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1 Fractional Brownian Motion 
 
     The reader is undoubtedly familiar with the discrete random walk and its continuous analog, 
Brownian motion. While these concepts describe phenomena in nature, economics, and numerous 
other fields, they only account for a subset of observations. Allowing for some degree of “memory” 
between increments leads to generalized Brownian motion where temporal intermittency, in 
addition to spatial like in earlier lectures, occurs and fractal behavior manifests. 
 
 
1.1 Hurst Parameter 
 
     Howard Hurst desired a method of calculating optimal reservoir volume – no flooding or 
complete emptying – for the Aswan Dam along the Nile River. Given the large populations 
dependent on consistent water discharges, his design was incredibly important. Rather than assume 
a stationary random walk, Hurst compiled system variables measurements at regular intervals and 
observed large variances. Mandelbrot and Wallis later categorized the low frequency extremum in 
time series behavior as Noah and Joseph effects. “Joseph effects” are persistent events like seven 
years of abundance followed by seven years of famine, and “Noah effects” are intensely 
concentrated tail outcomes like the Great Flood [1]. Anomalies such as these, more recently 
deemed “Black Swans” by Nicholas Nassim Taleb, drove the Aswan Dam into becoming the 
largest embankment dam. 
     In opposition to typical expectation values, E, resulting from a Brownian time series step, dB, 
 

 𝐸[d𝐵!] = 	𝜏 (1.1.1) 
 
Mandelbrot and Ness proposed an alternative named fractional or fractal Brownian Motion, 
 

 𝐸[d𝐵!] = 𝜏!" 	, 0	 ≤ 𝐻	 ≤ 1 (1.1.2) 
 
where H is the Hurst exponent and t is the time between observations [2]. This formulation 
captures Brownian motion and the Weiner process when H = ½, but more accurately models 
“persistent” (1/2	 ≤ 𝐻	 ≤ 1) and “sticky” (0	 ≤ 𝐻	 ≤ 1/2) systems. Other common term pairings 
describing these processes are wild and mild; super- and sub-diffusive; or correlated and anti-
correlated. Solving (1.1.2) for H, 
 

 𝐻 =
𝑙𝑛|d𝐵|
𝑙𝑛|𝜏|  (1.1.3) 

 
shows similarity with the box-counting dimension, 𝐷# = ln|N|/ln|1/ϵ|. H can therefore be 
interpreted as a measure of fractal dimensionality for Brownian processes. These quantities are 
related by  
 

 𝐻 + 𝐷	 = 	1 + 𝑛	, 𝑛	 ≤ 𝐻	 ≤ n + 1 (1.1.4) 
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for an n-dimensional space. The expression in (1.1.2) can be further generalized for multifractality 
with H dependent on scale q. Roughness or randomness in a time series thus scales with H as D 
does in turbulence. 

 𝐸[d𝐵$] = 𝜏$"($), 0 ≤ 𝐻(𝑞) ≤ 1 (1.1.5) 
 
     One technique for estimating the Hurst Parameter is through the “rescaled range”, R/S. Crudely, 
this requires calculating standard deviations, Sn, and cumulative deviates from the means for 
varying amounts of the entire observation series; taking the range, Rn, of said cumulative 
deviations; and dividing Rn by Sn. From here, one can log-log plot Rn/Sn against the number of 
observations in the nth set and take the slope to obtain H,  
 

 𝐻 =
𝑙𝑛|𝑅'/𝑆'|
𝑙𝑛|𝑛|  (1.1.6) 

 
Figure 1 shows Hurst’s plot for various phenomena [3]. At H~0.75, rivers clearly deviate from 
Brownian motion! Alternatively, R/S relates to the expectations values like in (1.1.1-2), 
 

 
Figure 1 - R/S Plots for various time series where K is equivalent to H [3]. 

 
 𝐸(𝑅'/𝑆') = 𝐶𝑛" (1.1.7) 

 
with some constant, C, and the number of points in the series, n. 
     An interesting connection exists between this topic and wealth distribution across populations 
via the Gini coefficient, G. Expressed in terms of individual wealth xi, the Gini coefficient is, 
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 𝐺 =
∑ ∑ @𝑥( − 𝑥)@'

)*+
'
(*+

2𝑛∑ 𝑥('
(*+

 (1.1.8) 

 
In the limiting case where one person holds all wealth, G=1, but more generally G parallels R 
from before, and describes concentration within a series. Plotting cumulative distribution 
functions for perfect equality and the Lorenz curve, which resembles many real populations, the 
“wealth gap” – equivalent to G – appears graphically as the normalized area after subtracting 
curves, A/(A+B) (Figure 2) [4]. Economists later measured the Gini index’s applicability in 
“education inequality” through level of education attained by members of a population [4]. 
Quality of education aside, the researchers again found large inequality gaps: Mali’s education 
Gini index was 0.92 in 1990 [4]!  
 

