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1. Introduction 

Quasi-linear theory is the simplest theory for weak plasma turbulence and instability [1]. Although 

quasi-linear theory seems universal, you can’t mindlessly use it before confirming its applicability 

to the problem you are considering. In the formulation of quasi-linear theory, linearized trajectories 

(i.e. unperturbed orbits) of particles are used. As shown in figure 1, this is true only when the 

bounce time 𝜏𝑏 of the particle is smaller than the pattern lifetime 𝜏𝑎𝑐 of the electric field. 

Therefore, the criterion for the validity of quasi-linear theory is 𝜏𝑎𝑐/𝜏𝑏 < 1.  

The idea of quasi-linear theory can also be found in the calculation of the magnetic diffusivity of 

stochastic magnetic fields. Recall the Liouville equation 
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Figure 1 (a) The pattern of the electric field a particle sees at a specific time. (b) 
When 𝜏𝑎𝑐 < 𝜏𝑏, the pattern changes before particle bounces. In this case, it’s safe 
to use unperturbed orbit. (c) When 𝜏𝑎𝑐 > 𝜏𝑏, particle is trapped and the direction 
of particle motion changes, unperturbed orbit approximation fails [1]. 



where 𝑓 is the magnetic flux density. Equation (1-1) is the expanded form of 𝑩 ⋅ ∇𝑓 = 0, which is 

the definition of flux density. It is called Liouville equation because the flow is incompressible: 

∇ ⋅ 𝑩 = ∇𝑧𝐵0 + ∇⊥ ⋅ 𝑩⊥ = ∇⊥ ⋅ 𝑩⊥ = 0. (1 − 2) 

Equation (1-1) is similar in structure to Vlasov equation. Here the coordinate in the main field 

direction 𝑧 plays the role of time. To get the magnetic diffusivity of stochastic magnetic field, a 

standard quasi-linear procedure is adopted: using method of averaging to separate two different 

scales, finding the linear coherent response of 𝑓  to 𝐵̃𝑟 , and plugging the response into the 

correlation ⟨𝑓𝐵̃𝑟⟩ to get 𝐷𝑀. The expression for 𝐷𝑀 is [2] 
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Since quasi-linear theory is used in this calculation, the validity of the result we obtain is of course 

restricted by the applicability of quasi-linear theory. Because we are talking about diffusion of 

field lines other than particles, the bouncing time of particle 𝜏𝑏  is replaced by the magnetic 

decorrelation time 𝜏𝑐, or magnetic decorrelation length 𝑙𝑐, which is the distance that two originally 

adjacent field lines traveled before they diverged. More specifically, we require 
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where 𝐾𝑢  is called Kubo number, 𝛿𝑟  is the radial auto-correlation length, Δ𝑟  is the radial 

decorrelation length, 𝑙𝑎𝑐 is the parallel auto-correlation length which is inversely proportional to 

the bandwidth of 𝑘∥. Obviously, equation (1-4) and the criterion 𝜏𝑎𝑐/𝜏𝑏 < 1 are essentially the 

same. 

This magnetic diffusivity 𝐷𝑀 is widely used in theories relevant to stochastic magnetic field [2,3], 

which means the validity of all these theories can only be justified when 𝐾𝑢 < 1. Studies on 

stochastic magnetic field have practical significance for magnetic confinement fusion. Nowadays 

resonant magnetic perturbation (RMP) is widely applied to generate a stochastic magnetic field to 

mitigate and suppress edge localized mode (ELM). However, RMP also raises the power threshold 



of L-H transition. Therefore, good confinement is no longer deemed sufficient. On the contrary, 

we need to reconcile good confinement with good power handling. That’s why understanding 

plasma dynamics in a stochastic magnetic field is of great importance to magnetic confinement 

fusion. Unfortunately, most of the studies so far only focus on 𝐾𝑢 < 1 regime, whereas the real 

case in tokamak is 𝐾𝑢~1. Therefore, it would be beneficial to probe into the world of 𝐾𝑢~1 from 

another direction, i.e., extending theories on 𝐾𝑢 > 1 regime to 𝐾𝑢~1 regime. As shown in figure 

2, what we are interested in is the tiny space between Adam and God’s fingertips, which is the 

origin of all the miracles. Clearly, only Adam and God, the only two witnesses to this exciting 

moment, know what happened there. But for a long time, humanity only observe that mysterious 

area from Adam’s side. Now, it’s time to step into the realm of God and detect that 𝐾𝑢~1 regime 

from God’s perspective. 

