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A general type of fluctuation-dissipation theorem is discussed to show
that the physical quantities such as complex susceptibility of magnetic
or electric polarization and complex conductivity for electric conduction
are rigorously expressed in terms of time-fluctuation of dynamical variables
associated with such irreversible processes. This is a generalization of
statistical mechanics which affords exact formulation as the basis of
calculation of such irreversible quantities from atomistic theory. The
general formalism of this statistical-mechanical theory is examined in
detail. The response, relaxation, and correlation functions are defined
in quantummechanical way and their relations are investigated. The
formalism is illustrated by simple examples of magnetic and conduction

problems.. Certain sum rules are discussed for these examples. Final-
ly it is pointed out that this theory may be looked as a generalization

of the Einstein relation.

§ 1. Introduction

The principal purpose of the present paper
is to develop a general scheme for the calcu-
lation- of kinetic coefficient, or admittance for
external forces such as electric or magnetic
susceptibility for alternating field, electric
conductivity, heat conductivity and so on.
The most common method traditionally emp-
loyed to calculate such non-equilibrium quan-
tities is to set up the so-called kinetic equa-
tion or transport equation for the molecular
distribution functions. This will be solved
for stationary or periodic conditions. It is
however to be remineded that the kinetic
equation is itself an approximation and can-
not be derived without a certain condition
which is rather strict and is not often satis-
fled.¥» For weakly interacting particles, it
may be justified if the nature of interaction
is appropriate. But certainly it is not always
true, and we may not be able even to write
down any equation of that sort.

On the other hand, the recent development
of the thermodynamic of irreversible proces-
ses? indicates the possibility of constructing
a general statistical-mechanical theory at
least for those irreversible processes which
are not far apart from thermal equilibrium.
In fact, there have been a number of at-
tempts in this direction®. A remarkable pro-

gress has been made by Kirkwood® who
showed that the friction constant, for instance,
of a Brownian particle is determined by the
correlation of forces acting on the particle.
This may be looked as a particular case of
the so-called dissipation-fluctuation theorem.
As was discussed from a general point of
view by Callen, Welton,” Takahasi® and
others, the general admittance for an external
disturbance is related to the expectation of
the square of Fourier component of certain
physical quantity which fluctuates in time in
thermal equilibrium. Thus it is shown that,
as far as linear responses are concerned, the
admittance is reduced to the calculation of
time-fluctuations in equilibrium.

This idea was used by the present author
as the basis of the theory of magnetic re-
sonance problem. In a previous paper” the
author developed a quantum-mechanical theory
of this and has shown a certain method of
practical application. A straightforward ap-
plication of this theory was made by Nakano®
for the conduction problem. He showed that
the simplest approximation of the fundamental
expression of conductivity gives the well-
known Griineisen's formula.

A generalized form of Nyquist’s theorem
can be easily derived by application of per-
turbation theory either classical or quantum-
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mechanical. The complete conductivity tensor
for a given frequency of applied .electric field
can be rigorously expressed in terms of
electric current components fluctuating spon-
taneously in equilibrium state®. We empha-
size here that this expression is quite rigorous
though admittedly somewhat abstract. It is
however of great value, because the tradi-
tional theory of conductivity has not been
aware of existence of such rigorous expres-
sion (although the Heisenberg-Kramers disper-
sion formula is an equivalent). The abstract
nature of the formula may be compared to
that of general theory of statistical mechanics.
The statistical mechanics can give a rigorous
expression for the equation of state in terms
of partition function, but its calculation is not
necessarily easy.

This theory of electric conduction has been
actively discussed in last two years in Japan
since the appearance of our paper on magnetic
resonance” and its application to conduction
problem by Nakano. Feynman also discussed
this when he visited Japan in the summer
of 1955. Also it has been discussed by Lax,
Luttinger, Kohn and possibly by some others
in the United States. Recently Mori®® has
published a paper on the same problem.

In the present paper, which will be the first
part of a series of papers devoted to the
development of statistical mechanics of ir-
reversible processes along this line and to its
applications, we shall examine in detail the
implications of this new method.

In §2, we shall treat the response of a
system to an external force by simple per-
turbation method. In order to make the idea
clearer we first discuss the classical case.
Quantum-mechanical formulation is quite in
parallel with this classical theory. However,
we notice a difficult problem of quantum-
mechanical observation which might disturb
the natural development of the motion. It
will be pointed out that the logical basis
of the whole theory is closely related to the
ergodic properties of the system and the
physical quantities we are concerned with.
This is discussed in § 3 in connection with the
definition of relaxation functions which des-
cribe the relaxation of the system after re-
moval of external disturbance.

In §4, the correlation functions are intro-
duced which describe the time correlation of
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two quantities. at different time points. The
relation between the correlation function and
the relaxation function is derived. This is
somewhat complicated in quantum-mechanical
case.

§ 5 is devoted to the application of general
argument to simple examples of magnetic and
conduction phenomena. This is mostly to
illustrate the general idea. The symmetry of
the relaxation and response functions is dis-
cussed in §6. The Onsager’s reciprocity is
seen most clearly by this formalism. The
complete form of fluctuation-dissipation theo-
rem will be given in § 7 taking the example
of conductivity tensor.

As an interesting application of the theory,
some general rules for the admittance is dis-
cussed in §8. The most general sum rule is
mentioned with regard to the symmetric part
of conductivity tensor. The integration of
this over the whole range of frequency must be
constaﬁt irrespective of the presence of inter-
actions or magnetic field and at any tempe-
rature. Another type of sum rule is derived
for the antisymmetric part of conductivity.
An interesting sum rule for the magnetic
problem is that the integrated absorption in-
tensity of circular wave by magnetic media
is directly related to the gyromagnetic ratio
of magnetic particles.

In §9, it will be pointed out that the theory
may be looked as a generalization of Einstein
relation which relates the mobility and the
diffusion constant. The general nature of
Einstein relation is thus most clearly revealed.

In the present paper we confined ourselves
to such type of external disturbance which
can be expressed definitely as an additional
term in the Hamiltonian of the system. Thus
the heat flow, or mass flow phenomena under
the gradient of temperature or chemical
potential is logically out of the frame of this
treatment. This problem has been treated
recently by Mori.l® We shall, however,
discuss this in a forthcoming paper from a
somewhat different point of view.

We also have applied the present theory to
the galvanomagnetic effect at high magnetic
field™. This is an example for which the
traditional transport equation has to be modi-
fied. Our theory will be reported in another
paper.
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§ 2. Response Function and Admittance of
an Isolated System

Let us consider an isolated system, the
Hamiltonian of which is denoted by &#°. The
dynamical motion of the system determined
by 57 is called the “natural motion” of the
system. We suppose that an external force
F(t) is applied to the system, the effect of
which is represented by the perturbation
energy,

' (H)=—AF (). 2.1
The motion of the system is perturbed by
this force, but the perturbation is small if
the force is weak. We confine ourselves to
weak perturbation and ask for the response
of the system in the linear approximation.
The response is observed through the change
4B (%) of a physical quantity B. The problem
is now to express 4B(#) in terms of the
natural motion of the system.