 
Figure 2 - Geometric Interpretation of Gini Index and Socioeconomic Inequality [4] 

 
1.2 Noise, Noise, Noise! 
 
“…there is noise – and more of it than you think.” – Daniel Kahneman (Noise, 2021)  
 
     Performing Fourier transforms on time series with inclusion of H reveals additional points for 
differentiation. The general expression is 
 

 ⟨𝐵!(ω)⟩ = F ⟨𝐵(𝑡)𝐵(𝑡 + τ)⟩𝑒(,-𝑑τ
./-

.
≈ ω01 

β	 = 	2𝐻	 − 1 
(1.1.9) 
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At H=1/2, ⟨𝐵!(ω)⟩ 	= 1 and the spectrum matches white noise, an expected result. As H 
approaches one ⟨𝐵!(ω)⟩	~	1/ω which was aptly named “1/f” noise but is more recognizable by 
pink noise. Power at lower frequencies dominates the spectrum since power spectral density 
decays with increasing frequency. Finally, H near zero means ⟨𝐵!(ω)⟩ 	= 	ω, which is blue noise. 
These spectrums are depicted in Figure 3 [5]. In terms of fractal dimensionality, notice H=0 
generates a two-dimensional curve in time matching D=(2-H)=2, while H=1 is dominated by a 
one-dimensional line following D=1. 
 

 
Figure 3 - The Colors of Noise [5] 

 
The case of 1/f noise deserves further attention due to its pervasiveness in physical systems. First, 
Zipf’s law parallels 1/f noise when an empirical exponent, s, equals one as it approximately does 
for human languages. Zipf’s law relates a word’s appearance frequency, f(k), to its frequency 
ranking, k by 𝑓(𝑘)~1/𝑘2.  
 

2 Levy-Stable Distributions 
 
 
     Recognizing that non-Gaussian probability distributions arise when H¹1/2, one might question 
the central limit theorem’s (CLT) validity. Recall that traditional CLT asserts a sum of n random, 
independent, and identically distributed (IID) variables with finite, non-zero second moments, or 
variances, tends towards a normal distribution as 𝑛	 >> 1 regardless of variable-specific 
probability density functions. The Gaussian is then an attractor in function space under these 
conditions. Notice no value has been assigned to higher moments: a negative kurtosis alone can 
cause heavy tails. Allowing for 0 ≤ 𝐻 ≤ 1 and infinite variance reveals a large class of stable 
distributions deemed Levy-stable of which the Gaussian, with H=1/2, is a special case with finite 
variance. 
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2.1 Generalizing the Central Limit Theorem 
 
     CLT must be proven with a twist to characterize L-stable processes. In terms of incremental 
steps like the previous section, begin with the Chapman-Kolmogorov equation with its usual 
Markovian (no memory) conditions on the steps, 
 

 P3(𝑥) = FdyP40+(𝑦)P3(𝑥|x − y) (2.1.1) 

 
This states the probability of finding a particle at position x at step N is P5(𝐱) and is the cumulative 
joint probability, P40+(𝒚)P4(𝐱|𝐱 − 𝐲), of all particles in the range of y during step N-1 making 
increments along path x-y. Reaching step N may require a length convolution, which would be 
convenient to avoid, so apply the Fourier transform to convert convolutions into products: 
 

 P3(𝑘) = Π5*+4 𝑃5[ (k) → P3(𝑥) = FdkΠ5*+4 𝑃5[ (k)𝑒(67/2π (2.1.2) 

 
Under IID constraints, each 𝑃5[ (k), the generating function, must be equivalent, so the cumulative 
probability is an infinite product as 𝑁	 → ∞. 
 

 	 𝑙𝑖𝑚
3→9

	Π'*+3 𝑃c(𝑘) = 𝑃3d(𝑘)	 (2.1.3) 
 
Applying moments, m5 = ⟨x5⟩, to 𝑃c(𝑘) results in the generating function of a multiplicative, and 
Levy-stable, process,  
 

 𝑃c(𝑘) = f(−i)5k5m5/
9

5*:

n! = 1 − im+k − m!k!/2 +⋯ 

F(m5) = 𝑖' ∂P/ ∂𝑘'|6*: 

(2.1.4) 

 
The existence of moments depends on existence of generating function derivatives and therefore 
relates to roughness. Referring to (2.1.2) and taking ψ(𝑘) = 𝑙𝑛	𝑃c(𝑘) shows 
 

 ψ(𝑘) = −𝑖𝐶+𝑘 − 𝐶!𝑘!/2 +⋯ 
(𝐶+ = 𝑚+	, 𝐶! = 𝑚! −𝑚+

! = σ!	. . . ) (2.1.5a) 

 P(𝑥) = Fdk 𝑒(67/;(6)/2π (2.1.5b) 

 
where Cn are the cumulants that are additive for IID, ψ4 = 𝑁ψ(𝑘). By the Laplace method and 
with large N, k near zero dominates (2.1.5b). Then, for a zero mean – C1 = 0, 
 

 P3(𝑥) = Fdk 𝑒(670
3<!6!
! /2π =

1
2πoNC!