So this note aims to give a brief introduction to theories on 𝐾𝑢 > 1 physics. As discussed in 

section 2, 𝐾𝑢 > 1 indicates that the nonlinear scattering process controls the spatial and temporal 

scales. We first assume that this nonlinear process doesn’t change the diffusion essence of the 

system and calculate the effective diffusivity via resonance broadening theory (RBT). Out of my 

personal interest, I’d like to give a more systematic introduction of RBT in this section. However, 

we can show that diffusion is inappropriate to describe this kind of systems. Instead, characteristics 

of these systems are more like percolation process. So in section 4 we will introduce basics of 

percolation theory. In addition to what Pat taught in his lectures, I’d like to show how to use 

Figure 2 Perspectives from Adam and God on the origin of everything 



renormalization group theory to calculate the scaling exponents and critical occupation probability 

of 2D triangular lattice. Models in section 3 are intermediate between diffusion and percolation, 

i.e., an array of convective cells or a shear flow plus a global diffusion.  

2. Diffusion in two-dimensional disordered systems 

When 𝐾𝑢 < 1, the expression for magnetic diffusivity is 
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which is just another form of equation (1-3). Recall the definition of Kubo #, we can rewrite it as 
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where 𝑙𝑁𝐿
−1~𝐵̃𝑟/𝐵0𝜕𝑟 is the nonlinear mixing length. It corresponds to the third term of equation 

(1-1). Therefore, in large Kubo regime, nonlinear scattering process dominates and sets the spatial 

and temporal scales. Similar stories occur in turbulent flow and collisional drift wave. For 

turbulent flow, we can define Kubo # as 
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where 𝜏𝑁𝐿 is the eddy circulation time. For collisional drift wave, Kubo # and the auto-correlation 

time are defined as 
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Two natural examples for 𝐾𝑢 ≫ 1 are two-dimensional guiding center plasma and a random array 

of discrete charged rods [4]. As shown in figure (3), both of them are translationally invariant in 

the main field direction, which indicates an infinite 𝑙𝑎𝑐 and an infinite Kubo number. We want to 

calculate the effective diffusivity of these two models under nonlinear scattering correction. 



The model of 2D guiding center plasma consists of two equations 
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∇2𝜑 = −4𝜋𝜌. (2 − 6) 

Then, the effective diffusion coefficient of integral of correlation is given by 
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which is similar in form to equation (2-1). However, in equation (2-7), the memory function 𝑅(𝜏) 

not only contains the unperturbed orbit, but also contains the nonlinear scattering, i.e., 

𝑅(𝜏) = 𝑒−𝑖𝒌⊥⋅𝒓𝟎𝑒
𝑖[(𝜔−𝑘∥𝑣∥)𝜏+𝒌⊥⋅𝒓𝟎]⏟              
𝑢𝑛𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑜𝑟𝑏𝑖𝑡

+ 𝑖𝒌⊥⋅𝜹𝒓(−𝜏)⏟        
𝑁𝐿 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔. (2 − 8)

 

From equation (2-8) we can see, the linear wave-particle resonance is broadened by the nonlinear 

effect. This is a typical example of resonance broadening theory. Because 𝐾𝑢 → ∞, 𝜔, 𝑘∥ → 0. 

And since the nonlinear scattering is stochastic, only average diffusion coefficient is of physical 

significance. That’s why we take the ensemble average (denoted by bracket ⟨⟩) in equation (2-7). 

One of basic assumptions of resonance broadening theory is that particle orbits are stochastic, so 

we can expand 𝑅(𝜏), take its ensemble average, and then obtain (here the pdf of 𝜹𝒓 is a Gaussian) 

Figure 3 Illustrations of 2D guiding center plasma and a random array of 
charged rods. They are both translationally invariant along the main field and 
disordered in the plane perpendicular to main field. 
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Plugging equation (2-9) into equation (2-7), we get 
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Here comes some observations. 

• The characteristic time of nonlinear scattering 𝜏𝑐 is 1/𝑘⊥
2⟨𝐷⊥⟩. 𝜏𝑐 is controlled by ⟨𝐷⊥⟩ and it 

becomes large at large spatial scale. This is because of the “slow mode” originating from the 

conservation of 𝜌, i.e. 𝜕𝑡 ∫𝜌𝑑
2𝑥 → 0. Here 𝜌 is called “conserved order parameter”. 

• ⟨𝐷⊥⟩ is defined recursively, which is a symbol of a strong scattering process.  

• Because 𝑣̃ here is 𝐸 × 𝐵 drift velocity fluctuation,  ⟨𝐷⊥⟩ ∝ 1/𝐵0, the scaling law of Bohm 

diffusion. 