First, we shall treat this in classical
mechanics. We conceive a statistical ensem-
ble which is represented by a distribution
function f(p, @) in the phase space. The
" natural motion is described by the equation
of motion,
of _ of 057 Of 057\ _
ot == =(5q op ~op og )T

2.2)

where p and ¢ mean the set of the canonical
moments and coordinates and the bracket
means the Poisson bracket,

“, B)=2<6A 0B aA@L_a)

8g 0p  0p 0q
We assume that the distribution function is
given by f at £=—co, that is, at the infinite
past. It is assumed to be in equilibrium,
that is, (& f)=0. The perturbation (2.1) is
inserted adiabatically at £=—oco(F(—o0)=0).
The distribution function f’(¢#) obeys the
equation

af/(t) [& /7 (& 7 'y

Vop = I+, ).
Since we take the linear approximation, we
put

(2.3)

(2.4)

f@O=r+4f
and replace (2.4) by
O4f _(2p, 4f)—Faxa
at - ) - )\ ) f) . (2~5)

The solution is easily found to be
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Af<t>=—§‘

eiGC=EA, fYF () dt (2.6)
where the operator Z is defined by the opera-
tion®

iLg=(5F, 9) . 2.7
Therefore, the change 4B (¢) of a dynamical
quantity B is statistically given by

4B(t)= SAf(t) B, @ dr
=—Sdl‘gt_w{e‘i(“"ﬂ (A, f)} F)Bdt

:-Sdl"st (A, f)BU—)F)dt

2.8)

dl’ being the volume element of the phase
space. The last expression is obtained from
the second remembering that the transforma-
tion exp (ZLt) is the natural motion which
conserves the measure of the phase space and
that B (#) means the dynamical motion of the
phase function B (p, ¢) which follows the
equation

B(p, =B, ) .

This corresponds to the Heisenberg equation
of motion in quantum-mechanics. Eq. (2.8)
means that the response 4B(¢) is a super-
position of the effects of pulses F(¢')d?,
—oo<#<t. The response for an unit pulse
will be called the respomse function or the
after-effect function ¢as(t). From Eq. (2.8)
we find at once that it is given by

Guald)= —S arA, 1B (29

which describes the response 4B at the time
t after the pulse. The response 4B(¢), (2.8),
is written as

AB(t)zSt (2.10)

opai—tYF@) dt .

The above consideration applies even when
the initial distribution is very sharp, as far
the perturbation is weak enough. But our
aim is rather to apply this for a macroscopic
system, in which case the statistical average
itself acquires a realistic meaning. If A and
B are both macroscopic quantities, we may
think the ensemble average 4B(f) is what we
actually observe, because a macroscopic
system can be conceived to consist of smaller
systems so that observed value of 4B is a

- sum of a number of components and has only
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a very small relative fluctuation.

Let us now turn to quantum mechanics.
The distribution function in phase space is
now replaced by the density matrix p. The
initial ensemble which represents statistically
the initial state of the system is specified by
the density matrix p satisfying [, 0]=0,
whereas the motion of the ensemble under
the perturbation (2.1) is represented by o’ (%),
which obeys the equation,

4y =1z rse 0, 00 e
With the initial condition
o (—e)=p,
we expand p’(¢) as
o' )=p+4o(@) .

The same procedure as we used for (2.5) leads
us at once to

Ag(t)=—%hgi exp (—ilt—1) 7 WA, o]

xexp (((t—t) Z[h) F(t)dt'. (2.12)

Incidentally, we note that it is sometimes
very convenient to introduce the operator a*
operating on another operator b by following
definition, i.e.,

a*b=[a, b], (2.13)
for which one find the rule,
e b=e"be . (2.14)

With this notation, Eq. (2.11) and (2.12) can
be written as

b’(t>=%2(%x+%’(t>x>o’<t>

3

(2.15)

Ap(t)=—%;lgc

exp (—it—1) S8 *h) %

x[A, p] F(¢')dt (2.16)
This will make clear the similarity of Eqgs.
(2.6) and (2.12).
The response 4B(#) of the quantity B is
statistically

AB(#)=Tr 4o()B

I

H.Z;l% Tr g” exp (—it—) 5P Ih)
x[A, plexp ((t—¢)ZF [h) BF (') dt’
=-—$Trst (A, o] B—t) F(t) dt

(2.17)
where B(?) is the Heisenberg representation
of B following the equation
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Bo= . [BO, &|, BO=B. (19

Eq. (2.17) corresponds to Eq. (2.8)
The response function or the after-effect
function is now

brald)=— }h Tr[A, o] B®) 2.19)

corresponding to Eq. (2.9). We naturally
have Eq. (2.10) for (2.17) with the use of
response function (2.19). If the force is
periodic, i.e.,
F (t)=F,cos ot,

the response 4B (#) will be conveniently writ-
ten as

4B (#)=Re xpa(w) Fei“? (2.20)

with the complex admittance xz4(®), for which
we have from Eq. (2.10)

xpa(®)= Sm dpa(t) eivt dt | (2.21)

or more exactly
ABA ((0)=limgm bpa(d) em1or=2 dt .
>0+ Jo

We summarize the above by the theorem:

Theorem 1. The linear response of a phy-
sical quantity B to an external force F(t) is
represented by Eq. (2.10) as the superposi-
tion of after-effects. The after-effect function
or the response function is given by

¢B.4(i)=SdI"( f,A)YB@) (classical) (2.22a)

=z'—1h Trlo, A]B(#) (quantal). (2.22b)
The admittance ypa(®w) 2s given by

xBA<a>)=1imS°° g~ iwt=et dtSdI‘( f, A)B(@)

-0+ Jo

(classical) (2.23a)
=1img°°e—w et gt L Tr[p, A|BW).

e-0+ )0 ih
(quantal) (2.23b)

Egs. (2.22) may be written as
¢BA(t)=S dr'f(A, Blt) (classical) (2.24a)

=%% Trp[A, B®)] (quantal) (2.24b)

which are sometimes more convenient. One
must however be careful about the boundary
conditions of - f or p, which may, however,
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be replaced by a suitable potential under
certain circumstances.

As we mentioned before, there is no dif-
ficulty in classical cases. to. interprete the
response thus obtained as the average which
approximates closely the .actual observation
for large systems. In quantum-mechanical
cases, however, we must note that there ex-
ists a certain difficulty. 4B as given by Eq.
(2.17) is the quantum-mechanicall expectation
of the first order change of B at the time Z.
This means that we prepare at f=-—oo an
ensemble of systems which corresponds to
the statistical operator p. At a certain time
¢, we pick up a number of systems and ob-
serve B. The average of the observed values
will be 4B(). We shall not follow these
systems after this observation. At a later
time point #, we choose different systems
which have not been observed before. This
is the way to follow' the time change 4B(?)
to avoid the quantum-mechanical disturbance
of observation process.