𝑒0
7!
3<! 	 (2.1.6) 
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and the CLT is recovered. Like before, sufficiently large N and finite C2 drives the PDF to a 
Gaussian, which acts as the function space attractor, but things become more interesting when 
higher moments are divergent. 
 
 
2.2 Taking Flight  
 
     For n IID, random, normalized variables, 
 

 𝑥'/+ =f
𝑐(𝑥(
c

'

(*+

 (2.2.1) 

 
and a characteristic function describing the shared probability function, 
 

 P(q) = F 𝑒($7𝑃(𝑥)
9

09
 (2.2.2) 

 
we can state the recursive relation: 
 

 P(𝑐𝑞) = Π=*+5 P(𝑐(𝑥() → 𝑙𝑛	𝑃(𝑐𝑞) =f𝑙𝑛
'

(*+

𝑃(𝑐(𝑥() (2.2.3) 

 
Each distribution has a scaling parameter, ci, and they are related to the global scaling parameter, 
c, by 𝑐> = ∑ c=>'

(*+ . Using logarithms means a power law is afoot. The scaling parameter relation 
suggests ln	P>(cq) = (cq)> and we arrive at the Levy-a stable distribution, 
 

 P>(q) = 𝑒0?|$|" 	,							0	 ≤ 	α ≤ 2 (2.2.4) 
 
This is a self-similar generating function with stability parameter a. It is equal to the Gaussian 
distribution when a=2 and the Cauchy or Lorentz distribution when a=1. Like H, a can take 
fractional values, which requires fractional calculus and a generalized Fokker-Planck equation to 
be derived later.  
     An equivalent result to (2.2.4) is obtained by rescaling the probability density functions and 
solving for a fixed function attractor in the large-n limit, 𝐹'(𝑐𝑞) 	→ 𝐹(𝑞)'. Begin by rescaling x =
𝑥'/𝑎', so  

 𝑃'(𝑞) = 𝐹'(𝑎'𝑞) (2.2.5) 
 
where Fn is the scaled PDF and c is the “global” rescaling parameter. Move back to a recursion 
problem using a variable scaling parameter, µ(l), 
 

 𝐹(q𝜇(λ)) = 𝐹(𝑞)A (2.2.6) 
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and convert it to a fixed-point equation with 𝜓(q) = 𝑙𝑛𝐹(q), 
 

 𝜓z𝑞𝜇(λ){ = 𝜆𝜓(𝑞) → 𝑞
𝜕𝜇
𝜕𝜆
𝜕𝜓z𝑞𝜇(λ){

𝜕q = 𝜓(𝑞)	 (2.2.7a) 

 
𝜕𝜓(𝑞)
𝜕q =

𝜓(𝑞)
𝜕𝜇(1)
𝜕𝜆 𝑞

													(𝜇(1) = 1) (2.2.7b) 

 
The self-similarity in 𝜓(q) is thus evident, and results in a familiar generating function, 
 

 𝐹(𝑞) ≈ 𝑒0?|$|# ,								0	 ≤ 	α ≤ 2	 (2.2.8) 
 
     The multiplicative process results in a normal distribution with finite variance, otherwise “fat 
tails” dominate and the distribution is some power law. Fat tails simply refer to divergent higher 
moments, often kurtosis or skewness, despite meeting the CLT, and evident by infrequent, large 
impact outliers.  Mandelbrot claimed Pareto-Levy distributions as the most positively skewed 
distributions (1	 < 	α < 2) and are potentially familiar to the reader for their “80-20” behavior. 
Also, the random variable(s) satisfying a normal distribution in this context would be log-normally 
distributed because their logarithms are additive. Examples of such distributions are plotted in 
Figure 4 [6].  
 