Assuming a symmetric spectrum, we get 
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To proceed, we need to know the spectrum of the fluctuating electric field.  

By using test particle model (TPM)1, we can obtain the spectrum of 2D guiding center plasma, 

 
1 What is test particle model? A test particle model is a plasma kinetics theory to calculate the fluctuation spectrum 
and relaxation rate in a near-equilibrium plasma, which is characterized by a balance of emission and absorption by 
particles at a rate related to the temperature 𝑇 , the validity of linear response theory, and the use of linearized 
particle trajectories. In many cases, plasma is viewed as Vlasov fluid. However, since plasma is composed by isolated 
particles (like a pea soup), the probability distribution function has many spikes displaying the discreteness of 
particles. As evidence of this argument, these spikes disappear if we divide each particle into many smaller particles 
(i.e., crushing peas in a pea soup) while keeping charge conservation. These spikes can be treated as quasi-particles 
and emit radiation as moving through plasma. This radiation will be absorbed by plasma via Landau damping. Thus, 
in TPM, each particle can stimulate a collective response from the other particle by its discreteness and respond to 
or “dresses” other discrete particles by forming part of the background Vlasov fluid. In other words, each particle 
has a dual identity, both as an emitter and an absorber. 



which is 
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where 𝑙 is the parallel scale length, 𝜆𝐷 is the Debye length. Plugging equation (2-13) into equation 

(2-11), we obtain 
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The upper bound of the integral is 1/𝜆𝐷 since 𝜆𝐷 is the smallest scale. And since the perpendicular 

system size 𝐿0 is the largest scale, the lower bound of the integral is 1/𝐿0.  

As for a random array of charged rods, we have Poisson’s equation 
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Taking the Fourier transform of equation (2-15), we get 
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Then we have 
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Plugging equation (2-17) into equation (2-11), we obtain 
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Both of equation (2-14) and equation (2-18) recover the scaling of Bohm diffusion and have a 

dependence on the macroscopic scale 𝐿0, which arises from the “slow mode”, i.e., 𝜏𝑐 → ∞ as 



𝑘⊥ → 0. Clearly the macro-scale dependence of the random array is stronger.  

Can we generalize the results of equation (2-14) and equation (2-18) to stochastic magnetic field 

with 𝐾𝑢 > 1? We have already seen the similarity between equation (2-1) and equation (2-7). To 

make this point clearer, we can write down the equations of motion of 2D guiding center plasma 
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In the 𝐾𝑢 → ∞ limit, 𝑙𝑎𝑐 → ∞, so stochastic magnetic field is homogeneous in 𝑧 direction and 

random in 𝑥 and 𝑦 directions, just like the random array of charged rods. The trajectory of a field 

line satisfies 
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So 
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Obviously, equation (2-19) and equation (2-21) are same in structure, whereas in equation (2-21) 

𝑧 plays the role of 𝑡. Therefore, it is safe to extend the calculation of 𝐷𝑀 to include resonance 

broadening. Following equation (2-1) and equation (2-7), the magnetic diffusivity is 
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where the unperturbed trajectory is kept. Taking the real part of equation (2-22), we get 
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where 𝑘⊥
2𝐷𝑀/𝑘∥~𝐾𝑢

2.  

For 𝐾𝑢 ≪ 1, we restore the result of equation (1-3). For 𝐾𝑢 ≫ 1, equation (2-33) reduces to 

⟨𝐷𝑀⟩ = ∑
|𝑏̃𝒌|

2

𝑘⊥
2⟨𝐷𝑀⟩

𝒌
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Since |𝐴𝒌|
2 = |𝑏̃𝒌|

2
𝑘⊥
2, we obtain 

⟨𝐷𝑀⟩~⟨𝑏̃
2⟩
1/2
Δ. (2 − 25) 

Above discussions and calculations involve the idea of resonance broadening theory [1]. Here I’d 

like to use wave-particle interaction as an example to give a more detailed introduction to 

resonance broadening theory. First, regarding its name, there are two questions we need answer. 

Resonance between what and what? And the resonance is broadened by what? For wave-particle 

interaction, of course, it is the resonance between a wave and its corresponding resonant particles. 

This resonance can be broadened by other background modes. For the diffusion of field lines, 

magnetic perturbation is resonant with the magnetic surface which has the same pinch rate. And 

this resonance is broadened by other magnetic perturbations. Then what does “broadening” mean? 

We will answer this question later. 