For the most of practical applications, we
are rather interested in a continuous obser-
vation of a particular system, which" is
however macroscopic. The use of ensemble
average for the actual observation will be
justified by the same argument we made
for the classical case. But the quantum-
mechanical disturbance of observation is ano-
ther thing. We may, however, expect: for
most of macroscopic quantities which we ob-
serve this disturbance can be neglected. This
is a condition for macroscopic observations.
Unfortunately, exact conditions for the ex-
istence of such quantities are not known.

Thus we shall rather introduce without
proof the assumption that the identification
of the statistically calculated 4B(#) with the
actully observed time variation is legitimate
at least for those macroscopic quantities we

ro=resr [0

-0 —oo

Ryogo KUBO.
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shall be concerned with. We should however
make reservation  that this assumption may
not be necessary for the identification of the
admittance - calculated by Eq. (2.23b) with
what will be actually observed, because the
observation of .admittance, for’ example, the
refractivity and absorptioninioptical problems,
is not the observation of ' the response func-
tion-itself. As a matter of fact, Eq. (2.23Db)
is equivalent to the well known dispérsion
formula of Heisenberg and Kramers'® plus
the ‘absorption calculated by time-dependent
perturbation method.” The dispersion formula
represents the oscillation of expectation value
of dipole moments if the formula is applied
to optical problems. This is . not - directly
observed. We observe the refraction by
measuring the number of photons passed
through the material. The logical relation
between this and that is not clear enough,
but the most common apologize is the use of
correspondence principle. Any further analysis
of this delicate problem .is not our main
purpose in this paper so we shall leave it for
a future occasion.

Before concluding this section, we remark
that the method employed here is also ap-
plicable to higher approximations than the
linear. For this purpose we note Eq. (2.5)
can be used for successive approximation,
namely

O4S (58, 4ef)~F XA, £,

- (2.25)

where 4rf means the k-th term of the ex-

pansion

FO=F+dif +a&f +----. (2.26)

The solution of Eq. (2.25) has the same from

as Eq. (2.6), f being replaced by dx-.f &).

Therefore we obtain the complete solution of
Eq. (2.4) as

(A, eiL(tl"‘t2) (A, ~-~eiL(fk—l—,k)(A, )- )

XF(t)) F (t,)- - - F(tx) dby - - - dit

1 k-

i

=r+E-r S:S

—c0

where A () is defined by
A(t)y=A(b, 1)

. eiLt(A“]), (Alty), (A, f)...)F(zl)‘..F(tk)dtl...dtk.

(2.27)

1)1,=o=:¢’ y Qi=0—1¢ .
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The same expression is obtained for quantum-mechanical case, namely

o k¢l plr-1
"/@:"“LE(_Z}%M S S exp (—it G372 * [h) At)* A(tn)* -+ - A(te)* pF(t1)- - - F(tx) dty- - - di

—c0 ) =00 ) =0

(2.28)

where the cross means the commutator operation with the operation on its right hand side

(see Egs. (2.13) and (2.14)).

These solutions allow us to write down the expression of re-

sponses in higher approximation. For instance, the second order change of B at the time

¢ can be written as

AgB(i)=<*;h*>2TrY S [AGG—£)A, ol] Blti—t)FU)F(t)dbdt,

—oc0 ) —o0

(2.29)

The corresponding classical formula is similar so that it is omitted here.

§3. Relaxation Function and Other Useful
Formulae for Canonical Ensemble

In the following we consider quantum-
mechanical problems, because the classical
limit is easily obtained from quantum-
mechanical formulae by replacing [ , 1/#% by
Poission bracket or by making #—0.

First let us observe the behavior of the
response function ¢ns(Z) in the limit Z-—oo.
It may -approach to a limiting value or may

not approach to any definite value. If it
does, we must have
lim ¢pa(f)=0 (if the limit exists). (3.1
t—>o0
This is evident from Abel’s theorem
lim ¢ sa()=lim er b e di (3.2)
t— £->0+ 0

which holds if the left hand side exists. The
right hand side is zero unless ¢z4(Z) has a
finite Fourier-amplitude at zero frequency. If
¢54(¢) has finite Fourier components for a set
of discrete frequencies, ¢z4(¢) will oscillate
indefinitely and does not have any limit. But,
for calculation of admittance we have the
convergence factor e~® so that we may even
in this case regard the relation (3.1) to hold.
If ¢z4(¢) is expressed by a Fourier integral
with continuous Fourier spectrum, Eq. (3.1)
is generally true. This corresponds to actual
cases of large systems, because the com-
plicated interaction within the system is
always enough to split the energy levels into
a structure so fine that the observation can
not discriminate. The error in the observa-
tion of frequency certainly introduces an
average which allows us to replace the
originally discrete Fourier spectrum by con-
tinuous spectrum. Classically this corresponds

to ellimination of long Poincaré cycles.

If the perturbation is applied continuously
from f=—o0 up-to =0 and is cut off at
#=0, then the response 4B will relax following
the formula

AB(t)=SO $palt—t)dtF
=FS:°¢BA(t’)dzf', £>0. (33
Therefore, the function
Baa®) =E133§S:°¢M<t’) evar (34

describes the relaxation of 4B after removal
of the outer disturbance. This will be called
the relaxation function.

Here, for later reference we note the theo-
rem:

Theorem 2. The admittance Xpi(®) can be
calculated by the following formulae;

ABA (Ct)):lll’IlS°° (]SBA(t) eo-twt-gt Jf
-0+ Jo

—lim
e>0+2W +6

- a)BA(O)—z'wr Opa(t) et dt |
0

{ibBA )+ S:¢B_4(t) e—iwt—“dz‘}

3.5

These transformations are rather evident.

The expression of ¢z4(2) has already been
given by Eq. (2.22). We note here that other
functions qZSBA(t) and @p4(¢) have convenient
transform if the statistical ensemble is as-
sumed to be canonical. For this purpose,
we observe the identity

[A, exp(—BS2)]
zexp(—ﬁa‘V/)Sﬁ exp AP S7, Al
Xexp (—A#) dA
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=P exp <—B%>S'gexp 57 A
0
xexp (—A57) dA
= feXP (—ﬁ%ﬂ)SBA(—zm) di (3.6)
0
or

o6, A]=z’hrp,aA(— ih2) di 3.7

which is easily seen by writing the expression
in matrix form in the representation dia-
gonalizing &7°.

