16)

where iiq is theFouriertransformof themicroscopicdensity~(r):

t~(r,t) = ~ ~(r — r~(t)), hq(t) = ~ exp(iq~ r~(t)) (2.17)

anddependson the detailedmotionof all theparticlesin thesystem.In order to analyze(2.16),
we usea somewhatmodernizedversionof the Landau—Placzecktheory [39, 401. We perform
the trace(see(1.8)) in two steps(suchpartial averageshavebeenusedin variouscontexts:see
for example[27, 41]):

i) we makea partial phasespaceaveragewith prescribeddensityfluctuation(nq),*
ii) we thenaverageover thesefluctuations.

*To becomplete,we should alsoprescribefour otherconservedquantities:thevelocity 0q and, for example,thetemperature~
definedin termsof theobservablefluctuationsnq andEq with thehelp of (2.7).However,thesevariablesfluctuateindependently
of flq andwe shall neglectthemfrom thebeginning.
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With thehelpof (1. 1 2), we write thus*:

Sq(t) = lim ~fdflqPN(flq)flq [fdr’~ dpNhqexp(—iLNr)p~(nq)]} (2.18)

where

~(flq~hq) exp(—I3HN)
p~(nq)~ (2.19)

I drN dp’~5(nq—hq)exp(—I3HN)

PN(nq) fcIr’~’dp”i5nq—hqexp(—i3HN)/ZN. (2.20)

It is clear from (2. 19) that P~(flq) representsan equilibrium stateexceptfor the constraintthat
thelocal densityh(r) (or hq) is prescribed.If q is smallenough,we cansplit our systemin cells of
sizeR suchthatq .~R’ .~(molecularlength)1and,in eachof thesecells, we find an equilibrium
situationwith constantdensity.Hence,the only time evolutionofp~comesaboutbecausethe
densityis not uniform from cell to cell. Identifyingthe densityin eachcell with the macroscopic
local density,we cansupposethat its time evolutionis governedby the equationof hydrodynam-
ics (2.8).At anytime, we thenassumethat the distribution functionp~adaptsitself to the local
equilibriumstatecharacterizedby the densitynq(t); wewrite thus for largeN:

p~,(nq;t) = exp[iLN t] p~(n~)= p~(nq(t)) (2.21)

with nq(t) determinedby (2.9, 11). Insertingthis result into (2.18), we readily obtain:

Sq(t) = lim ~-fdnqnqnq(t)PN(nq), (2.22)

a remarkableresult,thoughonly valid in the smallwavenumberlimit: indeedit no longerde-
pendson the detailsof the microscopicmotion of the moleculesin the system.

As a matterof fact, eventhe calculationof PN(nq) (see(2.20)) doesnot requirestatistical
mechanicsat a microscopiclevel. Indeed,in the smallwavenumberlimit, we canarguethat nq is
a macroscopicdeviationfrom the averagedensity;~N(~q) canthenbe calculatedfrom the well
knownthermodynamicfluctuationtheory [41—43]. One gets:

1 1/2
PN(nq) = (2~kBm~2xT)exp(—InqI2/2~2kflT2n2XT) (2.23)

where XT is the isothermalcompressibility.Incidentally, let uspoint out asimilar formulafor the
probability distribution of the velocity fluctuations:

nm 1/2
Pp,r(Vq) = (2~kBT~)exp(— IUq 2nm/2fZk~T) (2.24)

which will be usedin section3.

*From (2.17),~q ~ + iñ~is a complexquantity,which satisfiesñq h.~!q;theintegralover hq and theDirac deltafunctionsin

(2.18—20)shouldthusbeexpressedwith thevariablesn,, andn~.We shall howeverignorethispoint here.
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With the helpof (2.23)andof the solutionof the hydrodynamicequations(2.11)(with the
initial conditionsVq(O) = Tq(O) = 0; seefootnoteon page72), onereadilygetsthe explicit form
for Sq(t):

C C 1

Sq(t) = nkTxT [(1 _~~)exp(_q2,cItI/nCp) +-~J--cos(qct) exp(—lTq2ItI)j . (2.25)

It would be out of placehereto commentany furtheron the well-knownLandau—Placzeck
formula(2.25). Let ussimply point out that thereis a big differencebetweenthe correlation
functionSq(t) andthe Green—Kubointegrand(1 .11): thedynamicalvariablehq(t) is conserved
(i.e. limq÷

0{HN, hq } 0), while the flow Jx(t) is not ({HN, JX} * 0); nevertheless,we shall find
strikingsimilarities betweenthe ideasleadingto (2.25)andthe mode—modecouplingtreatment
of the Green—Kubointegrands,to be presentedin section3.

Before closingthis subsection,let usstill remarkthat we havetreatedherethelinearizedhydro-
dynamicsof afluid madeof particlesof onesinglespecies.Later on, we will alsoneedthehydro-
dynamicsof a binary mixture,in thevery specialcasewhereoneof the speciesis infinitely dilute.
Thus thepropertiesof the secondspeciesareunaffectedandarestill describedby the above
formulas.Yet for the dilute species,we find a singlediffusive mode: if we denoteby fljq the
Fouriertransformof the densityof this dilute species,we have:

Otfli,q(t) = —q
2Dn

1,q(t) (2.26)

whereD is the self-diffusioncoefficientalreadyconsideredin (1.5).

2.2. Thefluctuatinghydrodynamicsapproach

As alreadypointedout for thecaseof the density(see(2.17)),the macroscopicconservedvaria-
blesarestatisticalaveragesof well definedmicroscopicoperators.The unexpectedbehaviorof
transportcoefficients,which we indicatedin theintroduction,makesit worthwhile to reconsider
the assumptions underlying this averaging procedure.

That the problemis non trivial canbe seenon the following example:considerthe microscopic
momentumdensity,definedby:

g(r, t) = a~1Pa(t)~a(t)) (2.27)

FromHamilton’sequationsof motion for Ta(t), it is readily seenthat:

a~g(r,t) = —V~r(r,t) (2.28)

wherethe stresstensoroperatoris definedby:

—Vr(r, t) i L~g(r,t). (2.29)

Assuming formally that r(r, t) is slowly varyingover therangeof the forces*, we cangetthe
following representation:

*T~sassumption,which mayappearvery strongin view of thesingularnatureof r(r, t), is reallyno morethana mathematical

convenience,asshownfor examplein references[44, 45].
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= ~ [u~p~ — -~ E ~ rob] tS(r—r0(t)). (2.30)
a1 b~aOrOb

Eq.(2.28) is of coursethe microscopicanalogof the conservationlaw (2.lb) andthecon-
nectionbetweenthesetwo expressionsfollows by averagingtheformeroveran arbitrary time
independentensemble.In bothcases,apartfrom expressingthe conservednatureof momentum
density,theseequationsarevoid of physicalmeaning.

What we really needis the microscopicanalogof the Navier—Stokesequation(2.8b)and this
canonly be obtainedat the priceof muchstrongerassumptions,which wenow discuss.

ZwanzigandMon [27, 28] haveprovideduswith a particularlyconvenientformalismto do
this. To simplify, we shalldiscussthis formalismherefor ahypotheticalsystemwith only one
conservedquantity,denoteda(r, t).* The generalizationof the forthcomingresultsto a realistic
fluid, with its five conservedoperators,requiresno morethanthe useof a suitablematrix nota-
tion.

Following (2.10), we denoteby ~q(t) theFouriertransformof â(r, t). Theconservednatureof
âq(t) tells us, that in analogywith (2.28):

Ot~q(t)= L~y~q(t) iq~Jq(t); (2.31)

the explicit form of thecurrent‘q will not be specified. -

We thendefineanoperatorin phasespacedenotedbyPq:

Pq ... ~q(àq...)I(â_q~q) (2.32)

wherethe bracketC..)hasbeendefinedin (1.8).Thus,for anyphasefunction ..., P~, transformsit
into a functionproportionalto ~q âq(O). Onereadily verifiesthatPq is aprojectionoperator:

Pq
2...=Pq... (2.33)

which projects any function on the subspaceof the dynamicalvariable~ In particular

l~q~q=~q. (2.34)

We now usethe identity:

~LN~q(t) = iq~exp(iLNt)/q (2.35)

withlq =‘q(O), as well as:

Uq(t) exp{i(l ~Pq)LNt} = exp(iLNt)—if exp(iLJv(t—r))PqLNUq(r)dr (2.36)

which is readily verified by differentiation.

Inserting(2.36) into (2.35),we get after a little algebra:

Orãq(t) — iwqâq(t) = _f ~q(t_t’)àq(t’)dt’ + Fq(t) (2.37)

*jf thereaderwantsto makethefollowing analysismoreconcrete,hecan think of ~I(r,t) asbeing themagnetizationin an isotropic

spin system,orthetransversevelocity field in an incompressiblefluid.
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where the frequency Wq is definedby:

Wq = q~(~qJq)/(~q~q) (2.38)

anddescribesthe non-dissipativepart of the transportof a~.
With only oneconservedvariable,we haveidentically, as a consequenceof the equationsof

motion (andpossiblyof the symmetriesof the system):

Wq=O=O (2.39)

althoughthis is not true in general.For simplicity,we shallhoweveralwaysassume(2.39) in the

following. Moreover, the dynamicalvariableFq(t) is given by:
Fq(t) = Uq(t)( 1 — Pq)(—iq !q). (2.40)

Finally, the so-calledmemoryfunction4~’q(t)is given by:

~fJq(t)= (Fq(O) Fq(t))/<âqàq). (2.41)

Although(2.37) is anexact consequenceof the Liouville equationmuchas(2.31) is, it is never-
thelessvery usefulbecauseit is written in a way that suggestsapproximations.Indeed,we remark
that the structureof this equationis very similar to the Langevinequation(1.6); for thisreason
(2.37) is often called the “generalizedLangevinequation”.In particular,F,~(t)is analogousto
the randomforceof Brownian motion theoryandonecaneasilycheckthat it satisfiesthe familar
requirements*:

(Fq(t)>=O (2.42)

(F_q(t) ãq(O)) = 0. (2.43)

Moreover(2.41) is the fluctuationdissipationtheorem[38, 411.
Thisanalogybecomesevencloserif we makean approximationon (2.37)whoseeventual

validity will be crucial to theusefulnessof this theory: let us remarkthatFq(t) is definedin a
spacewhich is orthogonalto ãq (because(1 — Pq)àq = 0); similarly the memoryfunction4~q(T)
is alsodefinedby an averageover quantitiesorthogonalto ~q. Thus if we assumethat for smallq,

is the only slowly varying operatorof our problem, we expectthat 1q(t) will be very
rapidly decaying,at leastin the thermodynamiclimit, on the time scalecharacterizingthe decay
of âq(t). With this assumption,eq. (2.37) exactlyreducesto the Langevinequation:

Otàq(t) = _4~qâq(t)+ Fq(t) (2.44)

with

4~q~=f4~q(T)dT (2.45)

*Notice that (2.43) is not a trivial consequenceof (2.42)becausethe two “random” variablesFq(t) and~iq(0) aredefinedin the

samesamplespace,i.e. in phasespace.
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and

(F_q(O)F~(t))= 2cI~q(â_qâq)~(T). (2.46)

Whatis the relevanceof this resultto transporttheory?As we alreadypointed out the
macroscopicvariableaq(t) is definedby:

aq(t) = .ft~VdpNâq(t)PN(r”~,pN) (2.47)

where pN(r’~’,pN) is the initial nonequilibriumN-particle distributionfunction in the systemand,
for small initial deviations from equilibrium, we expect that in the long term we will havea
hydrodynamic behavior:

aq(t) = exp(—q2tj.t)aq(0) (2.48)
q-+ 0

q2t finite

where ~.tis the transport coefficient associated to the diffusion process for aq. Yet for arbitrary
initial conditions,eq. (2.37) is not veryusefulbecause:

Fq(t) = f dFlYdPNFq(t)PNfr” pN) (2.49)

is nonzero,andpresumablyavery complicatedfunctionof time.Neverthelesswe mayhopethat
after a long time the role of the initial preparationof the systemwill be completelyforgotten
(seediscussionleadingto (2.44)) andwe arethus free of choosingthe mostconvenientinitial
state;thenwetake PN as describingasmalllocal equilibrium deviationfrom absoluteequilibrium

PNP~+a_qbqp~ (2.50)

wherep~denotesthe canonicalequilibriumdistribution andbq is the parameterconjugateto

which wedo not needto specifyhere.Then(2.47) becomes
aq(t) = (âq(t) à_q(O)>bq (2.51)

andwe get immediatelyfrom (2.37) the following kineticequationfor the correlationfunction
(~q(t)~q(O))

0r~q(t)~_q(O))= _f I~q(t~t’)(àq(t’) à_q(0))dt’. (2.52)

It is now easyto seehow (2.52)may lead to (2.48) with an explicit definition of p; indeed
takingthe Laplacetransformof (2.52)(seethe notationsdefinedin (2.9)), we have:

(a â )
(âq,~,~q(O))= . . (2.53)

Because the random force (2.40) is proportionalto q, we canwrite:

= q2~uq~ (2.54)
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with:

= f e~~dt(L~(I ~P_q)Uq(t)(l ~Pq)Jq)/(~qâ_q) (2.55)

andthis tellsus immediatelythat, for smallq, the singularitiesof (2.53)closestto the real axisare
only at a distanceof orderq2 from this axis.Becausewe haveassumedthat 1’q(t) was rapidly de-
cayingin time, wehave

llq,~,~q2=IAqo(l +0(q2)) (2.56)

andthis leadsus indeedto the exponentialdecay(2.48)with the following definition of p:

p.~ lim ‘1qw (2.57)
q-4 0

providedthat this limit exists.Now, from ourassumption(2.39),we have

urn (l~Pq)Jq=fo (2.58)
q-4 0

andthe conservednatureof ~q implies that:

lim (l_Pq)LN LN. (2.59)
q—~0

Defining now the staticsusceptibility

Xq = (~q~q) (2.60)

(which must not beconfusedwith the isothermalcompressibilityXT) we cancasteqs.(2.55, 57)
into the following form:

= f dr (/Oexp(iLNr)/O) . (2.61)
Xo

This is preciselythe Green—Kuboformula(1 .11) for our hypotheticalmodel.
Yet our main objectiveis not somuchto rederivethe Green—Kuboexpressions,but ratherto

find the flaws which might occurin their derivation.Onesuchdifficulty now clearlyappears:we
haveassumedthat~q was the only slowly varyingquantity in our system:this is wrong because,
for small enoughwavenumber,productsof a like âqlàq_q~, ~ ... arealsoslowly vary-
ing. Yet the part of theseoperatorsorthogonalto ~q haveneverthelessbeenincludedin the
“rapidly” varying Iq(t) andFq(t)! Let usstressthat this remarkdoesnot contradictthe validity
of the exactequations(2.37)and(2.52); still, it now appearsasplausiblethat theMarkoffian ap-
proximationsmadein deriving (2.44)and(2.61)areunjustified.Notice moreoverthat this state-
mentmaybe too strongbecausethe weight of thecontributionsof theseproductsof ~q?to F(t)
and4q(t) mayvery well be negligible.As we shall seelater, this latterpossibilityis partly sup-
portedfor transportcoefficientsin threedimensionalfluids far from thecritical point where,for
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example,the Green—Kuboformulas(2.61) indeeddefinewell behavedtransportcoefficients.
Nevertheless,thepoint madehereindicatesthat we haveto be extremelycareful in dealingwith
thesenon-lineareffects.

Oneof the beautiesof the Zwanzig—Moriformalism is that it caneasily be adaptedto takecare
at leastformally of the presentdifficulty. The basic idea [15, 461 is to deriveageneralized
Langevinequationbut now with the help of a projectorwhich alsoeliminatesproductsof modes
aq. In order to do this, we definea vectorof infinite dimensions,Aq,whosecomponentA”{qj } ~5

given by theproduct:

~q_~~qj FT ~q
1 (2.62)

minussomelinear combination of products of (f—I), (j—2) ... operators~q• This linear combina-
tion is uniquelydefinedby the condition(A~A/1q)= 0 if j ‘�‘ j’; moreoverthe wave-numbersq1
areall takensmallerthana cut-offvalueq0. The motivation for this cut-offis that for 1q1> q0,
we expectthe variousproducts(2.62)to be rapidly decayingandof little interest;neverthe-
less,the introductionof this cut-offis ratherartificial, as we shalldiscusslateron.For example,
thetwo first componentsof A are:

= ~q (2.63a)

= àq+qi,â_q~— ~q(~q_q~ aqla_q )/(~q~q) (2.63b)

(q’ arbitrary but smallerthanq0).

We havethenindeed

(A~q+q:_q~A~)= 0. (2.64)

Correspondingly,we definealsothe operator Aq(t) exp(iLNt)Aq.

We now introducea projectionoperator~q by an extensionof (2.32):
= Aq (AqAqY’ (A~q,...). (2.65)

With the helpof (2.33), we cannow write the analogof (2.37):

O~q(t)— i&~q~Aq(t)= _f~q(t_t’)~Aq(t’)dt’+ ~q(t). (2.66)

We shallnot displayherethe explicit form of CJq(t) andof the matrices~
2q and ~Pq; theyex-

tendin an obviousmanner(2.38,40, 41).
A further formal simplification is reachedwhenone realizesthat (2.66) is redundant*.For in-

stance,we havefrom (2.63b):

a~A~(t)= Otexp(iL~t)[âq_q’âq’—

= Ot[àq_qi(t) àq~(t)—

[Otàq_q~(t)] àq~(t)+ àq_q~(t)EOtàq~(t)]— ... . (2.67)

*Nevertheless,it is sometimesconvenientto considerthiswhole setof equations(22].
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Hence,providedwe arereadyto facenon-linearequations,we mayas well consideronly the
first component(i.e.,Ot~q(t))of the vector equation (2.67). If we limit ourselves to bilinear
termsin ~ which hopefully will alreadydescribethe relevantphysicalproperties,we get

0t~~q(t)— i ~ ç~qq’~q—q’. A~.)q~q~t=

q’<q
0

= _f~ — ,~ ~ + ~(t) (2.68)

together with the definition (2.63b). Here, we have used an obvious superscript notation to
characterizegivenelementsof the matrices~

2qand tiIq andof thevector~1q•For example,we
have

q—q’ = ~(~qLNA~+qi_q~)/~2_q_qi;q~A~+q’_ql) (2.69)

(the factor~ is to avoid overcounting);usuallythis quantitycanbe approximatelyevaluatedin
termsof simpleequilibrium propertiesof the system,like the susceptibility(2.60)etc.

Exceptfor its limitation to two modecouplings,eq. (2.68) is still an exact identity,just as
hopelessto solveas the startingequation(2.31); in particular,the complicatedstructureof the
projector~ q makesit almostimpossibleto get evenan approximateform for thequantitieslIiq
and ~Fq. Yet, we mayadopta morephenomenologicalattitudeandrepeatthe argumentwhich
first led us to (2.44): now thathopefully all slowly varyingquantitieshavebeeneliminated,we
assumeagainthat ~Pq(t)and ~q(t) arerapidly varying.Moreover,we usea setof assumptions
whichareprobablylesscrucialbut which areneverthelessrequiredto bring thetheory into a
manageableform:

i) The dissipativepart, ~ of the non-linearcouplingis neglected,with little morejusti-
fication thanthat of simplicity.

ii) Onetreatssituationswhere:

= 0 (2.70)

which is generally valid in the absenceof anon-vanishingorderparameter.

iii) Although thequantity:

~q,q= fdt ~.~(t) (2.71)

is in principle well definedin dynamicalterms,onecannotevaluateit explicitly. Howeverusing

(2.35)(for t = 0), oneeasilyverifiesthat j
1~,qcx q

2 onewrites then:

~
1q,q= q

2p
0 (2.72)

andp~is takenas a phenomenologicalparameter,oftencalled “baretransportcoefficient”.