 
Figure 4 - Levy Stable Distribution Examples [6] 

 
     Considering a chain of distributed increments in a particle’s time-dependent walk helps bring 
this all back to physics. Normal step distributions cause Brownian leading to Fick-like diffusion 
(Figure 5, left), but the stability parameter’s range greatly alters particle motion because fat tails 
lead to large jumps, or flights, in Levy walks [7]. One might hear Levy or Cauchy flights depending 
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on the specific step distribution, but Rayleigh flights refer to normal distributions. Discretizing the 
Levy-stable distribution into N pieces in x, 
 

 P3(𝑥) =
1

𝑁+/> 𝑒
0?C7/3$/"C

"
	 (2.2.9) 

 
where the distribution width and strength are N1/a and c, respectively. Then, making (2.2.4) explicit 
in time, the characteristic function is, 
 

 P>(𝑥, 𝑡) = ∫ dq	P>(𝑞, 𝑐𝑡)𝑒0($7/2π	 (2.2.10a) 

 𝑙𝑖𝑚
7→9

P>(𝑥, 𝑡) = 𝑡|𝑥|0(>/+) (2.2.10b) 
 
Allowing such a walk to play out results in random walks like Figure 5 (right) [7]. Diffusion clearly 
varies into a ballistic regime for a > ½.  Notice the invariance and fractal nature under 
magnification as well: this is self-similarity.  
 

 
Figure 5 - Brownian (left) and Levy (right) walks [7] 

 
     Weeks and Swinney reported experimental evidence of flights by measuring tracer particles in 
a rotating tank with a counter-rotation between inner and outer cylinders. A weak jet pumped fluid 
through inlets arranged in a ring around the bottom of the tank and generated shear, while outlets 
around a larger diameter maintained constant fluid volume. The design kept turbulence at a 
minimum, yet chaotic flows were observed linking together a vortex chain. Figure 6 (left) shows 
tracer paths and azimuthal angle against time [8]. As in theoretical Levy walks, flights connect the 
various vortices where particles then mingled for an extended time. Their proxy for diffusion was 
tracer step variance, which was related to time by an exponent. In the chaotic flow, they measured 
σ!~𝑡D where g = 1.5-1.8, indicative of anomalous, super-diffusion [8]. Weak turbulence was 
introduced during a later experiment by changing the fluid injection, and classical diffusion 
returned, σ!~	𝑡, or g = 1 (Figure 6, right) [8]. 
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Figure 6 - a) 40 particles after 90 sec, b-f) individual particles from 800 to 1500 sec during sheared, laminar flow 
(left). Individual particles during weak turbulence (right) [8]  

 

3 Continuous Time Random Walk 
 
 
     Two techniques for dealing with Levy-stable distributions and anomalous diffusion will be 
elaborated herein, beginning with Continuous Time Random Walks (CTRW). Fokker-Planck (F-
P) theory requires a distribution of Dx and can be generalized to allow a distribution for Dt, the 
system “clock”. Doing so removes locality and Markovian constraints from F-P thereby 
introducing a more physically representative model. Transitioning to non-Markovian processes 
corresponds to Kubo number, from previous lectures, larger than unity. CTRW can be 
implemented by either a waiting time or velocity model, each having strengths and weaknesses. 
These methods are crudely depicted in Figure 7 [9]. 
 

 
Figure 7 - Rough depiction of Waiting Time (black) and Velocity (red) models [9] 
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     For reference, a short review of F-P will be provided. The Chapman-Kolmogorov equation 
(CKE) from earlier can be adapted for explicit time dependency as follows 
 

 P(𝑥, 𝑡 + Δ𝑡) = FdΔxP(𝑥 − Δ𝑥, 𝑡)P(𝑥|x − Δx, t) (3.0.1) 

   
Setting P(𝑥 − Δ𝑥, 𝑡) = 𝑃 and P(𝑥|x − Δx, t) = 𝑇 then expanding, 
 

 P(𝑥, 𝑡) + Δ𝑡
∂P
∂t = FdΔx �PT −

∂ΔxPT
∂x +

1
2
∂!

∂x! Δx
!TP� (3.0.2) 

   
There are three key pieces: 
 

 FdΔx𝑇 = 1	(𝐿𝑎𝑤	𝑜𝑓	𝑇𝑜𝑡𝑎𝑙	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) (3.0.3a) 

 FdΔx
ΔxT
Δt 	= 	V	(Drift	Velocity) (3.0.3b) 

 FdΔx
Δx!T
2Δt 	= 	D	(Diffusion) (3.0.3c) 

   
Finally, we arrive at the irreversible F-P equation, or FPE, 
 

 ∂P
∂t = −

∂
∂x �𝑉𝑃 +

∂DP
∂x � (3.0.4) 

 
 
3.1 Waiting Time Model 
 
     The waiting time model (WTM) resolves infinite variance in spatial steps by pairing large 
spatial steps with large time increments. A particle essentially sticks at a position then jumps some 
Δx	at infinite speed leading to the name “leaper”. Each distribution follows 
 

 x5����⃗ = rE +fΔxF������⃗
5

=*+

 (3.1.1a) 

 t5 = 𝑡E +fΔt=

5

=*+

 (3.1.1b) 

 
and the PDF can be factored if they are independent, 
 

 P(Δx, Δ𝑡) = P(Δx)P(Δ𝑡) (3.1.2) 
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If P(Δ𝑡) = 1 and P(Δ𝑥) is normal, the traditional FPE is recovered. Otherwise, expand Δx to 
lowest order for the probability of finding a particle at position x during time t (i.e. jump point 
distribution), 
 

 𝑃(𝑥, 𝑡) = FdΔxFdΔt P(Δx)P(Δ𝑡)Q	 = F dΔt
.