Let us now assume that the system we
observe is statistically represented by the
canonical density matrix,

p=exp (—p(F =¥)), B=VkT,
exp (—pB¥)= Trexp (—BS~) .
By Eq. (2.22b) we have

$uald) =71h Tr[p, A1B(®)

(3.8)

- SB Tr pA(—ih)B(E) 2
0

B .
- —S Tr pA(—it)B@) di (3.9)
0
and also

Gra)= Z.lh—Tr[p, A1B®)

=L Trola, Bol= 1 Trol4, By
ih h

~ SBTr pA(—ihd) B() dA (3.10)
0

One may use any of these expressions
depending on the nature of the quantities
A and B. This will be illustrated later by
examples.

With the aid of Eq. (3.9), the relaxation
is transformed into

Opit)= %S‘: Tr o[BW), Al dt 3.11a)

B
=S Tr pA(—2h2) B{t)dA—BTrpAB°
0
(3.11b)
where A° and B° are the diagonal parts of A
B with respect to &#°. The second term on
the right hand side of Eq. (3.11) is the limit
B
limg Tr pA(—ih2) BX) di

t—>oc0 | 0

7 B
- lim%‘—srdts Tr pA(—h2) B(D) dA
0 0

t—oo

=B Tr pA°B (3.12)
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because this limit process selects the zero-
frequency component of B(#). The limit of
the first expression, if it exists, must be equal
to the last.

We may also define the function

wemu):r Tr pA(—ihd)B—B®)  (3.13)

which we shall call the excitation function for
convenience, because this describes the in-
crease of 4B(#) when a constant force is
applied from #=0. Thus

ym O°pi()=034,(0) . (3.14)

In particular, for #=0, we have from Eq.
(3.11) and ‘Eq. (3.5)
784(0)=054(0)=0°p (o)

B
:S Tr pA(—ih2) Bdi—B Tr p AVB
0

= SBTr o(A(—ih2)— A B—BYdA
’ (3.15)

where %54 (0) is the static admittance.
Eq. (3.15) is a little embarrassing, since the
isothermal admittance, X547, is

xBAT:SBTr o(A(—ihd)—ANB—B)di (3.16)
0

where A and B and the equilibrium expecta-
tions of A and B in thermal equilibrium with
F=0.

Eq. (3.16) is obtained by using the expansion

exp{—p(S# —FA)
=exp(— RS ){1+ V A(—ih2)di F+0(F?)}
+0

for the expression

4B
_Trexp{—B(SF —FA}B_Trexp(—BI)B
Trexp{—B(F —FA)} Trexp(—B#)"
2p4T is defined by
Ap4T=A4BJF .
Expressions (3.15) and (3.16) are different
unless

Tr pA°B'= A B=Tr pA-Tr pB .

(3.17)

This will not however hold without certain
restrictions imposed on A and B. In fact,
x84 (0) as given by Eq. (3.15) is the static
admittance of an isolated system on which
the force F' is inserted adiabatically. On the
other hand yxs47, Eq. (3.16), is isothermal,
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that gives the response when the system is
in thermal contact with the heat reservoir.
Thus they need not be equal.

But, there are situations in which the dif-
ference is quite negligible. For instance,
suppose a magnetic system is magnetized by
external field. If the magnetic energy is only
a very small fraction of the total energy, the
magnetization process treated by Eq. (3.15)
is practically isothermal. This means that,
if the heat capacities associated with A and
B are only a small fraction of total heat
capacity, the equality (3.17) must be practical-
ly satisfied.

It is noted here that this is concerned with
the ergodic property of the system. Khin-
chin'® has shown that the ergodicity for a
quantity A, namely

(A>=lim -

t—oo

S A dt (3.18)
must hold if the autocorrelation of A satisfies
the relation

}im CAA@)) = (A, (3.19)

Here ( A) means the phase average of a
phase function A (P, q) over a microcanonical
ensemble. The ergodicity of A, (3.18), means
that the time average of A starting from
any point P on the ergodic surface approaches
to { A) independent of the initial point P.
This will hold on the assumption of (3.19)
for almost all of P except a set of measure
zero. This Khintchin’s theorem can be re-
versed. It can be proved that the correlation
function ( A(0)A(¥)) satisfies Eq. (3.19) if
(3.18) holds uniformly.
In classical limit, (3.11b) in replaced by

D54)=B{(A0)B@))—CA°B%}, (3.20)
where { > means the phase average, and
A% means the invariant part of A(p:,, g;) with

respect to the natural motion. Eq. (3.16)
becomes classically
184" =BLA—CAINB—<B))) . (3.21)

In general we must expect
054(0)=054*(0)=x54(0)
=p{(A—ANB—B")>x25.".  (3.22)
The left hand side is the static admittance for
an isolated system. This means that

lim CAO)B@) =< {AXB) (3.23)

and hence that the ergodicity (3.18) does not
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hold. This is quite true as one would easily
understand by the example of magnetization
process of an ideal magnetic system. The
isothermal and adiabatic susceptibilities are
different, the later being zero.

However, our aim is to apply the whole
theory to realistic systems which contain
various interactions. As we have mentioned
before, we should expect that

x84 (0) = (3.24)

will hold if the total system is large enough
compared to the degrees of freedom associat-
ed with the observed quantities A and B.

For a very large system, the canonical
distribution is almost equivalent to a micro-
canonical distribution, the relative fluctuation
being very small. The ensemble average in
Egs. (3.20), etc., can be regarded as that over
an ergodic surface. Therefore, Eq. (3.24)
must hold if the quantities A, B, and A(0)B®)
are ergodic, namely

XBAT

(Ay=lim L. SA(t) dt
(By= hm SB(t) dr

CAQ) Bt)> = hm—S CAWYBE 8 dt
(3.25)
Here the right hand sides of the equations are
primarily determined by the location of the
initial point of time average, but they do not
depend on that. That is ‘the assertion of
ergodicity.
If the requirement of ergodicity, (3.25), is
fulfilied, we shall have

lim CA0) B@)>

=lim lim —

e )

1 , ’ ’
~lim ﬁ/g S CAW) B +1)y dt'dt

=(AXB))=(AXB).
Thus Eq. (3.22) holds.

The above arguments apply to quantum-
mechanical cases with small modifications

B
that the function |\ <{A(—#%2) B(¥)) dA enters

0
in place of the correlation function.
Let us consider a magnetic system for
illustration. The system, M, of the magnetic
units are embedded in another large system,

- S CA@VBE +0))

(3.26)
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R, with a certain interaction between M and
R. The total system S we consider is M+R.
If the heat capacity of R is large compared
with M, R is a sort of heat bath for M. If
we treat only M, assuming a canonical dis-
tribution and ignore the interaction between
M and R, the relaxation function calculated
by (3.11) describes only the internal process
inside the subsystem M. The magnetic sus-
ceptibility, for instance, obtained from this,
is adiabatic. For this canonical distribution,
the ergodicity such as (3.25) will not hold.