We arrive thenat the following non-linearLangevinequation:

Ot~q(t)— i q,~q0&2 ~‘~~‘ãqq~(t) àq~(t)= —q
2j.toâq(t) + 9~(t). (2.73)
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As it standsthere,this equationis not yet of anydirect use,becausethe force9~(t)is not
specified,exceptby auselessformal definitionanalogto (2.40). Moreoverthe “randomvariables”

and arestill definedwith phasespaceas samplespace.To overcomethesedifficulties, more
phenomenological assumptions are needed:

i) Oneapproximatesthe probability distributionfor the initial valueâq(O) t~qby a Gaussian
(see(2.23), (2.24))

PN(~q)cx exp(—àq&q/2(aqaq)). (2.74)

ii) Oneassumesthat therandomforce9~(t)is a stationaryGaussianrandomprocess,indepen-
dentof ~q(O), andwith secondmomentcharacterizedby the fluctuationdissipationtheorem:

(9I~(t)9~(t))= 2q2j.t
0~(t). (2.75)

Althoughthe coherentnatureof thislatterassumptionis supportedby the fact that it main-
tainsthe stationarynatureof thecorrelationfunction (â_q(t+ r) âq(T)), we know of no deep
justification for its use.Onceagainsimplicity is the guidingprinciple*.

Eqs. (2.73—75) completelydefine the stochasticprocessäq(t), althoughthe taskof explicitly
solving the non-linearLangevinequationis not an easyone.Yet, in principle,we can calculate
from it the correlationfunction (~_q(i’)àq(O)) andwe canthen investigatethe “true” wavenumber
andfrequencydependenttransportcoefficientILqw~ which is now definedwith the help of
(2.53, 64). Thismethodwill be illustratedin latersectionsbut, presently,let us limit ourselves
to a few general remarks:

i) As is well known [47], whenwe havea Langevinequationfor a stochasticprocess,we can
equivalentlywrite downaFokker—Planckequationfor the time dependentprobability distribu-
tion; this hasindeedbeendeveloped,in particularin the elegantpaperof Zwanzig [19]. To save
space,we shallhowevernot discussthisviewpoint here.

ii) A commentis in placeabout thecut-off dependenceof the Langevinequation(2.73): of
course,from the way this cut-offhasbeenintroduced,it is clearthat the solution~q(t) of the
exactequation(2.68) is independentof q0 for all times: this is simply becausethereis no such
parameterat the startingpoint, eq.(2.31).Yet thisexactequationhadto be mutilatedin order
to bring it into the manageableform (2.73)and,in this procedure,thecut-off independenceof
the theo-ryhasbeenlost. The bestonecando is eithernot to botheraboutthecut-off dependence
of the final results(becauseone is only interestedin modelcalculation)or to force a cut-offde-
pendenceon ~ (noticethat the exact 1pq,q is cut-off dependent)in sucha way that thetrue zero
frequencytransportcoefficient 1

1c~,o(providedit exists!) is cut-off independent;but evenif this
point of view is adopted,onecannotforce the solutionâq(t) to be q

0 independentfor all times;
a third attitudewould be to takeq0 = oo but then,for largeq, onecannottakePo to be w and
q-independent,which introducesextracomplicationsin the theory.Theseremarksclearlyshow
thatthe definition of p~is ratherarbitraryandthatonecannotgive a deepphysicalmeaningto
this “bare” transportcoefficient: it hasno uniquepurely mechanicaldefinition as we havefound
one(eq.(2.61)) for the transportcoefficient.Of coursewe seeformally on eq. (2.73) that ~

*Of coursean exactresult,analogousto (2.37)holdshere,namely:<tT~(t)~i ‘
1(t)> = cp~’‘1(t) and,in theMarkoffian limit, this

reducesto (2.75).However wehaveno reasonto expectthat theexact’~orceI~(t)is a Gaussianprocessandthusthe correlation
functionof t~(t)only givesus avery limited information.
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is the transportcoefficient which would be measuredin a fictitious fluid whereall fluctuations
would vanish.While this definition is perfectlymeaningfulin the frameof a stochastictheory,
it doesnot helpus in giving anymicroscopicmeaningto it: from this point of view, the analogy
of this baretransportcoefficient with the barechargein quantumelectrodynamics— wherethis
lattercanat leastbe formally definedin termsof a well definedLagrangian— remainsveryvague.
Kinetic theorysuggests[31—34] that this baretransportcoefficient canbe conceivedas de-
scribingthe short rangeandshort time phenomena;yet, no preciseidentificationhasbeenmade
until now.

2.3. Thekineticapproach

Thoughwe shall seelaterthat the methodsdevelopedin thetwo precedingsubsectionsarevery
powerful to dealwith the asymptoticbehaviorof theGreen—Kubointegrands— andwith a
variety of connectedproblems— their commonfeatureis thatthey avoid to attackdirectlythe
detailedmicroscopicdynamics;thisis achievedat the priceof reasonablebut not completely
justified assumptions.

To get a deeperunderstandingof theseassumptions,oneneedsthe detailedmany-bodyanalysis
which is providedby kinetic theory.Unfortunately,suchan analysisbecomesrapidly technically
very involvedand, not to burdenthe readerwith veryawkwardmathematics,we shall remain
rathersketchy:we shall try to pick up the relevantideasof this kinetic theoryapproachandto
illustrate them on rathersimpleexamples.We referthe readerto the original literaturefor the
details.

A first point we want to illustrateis how the evaluationof the Green—Kubointegrandscanbe
reducedto atypical problemof kinetic theory. In this aim, let usconsideragainthe exampleof
thevelocity autocorrelationfunction

D(t) = (v1~(t)v1~(0)>. (2.76)

Using the definitions (1 .8) and(1 .1 2), we maywrite this explicitly as:

D(t) = lim ~ (2.77)

Noticing that v1~only occurson the left of theoperatorof motion,we mayrewrite (2.77)as:

D(t) = fd~p1v1~&p1(p1t) (2.78)

with the following definitions:

~pi(pi; t) = lim fdpNl drN6pN(r~’,pN; t) (2.79)

~pN(rN, pN; t) = exp[—iLNt] 6PN(r
T”, pN; 0) (2.80)

(2.81)

We now remarkthat ~PN(rN, pN; t) satisfiesthe Liouville equation:

~0t~PN = LNöPN (2.82)
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and,exceptthat it hasphasespaceintegralwhich is zero,it canbe interpretedas a timedepen-
dentN-particledistribution function.Then6cp~(p~t) analogouslyrepresentsa nonequilibrium
oneparticlevelocitydistributionfunction.Obtaininga closedequationfor this reducedd.f. from
the exactsolutionof the Liouville equationis preciselythe centralproblemof kinetic theory
and there exists a variety of methods to solve this question(see,for example[49—53]).

Moreover, the simplicity of the initial conditions (2.81) makes the velocity correlationfunction
a particularly simple example to treat, for which an extensiveliteratureexists(seefor example
[54—56]). A suitable formalism is provided by Zwanzig’s projection operatormethod.Define
the operator PN:

PN...fcVdP~. (2.83)

where~eq(p) denotestheMaxwellian:

~,eq(p) = 1 3/2 exp(—p~/2mkBfl. (2.84)
(27rmkBT)

It is easilyestablishedthat this operatoris a projector(P~= EN)’ moreover,we seethat:

eq~ ~

6p~(p~t) = lim 1/ “N ‘~PN(~’pN; t). (2.85)
~ p~,q

It is thena matterof straightforwardcalculationto prove from (2.79—85)that 6cp
1(p1t) obeys

the following non-Markoffianlinear kinetic equation:

°~
6~~(p~t) = ~o(Pi; r) 6~i(pi; t—r) dr (2.86)

wherethe one-bodycollision operatoris definedby

= — limfdr’~dp~’[LNexp{—i(l—PN)LNT}(l —P~)L~p~/cp~(p1)]. (2.87)

This equationhasto be supplementedby the initial condition:

&pi(pi; 0) = v,~cp~~(p
1). (2.88)

We defera proofof eq. (2.87) to AppendixA andwe ratherlimit ourselveshereto a few
general remarks: A

i) It is obvious from the definition (2.83) thatthe projectionoperator~N is a very complicated
object and, for this reason, no mathematically rigorous properties of G0(p1r) areknown.In par-
ticular thereis no generalproofthat the thermodynamiclimit involved in (2.87) exists.

ii) Becauseof this complication,oneis alwaysled to somekind of perturbativeanalysisof
(2.87)whenexplicit results areneeded.We shall illustratethis point for the low densitycasein
AppendixB andalsoin section 3. It is comforting that theseperturbationcalculationsalwaysin-
dicatethat, term by term at least,G0(p1,r) is well definedin this thermodynamiclimit.
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iii) A third point which is worth mentioningis the linearcharacterof the kinetic equation
(2.86).This result is a rigorousconsequenceof the particularnatureof the initial condition
(2.81)*; as is clearfrom the calculationof AppendixA, it is completelyindependentof any
molecular chaos assumption, which is not invoked at any stage. This point is often misunderstood
in the literature.

iv) As alast remark2let usstressthe big differencebetweenthe projectorF,,, eq. (2.32)anU
the presentoperatorPN,eq. (2.83).In the formercase,we haveprojectedover the conserved
variable~ which dependson thewhole setof dynamicalvariablesr1 ... rN, P1 PN and,conse-
quently,we havelost trackof the detailedmotion of the particlesin the system.Here,on the
contrary,we studythe velocity distributionof the taggedparticle 1 which was put out of
equilibriumat t = 0, keepingthus adetailedinformationon the dynamicsof this particle;of
course,by the sametoken,we havelost the dynamicalinformationon theotherparticles:
this dynamicsis implicity kept in G0(p1r).

Let usnow seewhatthe consequencesof eq. (2.86)arefor thevelocity autocorrelation.func-
tion. To this end,we definethe Laplacetransforms

Co(Pi, z) = / dt exp[izt] G0(p1t) (2.89)

= J’ dt exp[iztlD(t). (2.90)

Straightforwardalgebraleadsthento:

D5-~fd~p1v1~. ~1~~e~(p1). (2.91)
— Co(p~z)

This important formula shows that the frequencybehaviorof D5 canbe tracedbackin the fre-
quencydependenceof the collision operatorC0(p1z).Fromthe inverseLaplacetransform:

D(t) = — ~_fexp(—izt)D5dz (2.92)

classicaltheoremsof analysis[571tell us that thelong time behaviorof D(t) will be governed by
C0(p1,z) for smallz: this is how the asymptoticbehaviorof Green—Kubointegrandsis relatedto
the collision operator,which is the centralobjectof kinetic theory.

In order to preparetheanalysisof section3, we still needto introducesomemore concepts
of kinetic theory.Yet, in order to remainas simpleas possible,we shall illustratetheseideasfor
the dilute gas,indicatingonly veryschematicallyhowtheycanbe generalized.Thisattitudeis
largelyjustified by the key role of the Boltzmannequationin our understandingof the dynamics
of many particle systems, even for problems which require to go much beyond this low density
limit.
*This essentialfeatureremainspreservedevenif theinitial condition is of theform: oppj(rN, p~,0) =

[2:7= 1 a1 (ri, p~)+ . a2 (r1, r1 pj, Pj)] p~asis the casefor theotherGreen—Kubo integrands(for theviscosityfor example).
The importantpoint is t{iat thedeviationsfromequilibrium canberepresentedasa sumof n-body (n finite!) terms,multiplied
by p~.
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To make the link with our previous discussion, let us mention that one can indeed show (see
[54—56]) that, at low density, the non-Markoffian equation (2.86) reduces to the Markoffian
equation:

O,~cp
1(p1; t) = n C(p1) &pi(p1 t) (2.93)

where C is the linearizedBoltzmann—Lorentzcollision operator,appropriateto describeself-
motion:

~(Pi) ~~i(pi, t) fd~p2fd~2ivj—u2ia(~2,1v1—v21)[&p1(p’1, ~)pe~(pF2)— ~ t)~~(1~2)1.(2.94)

Here a(~2, 1v1—v21) is the two-body scattering cross section with deflectioninto the solid angle
d~2and pj~p~denote the momenta after the collision process. Moreover, one shows that this
operator C is related in the following way to the formal densityexpansionof C0(p1z) (seealso
Appendix B):

C0(p1,0) = n~’(p1)+ 0(n
2). (2.95)

An importantpropertyof theoperator~(Pi) is its semi-negativecharacter.More precisely,let
ususean abstractvectorspacenotationin which anyfunctionf(p

1) is consideredas themomen-
turn space representation of the vector i.f):

ftp~)m(p~iJ). (2.96)

In this abstract space, we define the scalar product between two functions ftp1) and g(p1)by:

(fig) = fd3p1(~,e~(p1)y1ftp1)g(p1). (2.97)

It is easyto prove from the definition that:

(fI~IJ)‘~ 0 (2.98)

andthe equalitysign only obtainswhenf= ~ Hence if we definethe eigenvalueproblem:

Ci47)=~i~) (2.99)

we seethat all eigenvalueswill be negative,exceptthe one,denotedX~correspondingto the
equilibrium eigenfunction:

II~)= ~eq> (2.100)

Moreprecisely,for the so-called“hard potentials”, increasingfasterthanr
4 at short inter-

moleculardistances,this zeroeigenvalueis isolatedfrom all the othersbut for “soft potentials”
(slowerthanr4) thereis a continuumof eigenvalueswhichgo up to zero [58]. To simplify, we
shallalwaysassumein the following that wehavehardpotentials.Moreover,evenin this case,
the eigenvalueproblem(2.99)hasbotha discreteandacontinuousspectrum.However,we shall
formally only considerthe discretepart of this spectrumlabelledby the index/ = 1

Thisproperty of courseensuresthat the diffusion coefficientD= D
5,0 is positive(see(1.5),

(2.76, 91)).
Let usalsopoint out that, longbeforethe correlationfunction formalismwasdevelopedto
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describetransportcoefficients,the calculationof thesecoefficientswas basedon the solutionof
the inhomogeneousBoltzmann equation.For self-diffusion,onestartedfrom:

0f1(r1 p1St) —.

a~f1(r1,p1t)+vi = nC f1(r1, pj; t) (2.101)
Or1

and looked for the solutionin thelong term for slowly varyingspatialdependenceof f1. In
modernlanguage,oneconsiderstheFouriertransformof (2.101):

Otfq(Pit)+ iqvixfq(pi;t) nCfq(pi; t) (2.102)

where:

fq(Pi; t) fd3r1exp(—iqr1~)f1(r1,p1 t) (2.103)

(to simplify, we haveorientedq along thex-axis),and,in order to solve this equationin the limit

of smallq and large t, onestudiesthe associatedeigenvalueproblem:

(—iqv~+ n~5I47)= X7 I~7). (2.104)

Notice that theoperatoron the left-handside is not Hermitian but this impliesonly small
technicaldifficulties (onehasalsoto considerleft-eigenfunctionof this problem)which we shall
ignore.

Onethenremarksthat, for t -÷ andq -~ 0, the only eigenvaluesof (2.104)which will contri-
buteto the solution of (2.102) haveto go to zerowhenq -~ 0; all the othereigenvaluesleadto
asymptoticallynegligible contributions.We alsonoticethat, atq = 0, (2.104)becomesidentical
to (2.99)andweconcludetherefromthat thereis only oneeigenvalue,denotedX?, which has
the propertyof going to zerowith q. For small q, we mayexpandit:

+ q~1)+q2~2)... (2.105)

andwe write similarly:

IIY~) I4~)+qI~1))+...

with ‘~?= 0, ~O) = ~1,eq, A straightforwardperturbationcalculusleadsthento:

X? _q
2DB+0(q3) (2.106)

v
1~~e~) (2.107)

Clearly, this slowly decayingmodeshouldbe identified with the self-diffusion for thedilute
gas,and,indeed,we mayeasily checkthatDB is identicalto D5 = ~in the dilute gas limit (use
(1.5) and (2.76, 80, 95, 97)).

Besides providing a link between the Green—Kubo method and the traditional kinetic theory
descriptionof transport coefficients, this simple calculation also has a deepinterestbecauseit
showsthat,althoughthe generalsolutionof the linearizedBoltzmannequationis very compli-
cated,its longtime behavioris governedby the familiar transportcoefficients.To illustrate this
point, supposethat,in someproblem,we needan explicit representationof thefollowing Green’s
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function:

Xq(z)= I (2.108)
iz + iqv1~ — nC(p1)

Formally, this canbe written with thehelpof (2.104)

Xq(Z)= ~I4~) 1 _ (‘NI, (2.109)
/ ‘ iz—X7 /

but, generally, this formula is of no muchusebecausewe do not know the eigenvaluesX~and
the eigenfunctionsI ~7).If, however,we only needthe low wavenumber,low frequencybehavior
of Xq(Z), thento leadlngorder in q, we mayuse(2.100)and(2.106) to get the asymptoticresult:

X~(z) ~eq) (~~eq1 (2.110)
q,z-3.o —iz+Dq

which is avery convenientformula.Expressionslike (2.110)will play acrucialrole in the kinetic
analysis of the long time behavior of the Green—Kubo integrands.

The case of self diffusion, treated here in somedetail, is particularly simplebecausethe
BoltzmannLorentzcollisionoperatorhasonesimplezeroeigenvalue,correspondingto particle
conservation. Yet, a very similaranalysiscanbe developedfor the full linearizedBoltzmann
equation [59—611.

The startingpoint hereis:

a,,5fq(pj;t) + iqv1xc
5fq(pi;t)= C(pi)6fq(pi;t) (2.111)

with

C(p
1) 6ftp1) = nfd~p2fd&2iv1—v2ia(~2,1v1—v2I)

+ ~f(p~,~peq(p~1)— ~f(p1)~e~(p2) — ~ftp2)(pe~(p1)]. (2.112)

The analogof (2.92)holdsherealso,althoughthe eigenvalueproblem

C141=X7k11’ (2.113)

now hasfive (insteadof one) eigenvalues,denotedX~[a E (a); (a) = (1,2,3,4,5)]. Physically
this degeneracycorrespondsto conservationof thenumberof particles,of their total momentum
andof their kinetic energyin ~acollision process.This is confirmedby the explicit form of the
correspondingeigenfunctions:

x?=o (p~~I~~),peq(p)

X2,3,4 = 0 (p1kb234)= ~ i = 2, 3, 4, x, y, z

x~=0 ~ ~ ~~eq(p1)~ (2.114)
2mk~T

Here again, the long time behavior of the solution of (2.111) will be determined by those
eigenvaluesX~of the problem:

(_iqv1~+C)i~7)X7kI7) (2.115)
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which tendto zerowhenq = 0. From(2.114),we seethat thereare five sucheigenvaluesand,ex-
ceptfor minor extradifficulties connectedwith the degeneracyof the unperturbedzeroeigenvalue,
theperturbationcalculussketchedfor the caseof self-diffusioncanbe reproducedhere.One finds

A1,2 = ±icBq — [~Bq
2+ 0(q3) (2.1l6a)

A
34 = pBq

2 + 0(q4) (2.1 l6b)

= gBq2/j~B+ 0(q4) (2.1l6c)

where the only difference with (2.12) is in the superscript B: this indicates that the dilute gas
limit for the transportcoefficientsandfor the thermodynamicquantitiesshouldbe taken.The
eigenfunctionscansimilarly be calculatedand,to lowestorder in q, we get the following eigen-
functions:

I~?,2)=~ -[~,/~kF
1± k~2 J~4)~)]

I4’~,4)= kI3, ~4) (2.117)

I4~)=~J~[—kI’1)+~/~kI’5)]

which obey:

(a,j3E(l,...,5)). (2.118)

Finally, we gain also the analog of(2. 110):

Xq(Z)cx 1 = �~I43~> 1 (~I. (2.119)
—iz+iqv1~—C(p1) a1

q—~0

The interestof this eigenvaluemethodis that it canbe formallyextendedto fluids at an
arbitrarydensity;the idea,which we now sketch,is verysimple [60—621.

We havealreadyseenthat, for spatiallyhomogeneoussystems,the BoltzmannLorentzcollision
operatoris the low densitylimit of the homogeneousfrequencydependentoperatorC0(p1z);
converselyonecan showthat, for an inhomogeneoussystem,the kinetic equationwhich
generalizes(2.102) is of the form (comparewith (2.86)):

0rfq(~i;t) + iqv
1xfq(pi;t) = f Gq(pi;r)fq(Pi; t—r) dr. (2.120)

The explicit form of theq-dependentnonMarkoffian operatorGq will not be needed here (it is
quite close to (2.87)). Accordingly, the study of this equation is related to thenon-linear eigen-
value problem:

[—iqv1~+ Cq(Pi;iA7)] I4~)= ‘~‘I~’> (2.121)

where Cq extendsto nonvanishingq the operator C0 definedby (2.89).
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Althoughvery little is knownof this sortof problemin general[63], decisiveprogresscan

be achievedby lookingat thezerowavenumberproblem:
CO(pl;iX7)I~/)=X71F1). (2.122)

Despite the fact that it does not exist any closed form for C0(p1, z), onecanshowthat,exactly
as in the dilute gas,the eigenvalueproblem(2.122)for a taggedparticlepossessesonezeroeigen-
value (for the same physical reason) and the sameeigenfunction(2.100).Hence,the problem
(2.121) shouldagainhaveoneeigenvalueX’~which tendsto zerowhenq -~ 0 andthis should be
calculable by expanding the operator C,, like:

~q(Pi)~o(Pi 0)+q~-~(p10)+z~0(p10)+fq2~~~~(pi;0)+qz ~~(pi; 0)+~z2~o(pi;0) +

(2.123)

where the dots denote derivatives with respect to z. Let usstressthatwe assumeherethat such
an expansion has a meaning; this is not obvious in view of the expected non analyticities of the
collision operator;yet we shall not justify this procedure here.