:
Qϕ	 (3.1.3) 

 
where ϕ is the probability of a particle reaching x at t after Dt, and Q = P(𝑥, 𝑡 − Δ𝑡), which is the 
probability of the particle waiting at its position for Δ𝑡. Putting ϕ in terms of the probability that 
the particle jumps after an interval Δ𝑡, y(t), and solving for P(x,t),   
 

 ϕ(Δ𝑡) = F dt′
9

GH
ψ(tI)	 (3.1.4a) 

 𝑃(𝑥, 𝑡) = F dΔ𝑡
.

:
ϕQ	 (3.1.4b) 

 
but y(t’) needs definition by assumption or experiment. This approach lends well to H < 0.5, or 
sub-diffusive systems, due to its built in “sticking” probability where a particle may not jump for 
large Δ𝑡.  
     Montroll and Weiss pushed the WTM further in 1965 using integral transforms to simplify the 
involved probabilities [10]. Combining Fourier and Laplace transforms on P(x,t) with N discrete 
steps and separability results in the Montroll-Weiss equation (MWE), 
 

 𝑃(𝑘, 𝑠) = f 𝑃(𝑁, 𝑠)𝑃'(𝑘)
9

3*:

 (3.1.5a) 

 𝑃(𝑘, 𝑠) =
1 − ψ(𝑠)

𝑠 �f ψ(𝑠)𝑃(𝑘)
9

3*:

�
3

 (3.1.5b) 

 𝑃(𝑘, 𝑠) =
1 − ψ(𝑠)

𝑠 �
1

1 − ψ(𝑠)𝑃(𝑘)�	 
(3.1.4c) 

 𝑃(𝑥, 𝑡) =
1

(2π)!𝑖 F 𝑑𝑠
?/9

0(9

𝑒2.

𝑠
[1 − ψ(𝑠)]F 𝑑𝑘 �

𝑒0(67

1 − ψ(𝑠)𝑃(𝑘)�
9

09
 (3.1.4d) 

 
This model pertains to queuing theory and other applications where waiting times may be random 
like traffic flow. 
 
 
3.2 Velocity Model 
 
     Managing super-diffusive systems with CTRW is better accomplished with the velocity model 
(VM). Rather than a particle making infinitely fast jumps, VM relates the time step to spatial 
increment via a constant travel velocity, 
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 P(Δx, Δ𝑡) = δ �Δt −
Δx
V � P

(Δx) (3.2.1) 

 
which goes into the CK equation as before,  
 

 P(x, 𝑡) = F dΔx
JH

0JH
F P(x − Δx, t − Δ𝑡)
H

:
ΦK(Δx, Δt) (3.2.2a) 

 ΦK(Δx, Δt) =
1
2 δ
(|Δx| − VΔt)F dx′

9

|GL|
F dt′	P(x′)
9

GH
δ¢t′ −

|xI|
V £	 (3.2.2b) 

 
Fv is probability of making a step that at least covers |Dx| given velocity V, and P(x′) needs 
definition by assumption or experiment. Insight into the characteristic velocity is also valuable. 
     Levy flights work well with VM by requiring larger Dx is accompanied by larger Dt through a 
space-time memory coupling, so this representation may also be called a Levy walk. VM could be 
called the study of “creepers” due to these properties. Doing so secures a finite variance at a 
particular step while allowing infinite variance on the steps themselves. Notice as both step 
variables approach zero in (3.2.2) normal diffusion is recovered. 
 
 

4 Fractional Kinetics 
 
     A second method for managing anomalous diffusion (⟨Δx!⟩~𝑡D, γ ≠ 1) is fractional kinetics 
(FK). In one scenario, γ =	β/α where a and b are non-integers relating ∂. → ∂.> and ∂7 → ∂7

1. FK 
is most valuable in rough, fractal, and turbulent phase spaces with divergent second moments. 
Again, there are distributions of step variables, and a non-Markovian process is necessary. 
Kolmogorov turbulence is one example of this fractional dependence. 
     FK theory may have been motivated by anomalous diffusion in Taylor and Chirkov’s Standard 
Map (SM) describing a periodically kicked rotor with angular momentum and angle, 
 