If we consider the interaction and suppose,
for instance, that it induces a Markoffian
process for the transition of M among its
various states, the ergodicity (3.25) will be-
come true; the Markoffian assumption makes
it easy to treat the relaxation process. The
Markoffian assumption may be adequate if
the interaction is weak and satisfies certain
conditions which may be required. If such
conditions are not satisfied, we are forced to
deal directly with the combined system M+ R.
The relaxation function. or the response
function has to be treated with the complete
Hamiltonian for M-+R. In this case, the
ergodicity (3.25) may be approximately true
if the subsystem M is small compared to R.
A rigorous formulation of mathematical proof
of this is not easy, so that we merely anti-
cipate this.

§ 4. Correlation Functions

We have seen in the previous section that
the relations function @z (2) in classical case
for canonical ensemble is essentially the cor-
relation function of A and B; namely

Op4()=B{A0)B(#)>— B{A'B®) (classical)
4.1
where the bracket means the phase average
over the canonical distribution. Or, the ex-
citation function is

D540 (t)=BLA0)B—B@))) . (4.2)

Other functions, for example, the response
functions, are also proportional to certain cor-
relation functions; e.g.

bz4(t)=—BLAOB®@) . (4.3)

These are also valid for the microcanonical
ensemble provided that the system in ques-
tion is large.

Now the question arises how the correlation

Ryogo KUBO
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functions are defined in quantum-mechanics.
We may define this by

Vo (t)=Tr p{A0)B(#)}=Tr o{A(t1) Bt +2)}
(4.4)
where p is the equilibrium density matrix,
either canonical or microcanonical. The
bracket means the symmetrized product,

{AB}=—;—(AB+BA) .

We may call this the time correlation of B
and A at the time interval £, although it is
not the correlation of two sets of actually
observed values of B and A at different time
points. The disturbance due to the observa-
tion is not taken into account. If the nature
of the system and of A and B is such that
this disturbance is not serious, which will be
true for macrosopic systems and macroscopic
observations, the function (4.4) describes the
actual correlation. Since p is equilibrium
density matrix, the time variation of A and
B makes a stochastic time series which is
stationary in time. For the sake of brevity,
we rewrite the relaxation function as

Dps(t)= SfTr p(A(—ih2)— A% B—B) di

(4.5)
and in the following we shall deal with quan-
tities A and B which satisfy the condition

Tr pA=Tr pB=0, (4.6)
which is achieved merely by substracting the
invariant part from each of the quantities.

We can show easily that the relaxation
function and the correlation function are

“mutually connected by the following theorem:

Theorem 3. ZLet the Fourier transforms of
@BA(t) and ?FBA(t) be

| fBA<w>=»21—”S°°

Os.(t) et dt

Vpat)ewr dt, (4.7)

gpa(w)= 717; Sw

then we have

gp4(0)=Eg(0)f4w) 4.8)
where Eg(w) is the average energy of the

oscillator with the frequency o at temperature
T=1/kB,

Ba(@)=" coth P

Eq. (4.8) is equivalent to

(4.9)
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Oy (zf)=Sm T(E—)Tss () dt’ (4.10)
where I' (¢) is defined
1> et 2 -
I'H=-—- IR —__c A
® o S—«» Eoo) do - log cotthh 7,
“.11)
or to
WBA@):Eﬁ(_,d—-.) Osad). (4.12)
idt

The easiest way of the proof is to write
first the functions @z4(¢) and ¥z4(¢) as double
series over the quantum states of & and
rearrange the double sum. An alternative
method is to assume a function-theoretical
conditions, i.e.,

lim Tr pAB(#)=0, (4.13)
Ret—ctoo
and that Tr pAB(¢) is analytic in the domain
0<Imt<LpAr.

The condition (4.13) is fulfilled if one extends
the meaning of the limit process as was dis-
cussed in § 2 and §3. The second condition
is equivalent to the existence Tr pAB and
Tr oBA.

Now Eq. (4.8) is derived as follows.
definition we can write

fra(®)
o (B

=21—g g Tr p AB(t+ i) exp(—iwt)dAd!
—w J0

By

o (B
;~S S Tr pAB(t+ih2)
—J0
x exp { —io(t+ihA)— AMiw} didt

:—1-85 d2 exp(— o)
2r),
oo +ihA
X S Tr 0AB(f) exp (—iwt) dt .
— oo+

Thus interchanging the order of integration
and shifting the path of integration, we obtain
by the above-mentioned assumptions

foa (w):LT_@% —Bho)

xélr Tr pAB(t) exp (iwt) dt . (4.14)
T)-co
Similarly we can show that

S” Tr pAB(f)e-i* d

oo

=exp (Bhw)g Tr pB(t) A exp {—iwt) dt

(4.15)
by shifting the integration path to —z#f—oo
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to —##fB+oo. In the above transformations,
we took p as canonical given by Eq. (3.8).
Egs. (4.15) gives

“ —{ot —_ 2
S—MTI' pAB(t)e dt—imhz))gBA(w) s
so that Eq. (4.14) leads Eq. (4.8).

Eq. (4.10) is easily obtained from (4.8). The
kernel I'(¢), (4.11) is calculated using the
partial fraction expansion of tanhz/z. We
note further that it has the property

lim I'(®)=Ro(2), (4.16)
#—-0

which in naturally to be expected.

§ 5. Simple Examples

It will be adequate to insert here simple
examples to illustrate the general idea deve-
loped in the previous sections. The author
has applied this in a previous paper™ to the
problem of magnetic resonance absorption.
An uniform magnetic field H(Z) is applied to
a magnetic system, the total magnetic moment
of which is denoted by M. The perturbation
energy due to H(?) is now

' ()=—MH() . (5.1)
The natural motion of the magnetic moment
in the absence of the external field is repre-
sented by M(#). Then, the response function
éuy(t) for the magnetization in ap-direction
when the external field H(#) lies in y-direc-
tion, is by Eq. (2.22).

b= ([Mu@), M1

- r< M(—ih DM@ >d2,  (5.2)
0

and the relaxation function is, by Eq. (3.11),
0= (=i D)D) M (O-10) ) 2

(5.3)
where M,° and M,.° mean the diagonal parts
of M, and M, with respect to the unperturb-
ed Hamiltonian &~.

If we consider a system with unit volume,
the admittance becomes the magnetic sus-
ceptibility. Thus the complex magnetic
susceptibility tensor can be expressed either
by ¢uy(t) or @uy(f). The convenient expres-
sion is, by Eq. (3.5)

L) = @,,.«,(O)—z'a)g: D) e dt . (5.4)

The static susceptibility is, in particular,
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T <0>=SB<<MV<—W>—M»°> (M, — M, di
0

(5.5)
which is the susceptibility for the isolated
system and is not necessarily equal to the
isothermal susceptibility,

T = S: (M~ ih )My dd— BV M.