Onefinds thenthat the eigenvalueX’~is preciselygiven by the diffusive mode — Dq
2,where D

is theproperdiffusion coefficient for the dense fluid.
Similar conclusions are reached when one considers the case where the whole fluid is put slightly

out of equilibrium, instead of one single tagged particle. Wenow find five hydrodynamical modes
A~which arepreciselygiven by (2.12) wherethe transportcoefficientsand the thermodynamic
coefficientshavetheir valuefor a densefluid. The correspondingeigenfunctionIcI~)canalsobe
calculated:theyarestill given, to zerothorderin q, by linear combinationsof the statesRI~):

=~ C~~J~)+0(q), (aE(a)) (2.124)

althoughthe coefficientsCa,,’ are complicatedfunctionsof the thermodynamicpropertiesof the
system,insteadof simplenumbersasin (2.117).

In this way, we havefounda completemicroscopicanalogto the hydrodynamicalmodesintro-
ducedfirst at thelevel of macroscopicphysics; thisanalogyis oneof the key stepstowardthe
microscopicanalysisof theasymptoticbehaviorof the Green—Kubointegrands.

Before closingthis section,let usmakea few moreremarksaboutthe so-calledpotentialcon-
tributionsto the transportcoefficients;indeed,the caseof self-diffusionwhich we treatedhere
in somedetail is exceptionalbecausethe microscopicflow operatorj~) cx v

1~’doesnot depend
on the interactions.For the shearviscosity for example,onehas:

= ~ —-~-�~°“r11~ (2.125)

and,besidesthe purely kinetic term p1~v,,, — whichis verysimilar to v1~andcanbe treatedby
similar methods— we alsofind two-particletermswhich complicateabit the kinetic description
of theGreen—Kubointegrands:in particular,an equationfor 6~p(p1t) (see(2.86)) doesnot
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suffice.Yet the analysispresentedabovecanbe generalized(seefor example[64]) to this case
and,althoughnew operatorshaveto be introducedin the theory,the frequencydependentcolli-
sion operatorC0(p1z) remainstheprototypeof the quantitieswhich wehaveto study;hence
self-diffusionis indeeda goodexampleto treat.In passing,it is alsointerestingto point out that
if oneattacksthe microscopictheoryof transportcoefficientsfrom the point of view of the
hydrodynamicmodes,the questionof a separatetreatmentof thesepotentialcontributionsdoes
not occur: we havementionedalreadythat the correcttransportcoefficients,including theirpo-
tential part,appearin the eigenmodesA~however,thereis a priceto be paidfor this apparent
simplicity: insteadof havingonly the zerowavenumbercollisionoperatorto consider,as in the
Green—Kubomethod,we now needthe wavenumber-frequencydependentoperatorCq(pi; z) in
thevicinity of q = 0 andz = 0. The respectivevirtuesof the two methodsthusdependbothon
one’stasteandon the problemonehasto tackle.

3. Mode—modecouplingillustrated

In this section,we wish to illustratethe methodspresentedin the previoussectionby discuss-
ing in somedetail aparticularexample:theasymptoticbehaviorof thevelocityautocorrelation
function.However,before dealingwith this problemin the frameof time dependentstatistical
mechanics,it is worthwhile to recall a purely stochasticanalogas analyzedfirst by Lorentz [65]:
the generalizationof Brownian motion theoryto includefrequencydependenteffects;as we shall
presentlyseethis generalizationalreadyintroducesmanyingredientspresentin the recentdevelop-
mentsandis not burdenedby technicaldifficulties.

3.1. Generalizationof classicalBrownianmotion theory

As alreadymentioned,the Langevinequation(1.6) is the startingpoint of stochasticmotion
theory.It is complementedby the assumptionthat the stochasticforceF(r) is a Gaussianrandom
variablewith white spectrum*[21:

(F(t) F(0)) = 1 o(t—t’)2~k~T (3.1)

(1 is the unit tensor),and thehypothesisthatF(t) is uncorrelatedto thevelocity u1(t’) of the
B-particleat earliertimes(1’ < t). While eq. (3.1) is not requiredto get the secondmoment(1.7),
this assumptionis necessaryfor gettingthe moregeneralresult:

(6(u—v1(t))6(u—v1(0)))= ( m1 ) ~{l —exp(—2~ItI/m1)}
312

2irk
0T

i m1 riu—vexp(—~ItI/m1)
2~ 1\

xexpl— [1 I+v2j). (3.2)
\ 2k~T \ l—exp(—2~ItI/m

1)/

It is important to notice that the viscous force —~v1in the Langevinequation(1.6) is, by defini-

*In this subsection,thebracket(...) denotesanaverageover thestochasticvariables,andnot thecanonicalaverage(1.8);no con-

fusion should arisefromthis notation.
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tion, computed as if the particle velocity v
1 was a constant. Lorentz was the first to point out a

difficulty with this latter assumption. Indeed, the viscous drag should be proportional to the
instantaneous velocity u1(t) only if the relaxationtime for thisvelocity, i.e. (~/m1)’,is much
largerthanthe characteristictime for the evolutionof theviscousflow aroundthe molecule,
which is pR

2/rj (R = radiusof the molecule).As, from Stokeslaw~ R~,the validity of the
Langevin equation requires:

m
1/R

3>>p. (3.3)

If the mass density of this particle is not much larger than the one of the surrounding fluid, one
shouldaccountfor the time dependenceof v

1 when computingthe drag.The Langevinequation
(1.6) hasthento be generalizedinto:

dv1 (t)
— = —-——J dt’ ~(t—t’) v1(t’) + , (3.4)
dt m10

where the kernel ~(t—t’) has to be determined from a solution of the linearized Navier—Stokes
equation in such a way that the linear functional:

fdt’ &t—t’) v1(t’) (3.5)

representstheviscousforceexertedat time t upon the B-particle when it has the non-stationary
velocityv1(t’) at earlier times.

The formal solution of (3.4) is:

u1(t)= Jdt’M(t_t’)F(t’), (3.6)

where M(t) is the solution of:

= — —~— fdt’ ~(t—t’) M(t’), (3.7)
dt m10

with:

M(0)= 1. (3.8)

The condition that v1(t) has a Gaussian distribution with constant width is satisfied by
choosing F(r) a Gaussian random variable characterized by:

(F(t) F(t’)) = 1 kBT~’(t—t’). (3.9)

Yet, exceptfor the requirementcoming from (~4)= 3kBT/ml:

f dt’f dt” M(t’) ~‘( it’ — t” I) M(t”) = 1, (3.10)
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the function E’(t) remains quite undetermined at this stage and so is the velocity correlation func-
tion:

(v1(0)v1(t)) = 1 —~—J’fdt’dt”M(t’) ~‘( It—t’ —t”l) M(t”). (3.11)

Fora definitecharacterizationof ~‘(t), we needcrucially the assumption— already needed in
classical B-motion theory, but not always clearly stated in the literature — that the randomforce
F(t) is uncorrelatedto v1(t’) at earlier times*:

(F(t)v1(0))0, t~0. (3.12)

Indeed, only in this case is the formal solution of(3.4):

v~(t)= M(t) u1(0)+ idt’ M(t—t’) F(t’) (3.13)

the sum of two independent Gaussian variables; this feature, together with the stationarity of the
random process, d(v~(t))/dt=0 yields then readily to the identification:

= ~(t—t’), (3.14)

which is nothing else than an elementary version of the so-called “fluctuation—dissipation
theorem”.

From (3.13); we also have:

kBT
(v1(t)v1(0))= 1— M(t), (3.15)

m1

and:

m1 m1 u—vM(t) 2

(6(u—v1(t))~(v—v1(0)))= (2kT) (M1(t))
3”2exp ( 2kBT [( M

1(t) ) + ~]) (3.15)

with:

M1(t) = J’dt’M(t—t’)fdt”M(t—t”) ~(It’—t” I) = [1 —M
2(t)] 1/2 (3.17)

Before looking at the explicit form of E(t) and M(t), let us stress that, although the detail of
the velocity correlation function is of course modified by the non-local time dependence of the
viscousdrag,the diffusion coefficient itself only dependson the time independent drag. Indeed,
we have:

*If F(t) was a physical force, time reversal invariancewould imply: (uj (0) F(t) —(u~(O)F(—t))and ~vi (0) F(t)> would thus

vanishatanytime. Thisargumentdoesnot holdfor theLangevinforce which is only partof thephysicalforce:to deducethe
formerfrom thelatter,onewouldneedtheinstantaneous value of the viscous drag, which itself depends on the past history of
the B-particle.
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D~f dt(v1(t)~u1(0))=—f dtM(t), (3.18)
0 m1 ~

and from(3.7,8):

1 =[f dtM(t)]/[/ dt~(t)]. (3.19)

Hence:

D = k~T/f~(t) dt (3.20)

which would follow from the usual Langevin equation (1.6) as f’E(t) dt is preciselythe friction
coefficient ~ for a stationary motion.

For the calculation of ~(t) and M(t), wemayusethe resultof Stokes’ investigations on the
viscous damping of the oscillations of a ball pendulum [66] ; he showed that the complex drag
coefficientof a sphereof radiusR is:

9 3wpR
2 1~ ~ (3.21)

(we use the same notation as in (2.°~), where:

= (w/2~)”2. (3.22)

Inverting the Laplace transform (3.21), we can in principle deduce ~(t); as pointed out by Landau
and Lifshitz [37], this latter function is singular at t = 0 and yields a finite differencebetween
v
1(0) andv1(0~)in the caseof an impulsive motion.This unphysicalresult is a consequenceof the

assumed incompressibility of the fluid and disappears when proper account is taken of the propa-
gation of sound waves in the medium.

Widom [67] was the first to point out the connectionbetweenthe presenttheoryandthe
slow decay of the velocity correlation function found by Alder and Wainwright. His argument
goesas follows: nearw = 0, L expands like

L = 67ri~R+ /~i~(l + i)pR
2 + 0(w). (3.23)

Because the Fourier—Laplace transform of M(t) is:

M~=. 1 , (3.24)
1W + L

it expandsnearw = 0 as:

M~= 1 [1 pRVT~(l+i)+O(w)], (3.25)
67rflR 6iri~
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and,from well-knownTauberiantheorems[57], onecanshowthatM(t) decreaseslike t312 at
infinity, owing to the term of order~ in (3.25). From(3.15),onefinds the explicit result:

2kBT I

(v
1(0)v1(t)) I 3/2 (3.26)

~ 3p (4irvt)

which indeedagreeswith (1.22).
Once suitably modified to account for the finite compressibility effects, the present generalized

B-motion theoryproperlydescribesthe velocity correlationfunctionof a largesphericalparticle
of arbitrary mass; without doubt, it is the simplest example of the slow asymptotic decay of the
Green—Kubointegrands.

In passing,it is worthwhile to point out that the generalizedB-motion equation(3.4),which is
herethe startingpoint of the theory,can itself be derivedfrom the fluctuatinghydrodynamicsof
LandauandLifshitz [371,takenas the startingpoint to describethe (stochastic)behaviorof the
fluid. This fluctuatinghydrodynamicsis obtainedby simply addingrandomtermsto theequa-
tionsof linearizedhydrodynamics.For example,weadd to the stresstensor(2.4) a“stochastic”
Gaussianstresstensor with zeroaveragesuchthat, in the incompressibleapproximation:

(r~1(r,t)rk,(r’, t’)) =

2kBTII 6(t—t’) sS(r—r’)[6
1k

6/l + 6i16jk’ (3.27)

Then,of coursethe hydrodynamicvariablesthemselvesbecomerandomvariablesandif we cal-
culatethe motion of theB-particlethrough:

dv
1/dt= F1/m1,

whereF1 is the total forceexertedby the fluid on theB-particle:

F~~dSn{p 1 —~(V~v—(V~v)
T)}

(n is the unit vector orthogonal to the surface element dS of the B-particle and (8~v
1)

T = (a
1v~)),

it is obviousthat this forceF1 canbe split into a systematicanda fluctuatingpart corresponding
to the similar decompositionof the fluid velocity field. This programwas explicitly fulfilled by
Haugeandcoworkers[68, 691 andleadsindeedto the generalizedLangevinequation(3.4),with
theproperpropertiesof ~(t) andF(t). We shall not dwell anyfurtheron this interestingviewpoint;
we shallhoweverderivein section3.3 thet

312 behaviorof the velocity correlation function from
fluctuatinghydrodynamics,following the elegantmethodof BedeauxandMazur [21]. Recently,
muchwork hasbeendonealong theline sketchedhere[70—751.

We shouldrealizethat the presentB-motion theory,thoughveryilluminating, is not general
enoughto tacklethe variousphysicalproblemsinvolving collectiveeffectsat a microscopicscale.
Indeed,at leastat two stages,the largesize of the B-particlewas usedin acrucialmanner;hence,
we do not know yet anythingaboutthe motion of a particlemechanicallyidenticalto the restof
the fluid, asin Alder andWainwright’s experimentandin manyotherproblemsof physical inte-
rest. To convinceourselvesthat this point is not as academicas it may appearfirst, let usrecon-
sider with somedetail the pointsof the abovetheorywherethe largesize of the B-particleis im-
portant:

i) Lorentz’sargumentneglectsthe diffusion of theBrownianparticlein thevelocity field
createdby its own motion;in particular,the calculationof thedrag coefficient ~, (3.21) is
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purely linear. For a largeparticle,this assumptionbecomesrigorousbecausethediffusion coeffi-
cient for thevelocity field, measuredby the kinematicviscosity i’, is muchlarger thanthe self-
diffusion coefficient:

~/D~Rm1.

However, when the B-particle becomes similar to the fluid particle, this is generallyno moretrue.
Thenthe calculationof the complex dragcoefficient~ becomesenormouslymoredifficult be-
causewe haveto jump from thelinear problemof calculatingtheresponseof the fluid to a pre-
scribedvelocity v1~,of the B-particle,to a probleminvolving the non-linearcouplingbetween
the fluid and the B-particlemotion: oneof the importantmeritsof the mode—modecoupling
theoriesis preciselyto allow for the treatmentof suchnon-linearities.Notice moreoverthat even
if the ratio z.’/D is largewhenthe B-particleandthe fluid molecules become alike (as appears —
empirically — to be often the case),similarproblemsoccur when dealing with other Green—Kubo
integrands which cannot be simply disposed of by invoking such numerical accidents.

ii) The dragcoefficient (3.21)hasbeencalculatedwith the helpof hydrodynamics(in particular,
with a properchoiceof the boundaryconditionon the B-particle)and, for smallR, this proce-
dureobviouslybecomesdoubtful. Yet, the independenceof thefinal asymptoticresult(3.26)on
the explicit valueof R suggeststhat this difficulty can beovercome:this is a secondmerit of the
variousmode—modecouplingtheorieswhich we now discuss.

3.2. Thephenomenological(or Landau—Placzeck)method

A slight generalizationof the Landau—Placzeckmethodexplainedin section2. 1 offersavery
directprocedureto analyzethe asymptoticbehaviorof theGreen—Kubointegrandfor self-diffu-
sion [11, 17, 181, as well as for theothercorrelationfunctions.

Let ushoweverimmediatelystressthat this methodwill not settlethe problembecausethe
assumption involved should be clarified from a morefundamentalviewpoint.

An apparentlyinnocuous“trick” allows themethodto work: it amountsin formally replacing
the spatiallyhomogeneousfunction:

D(t) = -~(u1(t). v(O)) (3.28)

by an integralovera spatially inhomogeneousquantity:

D(t) = -~fd3rfd3r’(vi(t)6(r—r1(t)) . v1(0) 6(r’ —r1(0))) (3.29)

which introduces the current densityoperatorof the taggedparticle11(r) = v16(r—r1).
We nowremarkthat two conservedquantitiesarerelevantin the dynamil~sof the taggedpar-

ticle:
i) its local density:

z1(r) = 6(r—r1); (3.30)

ii) the momentumdensity(2.27)of the whole fluid: indeed,only the momentumof the total
system(taggedparticle+ fluid) is conserved.Equivalently,we maytakethe local fluid velocity
which, in a linear approximation, is given by:
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(3.3l)*

In the spirit of the Landau—Placzek method, we write then the canonical average in (3.29) by
performing first a partial average in which tlie local density of the tagged particle and the velocity
field (or their Fouriertransforms{niq, Vq }) are fixed. Moreover, in order to avoid delicate but
irrelevant mathematicalproblems,we work in a finite, albeit large,volume ~2;we havethendis-
creteFourier components.In analogywith (2.18),we obtain:**

D(t) = fq {Idn 1,q dVq~(q’ <FIqPn i,q’) P(vq’)) (fdarfd3r’fdrN

xfdpNj~(r) exp(—iLNt) ff(r’) p~(~n1,q}, {Vq })) } (3.32)

where we have only taken wave number smaller than a small cut-off value q0, in order to insure
thatour local equilibrium stateis slowly varying(overdistancesR> q~). Here p~({n1 q }~{Vq })
is a self-evidentgeneralizationof (2.19): it describesa local equilibrium with fixed densityfor the
tagged particle and fixed velocity field for the whole fluid. Similarly, the probability PN(Vq) is
given by (2.24)while P1 N(nl q) is definedby:

exp(—~3H)
P1N(nlq)= f dp’~6(niq— ~iq) ZN (3.33)

Noticing that h1, q = exp(iq. r1) only dependson the location of particle 1, translation invariance
of HN leadsto the equivalent formula:

‘

31,N(~1,q) -~fd3ri6(hi,q — ni,q); (3.33’)

thereis no needto evaluatethis latter integral.

Considernow the averagecurrentdensityin the local equilibrium state; we have:

J~(r)~fdrNdp1~ji(r) p~({ni,q}, {vq}) = n~(r)v(r), (3.34)

where n
1(r) andv(r) arerespectivelythe inverseFouriertransformsof the given {ni,q} and {Vq}.

Thoughthis propertyis physicallyobvious,its formal proofis not immediateand,to simplify,
we shallmerelyassume its validity here. Thus we also have:

ftirf’1(r) = flj,qjVqj. (3.35)

*Delicate mathematicalproblemsalwaysoccurin connectionwith theuseof microscopicoperators,which aresingularfunc-

tionsof position.This is particularlyobviouswith thevelocity field which is formally definedby: h(r) v(r) = k(r)/m,where
j(r) is definedby (2.27)andh(r) is thetotal density 2:j5(r—r~); of courseit makesno senseto divideboth sidesof this equa-
tion by h(r)! Yet, supposethatwe averagethis equationover anysmooth distributionfunction pi’.,r(t) (this averageis denoted
by <--•>pN)~we get: <ii(r) ‘~(r)~pN= (i’(r) )PN/m. Supposemoreoverthat thefluctuationof the densityfrom itsaveragevalue
n is small; therewe mayreplacethislatter formula by the approximation:<~(r))pN (k(r))PN/nm. Our formal definition
(3.31)preciselyleadsto this result.

**We assumefrom thevery beginningthattheprobabilitiesof fluctuationsof the {n1,q } and {vq} areindependent,a result
which is only legitimatein thelong wavelengthlimit q <q0.
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Let us now consider the following decomposition:

Ji(r)4, /~(r)p~+(J~(r)—j’i(r)) p~ (3.36)

and let us examine the action of the operator of motion exp(—iLNt) on this quantity; we make
here the assumption, which was not necessary in the original Landau—Placzeck problem treated
in section 2, that this operator will rapidly bring thesecondterm of (3.36)to zero,for times
t ~‘ Tr where r,. is some finite relaxation time; this hypothesis, which is crucial for the further
development of the theory, is based on the idea that any non-equilibrium state rapidly relaxes
toward local equilibrium.