 𝑝'/+ = 𝑝' + 𝐾𝑠𝑖𝑛(θ') (4.0.1a) 
 θ'/+ = θ' + 𝑝'/+	 (4.0.1b) 

 
respectively. K is the kick strength, and the remaining parameters are modulo 2p for a torus. 
Beyond Kcrit chaotic transport, a form of anomalous diffusion, ensues. The kicked rotor is 
analogous to a particle in an electric field, so 𝑑𝑣/𝑑𝑡	 = 	𝑞𝐸/𝑚 and K corresponds to |E|. A 
diffusion coefficient comes out of Vlasov plasma quasilinear theory and equals K2/2 in the SM, 
while the actual diffusion coefficient is 𝐷	 = 	 ⟨(θ'/+ − θ')!⟩ for large n. The SM phase space and 
quasilinear-normalized diffusion, 2D/ K2, are shown in Figure 8 [10].  
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Figure 8 - Taylor-Chirikov Standard Map Phase Space Portrait (left). Normalized diffusion of Standard Map 

demonstrating accelerator modes as erratic spikes (right). [10] 

 
     Previous concepts from this course appear in the Standard Map, namely fixed-point 
instabilities, resonance overlapping, and stochastic transport. A new idea in SM anomalous 
diffusion is the accelerator mode, which appears as a spike in the diffusion plot. These accelerator 
modes are localized but create long time correlations and dominate transport because particles 
travel along phase space island boundaries. Each accelerator mode has a K in the range 2π𝑚 ≤
𝐾 ≤ 2π𝑚 + Δ𝐾(𝑚) related to flights where Δ𝐾(𝑚) is the phase space island’s width and m is an 
integer. Before going further, an introduction to fractional calculus is needed. The fractional 
kinetic equation (FKE), which is a generalized form of FPE, can be derived afterwards. 

 
 
4.1 Fractional Calculus Basics 
 
 
     For integration of order b in time over f(t) where b > 0, the Cauchy formula extends to 
 

 𝐼1𝑓(𝑡) =
1

Γ(β)F 𝑓(𝑡I)(𝑡 − 𝑡I)10+𝑑𝑡I
.

09
 (4.1.1a) 

 𝐼1𝑓(−𝑡) =
1

Γ(β)F 𝑓(𝑡I)(𝑡′ − 𝑡)10+𝑑𝑡I
9

.
	 (4.1.1b) 

 
which utilizes the gamma function, G. These are the Reimann-Liouville integrals. Inversely, 𝐼1 =

	 M
&'

M.&'
, so the Reimann-Liouville derivatives are, 

 

 
𝑑1𝑓(𝑡)
𝑑𝑡1

= 𝐼01𝑓(𝑡) =
1

Γ(𝑛 − β)
𝑑'

𝑑𝑡'F 𝑓(𝑡I)(𝑡 − 𝑡I)01/50+𝑑𝑡I
.

09
 (4.1.2a) 
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𝑑1𝑓(𝑡)
𝑑(−𝑡)1

= 𝐼01𝑓(−𝑡) =
−1

Γ(𝑛 − β)
𝑑'

𝑑(−𝑡)'F 𝑓(𝑡I)(𝑡′ − 𝑡)01/50+𝑑𝑡I
9

.
 (4.1.2b) 

 
where n is the integer part of b. Several useful properties exist in fractional calculus such as 
 

 𝑑a/1

𝑑𝑡a/1
=
𝑑a

𝑑𝑡a 	
𝑑1

𝑑𝑡1
=
𝑑1

𝑑𝑡1
𝑑a

𝑑𝑡a	 
(4.1.3a) 

 
𝑑a

𝑑𝑡a 𝑡
1 =

Γ(1 − β)
Γ(1 + β − a) 𝑡

10a →
𝑑a

𝑑𝑡a 1 =
𝑡0a

Γ(1 − a)
(𝑡 > 0)	 (4.1.3b) 

 𝑙𝑖𝑚
>→+

𝑑a

𝑑𝑡a 1 = δ(𝑡) (4.1.3c) 

 𝐹 ¬
𝑑a

𝑑±	𝑡a 𝑔
(𝑡)® = (±	𝑖𝑘)>𝑔(𝑘) (4.1.3d) 

 
See [9] for more details on fractional integrals and derivatives. 
 