As quasi-linear theory answering the question “How does ⟨𝑓⟩ evolve in the presence of a spectrum 

of waves, given that the particle orbits are stochastic?”, resonance broadening theory answers the 

question “How does the plasma distribution function 𝑓 respond to a test wave 𝐸𝑘,𝜔 at (𝑘, 𝜔), given 

an existing spectrum of background wave?” In other words, resonance broadening theory aims to 

find the modification of background wave to the linear response of 𝑓𝑘,𝜔 to 𝐸𝑘,𝜔. 

Resonance broadening theory replies upon two assumptions: 

• Particle orbits are assumed to be stochastic, so excursions from unperturbed orbits may be 

treated as diffusion process. We have already used this assumption to calculate the ensemble 

average of the memory function in equation (2-9). 

• The “test wave” approximation is assumed to be valid. This approximation is similar to test 

particle model. As shown in figure 4, it means that the ensemble of interacting modes is 

sufficiently large and statistically homogeneous so that removing any test mode does not alter 



the physics of the ensemble of remaining modes. 

The idea of resonance broadening theory is like that of Weiner-Feynman path integral, i.e., 

replacing the integration over the time history of the exact (or “perturbed”) orbit by an average 

over a statistical ensemble of excursions from the linear (or “unperturbed”) orbit, as depicted in 

figure 5. 

Rewriting the linearized Vlasov equation as 

𝑑𝑓𝑘
𝑑𝑡

= −
𝑞

𝑚
𝐸𝑘
𝜕⟨𝑓⟩

𝜕𝑣
, (2 − 26) 

where 𝑑/𝑑𝑡 is determined by the characteristic equations (of the Vlasov equation), 

𝑑𝑥/𝑑𝑡 = 𝑣, 𝑑𝑣/𝑑𝑡 = 𝑞𝐸/𝑚. (2 − 27) 

At 𝑡 = 0, 𝑓𝑘𝑒
𝑖𝑘𝑥 = 𝑓𝑘,𝜔𝑒

𝑖𝑘𝑥𝑒𝑖𝜔𝑡|𝑡=0 = 𝑓𝑘,𝜔𝑒
𝑖𝑘𝑥. Since 𝐸𝑘 = 𝐸𝑘,𝜔𝑒

𝑖𝜔𝑡,  multiplying equation (2-

16) by 𝑒𝑖𝑘𝑥 and integrating it over time (tracing back the orbit), we obtain 

𝑓𝑘,𝜔 = −
𝑞

𝑚
𝑒−𝑖𝑘𝑥∫ 𝑑𝜏𝑒𝑖𝜔𝜏𝑈(−𝜏) [𝑒𝑖𝑘𝑥𝐸𝑘,𝜔

𝜕⟨𝑓⟩

𝜕𝑣
]

∞

0

, (2 − 28) 

where 𝑈(−𝜏) is the formal, exact orbit propagator, which has the property that 

Figure 4 Test wave approximation, we can remove on test mode without 
changing the physics of the ensemble of other background modes [1]. 

Figure 5 In resonance broadening theory, an exact orbit can be regarded as a 
superposition of an unperturbed orbit and an ensemble of random scattering [1]. 



𝑈(−𝜏)𝑥 = 𝑥(−𝜏) = 𝑥0(−𝜏) + 𝛿𝑥(−𝜏) = 𝑥0 − 𝑣𝜏 + 𝛿𝑥(−𝜏). (2 − 29) 

Plugging equation (2-29) into equation (2-28), we get 

𝑓𝑘,𝜔 = −∫ 𝑑𝜏𝑒𝑖(𝜔−𝑘𝑣)𝜏𝑒𝑖𝑘𝛿𝑥(−𝜏)
𝑞

𝑚
𝐸𝑘,𝜔

𝜕⟨𝑓⟩

𝜕𝑣

∞

0

. (2 − 30) 

In resonance broadening theory, 𝑓𝑘,𝜔 is replaced by its ensemble average, i.e., 

𝑓𝑘,𝜔 → ⟨𝑓𝑘,𝜔⟩𝑂𝐸 = −∫ 𝑑𝜏𝑒𝑖(𝜔−𝑘𝑣)𝜏⟨𝑒𝑖𝑘𝛿𝑥(−𝜏)⟩
𝑞

𝑚
𝐸𝑘,𝜔

𝜕⟨𝑓⟩

𝜕𝑣

∞

0

. (2 − 31) 

To calculate ⟨𝑒𝑖𝑘𝛿𝑥(−𝜏)⟩, we note that 

𝛿𝑥(−𝜏) = −∫ 𝑑𝜏′𝛿𝑣(−𝜏′)
𝜏

0

, (2 − 32) 

and 

⟨𝑒𝑖𝑘𝛿𝑥(−𝜏)⟩
𝑂𝐸
= ⟨exp [−𝑖𝑘∫ 𝛿𝑣(−𝜏′)𝑑𝜏′

𝜏

0

]⟩

𝑂𝐸

. (2 − 33) 