With the help of (3.35, 36),we can now cast(3.32)in the following form:

D(t) t rr ~q2~qo1’(q~<qo dn1,q duq) ((q’ !~IqoP1~N~1,q’) PN(vq?))~ i,q2V_q2

X [fd~rfdi~ dpN/~(r)exp(—iLNt) p~({n1,q},{Vq})]). (3.37)

The remainingpart of thecalculationis straightforward;we useformula(2.21) to describethe
evolutionof thelocal distribution functionp~as discussedpreviously,this formula, which is the
key assumptionof the Landau—Placzeckmethod,is only reasonablefor smallwavenumbers;we
shall thushaveto a posterioriverify that indeedthe smallwavenumbercontributionsgovernthe
long time behaviorof D(t). Taking again (3.34) into account,we get:

D(t) =—~—~~ ~ f U (dflj,qdVq) 111 Pl,N(nl,ql)PN(vql)nl,qi(t)v_ql(t) i,q2(O)V_q2(
0)~

3~2q~<q
0q3<q~q<q0 q<q0

(3.38)

Retaining only the terms q1 = —q2 in the sums(becausedifferentwavenumbersareuncoupled),
we arriveat the following result:

D(t) = ~ q~qfdn1 qifdVqiPlN(nl ~P~j(Vq~)fl i,qi(t) V_q1(t) ni,qi(O) Vqj(O). (3.39)

The time evolution of the “macroscopic” density n1,q(t) was given in (3.26):

fl1,q(t) = exp(—Dq
2t)fli, q(O). (3.40)

Moreover,althoughwe havein principle a “mixture” madeof the taggedparticle 1 andof all the
othermoleculesin the system,this mixture is infinitely dilute; the hydrodynamicalvelocity
Vq(t) canthus be calculated as for a pure fluid:

Uq(t) = Vqi(t) + Vqj(t), (3.41)

wherethe longitudinalandtransversepartsof thevelocity field aregiven by (2.15a) and(2.15b)
respectively.

With thehelpof theseresults,andof:

n—.o~(
8)3fdq, (3.42)
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the calculationof D(t) reducesto trivial quadratureswhich weshallnot reproducein detail here;
the final result is:

2kBT ___________

D(t) (3.43)
t-’= 3p [4ir(v+D)t]312

in agreementwith (1.21).Notice that, in (3.39),only the transversevelocity field contributesto
the long timeresult(3.43); the oscillating characterof thelongitudinal field leads to a rapid ex-
ponentialdecayin the long term. Moreover,it is easilycheckedthat thecontribution(3.43)en-
tirely comesfrom wavenumberswhich arearbitrarily small for sufficiently largetimes: thisjusti-
fies the assumptionmadeabove.

This asymptoticresult is slightly moregeneralthan(3.26)as it is valid independenton the size
of the taggedparticle;if this latter is large,i ~ D and we recover our previous formula; moreover,
it clearlyshowsthe connectionbetweenthe t3t2 decayandthe vorticity diffusion process.Finally,
it is easilyextendedto otherGreen—Kubointegrands[17, 18].

Although, as alreadypointedout in the introduction,it is ratherarbitraryto classifythe various
methodswhich havebeenusedin mode—modecouplingtheory,we feel it is a good placehereto
mention the theory of Kadanoff and Swift [16]: although this theory has more of a microscopic
flavor thanthe presentLandau—Placzeckmethod,it is alsobasedon the central role of local
equilibrium;howeverhere,linearizedlocal equilibrium is introducedby the formal eigenstates
Ia, q) of the Liouville operator:

LNIa, q)z~(q)Ia,q), (3.44)

(a E 1, 2, 3, 4, 5 labelsthe five conservedquantitiesin a systemof identicalparticles,q is the
wavenumbercharacterizingthe state),suchthat the correspondingeigenvaluesz~(q)go to zero when
q -+ 0 (rememberalsothe kinetic approachof section2.3). KadanoffandSwift thenremarkthat
productsof suchstatesarealsoslowly varying:

LNIce, q’;~,q—q’) = [z~(q’)+z~(q—q’)] Ia, q’;13, q—q’) (3.45)

with

(,JV PNft~~q’;t3, q—q’) cr’s’, pNIa, q’Xr”~,p”~i3.q—q’>.

Retainingtheseproductstatesto get an approximaterepresentationof the Liouville operator:

exp(iLNt) = ~ Ia, q)exp{z~(q)t}(q,a1+4 ~ ~ Ia, q’ ;~, q--q’) exp[ z
0(q’)

a q a,~

+z~(q—q’)]t}(a,q’;13,q—q’I+ ... (3.46)

andinsertingthis representationinto the Green—Kubointegrand(2.15)* leadsto resultswhich are
entirelyequivalentto thoseof the Landau—Placzeckmethod.In particular,oneexactlyrecovers
(3.43).

*Eq. (1.15) is spatiallyhomogeneousandthuscorrespondto q = 0; in this case,thefirst termof (3.46)doesnot contributeand

we areagainleft with “mode—modecoupling terms”.
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Althoughthe presentverysketchypresentationmaynot give full justiceto the importanceof
this theory of Kadanoff and Swift, which is particularly well adapted to and has been very success-
ful in the difficult problemof critical dynamics,we shallnot discussit anyfurtherhere,to keep
this report within reasonablelength.A morecompletereview— andacomparisonwith other
mode—modecouplingtheories— hasbeengiven elsewhere[48].

3.3. Themethodoffluctuatinghydrodynamics

In this subsection, we shall illustrate the use of fluctuating hydrodynamics by outlining the
derivationof thet3~’2law for self-diffusionas presentedby BedeauxandMazur [21].

Their model takes, as a startingpoint, an explicit realizationof the non-linearLangevinequa-
tion (2.73)andis thus,implicitely, basedon the assumptionsexplainedin section2.2. However,
it is simpleenoughsothat its solutioncanbe obtainedexplicitly in aquite convincingmanner.
Moreover this model deals exclusively with stochastic processes and not with microscopically
defined operators (no Hamiltonian needs to be specified); in particular, the Green—Kubo formula
for the correlationfunctionsis not assumedat the beginning,a point which is of someinterest.

The starting point is the continuity equation for the number density n
1(r, t) of taggedparticles

in a fluid:

a
— n1(r, t) = — VJ(r, t). (3.47)

The currentis thesumof adiffusion current—D0Vn1, plus aconvectivecurrentu(r, t)n1(r, t),
plus a fluctuating current JR:

J(r, t) = —D0Vn1(r, t)+ v(r, t)n1(r, t) +~JR. (3.48)

The term ~R is thesourceof the thermalfluctuationsof n1 yet, it will beneglectedin the forth
comingcalculation;moreoverD0 is a “barediffusion coefficient”, as was introducedin section
2.2: we havealreadydiscussedabovehowlittle preciseis the physicalmeaningwhich canbe
given to this quantity.

Of course,preciselyas in the generalcasesketchedin section2.2,the importantterm in (3.48)
is the convectiveterm which involvesa couplingbetweenn1 andthe fluid velocity v(r, t); how-
everthesimplicity of the presentmodelstemsfrom thefact that the fluid is discernablefrom
the taggedparticles;thevelocity field v(r, t) canthus consistentlybe takenas known: we takeit
asa Gaussianstationaryrandomfunctionobeyingtheusuallinearizedfluctuatinghydrodynamics.
Hencethemode—modecouplingwhich appearshereis “pseudo”-linear,in contrastwith the
truly non-linearequation(2.73)which is the startingpoint of manyotherworkson the subject
[19, 21—261.This simplicity of the modelleadsto a particularly simpleandelegantsolution.

If we take the Fourier—Laplace transform of (3.47, 48), neglectingJ~,we get:

(iw+Doq
2)n

1q,~iqAn1q~+n1q(t= 0), (3.49)

whereA is avectoroperatorwhich dependslinearly on ~, andactson anyfunction ~ as:

A ~ (2)4fdq dw’ Vqql,~~ ~

0q’,w~ (3.50)
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Setting:

G
0 = —(iw + D0q

2)’ (3.51)

and:

n~q = i G
0fl1q (t = 0), (3.52)

we get from (3.49):

= (1 + i G0q~A)-’ n°1q,,~ (3.53)

and:

~q,w (A + iqD0)(I + iGoq~A)n°q~). (3.54)

We now haveto relate themeanvaluesOf Jq, ~ and n,;,,,~, for a given n°1q~,, the fluctu.ating
quantitybeingA. This will provide us with a linear relation between (Jq ~) and(fl~q,,) and
hencewith a valueof the macroscopic,or “dressed”,diffusion coefficientwhich will account
for the fluctuationsof the fluid velocity. Simplealgebraleadsto:

DDo+q2~A~ +iG0q~A)’) (3.55)
((1 +iG0q~A)

1)

Noticethat, in this way, we areled quite naturally to aq, w-dependentdiffusion coefficient,
without recourse to any Green—Kubo formula.

To makethe w1~dependenceof D apparent,let us formally expandthe right-handsideof
(3.55)in increasingpowersof A:

D = D
0 + q

2(q~A G
0q A)+ higher order terms. (3.56)

Theaverageinvolvedin this expressionis very closeto a mode—modecontribution,sinceA is
proportionalto the fluctuatingvelocity field. From(3.50):

(q~A G0q~A) = (2~)~fd~q’fdw’(q~ Vqq~,wwlG0(w’, q’)(qq’) . Vq_q~,w_~P). (3.57)