 
4.2 Fractional Kinetic Equation 
 
 
     The goal here is to derive an FP-like formulation applicable to anomalous kinetics using 
fractional calculus. Given a transition probability that a particle moved from (x,t) to (y,t+Dt), 
W(x,y; t+Dt), the shift in probability for infinitesimal Dt is to lowest order, 
 

 ∂1W(x, y; t)
∂t1

=
∂1𝑃(x, t)
∂t1

						(0 ≤ β ≤ 1) (4.2.1) 

 
where b relates to local temporal fractality. Then, by CKE and dropping higher order terms, the 
spatial probability shift depends on local phase space fractal dimension parameters, a, 
 

 
∂a𝑃(x, t)
∂𝑥a (Δ𝑡)a = ΔLa	𝑃(𝑥, 𝑡) 	= F𝑑𝑦 [𝑊(𝑥, 𝑦; 𝑡 + Δ𝑡)𝑃(𝑦, 𝑡)] 	− 	𝑃(𝑥, 𝑡) (4.2.2) 

 
and probability conservation requires 
 

 ∂a	𝑃(𝑥, t)
∂𝑥a 	≈

∂1𝑃(𝑥, t)
∂t1

 (4.2.3) 

 
Applying limits in Dt shows, 
 

 ∂1𝑃(x, t)
∂t1

= 𝑙𝑖𝑚
GH→:

(Δt)01F𝑑𝑦 [𝑊(𝑥, 𝑦; 𝑡 + Δ𝑡)𝑃(𝑦, 𝑡)] 	− 	𝑃(𝑥, 𝑡) (4.2.4) 
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Now an expression for W is needed, which begins with expansion in Δ𝑡 → 0, 
 

 W(x, y; Δt) = δ(𝑥 − 𝑦) + 𝐴(𝑦, Δ𝑡)δ>(𝑥 − 𝑦) + 𝐵(𝑦, Δ𝑡)δ>$(𝑥 − 𝑦)					 
(0 ≤ α ≤ 	α+ ≤ 2)	− 	Levy	Index	Constraint (4.2.5) 

 
where a ½ is wrapped into B. An assumption of temporal locality must be made to resolve A and 
B independent of P(x,t). Using moments of W to solve B, 
 

 ⟨|Δ𝑥|>$⟩ = F𝑑𝑥 |𝑥 − 𝑦|>$𝑊 = α+! 𝐵(𝑦, Δ𝑡) = Γ(1 + α+)𝐵(𝑦, Δ𝑡)	 (4.2.6) 

 
The gamma function results from repeated integration by parts, which also eliminates A (α ≤ α+). 
To find A, integrate (4.2.5) over y, 
 

 
F𝑑𝑦𝑊 = 1	 = 	1 +	F𝑑𝑦

∂a	𝐴(𝑦, Δ𝑡)
∂𝑦a δ(𝑥 − 𝑦)

+F𝑑𝑦
∂>$ 	𝐴(𝑦, Δ𝑡)

∂𝑦>$ δ(𝑥 − 𝑦) 
(4.2.7a) 

 
∂a	𝐴(𝑥, Δ𝑡)
∂(−𝑥)a =	−

∂>$ 	𝐵(𝑥, Δ𝑡)
∂(−𝑥)>$  (4.2.7b) 

 
but in the limit Δ𝑡 → 0, 
 

 
∂a𝐴·(𝑥)
∂(−𝑥)a =	−	

∂>$𝐵c(𝑥)
∂(−𝑥)>$ (4.2.8a) 

 𝐴·(𝑥) = 	 𝑙𝑖𝑚
GH→:

(Δt)01 	𝐴(𝑥; Δt) (4.2.8b) 

 𝐵c(𝑥) = 𝑙𝑖𝑚
GH→:

(Δt)01 𝐵(𝑥; Δt) (4.2.8c) 
 
For reference, (4.2.6-7) have made use of the identity 
 

 F𝑑𝑥 f(x)δ5(𝑥) = (−1)'F𝑑𝑥
∂'	𝑓(𝑥)
∂𝑥' δ(𝑥) (4.2.9) 

 
Now with (4.2.5) and the recent results, (4.2.4) simplifies to a result resembling the typical FPE, 
 

 ∂1𝑃(x, t)
∂t1

= 𝑙𝑖𝑚
GH→:

(Δt)01F𝑑𝑦 [𝑊(𝑥, 𝑦; Δ𝑡) − δ(𝑥 − 𝑦)]𝑃(𝑦, 𝑡) (4.2.10a) 

 ∂1𝑃(x, t)
∂t1

=
∂a

∂(−𝑥)a 𝐴
·(𝑥)𝑃(𝑥, 𝑡) +

∂>$
∂(−𝑥)>$ 𝐵

c(𝑥)𝑃(𝑥, 𝑡) (4.2.10b) 

 
(4.2.10b) is the Fractional Kinetics Equation (FKE) with critical exponents a, a1, b. The critical 
exponents can be determined with experimental data or additional information relating the system 
to “prototype” universality classes. 