Excursions in velocity are produced by fluctuating electric fields of the turbulent wave ensemble, 

i.e., 𝑑𝛿𝑣/𝑑𝑡 = 𝑞𝐸̃/𝑚. Since the ensemble of waves is homogeneous, it is reasonable to assume a 

Gaussian pdf of 𝐸̃, so that 𝛿𝑣 behaves diffusively, i.e., 

𝑝𝑑𝑓[𝛿𝑣] =
1

√𝜋𝐷𝜏
exp[−𝛿𝑣2/𝐷𝜏] . (2 − 34) 

Thus we can define the ensemble average as 

⟨𝐴⟩𝑂𝐸 = ∫
𝑑𝛿𝑣

√𝜋𝐷𝜏
exp[−𝛿𝑣2/𝐷𝜏] 𝐴 . (2 − 35) 

Using this definition, equation (33) reduces to 

⟨𝑒𝑖𝑘𝛿𝑥(−𝜏)⟩
𝑂𝐸
= exp [−

𝑘2𝐷𝜏3

6
] . (2 − 36) 

Plugging equation (2-36) into equation (2-31), we get 



⟨𝑓𝑘,𝜔⟩ = −∫ 𝑑𝜏 exp [𝑖(𝜔 − 𝑘𝑣)𝜏 −
𝑘2𝐷𝜏3

6
]
𝑞

𝑚
𝐸𝑘,𝜔

𝜕⟨𝑓⟩

𝜕𝑣

∞

0

. (2 − 37) 

We can define 𝜏𝑐 = (𝑘
2𝐷/6)−1/3, so equation (2-37) becomes 

⟨𝑓𝑘,𝜔⟩ = −∫ 𝑑𝜏 exp [𝑖(𝜔 − 𝑘𝑣)𝜏 −
𝜏3

𝜏𝑐
3]
𝑞

𝑚
𝐸𝑘,𝜔

𝜕⟨𝑓⟩

𝜕𝑣

∞

0

. (2 − 38) 

This result is slightly different from equation (2-9) and equation (2-22), because it is velocity, not 

position, that is scattered by electric field fluctuations. To some extent, this result is more accurate 

compared with equation (2-9) and equation (2-22), though for simplicity we still assume 𝛿𝑟 

behaves diffusively in many calculations. If we adopt this approximation, 𝜏3/𝜏𝑐
3 is replaced by 

𝜏/𝜏𝑐, and equation (2-38) is modified to 

⟨𝑓𝑘,𝜔⟩ = −
𝑖

(𝜔 − 𝑘𝑣 +
𝑖
𝜏𝑐
)

𝑞

𝑚
𝐸𝑘,𝜔

𝜕⟨𝑓⟩

𝜕𝑣
. (2 − 39) 

Taking the real part of equation (2-39), we get 

𝑅𝑒⟨𝑓𝑘,𝜔⟩ = −
1/𝜏𝑐

(𝜔 − 𝑘𝑣)2 + 1/𝜏𝑐2
𝑞

𝑚
𝐸𝑘,𝜔

𝜕⟨𝑓⟩

𝜕𝑣
. (2 − 40) 

In the limit of 1/𝜏𝑐 → 0, i.e., completely ignoring the correction of nonlinear broadening, we 

recover the result of quasi-linear theory 

𝑅𝑒⟨𝑓𝑘,𝜔⟩ = −𝜋𝛿(𝜔 − 𝑘𝑣)
𝑞

𝑚
𝐸𝑘,𝜔

𝜕⟨𝑓⟩

𝜕𝑣
. (2 − 41) 

Now, the meaning of “broadening” becomes clear. The effect of scattering by the turbulent 

spectrum of background waves is to broaden the linear wave-particle resonance, from a delta 

function of zero width in quasi-linear theory to a function of finite width proportional to 1/𝜏𝑐. 

All the results calculated in this section can be regarded as applications of resonance broadening 

theory. However, we can question the correctness of these results by doubting basic assumptions 

of resonance broadening theory, i.e., is it reasonable to assume that excursions from unperturbed 

orbits can be treated as a diffusion process? 

Recall equation (2-21), it can be simplified to 



∇𝐴 ⋅ 𝑑𝒙 = 0. (2 − 42) 

In other words, magnetic field lines are contours of constant 𝐴, as in a topographical map (see 

figure 6). 