Fromspace—timetranslationinvariance:

~~~q—q’,w—w’~ (2ir)
46(w—w”) 6(q—q”) S

0(q—q’,w—w’) (3.58)

where,from the Wiener—Khintchintheorem[41] , Sv;q,wis the Fourier—Laplace transform of
the space—timecorrelationof the velocity field fluctuations.Fromtheusuallinearizedhydro-
dynamics,we know that thesefluctuationsdecayaccordingto soundmodesandto avorticity
mode.Retainingthis latteronly, we have:

s~. ~=(l_~~~?i’__’- . (3.59)
\ q

2! p lw+Pq2
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Insertingthis expressioninto (3.58),onereadily getsa contributionto D which hasthe familiar
mode—modeform. Expandingaroundw = 0, onefinds at oncea w”2 term in the frequencyex-
pansionof D: it exactly agreeswith the previousresultsexceptthat the bareself-diffusion coeffi-
cientD

0 appearsinsteadof the physical(or dressed,or renormalized)transportcoefficientD,
which appears in other theories. However, this difference is actually due to the neglecting of the
“higher order” terms in (3.56): when these are properly taken into account, one recovers the
physical diffusion in the final result. Due to the simplicity of their model, Bedeaux and Mazur
werealsoable to obtain manyresultsat smallbut finite q but we shall not discuss them here.

3.4. Kinetic theory method

Let usnow indicatehowthe asymptoticbehaviorof thevelocity autocorrelationfunctioncan
be studied by the methods of kinetic theory, sketched in section 2.3. As already mentioned, such
calculations are always based on expansion in some smallness parameter, like the density or the
strengthof the potential,althoughsuchexpansionscansometimesbe formally pushedto infinite
order and thus allow for the treatment of arbitrary dense fluids.

To simplify, we shall explain with some detail how to recover the t
312 behaviorof the Green—

Kubo integrands from the beginning of a density expansion only [29, 30] ; the extension to
arbitrary densities hasbeendonebut is involved [31—34] and we shall merely sketch the main
ideas of this general proof.

We haveseen(eq.(2.91)) that the exact evolution of the time correlation function can be re-
ducedto thestudyof the frequencydependentlinearizedcollision operatorC

0(p,;z). As indi-
catedin AppendixB, the first few termsof the densityexpansionof this operatorare:

Co(p,;z)nC~0)(p,;z)+n2~1)(pi;z)+n3~2)(p,;z)+... . (3.60)

The leadingterm of this expansion,C~0)(pi;z), is the finite frequencygeneralizationof the
Boltzmann—Lorentzcollision operator(2.94);wheneverthe two-bodyinteractionhasa finite
duration,it is explicitly frequency dependent [76] ; however,to simplify, we shall completely
neglectthis typeof frequencydependencebecausewe areinterestedin phenomenavaryingover
a relaxationtime, muchlonger thanthe durationof a collision; hence,we shallput:

~o)(pi;z) = C(p1), (3.61)

wherethe right-handsideis definedin (2.94);notethat (3.61) is rigorousfor hard spheres,a fea-
ture which makesthis lattermodelvery attractivein manycalculations.From(3.60), (2.91)and
(2.99),we readily seethat, in the dilute gaslimit, thevelocity correlationfunctionD(t) decreases
at leastlike exp(—prt),whereJ.ir is somefinite relaxationfrequency(approximatelythe collision
frequency-~ n), in the caseof hard potentialswhich we considerhere*.

This simpleexponentialboundis lost whenthe highertermsin the densityexpansion(3.60)
areconsidered.Considerfirst thecorrectionC~1)(p.,;z); it describestwo types of effects~:

i) modificationsof the two-body dynamicsby the equilibrium staticcorrelation,

*To our knowledge, no general result of that kind is known for soft potentials.In particular,an interestinglimiting casewould

betheoneof Coulombpotentialswhere,in thecaseof ahot plasma,the Balescu—Guernsey—Lenardkinetic equation may be
applied [501 , especiallyin connectionwith the recentcomputer results by Hansenet al. [771.
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ii) genuinethree-bodydynamicaleffects.
It canbe shownthat the short rangeequilibrium correlationsdo not playanyimportantrole

in the longterm (thispoint is discussed,for instance,in AppendixA of ref. [78]), andwe shall
thus limit ourselves to the three-body collisions,which aredescribedby the finite frequency
generalizationof the so-calledChoh—Uhlenbeck[79] collisionoperator;we shallnot display
this operatorhere(seeAppendixB) but we shall ratherdiscussits mainfeaturesin purely
qualitativeterms,keepingin mind that it describesthedynamicalcorrelationscreatedby the
collisionsbetweenthreeparticles.Fromourviewpoint, themostimportantcharacteristicof this
generalizedChoh—Uhlenbeckoperatoris its nonanalyticity with respectto z nearz = 0. In 2d,
we shall seepresentlythat:

lnz (3.62)
z-+ 0

and,similarly, in 3d, onefinds:

~1)(p1 z) C~1)(pi; 0) + 0(z ln z) (3.63)

which suggeststhefollowing extensionat arbitrarydimensionality:

1)(p,; z) = ~1)(p,; 0) + 0(z) + ... + 0(z”
3) + 0(zdl2 ln z) + ... . (3.64)

From the theory of Laplace transform, these results correspond to an asymptotic time behavior
likeSt~”’~ sucha slow decayof three-bodyprocessescanbe understoodas follows: consider
the probability for particle 3 colliding particle 2 in the time interval(t, t + dt) after a first colli-
sion (12); we want. this collision (23) to be such that 1 and 2 will collide again in the future,
leading to a correlatedsequenceof dynamicalevents.As usualin this sortof problem,we work
in the frame where 1 is atrestafterthe first collision (12).The probability of an arbitrarycolli-
sion (23) in dt is of coursegiven by na” 1 v dt (a is the interactionrange;v the averagethermal
velocity); if we furthermoreimposethat this collision throws2 backonto 1, the velocity of 2
after(23) hasto point into the solid angleunderwhich I is seenfrom the locationof this colli-
sion (23): this leadsto a supplementaryfactorad_h/(vt)~1for t large.Hencethe collision events
happeningin the time interval(t, t + dt) contributeafactor

(3.65)

to the Choh—Uhlenbeck collision operator.
What is the asymptoticbehaviorof the time correlationfunctionat this orderof approxima-

tion?To get a hint to this problem,we supposethat we maymerelyreplacethe velocity opera-
torsC~°~andC~1)by c-numbers.From(2.90), (3.61) and(3.63),we get in 3d:

D(z) = v2[—iz + ~r + i(na3)2zln z]1 (3.66)

(we haveformally includedC~’kp
1 0) ~-‘n

2in I2r)~
By inverting this transform,we find two contributions: a poleterm,behavinglike v2 exp(—~.L

1t)
atlarget, andacut term of order [(na

3)2/(j.çt)2]v2 in the samelimit. Theseasymptoticvalues
arebothreachedfor timesof order ,i.ç’; thus,for times~ ~ t ~ i.ç1 ln( 1/na3),the relaxationre-
mainsessentiallyexponentialbut, for muchlarger times,it behaveslike t2. Let usstresshowever
that theseresultsonly obtainin the veryformal limit whereall postChoh—Uhlenbecktermsin
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thedensityexpansion(3.60) areneglected.Notice alsothatthis r2 decayis fastenoughsothat
the Green—Kubo integral (1.5) still exists in this approximation ford = 3. However,in thenext
order, involving C~2)(p

1z), and denoted super Choh—Uhlenbeck (S.C.U.) this Green—Kubo
integral no moreexists;indeed,reproducingthe dimensionalargumentwhich led usto (3.63),
we find:

~(2)(p;z)....~lnz (d3), (3.67)

dueto longliving dynamicaleventsbetweenfour molecules.At this order, we would then find,
instead of (3.66):

D(z) u
2[—iz ~1~r + i(na3)2,ur lnz]’ (3.68)

z—~0

and the diffusion coefficient D D(0) vanishes!
This paradoxical result is of course quite formal becausethe densityexpansion(3.60) is mean-

ingful iff:

In ~~0)(p,;z)I ~ In2C~1)(p,;z)I ~ in3~~2)(p,;z)I ... (3.69)

whenn -÷ 0, whatever z is. Clearlythis orderingis violatednearz = 0: a straightforwarddensity
expansion is thus meaningless.

As is immediateto seefrom (3.62), the samedifficulty alreadyoccursat theChoh—Uhlenbeck
level at d = 2; as we shall seelater, it is generallybelievedthatherethe difficulty is of a deep
nature and not simply due to an illegitimate density expansion.

Keepingin mind the formal characterof the resultsbasedon (3.68),let usneverthelessanalyze
the:time correlationfunctionat S.C.U. order;we now find that, for ,tç’ < t < ~.ç’ ln(I/na3), the
time correlation function is dominated by v2 exp(—ji~t), coming from the pole near z = i.tr; for
,.ç’ ln(l/na3) < t < (a/v)exp(—1/an3),the S.C.U. contribution already dominates the C.U. one
and leads to a decay like ((na3)2/(prt))v2. Finally, fort> (a/v)exp(—l/na3),the dominantcon-
tributionsarisefrom valuesof z socloseto zerothat the logarithmic term dominatesthe
Boltzmanncontributionin the denominatorof (3.68);the result is a decaylike
u2[(na3)2Cu

1t) ln(tu/a)]~. This discussionis summarizedin the following diagram:

t : 0 blr’ ,.ç’ln(l/a
3n) (a/v)exp(—l/a3n)

D(t): 1 exp(—j.zrt) (na3)2/i.z~t [(na3)2(prt)ln(tu/a)] —1

Note thatnothingremainsfrom the C.U. decayr2 it is alwaysdominatedby theS.C.U.terms.
Comingbackto thevanishingof the diffusion coefficient in thisS.C.U. approximation,were-

mark — as indicatedby (3.65)— that this propertyis a consequenceof theunboundedduration
of the collision processesinv.olving four isolatedparticles.Yet, if somecollision eventexceeds
substantiallya meanfree flight time, the chancewill increasefor acollision of anyoneof the
four given particleswith a fifth, sixth, ... one.Sucha collision will destroythedynamicalcorrela-
tion existingbetweenthesefour particlesandwill hopefully eliminatethe divergenceof thecolli-
sion operator.This qualitativepoint maybe embeddedinto a systematic“renormalizationprogram”
andit will turn out that the divergingS.C.U.collision operatorwill bereplacedby a newoperator,
the so-called“ring collision operator” [80], which is free of divergenceat zero frequencyfor 3d
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fluids; neverthelessthis new ringoperatorwill still be nonanalyticat small frequencyz and this
non-analyticity will precisely give rise to the t312 asymptoticbehaviorfor the Green—Kubo
integrand; hence there is a strong connection between the difficulties involved in straightforward
densityexpansionsandthe problemof thelong timetails.

It is unfortunatethat,evenin the moderatelydensegasconsideredhere,the explicit realiza-
tion of this renormalization program requires a non trivial formalism. In order not to burden the
readerwith too muchtechnicality,we preferto report the generalprinciplesunderlyingthis re-
normalizationin AppendixC. Here,we limit ourselvesin presentingthe resultof this renormaliza-
tion applied to the particular case of the C.U. andS.C.U. (to dominant order, these are both re-
normalizedtogether)andwe theninterpretthis result in intuitive terms.Moreover,we limit our-
selvesto the simplecaseof hardspheres.As indicatedin AppendixB, theseareconvenientlyde-
scribedwith the helpof the binary collision operatort~

1,which is an operatordependingon r1,
v~,~ v~.Its Fouriertransformwhich remainsa velocityoperatoris definedby:

<(k+q; k’—q it~11k, —k’)> -~fd3r1fd3r1exp{_i[(k+q) r1 —(k’—q) r1] }t,, exp{i(k.r,—k’~r1) } (3.70)

andhasthe following representation:

(<k+q; k’—q t,~11k, —k’>)cp(~~,v1) = a2fd2K K v.e(,~v~1)[exp(—iq~ ,ca)p( v, v) —exp( iq~ Ka)p(v1, v1)],

(3.71)

wherecp(v1, v1) denotesanarbitrary functionof the velocitiesv1 andv1, andwhereVq = V~-V1.

Moreover i~is aunit vector, 8(x) is the Heavisidefunctionandv~,~ denotethevelocitiesafter
thecollision processwhich aregiven by

v~v1 —,~(,c~v1~), v=v,+ic(ic.v11); (3.72)

finally a is the diameterof the hardspheres.
The Boltzmann—LorentzoperatorC(see(2.94)) andthelinearizedBoltzmannoperatorC (see

(2.112))aresimply relatedto this binary collisionoperator;for hardspheresagain,wehave:

C(p,) ~p(p,) =fd~p2((q, OIt,21q, 0)> ~ ~eq(p) (3.73)

and:

C(p1) &p(p1) _fd3p~[~q,01t11Iq, 0~~ ~e~(p)~((q OIt1~IO,q))cp~’(p,)&p(p1)] . (3.74)

In termsof this binary collision operator,the so-called“ring collision operator”which re-
normalizesbothC.U. andS.C.U.to dominantorder is’~’(d = 3):

~R(p,; z) ~(Pi) = nf d “3fd3p2 ~0, 0 It,2 Iq, —q))
(2ir)

x {[iz + iq~v,2+nC(p,)+nC(p2)1’—[iz+iq v,2]’}((q, —qlt,2I0, 0>>~(p,)pe~~(p2).(3.75)

*The freeparticlecontribution [is ÷iq v1 21 —, is subtractedto avoidanunphysicaltermwhereparticles1 and 2 collide twice

successivelywith eachother;seealso(B.l5) andfootnotethereafter.
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The reasonfor the terminology“ring collision operator”is rather clear from the above expres-
sion: CR correspondsto any “cycle” of collisionsstartingwith a collision (12) (the t,2 operator
at the extremeright); then,the motion of particle 1 and2 insteadof beinga freemotion, is de-
scribedby a “Boltzmannpropagation”:oneconsidersthat theycollide an arbitrary numberof
timeswith othergasmolecules.Hence,the usualfree motion propagator[iz + iq~u,2]

1 is re-
placedby [iz + iq~v

12+ nC÷nC]’; finally, the taggedparticle 1 collides againwith a particle
connectedto the particleenteringthe first collision (i.e., 2) througha setof binary collisions;
that this particleis generallydifferent from 2 itself comesfrom thefact that the Boltzmannopera-
tor (3.74) involvesonecontributionin which the non-equilibriumdistribution function is the
oneof the dummyparticlei, not of 1.

For examplethe sequence:

C(p2) C(p2) ~P(P2) (3.76)

doesnot imply thatparticle2 is the nonequilibrium particle; indeed,it correspondsto four

terms, which we write schematically as:

fci~p3 d
3p

4[t23 t24 ~P(P~)~eq(p) ~eq(p) + ~23t24 ~cp(p4)~,eq(p2) peq(p)

+ t23 t3~~(~2)~ ~eLl(~) + t23 t34~~(p2)&~(~4)peq(p)] (3.77)

andonly in the first term is particle2 out of equilibrium*.

~

N
tim.

Fig. 3.1. A ring collision.

Figure 3.1 illustrates,in a self-explanatorymanner,this ring structure.
It is difficult to extractgeneralanalyticalresultsfrom (3.75), as theoperator

[iz + iq~ u,2 + nC(p,) + nC(p2)] ‘ involvesat least the explicit solution of the linearized
Boltzmannoperator,avery complicatedproblemindeed!However, it is possibleto extractthe
first term in the expansionof C’~(p,;z) nearz = 0 — andthe correspondingcontributionto the
asymptotic time correlation — with the hydrodynamicaleigenmodesintroduced in section 2.

Indeed,with the helpof (2.104)and(2.115),we gain the formal representation:
~ =.~, — (c13~,c1~-~1 (3.78)

/,: I [iz+ ?~+~~] ‘

where

(v,, v2147,4~~) 17(v1)4~~(~2) (3.79)

The connection with the previous theories — which all rely upon the hydrodynamic behavior of the
time correlation functions — is now madeby noticingthatonly a finite numberof eigenvalues
*In this respect,thereis anabuseof languagein speakingof the linearizedBoltzmann operator asbeinga one-particleoperator.

This terminology is usedbecauseof thesymmetrical role played by all the particles in the system.
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andX~’go to zerowith q. More precisely,we havefoundthe self-diffusionmode(2.106)for
the self-motionand(d + 2) hydrodynamicaleigenvaluesfor theBoltzmanncase(theyaredis-
playedin (2.116)for d = 3). In particular,symmetryargumentsshowthat,in the presentproblem,
the interestingeigenvalueis the mode(2.11 6b) of vorticity diffusion.

Let usassumethat, in the smallz limit, the dominantcontributionto (3.75)comesfrom small
wavenumbersq; * we limit thenthe domainof integrationover q to a smallsphereof radiusq0,
muchsmallerthananyinversemolecularlength; in the regionq < q0, the existenceof hydro-
dynamicmodescanbe ascertained.Moreover,as all non-hydrodynamicaleigenvalues(I ~ (I),
1 ~ (a)) tendto a finite limit whenq -~0, it is readily verified that their contributionto the q
integralin (3.75) is analyticin z;schematicallywe have:

‘~ 2~R .

k’’ ~Pi,Z) — ‘~ ‘.Pi,”.’) nonhyd.

wherethe subscript“non hyd.” indicatesthat we retainall termsin (3.78)with at leastoneof
the two eigenvalues~ or ~ takenas nonhydrodynamic.

Hence,as far as asymptoticbehavioris concerned,we areleft with:

~R(p,;z)Ihd = n ~ f d
3~f~

3~((001t121q,—q>)(v1, v2~~>
ai q<qo(

21r)

—q ( c1;”Iv
1, v2>((q, —qlt,2I0, 0)). (3.81)

lz + +

It is very easyto showon (3.81) that:
i) CR(pi, 0) is finite in 3d; hencethe divergencesassociatedwith the S.C.U. operatorhave

beenremovedby the ringcollision operator.
ii) C’~(p,,z) expandsnearz = 0 like:

~R(p,;z) — C’~(p,;0)~hyd -~ z”
2. (3.82)

In order to do this, we neglectthe q-dependenceof the matrix elementsof t,
2 moreover,we

only retain in (3.81) the vorticity modea = 3 which, becauseof the symmetryof theeigenfunc-
tions (2.117),turnsout to be the only term which cancontributeto thevelocity correlation
function**.

Thus,we immediatelyget for CR(p~0):

~p,;0)IhYd—’ f ~ (3.83)
q<q0 q

a finite integral.Moreover,we have:

*It is a trivial matter to checkthat the regionof integration q > q0,while generallygiving themain contributionto thefull ~R,

andthusto transportcoefficients,is both non divergingat z = 0 andanalytic in z for small z: it is thus irrelevantin thepresent
discussion.

**In order to make the explicit calculation, one needsto generalizethe eigenfunctio’~s(2.117)for arbitrarydirectionof q. This
elementaryproblemis solvedfor examplein ref. [811.
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~R(pi;z) — ~R(p,; 0)~hyd~ nf(2 )jdP2((o~OIt,210,0)>(v,, u2k~?43>

iz -~

x _ (FIcIlIvi, v2X(0,OIt12IO, 0>). (3.84)
[iz+ ~

Settingq z”
2 as integrationvariable,onereadily obtainsfor (3.84) the estimate:

(~R(p;Z) ~R(p;o))~ ~ (z/ji~)~’2(a3n)2. (3.85)
z—~0

Insertingthis into thegeneralformula(2.91), onegets:

D
5 — v

2(z/!2r)”2(na3)2/I~Lr (3.86)
z-+ 0

andthis leadsin turn to an asymptoticbehavior:

D(t) ~ v2(na3)2/Curt)3’2 (3.87)

for thetime correlationfunction.This behaviordominatesthe Boltzmannexponentialbehavior
for t ~ ,u;1 ln(l/na3) and it replaces for any time t> ji~ the cut contributionfrom the S.C.U.
term.

A morecareful calculationallowsoneto takeinto accounttheoperatorcharacterof t
12 andto

get the explicit form of thisz”
2, or f3”2 contribution.Onerecoversthen,with the samecoeffi-

cients,the resultfound by theothermethodsprovidedthatoneconsidersthe dilute gas regime
where the present theory is applicable.

Of coursethequestionremainsas to whetherthe asymptoticsdeducedfrom the ring collision
term is the right one. This questionis particularlypertinentif we rememberthat by addingmore
and more terms in the virial expansion for C

0(p,; z), we havefoundqualitativelydifferent results.
Perhaps, by adding more terms, could a new behavior appear? Although the question is still quite
openin 2d, this conjectureis very unlikely in 3d. Indeed,althoughthis calculationoffersno
guaranteeas far as mathematicalrigor is concerned,it is possibleto analyzethe completecollision
operator C0, to infinite order in any perturbative parameter, and one recovers the t~’

2 behavior
with the correctthermohydrodynamicalcoefficientsat finite density[31—34]. We cannotgive
hereadetailedaccountof this work, as it involvesa numberof non-trivial technicalpoints.The
startingpoint is a “renormalized”expressionfor the collision operator,asis briefly discussedin
AppendixC. By establishingboundsto thevariouscontributionsof thisrenormalizedoperator,
it is thenshownthat to dominantorderat low frequency*,the generalizedcollisionoperatorcan
be written in a form quite analogousto (3.81)with the substitutions:

((0, OIt,
2Iq, —q>) -÷ ((0, OIC(p1, p2z)Iq, —q)), (3.88)

involving a frequency dependent operator Cwhich, roughly speaking, represents the most general
short range collision process involving particles 1 and 2, and:

÷~q~fuII ~ ~—q~fuIl (3.89)

*In the samesensethat(3.81) is dominantatlow frequencyin thering approximation.
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where the superscript “full” indicatesthat we now havethe correcttransportmodesat finite
densities. A careful studyindicatesthat, to order t~~2+o),the wave-numberandfrequencydepen-
denceof C can beneglected.Obviously, thesesubstitutionsleavethe estimate(3.83,85) un-
changedexceptfor theconstantcoefficients,which now refer to the densesystem,as obtained
previously by the Landau—Placzeckmethodfor example.A remarkablefeatureof the theory is
that theoperatorC, althoughunknownin explicit form, entirelydisappearsfrom the final result,
which only involvesthermodynamicalcoefficients.

Thoughthe difficulties involved in this typeof N body analysisarequite considerable,as com-
paredto theothermethodsdevelopedabove,we neverthelessbelievethat suchcalculationsare
of interestbecausetheyshowthat,beyondthe ringcontributions,the asymptoticdecayof the
Green—Kubointegrandbecomes“stable” andits qualitativeform is not affectedby higherdensi-
ty effects;moreprecisely,the only modification to the t312 law is in giving the thermohydrody-
namicalcoefficientstheir correct value for a dense system.Moreover, this theoryshowsthat all
“multiple modecouplings”, involving the simultaneousexcitationof an arbitrarynumberp of
modes(p> 2) lead to termsat least of order t~2+~. As, at the sameorder,contributionsappear
which dependon the detaileddynamicsof the system,we arethenleft with ahopelessproblem.

However, below this order, the asymptoticcontributionshaveall thesamestructureas already
encounteredwith the “ring term”; in particular the detailsof thedynamicsareirrelevantand
only macroscopicpropertiesplay arole; this point is of courseassumedin the morephenome-
nologicalapproaches.

4. Theapplications

Up to now, we haveconsideredmainly the velocity time correlationfunction; this problemis
of particularinterestbecause,as alreadystressedin the introduction,it goesbackto the founda-
tionsof non-equilibriumstatisticalmechanics;moreoverthis quantity is the mostaccurately