. (5.6)
In the expression for yxu..(0), the diagonal parts
of M, and M, are substracted. This cor-
responds to the fact the magnetization in an
isolated system proceeds adiabatically, the
occupation probabilities of the levels remain-
ing unchanged. On the other hand they are
changed in isothermal process for xw”. The
difference becomes smaller if the environment
is taken into account in greater extent.

In the classical limit, Eq. (5.5) becomes

=1
2 (0)= kT

while Eq. (5.6) becomes

1
27 < (My— (M) Mu—{ M) > . (5.8)

(M, — M) (Mu— M) ®.7)

T_
Anwy™ =

The last expression is first noticed by Kirk-
wood'® for the classical theory of dielectric
polarization. Eq. (5.7) is its extension to ad-
iabatic susceptibility, and Eq. (5.4) to general
complex susceptibility for non-equilibrium
states. It is evident that the similar formulae
are obtained for dielectric polarizations.

As a second example we shall consider the
electric conductivity. For an -electric E(f),
the perturbation energy is

()= ——zz e E(f) 5.7

where ¢; is the charge of the z-th particle in
the system and r; its position vector. The
response of current in a-direction when a
pulse of electric field is applied in y-direction
at £=0 is, by Eq. (2.22) or Eq. (3.9)

b= T [0, 2 eron] 5 es )

=Sf<]u (—ii) Ju() > d2 (5.10)

where
Ju =3 € &
is the total current in the system.
If we take the volume of the system as
unity, the conductivity tensor ouy (@) for
periodic field is given by

KUBO (Vol. 12,

ouw)= Sw e~it di SB AA{ J(—ihA) Ju(t) > .
(5.11)

This is an exact expression for the con-
ductivity. In particular, for the static con-
ductivity we have

w8
a,w=g S AT (=i Ju®)y . (5.12)
0 Jo
This may be expressed in another form,

‘ﬁw=1im‘i {¢w<0>+r Gur (1) €5 dt} (5.13)
§~>0+ 0

where

Bus)=— Zlh Tr ol Ju8] . (5.14)

The above expressions of conductivity tensor
are, as a matter of fact, what one would
obtain by simple application of dispersion
formula of Heisenberg and Kramers. But
they are more convenient and much clearer
for physical interpretation. Nakano® has
shown that the Griineisen formula is obtained
from (5.11) as the first approximation. We
emphasize again that the formulae given in
the above are exact although they are ad-
mittedly rather abstract and have to be ap-
proximated in some way to deduce useful
answers for assumed physical models. We
can show that the usual method of employing
Boltzmann-Bloch type transport equations
makes a certain approximation to calculate
these exact expressions. But the transport
equation can not always be justified since the
Markoffian assumption involved is only valid
under rather strict conditions for the scattering
processes.” The exact theory will certainly
give a starting point of actual calculations
when the traditional methods are not justified.
A good example of this is provided by the
problem of electronic conduction in strong
magnetic field.?> This will be treated in a
forthcoming paper.

§ 6. Symmetry Relations

We note here some symmetry properties of
the response and relaxation functions and those
of the admittance. Let us consider for con-
venience the relaxtion function defined by Eq.
(3.11), for which we have the theorem:

Theorem 4. The relaxation function Ozi(t)
has the following properties;

1) @s.t) is real (6.1)
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2) Ops(—)=0.5(2) (6.2)

3) reciprocity law : if a static magnetic
field H is present, the reversal of the
divection of H results in

Ops(t, H)=E4E50p4(—t, —H)
=E483045(¢, —H) 6.3)

where 84 or & is +1 or —1 according to the
quantity A or B is even or odd with respect
to the reversal of time.

The proof is simple. The complex con-
jugate of @z4(?) is calculated as follows.

Toad)= SB Tr oB(2) A@h2)dA
- SB Tr pB(t—ihd) Ad2
=Sﬁ Tr pB(t—il(8—2)) A 2

:gﬁ Tr pAB(t+ihd)dA=Dua(l) .
0

The transformation from the second to the
third line is simply the change of integration
variable from 4 to f—A4.

Similarly, we may proceed as

B
D4 (—t>:g Tr pAB(—t-+ihi)dA
0
B
=S Tr pA(t—shA)Bdi
0

=SB Tr pBA(+ih) dA=0s42) .
0

Eq. (6.3) follows from the fact that the
simultaneous reversal of ¢ and H changes the
g-representation of the Hamiltonian and the
wave function to their complex conjugates.
A corollary of the theorem is the symmetry
of other functions such as ¢z (t)=—05B_4 @.
This is clear and so is omitted here.

The second corollary is the symmetry of
admittance. We write down here the sym-
metry of the quantity defined by

opa(w)= S” Dpy () et dt (6.4)
0
for which we have
Re 054 (LU) =Re 0‘3_4(-—0)) , (6.5)
Im ops(0)=—Imops(—w),  (6.6)
opa(w, —H)=C.,Ep048(w, H) . 6.7)

Eq. (6.7) is the well-known Onsager’s rela-
tion.'» The derivation here made is very
simple.
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As examples, we note the symmetry of
magnetic susceptibility tensor and that of the
conductivity tensor. The susceptibility tensor
has the symmetry

Re wa(a), H): Re Xlﬁl(“w, H)

= Re Xw(wy _H) ’
Im yuy(w, H)=—Im yu(—o, H)
=Imyyu(w, —H) . (6.3)

For the conductivity tensor we have the same
relations

Re ou(w, H)=Re ou(—ow, H)

= Re dv#(w’ _H) )
Im suw, H)=—1Im ou(—o, H)
=Imoyu(w, —H) . (6.9)

Thus, for the change o to —w, the real part
is even while the imaginary part is odd.
For the reversal of H, the symmetric part is
even and the antisymmetric part is odd.

§7.

We have shown in §4 that the response and
relaxation functions can be expressed by cor-
relation functions. Thus the admittance can
also be expressed in terms of correlation
functions. This is rather trivial for classical
cases, but in quantum mechanics it becomes
rather complicated. The relation between
the admittance and the Fourier components
correlation functions is usually called the
fluctuation-dissipation theorem. Thus our
aim here is to give this theorem in its com-
plete form.