We can set ⟨𝐴⟩ = 0 , ⟨𝐴2⟩ = 𝐴0
2 , where ⟨⟩ denotes ensemble average [5]. Therefore, 𝐴0  is the 

average height or depth of a hill or a valley. As illustrated in figure 6, most contours, like (1) and 

(2), are closed and isolated, thus give little contribution to transport. But contours along “passes”, 

like (3), can take long path lengths. Transport occurs primarily along there. As shown in figure 7, 

for a system with a temperature gradient (like a tokamak), transport can only happen along 

contours like (c). So if this picture is true, we may find sharply localized strike marks at plasma-

facing component of a tokamak. This is essentially different from diffusion process, which may 

lead to a uniform distribution of erosion. As 𝐴 → 0, length of island or isoline surrounding island 

scales as 

Figure 6 Contours of A. As we can expect, most of the contours are localized 
and closed, as (1) and (2). They contribute little to transport. However, 
contours like (3) span the system and contribute a lot to the transport. 

Figure 7 Heat transport can only happen at channels like contour (c) 



𝑙𝐴~𝐴
−𝛾. (2 − 43) 

Therefore, it is more like a percolation process rather than a diffusion process! Since one of the 

pillars of resonance broadening theory now collapses in this case, we need to study percolation 

theory to understand the physics of 𝐾𝑢 > 1 regime. 

The table below shows the difference between percolation and diffusion. 

 Medium Particle Motion 

Percolation Random Deterministic 

Diffusion Fixed Stochastic 

Table 1 Differences between Percolation and Diffusion 

For example, in 1D random walk, the medium is uniform. Each step has the same probability of 

going left and right. The mean squared displacement ⟨𝑥2⟩ is proportional to step number 𝑁. In 

contrast, in 1D percolation, each site is assigned a left or right orientation with probability 1/2. So 

the medium itself is stochastic. Given the initial condition of a particle, its trajectory is uniquely 

determined, as shown in figure 8. 

3. Side stories: Taylor cell problem and Taylor shear dispersion 

Before we formally introduce percolation theory, it is useful to study models intermediate between 

diffusion and percolation. Closed field lines in figure 7 can be seen as convective cells. In such a 

system, the motion of particles is deterministic, i.e., they always move along field lines. However, 

if two cells are close enough, collisional diffusion can kick particles from one cell to another. 

Therefore, a small but finite global diffusion makes a nontrivial difference.  

A typical example is Taylor cell problem [6]. As depicted in figure 9, consider an array of 

convective cells. These cells marginally overlap each other. The system has a global density 

gradient from right to left. Therefore, particles tend to move from left to right to release stored free 

Figure 8 1D random walk vs. 1D percolation 



energy. However, the rotate speed of these vortices is so fast that they can capture and trap particles 

easily. But if we introduce a global diffusion 𝐷0, particles can be kicked off a streamline at the 

narrow gap between two convective cells. This diffusion is the ultimate origin of irreversibility. 

Clearly, there are two different time scales: fast convection operating in cells and slow diffusion 

operating in boundary layers. We can define a dimensionless number to quantify the degree of 

time scale separation. For a passive scalar, it satisfies 

𝜕𝑛

𝜕𝑡
+ 𝒗 ⋅ ∇𝑛 − 𝐷0∇

2𝑛 = 0. (3 − 1) 

The ratio of the second term to the third term defines a Peclet number 

𝑃𝑒 =
𝑣0𝑙0
𝐷0

. (3 − 2) 

In this case, since the convection is much faster than diffusion, 𝑃𝑒 ≫ 1. 

Because the diffusion process is slow, it is not a surprise to see the density profile looks like a 

staircase. Here we assume the characteristic scale of cells is 𝑙0, the width of boundary layer is 𝛿 

and 𝛿 ≪ 𝑙0. We are interested in the effective diffusivity for scales much larger than 𝑙0. In MFE, 

when we calculate effective diffusivity, we simply take the summation of turbulent diffusivity and 

neoclassical diffusivity. But as we will see, the effective diffusivity of Taylor cell problem is the 

Figure 9 The configuration and density profile of Taylor cell problem  



geometric mean of 𝐷0 and 𝐷𝑐𝑜𝑛𝑣𝑐𝑡𝑖𝑜𝑛. 