knownfrom moleculardynamicscomputersimulationexperiments,becausean independent
calculationmaybe performedfor eachof theN particlesin the system.

Here,we consideravariety of otherproblems,wherethe samemethodscanbe applied:all are
characterizedby someparameter,relatedto time, which becomeslarge.The first casewhich
comesto mind is a discussionof the asymptoticbehavior(t -÷ °°)of the Green—Kubo integrands
correspondingto theothertransportcoefficients:shearandbulk viscosity andthermalconduc-
tivity as well as diffusion andthermaldiffusion in mixtureswithout chemicalreactions.Second
we shall considerthe still conjecturalproblemof 2d systemsas well as a brief discussionof the
higherordercorrections(‘.~ r3/2) to theseGreen—Kubointegrandsandto the hydrodynamical
normalmodes(herethe wavenumberq —‘ (1/2 is the smallnessparameter).

A third non-trivial applicationof mode—modecouplingtheory is furnishedby the transport
propertiesof the Van der Waalsfluid: here,onesupposesthat the two-bodyinteractioncanbe
split into a short rangepart anda longrangepart with the inverserange7. In the limit ~ -~ 0, we
expectthat the effectsof thislong rangepotentialwill be fully felt by the systemonly for long
times,of the ordery1/2 andthushydrodynamicalconsiderationsshouldagainbe applicable.

Finally, we briefly explorea field wheremode—modecouplingtheory led to the mostspectac-
ular successes,namelycritical dynamics:herethe equilibrium correlationlength~ becomeslarge
when T approachesthe critical temperatureT~andagainwe canexpectimportanthydrodynami-
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cal effectsin the time regime~ -~ -~ oo As howeverthis problemis rather far from ourgeneral
planandhasmoreoverbeenreviewedrecentlyfrom differentpointsof view [46, 82, 83], we
shall remain rather brief, indicating simply how it can be relatedto the generalideasdiscussed
here. This should however not be considered as a prejudice against this type of application of
mode—modecoupling: as mentionedin the introduction,the modernaspectsof mode—mode
couplinghaveemergedfrom this field; moreover,the presentunderstandingof critical dynamics
is without doubtoneof the greatachievementsof modernstatisticalmechanics.

As we haveindicatedin detail in previoussectionsfor self-diffusiona seriesof different
methodscanbe appliedto dealwith theseproblems.Theonly formalismwhich works for self-
diffusion (at least for a large particle) and not for the other cases is the generalized Brownian
motion theory of section 3. 1, as there is no smallness parameter analogous to R’ (inverseof
the Brownianparticle radius)in afluid of identicalmolecules*.Otherwise,the Landau—Placzeck
method,the fluctuatinghydrodynamicsapproachandthe kinetic theoryapproachcanbe equally
well applied to theseotherproblems,with their meritsanddefects,andleadto equivalentresults.
Hence,to remainas conciseas possible,we shallgenerallylimit ourselvesto the Landau—Placzeck
method, pointing out merely the main differences with self-diffusion.

4.1. Asymptoticbehaviorof the Green—Kubointegrands

As an exampleof the generalGreen—Kubointegrand(1.15), considerthe thermalconductivity
~ define:

,c(r)lirn ~ (JK(r)J~(0)>, (4.1)

where

(4.2)

J’K(r) being the x-component of the microscopic energy flow:

- N ,mv~(r) N aV(r1.(r))
J”~(r) = �I~v~~(r)( + 4 .~ V(r~,(r))) — 4 ~ v~(r) a’ r.~ ~(r) (4.3)

i= i 2 .,*, r~1

while J”(r) is the “counterterm”**:

= ~ ~ (4.4)

which guarantees that J~is orthogonal to the invariants of LN. With the exception of the trivial
factor T’, the thermal conductivity ic is then given by the analog of (1.11), namely:

(4.5)
*Let us recallherethat thevirtuesof thegeneralizedLangevinequationof Mori—Zwanzig(section2.2)havebeenexploitedin

justifying the stochastictheoryof section3.2;yet, this formalismis quite differentandmoreelaboratethanthe simple
Brownianmotionapproachdevelopedfor self-diffusion.

**}fere weconsidercanonicalaveragesonly; it is well-known thattheexplicit formof this countertermdependson theensemble
chosen [84].
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The main differences between the flowJ~ and the self~diffusion flow u1, is the appearanceof
potential terms. However, as in the latter case, the local equilibrium value JK~I off’ is easilyob-
tainedas:

J~”(t)= n hq(t)Vq ~(t), (4.6)
q<q0

where hq is theFouriertransformof the local enthalpy density; it is of course a function of flq
andTq:

hq(t) = ~~flq + -~ Tq + 0(n~,T~,flqTq). (4.7)

Notice that, in writing (4.6), we have retained only quadratic terms in the fluctuations; the cubic
terms(i.e. nqhq~vq_q~,x,q’ * 0) lead to negligible contributions to the asymptotic behavior of
K( t).

We now write, in analogywith (3.32):

K(t) = lim WcBT ~1q~ (dflq dVqdTq) ,U PN(nq~)PN(Vql) PN(TqF)

X [fdr’~dp”~J”(0) exp(—iLNt) ~J”(0)P~j({flq}, {Vq }, {Tq })], (4.8)

with obviousdefinitions for p~({nq},{Vq}, {Tq}) and PN(Tq).
Hereagain the major step is the replacement, for t ~‘ r1 (where Tr is some finite relaxation

time):

exp(—iLNt) f’(0) ~ -~exp(—iLNt) f”(O) p~.

Takinginto accountthatJK. 1 only dependson {nq }, {Vq }, { Tq } andmaybe pulledout of the
phasespaceintegral,we get:

lim f~kT(J U (dnqdvqdTqPN(nq)PN(vq)PN(Tq))f”({nq,Vq~Tq})
~ B q<q0

X [fd~dpNJ~(0) exp(—iLNt)p~({nq,Vq. Tq})]). (4.9)

Using now the approximation (2.21), we immediately get:

g(t) ~r li~~kT ‘II (dflqdVqdTqP(nq)P(Vq) P(Tq))f” ‘({nq, Vq~Tq})

X JK~I(~flq(t),Uq(t), Tq(t)})), (4.10)

whichis completelyanalogousto (3.39)despitethe differencein natureoff’ andv,. The rest
of thecalculationis merecomputationandfollows closely theself-diffusion case.Let usrepeat
themain steps:
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i) the conserved variables flq(t), Uq(t), Tq(t) are evaluated with the help of the linearized hydro-
dynamic equations (2.8), with the hope — verified a posteriori — thatonly smallwave numbers
contributeto the sum(4.6);

ii) the static fluctuations are averaged with the help of standard formulas (see (2.23, 24)),
keeping in mind that the fluctuations at different wave numbers are decoupled;

iii) oneperformsasymptoticallythe q-integral,takinginto accountthe symmetryof the
various modes when performing the angular part.

The result of these straightforward manipulations is:

(kBfl / 1 \3/2 r 2C T mc2 1

~(t) k—) [ + j . (4.lla)
t-,.= 3 4irt (v+K/nC~)312 (2F)3’2

Similarly, one finds for the shear viscosity Green—Kubo integrand:

(k~T)/ 1 \3/2/7 1 \
71(t) I—.I I—+—I. (4.llb)

~ 15 \8irt / \v312 F3,2!

One sees on these two examples that the t~312behavioris recovered;the only differenceswith the
self-diffusion case are:

i) morecomplicatedmodecouplings,becauseof the differentsymmetrypropertiesof the
flows;

ii) the occurrenceof non trivial thermodynamicalquantities,like the specificheatat constant
pressureC~and sound velocity c. Theseareconsequencesof the thermodynamicderivatives
which appear in the expansions of the type (4.7). Notice however that no such thermodynamic
derivatives appear in (4.11 b), which is particularly simple. On the contrary, the formula for bulk
viscosity, which also has been obtained, involves higher order derivatives because, in the analog
of(4.7),we now haveto expandto secondorderin the conservedvariablesnq and Tq. The result
is [17, 18]:

~(t) ~.V(t) + ~°(t) + ~s(t) (4.1 lc)

with

~ 4(k~7)2(.~-~-_) [3p3/2 ~2(C — 1)],

a2C 2 nC 3/2 TaC 2~°(t) — 1) (k~fl2(.~~) [~ E~ _naT~~]

and

(k~7)2 1 3/2 rl ap n ac
~.S(t)= ~ n ~ SI’

where
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naT

Similar formulaehavealsobeenobtainedfor binary non-reactingmixtures. For concentration
diffusion in amixture of particlesof species1 and2 onefinds [89]:

D(t) = ~(Ji~(r,0) ~J.~(t))
3 3/2 rK+DT24+2D

1TI.LT.

t ~~-(kBfl2(~__) (n+ — n)’ a~a(71+71~~~3/2LTC~ — 11a] (4.12)

where

J7(r1r1) = 21 m.v1tS(r — r1) —~,~m1v1~(r —

is the flux of concentrationof particlesof species(1), as the sum runsover the wholesetof
particlesof species1, while runsof all particles,eitherof species1 or of species2. Further-
more7~is themassconcentrationof particlesof species1 and

J,,,(t) =f drJ7(r, t)

is the local concentrationflux integratedover the wholesystem.
In the asymptotic formula for D(t), a numberof thermohydrodynamicalparametersappear,

which needto be defined.Let p = — Pa be the differencebetweenthe dynamicalpotentialper
unit massof species1 and 2, thenp7 ap/a7IlT,P and

MT = a,.zIaTl~7,; furthermoreD
1is the

thermodiffusioncoefficient which is definedin sucha way that the linearizedhydrodynamic
equationfor y’ is

Di~p+P-!~T.at T

The quantities ~± arethe roots of the equation

+ 17~[(.+2D,PT + DTP24/C~+ D~
7]+ ~- (i~D— D~)= 0

andC,~,is the heatcapacityperunit mass(contrary to the conventionusedthroughoutthe whole
paper,whereC,, is theheatcapacityper particle,which is obviouslymeaninglessin amixture).
Let us only point out thatonemayrecoverfrom (4.12) the asymptoticformulagiven in (3.43),
as in the limit of a low concentrationDr,4 DSTPT 0, ~± = KITC~andp7Dbecomesthe
self diffusion coefficientdefinedfrom theEinstein formula.

4.2. Higher order termsin the Enskogexpansionandin theasymptoticsof timecorrelation
functions

Up to now, we havefocusedourattentionon the dominantpart of the longtime behaviorof
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the Green—Kubo integrands. Here we discuss the higher order corrections. As usual in any search
for such terms, one has to consider a number of possible sources of corrections, each of them
arising from improving one of the assumptions made in deriving the main contribution. Correc-
tions to the t3”2 behaviorof the Green—Kubointegrandsmaybe computedup to order(2+0, i.e.
by keeping terms of order r0 with ~< a < 2, and these corrections are intimately connected
with the so-called Enskog expansion of the hydrodynamical frequencies. More precisely, the
usual frequencyof a diffusive mode,say

(4.13)

is the beginningof an infinite expansion(the Enskogexpansion)of ?t~1nearq = 0.
Ourstartingpoint will be the definition of frequency-wavelengthdependenttransportcoeffi-

cientsgiven in (2.55). In this formula, the projectorPq appears,which canbe setequalto zero
whenq = 0 with a proper choice of the fluctuating current.However, in the two-modecoupling
theoryat the approximationconsideredhere,it plays no role evenfor q ~ 0 andwe shallcom-
pletelyneglectit from nowon.

We haveseenthat, in the low frequencylimit, the transportcoefficientsexpandlike (in this
section,we write p(q, w) Pq,~):

= 0, w) — p(O, 0) (iw)”2, (4.14)

dueto mode—modecontributions.A straightforwardextensionof anyoneof the methods
leadingto (4.14)providesthe moregeneralexpansionof p(q, w) nearwandq = 0; this leadsto
a sumof well definedintegralsover thewavenumbersof two interactingmodes.Theseintegrals
canbe performedanalyticallywithout restrictionon the respectivevalueof w andq near0; how-
ever,this generalresult is complicated[85, 87]. The mostinterestinglimit correspondsto the
caseof hydrodynamics,wherethe frequencyand wavenumberarerelatedto eachotherby:

i) w for diffusive processes

ii) w icq + Fq2 for the soundmodes.

In both cases, accounting for the mode—modecontribution leads to:

p(q, w) — p(0, 0) ~ q”2 . (4.15)
w q2

or ~~±icq

The coefficients in front of the q”2 factor in (4.15)aregiven in refs. [86,87].
Now, we mayexpectthat this wavenumberfrequencydependenceof transportcoefficients

will modify the hydrodynamicalfrequenciesthemselves.The definitionof thesefrequenciesre-
quires some care; indeed, the very notion of hydrodynamical modes is intimately connected with
the exponential time behavior of long wave length perturbations. In the usual case, this is ob-
tained by taking the Laplace inverse of (iw + pq2)’; with frequency-wavenumberdependent
transport coefficients, we now have to consider the Laplace inverse of:

[iw+p(q, w)q2]’, (4.16)

which is avery difficult problembecausep(q, w) remainslargely unknown.Yet, as indicatedby
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(4.14), its expansionnearw andq equal0 beginswith a w”
2 term: thismanifeststheexistence

of a cut in the w-planenearw = 0 (this cut is exactlyat w = 0 for q = 0, but, in the simplest
two modes approximation, it is slightly shifted below w = 0 if.q ~ 0),

To be more precise, consider again a model with a single diffusive mode and let us suppose
that the mode—modecontribution to this diffusion coefficient p(q, w) is built of two such
modes;we have:

p(q, w) mode_mode (~)3 ~ + (~+q’)2p + (~— q’)2p]’, (4.17)

where,as in (2.57),p p(0, 0). As usualthequantityp(q, W)Imm — p(O, 0)1mm canbe made
cut-off independent:

~5p(q,w) p(q, W)lmm — p(O, 0)1mm

d3q’ [(iw+~+2~q~2)’ _(2pq~2Y1]~ (w+!~)Fi, (4.18)

w,q-~O ( iT) 2 2

whereF, is someconstant.
The time dependence of the amplitude of the hydrodynamical mode is given by the Laplace

inverseof:

2 1/2 —1

[~w + pq2 + F,q2(iw +~—) ] . (4.19)

This functionhasa poleat:

w = i[pq2 ±iF,q3(p/2)”’2 + ... 1, (4.20)

but, owing to the square root, it also has a cut at w = —4 ipq2which is closerto the origin than
thepole.Hence,atfixed q, the cut contributionsdominatethe pole,being of order
q2 C3/2 exp[—q2pt/2] comparedto exp(—q2pt).Yet, thepolestill dominatesin thehydrodynamical
limit:

q2 -+ 0 t -~°° (q2t) finite. (4.21)

Albeit this non-uniform behavior of the hydrodynamical amplitude is rather unexpected and
quite interesting[30, 34], we shallnot discussit anymoreherebecause,whenevaluatingthe
mode--modecontributionsto time correlationfunctions,we ar~preciselyworking in the limit
(4.21).We arethusleft with the calculationof the generalizedhydrodynamicfrequenciesX”
which aresolutionsof the dispersionequation:

= q2p(q, —iA”) (4.22)

or

— q2p = [p(q, _iX~?)— p(0, 0)1q2cc~q”2 (4.23)

from (4.15).
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This result of course suggests an iteration procedure: starting from the usual Navier—Stokes
value for the hydrodynamical frequency and from the mode—modecontribution to the
Green—Kubo integrands, one is able to get the next order term in the Enskog expansion for ~
Inserting back this last value in the mode—modecontribution to A”, we now generate a q7”4 term
for ~ and so on. In this way, one gets from (4.22) an infinite series:

+ p,q”2 + ... + p~q32~ +.... (4.24)

The threesetsof coefficientsPk (oneset for eachof the threedistinct hydrodynamicmodes)
are given by means of coupled linear recurrence relations. The infinite series (4.24) are given by
the solution of coupled linear integral equations, which have not been solved in full generality,
although some progress has been made toward their solution [89, 90]. Let us still add that our
derivation of (4.24) has been very sketchy; in particular, we have tactily neglected any correc-
tion arising from:

i) the wavelengthdependenceof the equilibrium fluctuations,
ii) the three-andmoremodecouplings,
iii) microscopicprocesseswhich cannotbe describedin termsof hydrodynamicalmodes.

The discussionof thesepointsis given in refs. [3 1 —34] whereit is shownthat, to the ordercon-
sideredhere,the presentsimplified treatmentis legitimate.

The existenceof theseinfinite expansionshasvariousconsequences.The mostdirect oneis a
similar expansion near w = 0 for the Laplacetransformof theGreen—Kubointegrands;from the
so-called Tauberian theorems [57] one deduces that for long times these correlation functions
behavelike:

X(t) ~ ~i)t2I-2 . (4.25)

j=1

This property holds, in particular, for the velocity correlation function of a tagged particle in an
equilibrium fluid. By time integration, we obtain a generalization of the Einstein formula (1 . I):

(~.r~(t))= 6Dt + 0 (t2’). (4.26)
/=1

These expansions also provide a natural framework for extending the results of the Navier
Stokes equations to smaller distances and shorter times. In any problem of hydrodynamics, a
large length or a small frequency does appear; for example, in a stationary drag problem, one
must assume, usually implicitly, that the characteristic size of the drifting body, say R, is much
larger than any molecular length. Roughly speaking R’ playsa role similar to the wave number
q in expansion like (4.24). Hence, we expect that the drag coefficient C of an object of sizeR
should expand like:

C~R [1 + ~ O(R2~)] . (4.27)

This could be relevant, for example, in computing the diffusion coefficient of a Brownian particle
in a critical fluid, wherein the correlation length can be made very large.
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More phenomenologicalapproachesto the calculationof the correctionsdiscussedin this sec-
tion havealsobeenproposed[91].

4.3. Mode—modecouplingin 2df7uids

As explainedatthe beginningof this review,the velocity time correlationof a particleseems
to decreaselike t~I2at largetimes.Hence,in 2d fluids, the selfdiffusion coefficient,which is
the integralof this time correlation,shoulddivergelogarithmically;this is onemoreof the many
peculiaritiesof 2d many-bodysystems.This samedivergenceshouldhold for anyothertransport
coefficientsin a 2d fluid, for examplethe shearviscosity.Yet, this showsthat the “proof” of
this divergenceis just invalid, becauseit needsas a basicingredientthe veryexistenceof trans-
portcoefficientsandthe conclusionis preciselythat thesecoefficientsdo not exist!

Thisstrangebehaviorof 2d fluid was first discoveredby two differentapproaches:Alder and
Wainwright [9—Il] deducedit from computerexperimentson harddiscs;theypresentedat the
sametime an explanationof this phenomenonwhich is essentiallythe onewe havegiven in the
introduction. Approximately at the same time, one of the authors of this review (Y.P.) studied
[92] the renormalization of the virial expansion of the collision operator, as proposed by
Kawazaki and Oppenheim [80] ; he concluded that this renormalization fails for a 2d gas of
identicalparticles,due to hydrodynamical modes; he also pointed out that this new divergence
was non renormalizable, due to the absence of any low frequency—low wave number cut-off for
hydrodynamicalphenomena.

However,a striking differenceappearsbetweenthetwo approaches:the Landau—Placzeck
analysisleadsto a divergenceof the transportcoefficientsthemselves,while kinetic theoryshows
a divergenceof thecollision operator(see(3.62)) so that the transportcoefficientwhich is,
roughly speaking,the inversecollision operator(see(2.91)) shouldvanish! In fact, thereis no
real contradiction,as bothmethodsare inconsistent:the Landau—Placzecktheoryassumesfrom
the beginningtheexistenceof transportcoefficientsandconcludesthat theydo not exist; the
kinetic theoryassumesthatthe ringcollision term is smallcomparedto the Boltzmanncollision
operatorandconcludesthat it is infinite! Thus,oneis left with the qualitativepropertiesof 2d
fluid: transportcoefficientsin 2d fluid cannotbe both finite andnonvanishing.Yet important
questionsremainto be answered:

i) Whatis the long time behaviorof the Green—Kubointegrands?and arethe corresponding
transportcoefficientszeroor infinite?

ii) Whatdoesreplacethe usuallinear andlocal (in spaceandtime) relationsbetweenfluxes
andthermodynamicalforces,as theFourierlaw for the heatflux?

Attemptsto answerthesequestionshavebeenmadeby Kawazaki[25] andAlder andco-
workers[11]. Their analysisgoesas follows: in the Landau—Placzeckapproachthe mode—mode
contributionto a transportcoefficient is:

dq 1
p(w,0)~mm ~~jq

0(2iT)’~ j~+ 2pq~’ (4.28)

wherewe consideragaina hypotheticalfluid with a singlediffusive modepq
2 M is some

parameterwhich dependson static fluctuationsonly. Ford = 2, theright-handsideof (4.28)
logarithmicallydivergesatw = 0 but,at the sametime oneis no longerallowedto takep as a
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‘constant,sinceit divergesat w = 0. Accountingfor this dependence,we shouldobtaininsteadof

(4.28):
/~ d2n’ 1

p(q w)I M J (4.29)
mm q’<q

0 (2,r)
2 ~ +X(Iq/2+ q’I)+ X(Iq/2 — q’I)

wherethe hydrodynamicalfrequencyA(q) is relatedto p(q, w) itself by (4.22).Equation
(4.29) is extremelycomplicatedto solve,evenif we disregardanynonmode—modecontribution
to p(q, w). Hence,KawasakiandAlder andcoworkershavenot only neglectedsuchcontributions
but theyalsoassumedthatp dependedon w only: p(q, w) = p(w). This allowsoneto replace
(4.29)and(4.22) by:

d2’ 1
p(w) M I —~ . , , (4.30)

q<qo (2ir) lw+X(q)+A(—q)

with

A(q) = q2p[—iA(q)]. (4.31)

A furtherassumptiontakesplace,which is checkeda posteriori: onereplacesp[—iX(q)] by p(w)
in (4.30); thisgives:

M q
0 qdq ,~Mlnw

2 ~ (4.32)
2ir0 lW+2qp(w) 8irp(w)

which leadsto the self-consistentsolution:
1/2

p(w) ~ (—) (ln w)”
2. (4.33)

c~-~o\87r/
This corresponds to a long time behavior of the inverse Laplace transform (i.e., of the Green—’
Kubo integrand) presumably of the type (ln t)”2/t; noticethat the coefficient in front of this
(ln t)”2/t only depends on equilibrium properties. The validity of replacing p[—iX(q)] by p(w)
is easily checked; indeed, from the final result (4.33) we have:

\1/2

A(q) q2 (,—) ~/i~i~ (4.34)
q-’~O 8iT

which, onceinsertedinto (4.30),preservesthe answer(4.33).
Alder et al.havetried to checkthis behavioron computerexperimentsbut this turnedout to

betoo difficult in view of the very weak logarithmicdependencewhich was lookedat.
The assumption leading to (4.33) could be checked more easily in a one-dimensional fluid.

Supposing that generalized hydrodynamic modes still exist, the divergence of p(w) is expected
to be stronger than at d = 2, since(4.30) is now replaced by:

p(w) = M f dq (4.35)
2lrq<qo iw+X(q)+X(—q)
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Supposing:

A(q) q°~2 (4.36)

q-±0

wherea is to be determinedself-consistently,we get:

p(w) w0~0+2) (4.37)
w-~0

and from the dispersion relation (4.31)

a = —~ (4.38)

andhence:

p(w) w1’3 (4.39)

this correspondsto an asymptoticbehaviorlike t2’3, insteadof the r1/2 decayobtainedwhen
takingX(q) q2.

Recentlya modelof latticefluid hasbeenproposed[93] wherethe vorticity diffusion is essen-
tially a one-dimensionalprocess:the resultof computerexperimentsagreesfairly well with the
p2/3 asymptoticlaw.Howeverthis one-dimensionalresult is certainlynot universal,as shownby
the exact calculationof Lebowitzet al. [94] for the hardrod fluid: theyfind a t3 law for the
decayof thevelocity correlationfunction; the discrepancyof this resultwith (4.39) is obviously
dueto the absenceof fluid hydrodynamicmodesin this model.

The studyof the asymptoticdecayof the Green—Kubointegrandsdoesnot sufficeto settle
all questionsin 2d transporttheory.Of course,this allowsoneto find, in the linear approxima-
tion, the behaviorof a thermodynamicalflux, say Y(t), dueto a timevarying force,sayF(t); Y
beingfor example theheatcurrentandF the temperatuegradient,we have,in this linear approxi-
mation:

Y(t) = f dt’ K(t—t’) F(t’), (4.40)

with, presumably,K(t) a~.,~(lntY”2/t. Hence,if F(t) startsatt = 0 andremainsconstantat any
positivetime, the flux Y(t) growsindefinitely like (ln t)~2for large times.Of course,the linear
approximationcannotbe maintainedindefinitely. If a steadystageis reachedin the long term,
thenwe mustadmit that Y, in this stationarystate,is a functionof F which cannotbe propor-
tional to F nearF = 0 (otherwise,theconstantof proportionalitywould be a well definedtrans-
port coefficient)andcould behavelike F(lnF)”2 nearF = 0, or somethinglike that [86, 95] . But
it is alsopossiblethat no stationaryrelationbetweenF andY exists.Perhapssize effects should
alsobe takeninto account;for instance,it is knownthat in a one-dimensionalharmonicchain
the heat flux does not depend on the temperature gradient but on the temperature difference be-
tweenthe ends[95].

To conclude,we seethat thetransportpropertiesfor 2d andevenid fluids arefar from settled;
in particular,as long as the phenomenologicalandstochasticapproacheshavenot beenshownto
be consistentwith the kinetic theoryresults,somedoubt remainsas to the validity of the results
derivedabove.For example,it is not excludedthatin thevery long time limit, the l/t behavior
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in 2d (or the “self-consistent”(ln t)~2/t)ceasesto be valid. This last remarkis born out by the
fact that, if we takeas a modelthe 2d Choh—Uhlenbeckresult for self-diffusion(see(2.91),
(3.62)):

D
5 lc.u. = l/(iz + + jPr(”

2’~)ln(za/v)), (4.41)

we find indeedan asymptoticbehaviorcr l/t for the inverseLaplacetransformin the “inter-
mediate”time regime~iç’ ln(I/a2n)< t < (a/v)exp(—1/a2n)because,for suchtimes, it is legiti-
mateto usethe expansion:

= 1 1(u12fl)Prl11(2uh/V)~ (4.42)
C.U. IZ+Pr (_1Z+Pr)2

Yet, in the very long term, the logarithmic factor dominates in the denominator of (4.41) and
leads to a different behavior, of the type [t(ln t)] _1; moreoverthe wholetime integralof this
Green—Kubointegrandis suchthat the transportcoefficientD

0 vanishes!We shallnot dwell on
this exampleany further, in particularbecausethe logarithmicterm in (4.41)shouldmore
realisticallybe replacedby a muchmorecomplicatedself-consistentexpression;we nevertheless
feel that this modelillustratesnicely the typeof difficulties andthe kind of surprisewhich may
verywell emergefrom a morecarefulanalysisof 2d and 1 d system.

4.4. Transport properties of the Van der Waalsfluid

TheVan der Waals theoryfor the equilibrium propertiesof classicalfluids is basedon the idea
of separatingthe pair interactionbetweenthe particlesinto a short rangerepulsivepart yR anda
long rangesmallattractivepart V’S. In modernlanguage,onewrites:

V VR(r) + 73 VL(~yr) (4.43)

wheretheparameter~l’measuresthe inverserangeof V’~andis suchthat theaverageattractive
energy:

73fd3r V’~(~r) (4.44)

remainsfinite in the limit 7 -~ 0; 7 playsthe role of a smallnessparameterandcanbe usedto
develop various perturbation methods for the thermodynamical properties and the correlation
functions of the system. In these calculations, the properties of the short range reference system
areassumed to be known [98—100].

In particular, it has been rigorously proved, under very general conditions, that the 7 -~0

limit leads to the Van der Waals type equation of state combined with the Maxwell equal area
construction[101].

It is of courseof much interestto get analogousresultsfor the transportpropertiesof the
Van der Waals fluid; because the parameter y introduces a small wave number, we may expect
a priori that longwavelengthcontributions,describedin termsof hydrodynamicalmodes,will
play an important role in the dynamics of this Van der Waals system. This conjecture has been
verified by the kinetic theorymethodbriefly sketchedin section3.3: usingtherenormalized
form of the collision operator,it was shownthat the dominantcorrectionto transportcoeffi-
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cientsdueto VL is of order~,andarisesfrom acouplingbetweentwo modesquite analogous
to the one leading to the t3’2 decayfor theGreen—Kubointegrands[62, 81, 102].Howeveras
already stressed, the kinetic approach involves an enormous amount of technicality and we shall
limit ourselves here in sketching how the results can be recovered by using the much simpler
phenomenologicalLandau—Placzeckapproach.

Consideragainthe exampleof the Green—Kuboformula(4.1, 5) for thermalconductivity.
Of coursethe flow f’, eqs. (4.2, 3, 4), now dependson the longrangepotentialVL.

To dominantorder in 7, we assumethat the correctionto K dueto this long rangepotential
arisesfrom slowly decayinglongwavelengthphenomenafor which the Landau—Placzeck
methodof section3.2 maybe applied.Threemodificationsoccuras comparedto the short range
referencesystem:

i) the longrangepotentialexplicitly occursin the flows (4.3, 4);
ii) the long wavelengthstaticcorrelationsarestill of the Gaussiantype but their explicit form

has to be slightly modified. Consider for example the density fluctuations probability (2.23).
This formula is valid only if q is smaller than any molecular inverse length, including ~ however,
it was shown by Van Kampen [98] that Gaussian fluctuations persist in the range q 7 provided
that XT is replaced in (2.23) by the wave number dependent susceptibility*:

XT xT(q7)=[~—~ +nV~i] (4.45)

wherethe superscriptR refersto theshortrangereferencesystem.Due to this differencein the
statisticalweight,we seethat the equilibrium fluctuationsof the Van derWaalsfluid differ from
the reference system for q-[’ ‘-~‘ 1. A similar modification occurs for the energy fluctuations
while, of course, the velocity fluctuations are unaffected (see (2.24));

iii) similarly, we have to modify the equations of linearized hydrodynamics obeyed by the fluid
conservedvariables.For doing this, we simply assumethat the presenceof the longrangepoten-
tial inducesan averagefield term in the Navier—Stokesequation[103—105]; althougha detailed
justificationof this procedureis quite delicate[62], it canbe understoodby analogywith
anotherlongrangeforceproblem— namelythe Coulombpotential — whereit is known that the
dominantdynamicaleffect of theseforcesis preciselyto introducesucha meanfield (or Vlasov)
term [50].

In the Navier—Stokesequation(2.86),we substitutetherefore:

la~ lan’~- I
-__~i -÷—-!i ~ (4.46)
panT panT m “~

We now write the longwavelengthpart of the local equilibrium form of the flow (4.3) as(com-
parewith (4.6))

J”(t) = ~ [n h~(t)V_q,~(t) + + V~-~nq(t)Vq,x(t) + *nq(t)Vq(t) (q v~—,I (4.47)

q<qo q,

wherewe haveintroduceda smallcut-off wavenumberq
0 such thatq0 ~‘ 7. Indeed,we expect

*We use the convenientdefinition V~=fd3r V~’(r)exp(iy r), for the Fourier transform of the longrange potential.
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that for q ?,~q0 the referencesystemandthe Van der Waals fluid behave exactly in the same way
and the region q> q0 should therefore not contribute to the correction due to VL. Moreover, the
first two terms represent the approximate enthalpy flow where only quadratic deviations from
equilibrium are retained; it can be shown again that cubic deviations (as flqhqiU_q_q~,q, q’ ~ 0)

lead to negligible contributions for 7 -~ 0.
Expressing h~in terms of flq and Tq in (4.47), we are now in a situation allowing us to apply

the Landau—Placzeck machinery in a straightforward manner; we merely have to account for
theabove remarks ii) and iii). Weshall not reproduce here the details of these calculations. Sub-
tractingthe correspondingcontributionsfrom the referencesystem,we obtain:

k “ aVL
2 2 R2 CR

B rd~ r1 n ,,~mc (y) m(c ~ +2Tr ~“ — ~ 1
6ir

2m J L 2c2(y)m ay J 2F(y) 2FR Lz~R+KR/nC~(y)pR+KR/nC~J
(4.48)

wherethecut-off hasbeenpushedto infinity.
Similarly onefinds for the shearviscosity:

7kBT ‘y(y)—l 2 aV~2nC~(y) ny av~2 1
= 60iT2/ dy(n2x2~y)[ ~y) ] (ny ~) 2gR + (i + 2c2(y) — (4.49)

the corresponding formula for the bulk viscosity is too long to be displayed here (see [81]). In
theseequations,we have introduced the dimensionless variable y for the quantity q7~all y de-
pendentquantitiesin (4.49) thenrepresentfinite y generalizationof the correspondingthermo-
dynamicalcoefficientof the Van der Waalsfluid; on theotherhand,the Onsagertransportcoeffi-
cient themselvesremainthe onesof thereferencesystemto this orderof approximation.For
example,the soundvelocity:

~ R+~-~v~ (4.50)
C~~XT Van der Waals mC~an T m

is generalizedinto:

C”- ap R

c2(y)~~P~~_+—V~. (4.51)
mCV anT m

Similarly:

T a

C~(Y)C~+_[(-ç,)] [x
2~(y)—x~1 (4.52)

(4.53)

= C~(y)/C0(y) (4.54)

F(y) = [(4iiR/3 + ~.R) + ( 1 — 1 ‘~L1 (4.55)
p C~(y) C~(y)In J



122 Y. Pomeauand)’. R~sibois,Timedependentcorrelationfunctions andmode—modecoupling theories

with
n’

XT(Y) = . ‘ (4.56)
ap/an~+ nV~

Of course,the remarkablefeatureof thisresult is that it only requirestheknowledgeof the
equilibrium andtransportpropertiesof the referencesystem(andof courseof V~)but is totally
independentof the detailedpropertiesof theshortrangedynamics;thisis a featurewhich is
commonto all mode—modecouplingcalculations.

Results similar to (4.48, 49) were obtained previously by Zwanzig and al. and by Kawasaki
[103—105]; their method was very similar to the one displayed here but they assumed more-
over that the short rangepart of the flow f’ was rapidly decayinganddid not contributeto the
correctionsstudied.With our presentunderstandingof the Green—Kubointegrands,we
know that this assumptionis in error: the purely short rangepart decaysslowly for long times,
dueto coupledhydrodynamicalmodepropagation.As this propagationis different in the
referencefluid andin the Van der Waalsfluid, we get thusan extra-contribution.As a matterof
fact, the reader caneasilycheckthat eqs.(4.48, 49) arenothingelsethanthe timeintegral of
the differencebetweenthe asymptoticbehaviorof the correspondingGreen—Kubointegralfor
respectivelythe referenceandthe Van der Waalsfluid; yet, in this latter case,no t3~behavior
is recovered(exceptfor timest ~ 72) becauseof the complicatedwavenumberdependenceof

y.

Let uspoint out that, to the orderof approxlmatlonconslderedhere,the first correctionto
the self-diffusion coefficientvanishesidentically:

lim D_DR
0 (4.57)

7~0 7

The reasonfor this is apparentin (3.43): the dominantmode—modecouplinginvolves thecom-
binationof ~R andDR:

(4.58)

which bothare7-independent;hence,their contributionis the samein the presenceor in theab-
senceof VL. The first non trivial correctionappearsto be of order72; as it is of little morethan
academiccharacter,we shall not reproduceit here[107, 108].

This theory has also been extended to binary mixtures [106].

4.5. Critical dynamics

As already stressed, critical dynamics is a vast subject and it is out of question to review it here
in detail (see [46, 82, 83]); we shall limit ourselves in indicating how mode—modecoupling
plays a prominent role in this theory.

To illustrate this point, consider again the correction to the viscosity of the Van der Waals
fluid due to the coupling between two heat modes; we denote it 6i~ from eq. (4.49), we have:

2[y(y)—l\
2f av~\2C,,(y)7/ dy[nXT(y)] ~ ,, ~ny -~-~-)KR (4.59)
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It is easily seen that, when the temperature is decreased, we finally reach a temperature T~,
such that, for a well defined density nc, the zero wave number compressibility XT(O), eq. (4.45),
becomes singular; we then have:

= ap/ancI~, (4.60)

which definesthe critical point of our model.
Of course,it is knownthat the equilibrium 7-expansionfails to convergecloseto the critical

point [100] ; moreover,eq. (4.59)was derivedunderthe assumptionthat all thermodynamical
coefficientswerewell behaved,and this is also invalid near (ne, Tc). Nevertheless,let usprovision-
ally forget aboutthesedifficulties and let us investigate,in the mostnaiveway, the consequences
of (4.60)on (4.59).We considera temperatureT suchthat

T—T
0< ~ c~l (4.61)

andwe look, in the integral(4.59), at the regionwherey ~ 1. Expandingthedenominatorin
(4.56)with thehelpof:

an ~ a~R a2VL
—~ + ae+ ..., V~= V~+ y2 ~ __T (4.62)

an~T anc T~ ay 0

we get the well knownOrnstein—Zernikeequation:

X~(Y) ~-~--~—--~ (4.63)

where

~ (V4na~7ay2~yo)~ (4.64)

definesthecorrelationlengthin unitsof -y’; theusualcorrelationlengthis simply ~ = ~y~’; ~

and ~, diverge at the critical point.
From (4.13, 15), we have the estimate:

‘y(y) 1 (4.65)

and

yaV”/8y-’y2. (4.66)

Hencethecontributionto (4.59) coming from the regiony ~ 1 (or q -~ y) is of the order:

dyy4 C,,(y) y~’C~(0) 467

7J’ (~2 + ~_2)2-~i~-~ KR ( .

wherewe havefound it convenientnot to usethe result of (4.52)C~(0)~ ~. For y smallbut
finite, this “correction” becomesinfinite whenT~is approachedanddominatesthe short range
term

71R Similarly we would find that ~K = IC_KR is not smallwhen Tc is approached.
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Strictly speaking,theseresultsindicatethatour simpletheory is inadequatecloseto T~.How-
ever,qualitatively,it is quite easyto “repair” this inadequacy:wehavesimply to put the full
transportcoefficientsin the mode—modeterm,insteadof their valuein thereferencefluid. Then
(4.67) becomesa self-consistencycondition:

flI55K’~~C~(0), (4.68)

wherewe havedroppedthe factor~ which is a smallbut finite constant.If we useC~(0)—,

we get insteadof (4.68):

(4.69)

the indication of a necessarydivergenceeitherin ~ or in r~.
Thoughthe aboveargument,basedon the unjustifieduseof the Van derWaalsmodel, is ad-

mittedly very crude,the final result— in particularin the form (4.68) — is not asbad as it might
appearfirst. As we shall seesoon,the moreadequatetheoryof KadanoffandSwift reproduces
similar results[1 6]

We havealreadysketched,in section3.2,how theseauthorsbuilt up a formalism whichintro-
ducesmode—modecouplingeffectsat the levelof the formal solutionof the Liouville equation.
A secondingredientof the theory is the modelindependentdefinition of wavenumberdependent
thermodynamicalcoefficients*.This is very simply donewhenwe realizethat aformulalike the
fluctuationtheorem [43]:

nkBTXT= lim (~q~_q> (4.70)
q-~0

canbe extendedto define a wavenumberdependentcompressibility:

nk~Tx~(q)= ~ (4.71)

Of course,in general,such a definition is of no muchhelpbecausethe right-handsidecannotbe
evaluatedexplicitly. Yet, closeto T~,when~ (which canstill be defined,for realistic systems)~
anymolecularlength,we canusethe ideaof “static scaling” to assumethat the generalizedcom-
pressibility,whichgenerallydependsseparatelyon the parametersq and~‘, is in fact ahomo-
geneousfunction:

xT(q,~)= qUflq~), (4.72)

wheref(X) is an unknownbut well definedfunctionwhich tendsto a constantfor X -~0. A justi-
fication of (4.72) falls out of the scopeof the presentwork (seefor example[83]); let ussimply
stressthat, in estimatingthe divergenceof integralsof the type(4.59), the explicit form of the
functionf~q~)is irrelevant.Moreoverthe exponentu canbe determinedfrom purely thermody-
namicalpropertiesbecause,for q ~

xT(q, ~) (4.73)

as an immediateconsequenceof the homogeneityof the functionf.

*An explicit realization of suchquantities is of courseoffered by (4.52,56) in the Van der Waals limit.
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With theseideas,the Kadanoff—Swift theoryrunsalonglinesvery parallelto all the previous
examples.Let ussimply mentionthe few pointswheredifferencesappear:

i) becausethe wavenumberq is not necessarilythe smallestparameterof the problem(very
closeto Tc, we mayverywell havearegimeq~~‘ 1), the transportmodescannotbe written in
the simpleform:

A~q2p
0(~) (4.74)

wherePa solely dependson temperature(see(4.64)) but oneshouldretain the completewave

numberandfrequencydependenceof p0 (seealso(2.55)):
X0(q, w) = q

2p
0(~,q, w); (4.75)

ii) becauseof the absenceof a smallnessparameterin theproblem,oneis not allowedto re-
tain only two modeterms;asa matterof fact, thereis good indication thatmanymodetermscon-
tributeequallyto the diverging transportcoefficients.Fortunately,simpledimensionalarguments
showthatthis doesnot affect the natureof the divergence(and,especiallythe valueof thedynam-
ical critical exponents),foundby takingonly two andthreemodescouplings.

iii) As alreadyillustratedby (4.68), this divergenceis determinedby solving self-consistently
homogeneousmode—modecouplingequations.Indeed,the regularterm (as71R in the Van der
Waalsfluid), which describesthe short rangeeffects,remainsfinite at T~andis thusirrelevant*.

With theseremarksin mind, the mode—modecoupling machinerycanbe appliedstraightfor-
wardly; the only difficulty is the largenumberof equations(correspondingto thevarioustrans-
port coefficientsandto thevariousfrequencyregimes)which haveto be solvedsimultaneously.
We shall not displaytheseequationshere;let ussimply mention thatour naiveestimate(4.27)
turnsout to be oneof theseequationsprovidedthat we substitute:

-÷ ?7(~,0, 0)J~~ K -÷ K(~,~,~ (4.76)

Of course,in this modelindependentcalculation,oneshould taketheactual — andnot the Van
der Waals— critical behaviorfor the staticquantities;roughly speaking,onehas:

C~,-~ ~ (4.77)

It would be out of placeto presentherethe detailedresultsof this theory; let ussimply men-
tion that it hasbeenremarkablyconfirmedby experiments(see[109]) for an exhaustivelist
of references).Moreover,it hasbeenextendedwith successto binary mixtures [46, 110].
Finally, similar ideashavealsobeenappliedto magneticsystems[14, 15, 46, 111, 112] andto
phasetransitionsin superfluids[46, 113, 114] ; we shallnot discusstheseproblemshere.

5. Final remarks

Althoughwe havethusfar given a fairly completereview of the theoreticalaspectsof mode—
modecoupling problems,very little hasbeensaidabout therelevanceof thesecalculationsto

*‘fl~j~ regularterm is “theoretically irrelevant”becauseonelooksat the natureof thesingularity;yet,it is “experimentallyrele-
vant” in governingthe regularbackgroundto whichthe singularpart isadded.
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experimentalproblems.First of all, we shouldstressthathydrodynamicalphenomenaareof
such a fundamentalimportancein the understandingof time dependentcorrelationfunctions,
thatthe purely theoreticalaspectsof the problemareof an enormousinterestin themselves.
Yet, it is alsoessentialto inquire aboutthe experimentalrelevanceof theseeffects.

The mostspectacularsuccessof mode—mode-couplingtheory is without doubt the correct
predictionof the singularitiesof someof the transportcoefficientscloseto the critical point
(see[109] andreferencesquotedtherein,as well as [145—148] for somekey experimental
paperson simplefluids andbinary mixtures).However,a detailedanalysisof theseresultswould
fall out of the scopeof the presentpaperandit would requireby itself a wholereview.Thus,
weshall limit ourselveshereto a discussionof non-criticalsystems.Two difficulties appearin
this case:— for someapparentlyaccidentalreason,the numericalcoefficientswhich weight the
decaylaw of thecorrelationfunctionsfor long timesaregenerallyquite smallandthe effects
arethushard to put in evidence;— as is clearfrom the previoussections,the only thing theory
canpredict is the asymptoticbehaviorof thesecorrelationfunctionsin the limit of longtime
but no estimateexistsyet of the time afterwhich this asymptoticstageis reached;in particular,
the occurrenceof thesequencet312, (7/4 ... for the first few termsdoesnot helpin making a
clearcutseparationbetweenthe initial exponentiallike (or Gaussianlike) relaxationandthe
final asymptoticbehavior.Thismakesthatanysimpledimensionalargument(basedon the idea
that the t312 behaviorbecomescorrectas soonas the contributionto integralsoverwavenumbers
(see(3.42)) comefrom q valuesmuchsmallerthaninversemoleculardimensions)is very doubtful.

Probablyfor thesereasons,very little hasbeenreportedon experimentson realisticsystems
which would supportthe slow decayof the Green—Kubointegrands;let usmentiona remark
by Andriesse[115] suggestingthat inelasticneutronscatteringdataon argonarebestfitted by
a theoreticalmodelincludinga non-analyticw”2 behavior(see(4.14)) for the Fouriertrans-
form of thevelocity correlationfunction; the moderateaccuracyof the datadoesnot lead how-
ever to conclusiveevidence.Another,morerecent,resultconcernstheverificationof thegen-
eralizedBrownianmotion theorydiscussedin section3.1 [116] by observingthe motion of