 17 

     Setting α+ = α + 1, the FKE simplifies to a “fractional Fick’s Law”, 
 

 ∂1𝑃(x, t)
∂t1

=	−	
∂a

∂(−𝑥)a 𝐵
c(𝑥)

∂𝑃(𝑥, 𝑡)
∂x  (4.2.11) 

 
The special cases stemming from this are, 
 

FPE α = β = 1 (4.2.12a) 
Fractional 
Brownian α = 2, 0 < β < 1	 (4.2.12b) 

Levy Process 1 < α < 2, β = 1 (4.2.12c) 
 
Physically, A controls convection, while B controls diffusion, which is obvious given the above 
conditions. System observables correspond to moments describing global evolution, i.e. 
 

 ⟨|𝑥|g⟩ = F𝑑𝑥 |𝑥|g𝑃(𝑥, 𝑡) (4.2.13) 

 
For a slowly varying A and negligible B, moments from the FKE can be obtained: 
  

 ∂1

∂t1
⟨|𝑥|a⟩ = 𝐴F𝑑𝑥 |𝑥|a

∂a𝑃(x, t)
∂ta = a! 𝐴F𝑑𝑥 P(x, t) = Γ(1 + a)𝐴 (4.2.14a) 

 ⟨|𝑥|a⟩ = 𝐴𝑡1Γ(1 + a)/Γ(1 + 	β) (4.2.14b) 
 
If the dynamics are self-similar one expects ⟨|𝑥|⟩ = 𝑡1/> = 𝑡µ/! where µ = 2β/α. This ratio of 
critical exponents denotes an extension from standard diffusion. The variance with time is then 
⟨|𝑥|!⟩ = 	 𝑡µ, so anomalous diffusion is possible in the FK approach. Thinking back to the SM, one 
might guess phase space structure has something to do with this. Going further back, one might 
also notice a relation between FK and the Hurst parameter. These natural connections have led to 
a growing number of FK applications with strong memory effects including polymer deformation, 
semiconductor trapping, and tokamak transport. A final comment on FK is how it compares with 
FP beyond (4.2.12a), which Table 1 summarizes. 
 
 
4.3 Weierstrass Random Walk 
 
     The final topic relating to FK is the Weierstrass Random Walk (WRW) developed by Hughes, 
Shlesinger, and Montroll in 1981 [12]. Conceptually, it falls between a CTRW and FK, but the 
WRW explicitly depends on self-similarity of scale and fractal motion, so describing it alongside 
FK works well. The Weierstrass function itself is continuous everywhere but differentiable 
nowhere, or in other words, rough. Starting with a periodic, 1D lattice with nodes on unit length 
integers, define a probability to achieve position l in terms of the probability pj to make a step of 
length aj, 
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Table 1 - Summary of differences between Fokker-Planck and Fractional Kinetic Theories 

 
 

 
 

 P(l) =
1
2f¸δzl − aN{ + δzl + aN{¹

9

N*+

 (4.3.1a) 

 P(l) = F dl
9

09
P(l) = 1 (4.3.1b) 

Two delta functions appear due to an assumed symmetry in the walk. Now, assume only 
exponential stepping and set a normalization constant to emphasize large scale behavior, 
 

 𝑎) = 𝑎) , 𝑝) = 𝐶𝑝) , 𝐶 = 1 − 𝑝 (4.3.2) 
 
Substituting into (4.3.1a) and solving for the characteristic Weierstrass function by Fourier 
transform yields, 
 

 P(l) =
1
2 (1 − 𝑝)f𝑝)¸δzl − 𝑎){ + δzl + 𝑎){¹

9

N*+

 (4.3.3a) 

 P(𝑘) = (1 − 𝑝)f𝑝)cos(k𝑎))
9

N*:

 (4.3.3b) 

The second moment of P(l), ⟨𝑙!⟩,  is of note because it diverges if 𝑎!𝑝	 ≥ 1. P(k) satisfies 
 

 P(𝑘) = pP(ka) + (1 − p)cos(k) (4.3.4) 
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which resembles the renormalization group equation (RGE) and suggests the solution 
 

 P(𝑘) = PO(k) + PP(k) (4.3.5) 
 
where Ps(k) is a singular part and Pr(k) is a regular part. By renormalization,  
 

 PO(k) = 𝑝P2(𝑎𝑘)	 (4.3.6) 
 
becomes singular for k	 → 0, 

 PO(k) ≈ |𝑘|Q𝑄(𝑘) (4.3.7) 
Q(k) is some non-singular function at small k and µ is an exponent related to the Levy index. 
Substituting (4.3.7) into (4.3.6) we find a relation between step probability and step size, 
 

 µ = −ln(p)/ln(a), 𝑙𝑛(𝑝) < 0 (4.3.8) 
 
Self-similarity thus appears due to the scaling assumptions and a connection to previous content, 
especially the relation between Levy index and the random walk, is evident. Much more could be 
said about the WRW, but the key points have been elucidated. 
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