For a random walk, diffusion coefficient is calculated by (Δ𝑥)2/Δ𝑡. In this case, the time step is 

𝑙0/𝑣0, the cell circulation time, and the step size is 𝑙0. Nevertheless, since diffusion only happens 

in boundary layer, to calculate 𝐷𝑒𝑓𝑓, we need to multiply (𝛥𝑥)2/𝛥𝑡 by a factor 𝑓𝑎𝑐𝑡𝑖𝑣𝑒 = 𝛿/𝑙0, 

which is the ratio of the active volume to the total volume. So heuristically, 

𝐷𝑒𝑓𝑓 ≅ 𝑓𝑎𝑐𝑡𝑖𝑣𝑒
(Δ𝑥)2

Δ𝑡
=
𝛿

𝑙0

𝑙0
2

𝑙0
𝑣0

= 𝛿𝑣0. (3 − 3) 

To further simplify equation (3-3), we need to calculate 𝛿. Since particles undergo a pure random 

walk in boundary layer, we can calculate 𝛿 by 

𝛿2 = 𝐷0Δ𝑡 = 𝐷0
𝑙0
𝑣0
. (3 − 4) 

Plugging equation (3-4) into equation (3-3), we obtain 

𝐷𝑒𝑓𝑓 = √𝐷0𝑣0𝑙0 = √𝐷0𝐷𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = √𝐷0
2𝑃𝑒 = 𝐷0(𝑃𝑒)

1/2. (3 − 5) 

Again, it is worth emphasizing that this result is not a simple addition, but a geometric mean.  

Another related and interesting model is Taylor shear dispersion. This phenomenon was first 

discovered by G.I. Taylor in 1953 [7]. As shown in figure 10, this problem is stated by a 

comparison of three laminar flows, into which dye with molecular diffusion 𝐷0 is integrated. 

In figure 10(a), when there is no flow, we expect that the evolution of the radius of the dye follows 

𝛿𝑟~√𝐷0𝑡. (3 − 6) 

In figure 10(b), the flow is static and uniform since we adopt a slip boundary condition. Because 

the perpendicular motion of dye molecules is restricted, after 𝑡 ≫ 𝐿⊥
2 /𝐷0, the diffusion of the dye 

will saturate in the 𝑦 direction. The shape of the dye transits from a circle to a slug, which expands 

axially at the rate of (𝐷0𝑡)
1/2 and advects at the speed of 𝑣0. 

So far, nothing is fancy. But what if we change the boundary condition to a no-slip boundary 

condition? In this situation, the profile of the flow becomes a parabola, i.e., 𝑣̅𝑥(𝑦) = 2𝑣0(1 −



𝑦2/𝐿⊥
2 ). As illustrated in figure 10(c), Taylor found in his experiments that there is a more rapid 

dispersal of dye in shear flow, i.e., effective axial diffusion enhanced (𝐷𝑒𝑓𝑓,𝑎𝑥𝑖𝑎𝑙 > 𝐷0) after 𝑡 ≫

𝐿⊥
2 /𝐷0. Now the question is: what is effective along stream diffusivity of passive scalar in a laminar 

shear flow? 

Recall equation (3-1). Because we are interested in axial diffusion and due to the time scale 

separation, we can take the average of 𝑛 and 𝒗 over the lateral direction and get 

Figure 10 Taylor shear dispersion. (a) In the case of no flow, the dye undergoes a 
diffusion process. (b) In the case of uniform flow, the dye becomes a slug which advects 

at the speed of 𝑣0 and expands at the rate of (𝐷0𝑡)
1/2 after 𝑡 ≫ 𝐿⊥

2 /𝐷0. (c) In the case 
of shear flow, a more rapid dispersal of the dye happens in the axial direction. 



⟨𝑛⟩ =
1

𝐿⊥
∫ 𝑛(𝑥, 𝑦, 𝑡)𝑑𝑦
𝐿⊥/2

−𝐿⊥/2

 ⟨𝒗⟩ =
1

𝐿⊥
 ∫ 𝒗(𝑥, 𝑦)𝑑𝑦

−𝐿⊥/2

−𝐿⊥/2

, (3 − 7) 

where 𝑛 and 𝒗 are concentration of dye molecules and velocity field respectively. Then 𝑛 and 𝒗 

can be decomposed into a mean part and a fluctuation part, i.e., 

𝑛 = ⟨𝑛⟩ + 𝑛̃,
 𝒗 = ⟨𝒗⟩ + 𝒗̃.

(3 − 8) 

Substituting equation (3-8) into equation (3-1), and taking the spatial average over 𝑦, we obtain 

𝜕

𝜕𝑡
⟨𝑛⟩ + ⟨𝑣𝑥⟩

𝜕

𝜕𝑥
⟨𝑛⟩ +

𝜕

𝜕𝑥
⟨𝑣̃𝑥𝑛̃⟩ = 𝐷0

𝜕2

𝜕𝑥2
⟨𝑛⟩,

𝜕

𝜕𝑡
𝑛̃ + ⟨𝑣𝑥⟩ ⋅ ∇𝑛̃ − 𝐷0

𝜕2

𝜕𝑥2
𝑛̃ + 𝑣̃𝑥

𝜕

𝜕𝑥
⟨𝑛⟩ = 𝐷0

𝜕2

𝜕𝑦2
𝑛̃,

(3 − 9) 

where we have dropped higher order terms. 