We treat as a typical example the case of
electric conduction. Let us rewrite Eq. (5.11)
in terms of the Fourier component of re-
sponse function ¢uy(£), i.e.,

Flw)= S“’

Fluctuation-Dissipation Theorems

duy(E) et dt . (7.1)

Eq. (5.11) is transformed as
mw(w):g b (1) 10" dlt
0
— Sw dtSw dow’ f;w(w/) e’im’t—iwt
Q0 -0

A7 v(w ’
~rfut)+i|” L aw a2
Thus we obtain at once

Re %, ()= 7./ (0)= | {fw) + fon <w>}
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Im 6%() = —gfanxa»)z%{fw (@)— fou <w>}

(7.3)
Im asw(w)_—_r "f‘s“)'(ﬂda)’
e W —W®

where the superscript s or ¢ means the sym-

metric or the anti-symmetric part of the
tensor. By the theorem 4 one has the sym-
metry

Fuv (©) = fou (@), (7.5)

which shows fSuy(w) is real while f%,(0) is
purely imaginary. Egs. (7.3) and (7.4) give the
well-known Kramers-Kronig relation. Note
that it holds for each of the symmetric and
antisymmetric parts separately.

Now let us introduce the correlation func-
tion of current components,

Ty (O=Tr o{ j» (0) ju (D}, (7.6)

which describes the correlation of spontaneous
current fluctuating in equilibrium. We can
show the following theorem:

Theorem 5. The conductivity tensor ou.(w)
s connected with correlation function of cur-
rent components, (7.6), by the following re-
lations :

Eg(w) Re 6uy(0) =795 (0)
= Sm @) coswtdt (7.72)
0

Ep(») Im a%(w){—.g%(a})
- —rww(z) sin wtdt (7.7b)
0

W (£)= 72T S“Eﬁ(w) Re 6% (@) cos ot do
0
(7.8a)
W, (B)= — i S‘"EB(U)) Tm 6%u(e) sin ot do |
0

(7.8b)
and

1 gsl.n/(a)/) ,
$ = - —_—
Im o w(w) S- EB( ,) 5 dow

- —25” '@ coswrdfr Vs, (&) sin ot dt
0 T

—zr () sin a)‘L'd‘L‘STTsM (&) cos wtdt
0 0
(7.9a)

Ryogo KuBo
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R 1= 1 @@ ,
e o‘“pm(ﬂ))-— —;S Wgw_””@_w)dm

=2$m I'(z)cos wrdr SNW“W (¢) cos wt dt

0

—zg” I(r)sin wrde

ST W, (1) sin ot dt
0 0

(7.9b)
Vs, (£) = ig: Im 6 (@) Re A(0, £) do

(7.10a)
va,(t)= %S:Re %uy(@) Im d(w, ¢) dow ,
(7.10b)
where the kernel A(w, t) is defined by
d(o, t)=——1—~r U pent . (7.11)
T ) U—O

These expressions reduce, in classical limit,
to

Re 6,(0)= r Vo (£) cos ot di
0

T 6 () = — S“m O sinotdt  (7.12)
0

First we note that the symmetry of ¥, (%)
is the same as that we have for ¢ (%)
(Theorem 4). Egs. (7.7) and the first parts
of (7.9a) and (7.9b) are obvious from Eq. (4.8).
Eq. (7.8a,b) is simply the inverse of Eq.
(7.7a, b). We need some calculation to derive
(7.9) and (7.10) but the details are omitted
here. Only we note for the convenience of
reference that the function (7.11) can be
transformed to

Re 4(w, #)=—Ep(w) sin wi-sign ¢
1 & (mn)?exp (—2nx|t|/Bh)
(nr)*+(Bhw)?/4

(7.13a)

4 —
773 n=1

Im 4w, t)=Ep (w) cos wt- sign ¢
1 = (nn)2)Bho exp (—2nx|t|/Bh) .
TR8 D ptGheya S
(7.13b)
An useful corollary of the theorem is the
expression of static conductivity cu,(0). We
have the formulae;

*uy (0)= ng Vout) dt= 8 S” Tow(B)dt
0 —co

2
(7.14)
%y (0):281‘ () dfrww @ dt
:28” Vo, () S ‘1@ de . (7.15)
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Thus the symmetric part of the static con-
ductivity is calculated either as the integra-
tion of the response function or as that of
the correlation function. The situation is
more complicated for the antisymmetric part.
If one wishes to use the correlation function
instead of the response function, one has to
be careful about a quantum effect which
appears as I'(r) in Eq. (7.15).

Another remark is that, even at finite fre-
quencies, the symmetric part is easily obtain-
ed if the correlation function is known. This
is, of particular interest, for instance, in the
case of magnetic problem”. For a linearly
polarized radiation, the absorption is deter-
mined by the imaginary part of susceptibility
tensor, for which we have from Eq. (5.4)

X//a:x(a)) =—Im Xz

S L MAO) M)} cos ot dt .

(7.16)

The corresponding expression for conduction
is (7.7a) itself, i.e.,

S L JL0) J-()}> cos wt dt

7.17)
The last equation is the well-known Niquist’s
theorem'®. If the fluctuating current is ex-
panded into the Fourier components, Eq. (7.17)
reduces to

2E()

Oxz ((D)

1
2Ep(w)

N Je(@)> . (7.18)

U'xz(a)) Es ( )

§ 8. Sum Rules

It is interesting that the exact expressions
of admittance derived in the above give
proof of certain general laws. The simplest
example of this is the well-known sum-rule of
oscillator strength. This is generalized in the
following way.

We consider the expression (6.4),
which we obtain

Viisw dBA(w) do IZSW Dp4()0 (@) dt="1024(0)
—co 0
(8.1)

from

and .

lim fw 054 (0)=054(0) (8.2)

by Abel’s theorem if the left hand side does
exist.

Let us now apply this for electric conduc-
tion. By Eq. (5.10) one can write
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Duy (t)— - TI‘ 0 ‘:2 € Tiy, 205 Bju (t)]

8.3)
If the Hamiltonian 5 has the general form

%’=Z‘. |:Pw— ?Av (ri)T/Zmi—i- Viry, -+

A being the vector potential we have the
commutation rule

rN);

. 7
[%iv, @ju] =7;7 0ij Ouy 8.4)
which gives
N L2 2
Bus(0) = 330 5 = 218 (8.5)
i=1 72 r My

where 7 means the species of charge carriers,
7, being the number of carriers of #-th kind.

Eq. (8.3) is derived from Eq. (5.10) by
changing the order in the trace operation.
One might doubt whether this is justfied or
not, pointing out that the operators z;, may
be singular if one uses the Born-Karman
boundary conditions. As a matter of fact
this will not affect the wvalidity of the proof,
because the commutators are actually regular
operators. It might be worth while to see
what one has in classical case. Classically
we may proceed as (see Eq. (2.22a))

B ()= Sdf(f, S evwn) S e dsuld)

= -—Sdl1 % eza%{;‘ > ej 2ju(?)