latex particlesin air andargonaftertheyhavebeentriggedby a shockwave: therelaxation
startsto be exponential,with a characteristictime Tr~but for timest �~2.5 Tr~thedecayof the
velocity is consistentwith a t312 law; though,herealso,no definite conclusionhasbeenreached.
Let us moreoverstressthat,evenif suchan experimentwould leadto completeagreementwith
theory, it would still be far from provingthe existenceof microscopicmode—modeeffects
betweenthe moleculesin a fluid. Finally, we maystill point out an interestingsuggestionby
Harris [117] which indicatesthe possibilityof proving the slow decayof the Green—Kubo
integrandfor diffusion by electricalconductivity measurements.

As onecan see,the balancewith theory is quite meageron the “truly” experimentalsideand
to get moreresults,we haveto comebackto the “computerexperiments”which, as discussed
in the introduction,startedthe wholeproblem,for non-critical classicalfluids at least.As the
field hasbeenreviewedquite recentlyby Wood [118] we shallbe ratherbrief. The most salient
resultsarethe following:

i) For hard discs in 2d, the Alder andWainwrightdataclearlyshowa l/t behaviorfor the
velocitycorrelationfunctionD

1, for timesof the orderof 10 to 30 collision times [9] , up to
packingfraction v/v0(v is the volume per molecule,v0 thevolume at closepacking)of theorder
2, for which computerexperimentshavebeencarriedout.Moreoverthevalueof the coefficient
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a definedby:

D(t)a/t (5.1)

agreeswell with thetheoreticalpredictions[291, asis illustratedin fig. 5.1. Theseresultsarealso
confirmedby an interestingcalculationof ErpenbeckandWood [119] who computedthediffu-
sion coefficient,at time t, as the ratio:

D(t) = (J~(r, t))/<V’~ni(r, t)), (5.2)

where<.J~(r,t)) denotesthe averageflow of taggedparticlesand(V~n1(r, t)) their averagedensity
gradient.Clearly, for a “normal” situation,D~shouldtendto a constantfor largeenoughtimes;
however,the experimentis consistentwith agrowingofD1 like:

D(t)~f~lnt. (5.3)
0

Let usstressthat the timesfor which (5.1, 3) havebeenverified arenot very long andthesere-
sultsdo not refutethe possibilityof a morecomplicatedbehaviorat largertimes.

Finally, CarlierandFrisch [1201 haveperformedan interestingcalculationfor hard squares
which displaysa similar t’ behavior.

ii) For hardspheres,the situationis lessfavorable(precisecalculationsareharder)but, never-
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theless,at not too high densities(v/v
0�~3), onecanseequite convincinglythe r3~behaviorfor

the velocityautocorrelationfunction, as illustratedin fig. 5.2.The line correspondsto hydrody-
namicaltheory,neglectinghoweverthe self-diffusivemotion of the taggedparticle.

Notice moreoverthatat higherdensities(2 ~ v/v0�~1.5), the p3/2 behavioris certainlynot yet
reachedfor the largesttime consideredby Alder andWainwright (t/Tr 30) becauseD(t) is still
negative,while theorypredictsit shouldbe asymptoticallypositive.

Similar, but lessprecise,dataexistfor theothertransportcoefficients.
Recently,very interestingresultsfor Lennard—Jonespotentialshavebeenobtainedby

LevesqueandAshurst [143] which indicatea behavioranalogousto that of hardspheresystems.
To endup this verybrief review on computerresults,let usstill mentionstudiesof the Lorentz

gas [121], which was unsuccessfulin detectingthe t
512 predictionfor thismodel andof Wood

andLado [122] on the wind tree model.
All theseresultsmight give the depressingview that mode—modecouplingeffectsplay only a

very minor role in the determinationof correlationfunctionsandtransportcoefficients.How-
ever,we shouldstressagainthat the calculationsreviewedhereonly discussedthe asymptotic
behaviorof thesecorrelationfunctions.A still unansweredquestionis whetheror not thesehydro-
dynamicaleffectsalsoplay a role in the intermediateregion(let ussayt ‘~‘ 3—10relaxationtimes);
in this case,of course,an asymptoticevaluationbasedon:

fk2 dk exp(—ak2t) 1/(at)312 (5.4)

would no morebe valid, becausethe wavenumberswhichwould contributeto theintegralwould
not be smallenough(seethe approximationleading to (3.87).).Yet, that “precursors”to the long
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time tails do existat suchintermediatetimesis stronglysuggestedby Alder et al. [123] in their
analysisof the hardspherefluid in 3d. Consideringagainthe velocity correlationfunction,we
seeclearly on fig. 5.3, wherethe deviations~ D~— D~from theEnskogresultD~arequite
importantat theseintermediatetimes: it is hardto understandhow sucheffects could be ac-
countedfor by purely “relaxation” processes,which shouldhavea muchsmaller life time.
Similar effectsexist for Lenard—Jonesfluids [124]. Althougha thoroughdiscussionof these
questionswould be out of place here,it is worthwhile to point out thatpartially successful
attemptsin this directionhavebeenmade[125—127]: it is our optimisticview that such“extra-
polations”of longtime tails effectsat intermediatetime will be animportantingredientof
future transporttheory.

Finally, let usmakethreemoreremarks:
i) little, if any, has been said here about quantum systems. However, there is little doubt that

similar effects exist for these systems. Indeed, for wave lengths much longer than the De Broglie
wave length there is little difference between a classical and a quantum system (except of course for
superfluids) and, precisely as the quantum equivalent of the non-analyticity of the virial expan-
sion for classical gases has been established [128, 129], there should be no basicdifficulty in
deriving the ~3~’2 behavior, as well as the related aspects. Moreover, let us repeat that in quantum
critical dynamics, mode—modecoupling has already been successfully applied;

ii) evenfor classicalsystems,we havelimited ourselveshereto fluids with no internaldegrees
of freedom.However,the sametypeof approachhasbeendevelopedfor internalrotationrelaxa-
tion [130, 134] ; alsoa seriesof specialmodelshavebeenanalyzed,like theLorentz gas[35], the
wind treemodel [135, 136],or magneticrelaxationin solids [137]. For lack of space,we shall
not discussthemhere;suffice it to saythat theyclearlyshowthataslow decayof the
Green—Kubointegrandsfor long timesseemsquite auniversalphenomenonalthoughthe (3~2

discussedhereis not generallyvalid, evenin 3d;
iii) it is oftensaidthat mode—modecoupling theoryis a non-lineartransporttheory.Though

this point is of a rathersemanticnature,let usstressthat sucha statementcertainlyneedssome
qualification.Indeed,whateverthe methodwe haveused,we haveonly consideredcorrelation
functionswhich aredefinedwithin the frameof linear responsetheoryandall deviationsof the
macroscopicquantitiesfrom their equilibriumvaluearesmall. Yet, it is true that in describing
the time evolutionof thesemacroscopicquantities,we haveusedformalisms(in particularthe
phenomenologicalandthe fluctuatinghydrodynamicalapproach)in which non-linearmicro-
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scopicfluctuationsappear.Yet, as shouldbeclearfrom all this work, the introductionof these
non-linearfluctuationssimply furnishesaconvenientway for describingthe microscopicdynamics
of the systemin an approximateway. If we werecleverenough,we could havecomputedthe
time dependentcorrelationfunctionsby solving theexactHamilton’sequation(which of course
alsoareenormouslynon linear!): yet nobodywould speakthenabouta non-lineartransport
theory.Moreover,we haveseenthat, in the kinetic approach,only linear operatorsappear,
althoughtheseagaininvolve — in someapproximation— productsof hydrodynamicalmodes.
Thusthis distinction betweenlinear andnon-lineareffectsis rathersuperficial;whatis really im-
portantis the final result and,fortunately,we haveseenthat all the existingmethods— whether
“linear” or “non-linear” — lead to equivalentresults.
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APPENDIX A

Derivationof eq. (2.81)

Acting with ~N on bothsidesof eq. (2.82), we get:

ia~FN~pN(t)= 1~NLNPN~pN(t)+ I~NLNU
1~N)~PN(t). (A.l)

Similarly,actingwith (1 —EN) on the sameequationleadsto:

ia~(1—EN)~~pN(t)= (1—PN)LN(l—PAT) ~p~(t) + (1—PN)LNPN6pN(t). (A.2)

Formally, the solutionof (A.2), consideringPN5pN(t) as given is:

(l—PN)ôpN(t) = exp[—i(l—PN)LNt](l—FN) ~PN(0)+~fexP[—1(l—PN)LN(t—t)]

x ( l—PN)LNPNöpN(/ )dt’ (A.3)

as canbe checkedby differentiation.
With thehelpof the initial condition(2.81),we have:

(l—PN)~pN(0) = 0. (A.4)

Inserting(A.3, 4) into (A. 1) andusingthe readily checkedproperty:

PNLNPN-O (A.5)

we arrive indeedat (2.86)with thehelpof (2.85).
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This five line derivationof a kinetic equationis of courseextremelyelegant.Yet, it hasob-
viously told usverylittle about the extremelycomplicateddynamicsof manyparticlesystems:
all the difficulties arestill presentin the formal expressionfor the kernelG0(p1 r) andthe real
job of the manybody physicistsstartswhenunravellingthe structureof this kernel,with any
methodhe is able to use, in particularperturbativemethods[49, 52, 54, 55]. Refusingtodo
this amountsto replacean unknownquantity,~(p~ t), by anotherunknownquantityG0(p,;r)
andthenthe kinetic equation(2.86) providesuswith little morethana definition of the kernel
G0(p,;T), as was stressedby Martin in a differentcontext [6]. Moreover, roughanduncontrolled
approximationon thiskernel or on the choiceof the projectoroften leadsto completely
erroneousresults(for an exampleof incorrect useof projectionoperatortechniques,see [138]).
Theseremarksareillustratedin Appendix B andC.

APPENDIX B

Formaldensityexpansionof thecollision operatorC0(p;z)

It is clearthat the definitions (2.87, 89) arevery formal andin order to extractanyinforma-
tion from them,oneneedssomekind of expansionmethodfor treatingthe manybody operator
exp{—i(l—PN)LNr}.

The moststraightforwardmethodis based,asusual,on the splitting of the HamiltonianHN
into two parts:

HN=I~J~+?~VN (B.l)

whereI1~describesthe kinetic partof the energy,while VN describesthe interactions:

VN ~ V(~rOb’ft (B.2)
a>b

Thislatterterm is weightedby a dimensionlessparameterA. Correspondingly

LN=L~+Xl5LN (B.3)

with:

a

= —i~va (B.4)
6LN = ~ (B.5)

a>b

av ia a\
~ (B.6)

arab \apa ap,,!

Inserting(B.3) into (2.87),we mayformally expandthe exponentialoperatorin powersof A
accordingto the well-known formula:
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AT

exp[—i(I—PN)LNT] = exp[—iL~r] + —-fdr’ exp[—iL (r—r’)](l—PN)~5LNexp[—iL~r]+ ... (B.7)

wherewe haveusedthe easilyestablishedproperty:

PNLQ = 0. (B.8)

We arrive thenat the expansion:

C
0(p1z)= ~ X”C0(p1z) (B.9)

if we alsoexpandthe equilibrium distribution peq in powersof A (it is easilycheckedthat thecon-
tributionsof order A°andA’ identically vanish).We maynow systematicallyanalyzethe (infinite)
series(B.9); diagramtechniquesproveveryuseful in this aim [49—51] . Although this procedure
hasbeensuccessfullyappliedevenin arbitrary densesystems,it is true that the expansion(B.9)
is not very convenientfor explicit calculationsin realisticsystems,becausethe interactionis
strongandthe simplestlimits (for examplethe Boltzmannlimit of thedilute gas)alreadyrequire
infinite partial resummations.This is avoidedby an alternativeprocedure,the so-calledbinary
collision expansion[139, 140].

We shallnot presentthis formalismin detail herebut thebasicidea is easyto graspby analogy
with quantumscatteringtheory [121]: it is well knownindeedthat while the potential
V(Ir~1I) furnishesa valid approximation(Born approximation)to the scatteringamplitudewhen
this potentialis weak,it hasto be replacedby theso-called matrix for strongpotentials:

-~911(z)= V~1+ V,1 911(z); (B.10)
H0 — z

this matrix is generallyfrequencydependent.Thecomparisonof (B. 1) and(B.3)thenimme-
diatelysuggeststhat the classicalcollision processbetweentwo particles(if) shouldbeadequately
describedby the so-calledbinary collision operatorT,1(z),solutionof an integralequation:

6L11 T~(z)= —~L,1— ~L~1L0 ~ ~1(z) (B.l 1)

= t~,(z) ~. (B.12)

The minussign in (B. 11) havebeenintroducedfor convenience;moreover,the definition (B.12)
makesthe Fouriertransformof t11(z)with respectto the coordinatesr, andr1 volume indepen-
dentin thelargevolume limit.

Althoughthe explicit calculationof t,1(z) for arbitrarypotential V( r,1 I) is an exceedinglydiffi-
cult problem,it posesno questionof principle(it is a two-bodyproblem);moreovert,, canbe
evaluatedsimply in the caseof hardsphereswhereit turnsout to be frequencyindependent(be-
causethe hardspherecollision is instantaneous);in this case,a representationof the Fourier
transformof t71 is given by eq. (3.70) in the text.
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We now haveto expressthe generalizedcollision operator(2.87,89) in termsof theset,~,in-
steadof the original~ Hereagainthe formal proofis rather tediousbut the final result is trans-
parent,especiallyfor hardspheres[1401. In agreementwith the naivepicturethathardsphere
dynamicscanbe describedas a successionof binary collisions onefinds:

Go(p5 r) = _limfdr1~~Tdp’~’[—TN6(t)+TNexp{—i[L~—(l—FN)(TN)] } [(1 —PN)TN] ] peq/,peq(p) (B. 13)

Exceptfor the first term,the right-handsideof eq. (B. 13) isobtainedfrom (2.87) by replacing
everywhere~LN -+ —TN:

TN=~J~T,,. (B.14)

The necessityfor this first termis easyto understand:indeed,a hardcoretwo-bodycollision
takesessentiallyno time andan instantaneouscontribution(cr ~(t)) is possible;on the contrary,
eq. (A.5) tells usthata soft forcecannotgiveriseto a collision processwith zeroduration.

By comparing(B. 13)and (B. 12) with (2.87), the attentivereaderwill howeverhavenoticed
an apparent“overcounting”in (B. 13): indeed,contributionsinvolving two (or more)successive

with the samepair (if) areallowedin (B.13) andsuchphysicalprocessesareby definition
alreadyaccountedfor by onesingleT,1 howeverthereis no contradictionbecausefor hard
spheres,onecanprove theproperty*:

TilL’ T~=0

which expressesthegeometricalfact that two successivecollisionsbetweenthe two sameisolated
particlesis impossible.

This property(B. 15), as well as thez-independenceof T,1, areparticular featuresof hard
spheressystemswhich makethemparticularlyconvenientto analyze.

With (B. 13), we arereadyto attackthe problemof theformal densityexpansionof the
generalizedcollision operator.The ideais verysimple: we first insert in (B.13) the analogof
(B. 13) for the exponentialfactor:

G0(p1r) = — limfd?1dp~~~_1[_TN,5(t)+TNexp(—iL~r)(l—PN)TN

— --f dr’ TNexp[—iL~(r—r’)](l_PN)TNexp[_iL~r’}(1_PN)TN+ ~ (B.16)

In principle,we shouldalsomakea clusterexpansionfor the equilibrium distribution;however,
to illustratethe procedure,it is sufficient to approximatep~by its perfectgaslimit; hencewe
shall takehere:

peq..i fl~eq(p) (B.17)

*We arealittle sketchyhere. Strictly speaking,one shoulddefine T,,by a limiting procedure which is not explicit in eq. (3.11) of

the text. As this point plays no important role here(seehowever (3.75) and the corresponding footnote), we refer the reader to
theliterature [1401 for a careful treatment.
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Inserting(B.14) into (B.l6), we get an infinite setof contributionswhich all involve particle 1
atleastonce(in the extremeleft TN, otherwisethe integralsoverpN_1 leadto zero),but also
“dummyparticles” (‘�‘ 1). In a terminvolving m dummyparticles.(j,, ‘~2

1m)’ we canchoose
thesein (N—l)(N—2) ... (N—rn—i) -~- Ntm ways;moreover,it is readilyverified that sucha term
is proportionalto cz’-m (becausethe probabilityof a collision between(m+ 1) particlesrandomly
distributedin the volume f2 is proportionalto ~—m): hence,we shall obtainall thecontributions
of orderntm by picking up in (B. 16) all the termsinvolving m dummyparticles.In order to do this
systematically,it is very convenientto usesomekind of diagramtechnique.For the simple
exampleswe want to treathere,it is howeverpossibleto work directly on theanalyticalformula
(B.l6).

To first order in n, we needoneandonly onedummyparticleandit is immediateto check
that the first term of (B.16) is of that type; moreover,eq. (B. 15) guaranteesthat no otherterm
of ordern mayappear.

Writing:

G
0(p,; r) = nG~

1)(p
1r) + n

2 ~~(p
1 r) ... (B.18)

we havethus:

n~1)(pi; r) = — l~fd,~dp~1[—TN
6(r)]i~2 ~eQ(p.)/~N

= lim ~fd3ri d3r
2 d

3p
2T12~(p2) 6(r) (B.l9)

andwith the help of (B.l2) and(3.70),we get readily:

nG’~(p1r) = nC(p,).5(r) (B.20)

whoseLaplacetransformis the frequencyindependentBoltzmann—Lorentzcollision operator
for hardspheres.

At thenextorder,weretain the terminvolving two dummy particles;the secondterm in (B.I6)
vanishesidentically in theapproximation(B. 17) as a consequenceof the definition (2.83) for ~N

andwe find the first contributionof ordern
2 in the third term of (B. 16); we have:

~2 G~,2kp,; r) = i lim -jj~ fd3ri d3r
2 d

3r
3 d

3p
2 d

3p
3

X {T~2exp[—iL~(r—r’)1 [(I —PN)Tl3exp[—iJSr’] (1—PN)(T13+ T23)

+(l—PN)T23exp[—lL~r’](l—PN)(Tl2+ T,3)J }~eq(p )~eq(p)~ ... (B.2l)

The dotsherecorrespondto the “higher order” termsin (B. 1 6) which involve similarly two
dummyparticles;thesetermsareof no importancefor theasymptotictimebehaviorconsidered
in this work.

The Laplacetransformof(B.2l) is the frequency-dependentChoh—Uhlenbeckcollision opei’a-
tor,n

2 (~2)(p,;z) discussedin the text; a tediouscalculationbasedon (B.l2) and(3.70)allows to
cast(B.2l) into a moreexplicit form; weshallnot write it herebut it canbe easilyobtainedas
the n2 termof the densityexpansionof (3.75) in the main text.
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We could similarly obtainthesuper-Choh—Uhlenbeckoperatorby collectingthe termsof

(B.16) involving threedummyparticles.

APPENDIX C

Structureof the collisionoperator

Schematically,we maysummarizeourdiscussionof AppendixB by sayingthatthe generalized
collision operatorcanbe expressedas a functionalof the binary collision operatortab andof the
free particleLiouville “streaming”operatorexp(—iL0r).

Fromthe definition (B.4), we can write this latteras:

N /

exp(—iL~r)= LI exp(~—rv0. —). (C.l)
a1 ar0

If we now introducetheFouriertransformof the free particle “propagator”exp(—rv0 . a/ar0):

G~0)(v0r)= ~fd3raexp(ik. ra)exp[_rva -~—_]exp(ik’.ra) = exp(—ik~var)
6~t;i, (C.2)

C
0(p,;z) appearsthusas a functional of tab andG°k(vO;r)*

C0(p,;z)= C0(p,;zI{t0,,}, {G~(va;r)}). (C.3)

Supposenowthat, for somereason— examplescanbe found in the text — low wavenumbers
k play an importantrole in the functionaldependenceof C0 on G~this meansthat we describe
the motion of the particlesin the fluid by free motion over largedistances—~ k’. Clearly, such a
descriptionmakesno physicalsensein a densefluid, andwe mayexpectall kind of difficulties
with suchan unrealistic(thoughformally exact!)formalism.What we shouldratherdo is to
describethe motion of eachparticlein termsof a “dressedpropagator”,which takesinto account
the presenceof all the particlesin the fluid.

The necessityfor sucha renormalizationappearsmathematicallyin the following way: the
FourierLaplacetransformof G°k(vO; t) which is:

G~(va;z) = k~~ (C.4)

is only very weaklydivergentatk = 0, z = 0; yet, it is easyto find a wholeclassof termswhich
divergearbitrarily stronglyat low k andz: theyareobtainedby considering,insteadof free
propagationof particle“a”, the contributionswhereparticle“a” collidesan arbitrarynumberof
timeswith otherfluid molecules.This situationis schematicallydepictedin fig. C. 1, wherefree
propagationis representedby a thin line andthe dotsrepresentcollisionswith the fluid mole-

*To simplify,we againneglecttheeffect of theequilibrium correlationsp~,which would leadto a further renormalizationof the

t11 this pointis of no muchconceptualimportancehere.
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+ —•-- +

Fig. C.1. Schematic representation of the propagator renormalization.

cules.As is familiar from field theory [142], we canhoweverput togetherall the contributions
depictedin the figure andobtainthe dressedpropagatorGk(va; t) representedby the thick line.
We have:

Gk(va; t) = —~---~dz exp(—izt)Xk(va;t) (C.5)

27rl

whereXk(va;z) is givenby:

Xk(va;z)= [k~va—z+iCk(pa;z)]~’. (C.6)

HereCk(pa; z) generalizesto nonvanishingk the collision operatorintroducedin section2. We
shallnot needits explicit definition here.

It is now possibleto write, in an unambiguousway, the collision operatorC0(p1z) as a func-

tional of thisrenormalizedpropagator*

~0(p1z) = C~o(pl;zI{t,J},{Gk(vO;r)}) (C.7)

(~ois of coursedifferent from ~ The only difficulty in dealingwith (C.7)— as it aI~sois for (C.3)—
is to havea proper.book keepingof the still infinite numberof termsappearingin C0hereagain,
diagrammatictechniquesarevery useful.

Themain merit of this new expansion(C.7) is that the strongdivergencesatk= 0 indicatedin
the first line of fig. C. 1 areno longerpresent.Indeed,the analysissketchedin section3 (seeeq.
(2.16)andfoll.) indicatesthat, at smallk, thedivergenceof (C.6) is at mostof orderk

2 (in 3d at
least)andthis is weakenoughto makeananalysisbasedon (C.7)meaningful.

Thisremarkis illustratedin the text for the specialcaseof thering collision operator.More-
over, it is veryeasyto seethat this ring operatoremergesas a renormalizedform of theChoh—
Uhlenbeckoperator.Indeed,using(C.l), (C.2) andsubstituting

G°k-’Gk (C.8)

transformstheChoh—Uhlenbeckoperator(B.2l) into the ring operator(3.15), providedwe use
the low densityapproximationCk(pO;z) nC(pa;z). The proofof this remarkis left to thereader.
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