=§dr feSees? in®. 66

0
ej 8;0

Thus we have
SN a j
b O)=\drF S e - L L= At}

=Sd[’ 3 en | mi b, ®8.7)
This is exactly the same as Eq. (8.5). This
does not prove directly the validity of (8.3),
but will be enough to make it convincing.
As as proof one may introduce a suitable
potential to avoid the difficulty of singular
operators z;y,, and make it vanish if one
wants.
Thus we have proved the sum rule

Tn]'

»—Z—S Re o'u(0)do=3

1

Opy 8.8)

My

and
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. s €%y 1(~ .
Imolm osu=—3"""0u, 8.9 — Im 6%zy(w) odw
w00 r r T -
. . . . nye,3H,
which hold for any system irrespective of =lim w?0%y(w)=—3 "= . (8.16)
w—>oo0 r n,-c

the interaction of particles, the temperature,
the statistics and even in the presence of
magnetic field. This is the most general
form of the sum rule.

For a system of electrons, Egs. (8.8) and
(8.9) are written as

ZS “Re 0% (0)do="% 5., (8.10)

T Jo m

Im (@)= — 27 8y (w00) .  (8.11)
mw

Here we should remember that m is the true
mass of electrons. The integration of o (w)
has to be carried over all range of frequencies.

If one considers electrons in a crystal and
confines himself to the electrons in a particular

band neglecting interband transitions, the
sum rule has to be modified to
2 S” Re 0%u(0) doo
T Jo
=—lim w Im 6%, ()
=e*Tr {p-0*E(p)/0p»0Pu} . (8.12)

This holds if the electron system is described
by the Hamiltonian

%=;E(1)¢)+ Vi, - --7x5) (8.13)

where E (p) is the energy of an electron with
the crystal moments p. Also one has to
omit the interband elements of the potential
V. The theorem (8.12) is wider- than that
usually given in text books only for the
oscillator strength connecting one-electron
states.

Another interesting result is obtained from
the second expression of (3.5) when applied
to conduction problem. This give

ig (80(@) 0— by (0)}deo

=—lim wz{ oy (@) — ,_#;i@} =y (0)

w—>00

(8.14)

The tensor
Buy (0)= ——;; Tr o [ Ju I (8.15)

is antisymmetric.
written as

Therefore Eq. (8.14) is re-

Both sides of this equation are identically
zero unless the system is in a magnetic field
(or rotating, in which case e.H./m.c must be
replaced by the angular frequency of the
rotation). This is seen from the fact that the

velocity of charged particles

field is
_1( e
m (p ¢4 )

and the commutation rule is now

[oa o] = -2 2
mi*c 1

in magnetic

(8.17)

This gives

Z

h

which is the last expression in Eq. (8.16).
In particular, for electrons we have

Trp [ Jz, Ji]l=2 nee® H/m,?c, (8.18)

‘Z,_Sw Im 6% uy(@)wdw = —lim 020%., (0)
7 Jo oo

_ " g (8.19)
m*c
This is another type of sum-rule which holds
quite generally, but is not usually remarked.
Eq. (8.19) may also be written as

ned
3% Im Gkl JelD 1] Tlly=—-5 2 H.
(8.20)
for a system of # electrons.

Similar arguments can also be made for
tensors of other kinds. For instance, the
magnetic susceptibility tensor satisfies the
rules,

- S Im (o) % =15(0),  (8.21)
T ) oo w
lim Re %%uy (w)=0, (8.22)
1 oo
S Re %%u(0) dow
T ) eeo

=—lim o Im xaw(w):% Tr o[M,, M,] .

(8.23)
The relation (8.21) is well-known. This states
that the properly weighted integration of
absorption intensity for linearly polarized
radiation is equal to the static susceptibility.
The third relation, (8.23), requires more at-
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tention.
If M, is written as

MV.=Z 75 Lip

where Z; is the angular momentum associated
with the magnetic moment, we have

— Mo, My)= =3 72 L.

Therefore Eq. (8.23) can be written as

1

—rRe 2oa(@) de>
2 Jo

=—limwIm Xaxy(w) = '—2 T'lzfizz _ZTTMTZ
(8.24)

where M,, means the magnetization due to
7-th component in the system.

For circularly polarized radiation, the rate
of energy absorption per unit volume is

w
Q= 'a‘-Hiz{X,zy*X,yx'l— X//:m: + x//'yy}

H; being the amplitude of the magnetic field
of radiation. Thus, Re %%:(w) is related to
the absorption intensity of circular waves.
The total integration of the absorption in-
tensity is directly connected with the gyro-
magnetic ratio y. This may not be of much
value if 7 can be measured accurately by
sharp resonance. But one has to remember
that (8.24) is generally valid even in the pre-
sence of strong interaction between magnetic
moments. Thus the effects related to the ab-
sorption of circular wave may be used for
the determination of 7, for instance, for elec-
tronic magnetic moments in ferromagnets or
paramagnets. This sort of experiments may
be considered to corresponds in a sense to
those of gyromagnetic effects.

§9. Einstein Relations

We note here that the expression of con-
ductivity given by Eq. (5.12) or (7.14) is the
most general form of Einstein relation, which
connects the conductivity or the mobility with
the diffusion constant.

To see this, let us take the simplest ex-
ample of charged particles which are moving
independently. By Eq. (7.14), the conducti-
vity is

oSuy

ne® S‘”< 0,(0) vu() S dt 9.1)

T RT ),

if we regard the system to be classical. If

Statistical-Mechanical Theory of Irreversible Processes. I

[953
oo
[$31

we admit
%1_{2 oy (0)vu(®))> =<0, )Xvuy=0

we can transform the right hand side of Eq.
9.1) as

S” (O OD)) dt
0
. 1 7T ,
~lim ~2F50 So (oo Yvuld)) di di
—lim- .. - (@(T)—24(0)) (2(T) —2u(0)) >
T—eco ZT
ZD/J.V . (9.2)
where D, is the diffusion constant defined by
the third expression of Eq. (9.2). Egs. (9.2)
and (9.1) give at once
O'S;w=ean;w/kT (93)

which is the well known Einstein relation.
For a system of interacting particles, the
exact form of Einstein relation is

0%y = €272 Dy KT (9.42)
—eD,,, / ( Ou ) (9.4b)
on T

where Dy, is the diffusion constant in iso-
thermal conditions, 47* the average fluctua-
tion of particle density, and 2 the chemical
potential of the particle. This relation gives,
for the diffusion constant,

o il B .
Ds,w=( ) S dtg Tr pL(—it)L(#)dA
67’1 7)o 0

=( gﬁ )T ; S: At Tr L@} (9.5

where
I,= 2 Viy
k2

is the total particle flow per unit volume.
Eq. (9.5) can be used for the calculation of
diffusion constant in gases and also condens-
ed phases. This will be discussed further in
a forthcoming paper.

It might be worth while to note that Eq.
(9.4) indicates at once how the factor 1/kT
appearing in the expression of electric con-
ductivity, Eq. (7.14) cancels out for degenerate

Fermi particles. In this case, 4n? is propor-
tional to 7, or in other words (Qu/on)r is a
constant of the order of gy/», 14 being the
Fermi-level at the absolute zero.
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