We can define 

𝑑

𝑑𝑡
𝑛̃ =

𝜕

𝜕𝑡
𝑛̃ + ⟨𝑣𝑥⟩ ⋅ ∇𝑛̃ − 𝐷0

𝜕2

𝜕𝑥2
𝑛̃. (3 − 10) 

Since the width of the tube is much less than its length, 𝜕𝑥 ≪ 𝜕𝑦. So at a stationary state (𝜕𝑡 = 0), 

it is reasonable to neglect 𝑑𝑛̃/𝑑𝑡. By balancing the remaining two terms of equation (3-9b), we 

obtain 

𝑛̃𝑘𝑦 = −
1

𝑘𝑦2𝐷0
𝑣̃𝑥𝑘𝑦

𝜕

𝜕𝑥
⟨𝑛⟩. (3 − 11) 

Substituting equation (3-11) into equation (3-9a), we get 

𝜕

𝜕𝑡
⟨𝑛⟩ +

𝜕

𝜕𝑥
⟨𝑛⟩ +

𝜕

𝜕𝑥
∑−

|𝑣̃𝑥𝑘𝑦
|
2

𝑘𝑦2𝐷0
𝑘𝑦

𝜕

𝜕𝑥
⟨𝑛⟩ = 𝐷0

𝜕2

𝜕𝑥2
⟨𝑛⟩. (3 − 12) 

Clearly, according to equation (3-12), it is convenient to define 



𝐷𝑒𝑓𝑓,𝑎𝑥𝑖𝑎𝑙 = 𝐷0 + 𝐷𝑠ℎ𝑒𝑎𝑟 = 𝐷0 +∑
|𝑣̃𝑥𝑘𝑦

|
2

𝑘𝑦2𝐷0
𝑘𝑦

. (3 − 13) 

Since we are studying a laminar flow, the fluctuation level is of the same magnitude as the mean 

flow, i.e. |𝑣̃2|~⟨𝑣⟩2. So 𝐷𝑠ℎ𝑒𝑎𝑟~𝑣0
2𝐿⊥
2 /𝐷0~𝑃𝑒

2𝐷0 . For a laminar flow, it is quite possible that 

𝐷𝑠ℎ𝑒𝑎𝑟 > 𝐷0 (actually, in this case, the Peclet number is about √48). Thus, the effective axial 

diffusivity is enhanced. The fundamental character of the result that differential unidimensional 

convection and transverse diffusion yield a longitudinal diffusion process for downstream. Taylor 

proposed that shear dispersion as a possible mechanism for distributing nutrients in blood flow. 

As I write this, I suddenly found a scary fact. Wait a minute, is 𝐷𝑠ℎ𝑒𝑎𝑟 irrelevant to shear rate?! 

Though it can’t be over-emphasized that shear is very important in this story, shear rate 𝜕𝑦𝑣̅𝑥 

doesn’t enter the final result! After reading the supplement materials published on Canvas, I 

eventually found that since we take the spatial average over lateral direction, ⟨𝑣𝑥⟩ has lost the 

information of shear, which has been buried in 𝑣̃ instead. Thus, 𝑣̃ is not the velocity fluctuation 

that we get used to. To restore the presence of shear, we should add an extra term 

(𝑣̅𝑥(𝑦) − ⟨𝑣𝑥⟩)𝜕𝑥 ⟨𝑛⟩  to the L.H.S of equation (3-9b), balance it with 𝐷0𝜕𝑦
2𝑛̃  and find the 

expression 𝑛̃. Note that this is a nontrivial modification because it vanishes when flow is uniform. 

4. Percolation theory 

Finally, after an interminable introduction (section 1 and section 2 explain why we are interested 

in 𝐾𝑢 > 1 and percolation theory, respectively) and an exhausting detour (section 3 serves as a 

side story), here comes the entrée, i.e., percolation theory. As I said in section 2, in percolation, 

intrinsic and random properties of medium determine motion. In other words, the medium is 

random while the motion of particles is deterministic. A maze could be a rough example of 

Figure 11 The structure of a maze looks stochastic. You can only 
go from A to B if these two points are really connected. 



percolation. As shown in figure 11, particle or flow can traverse 𝐴 → 𝐵 only if there is an un-

dammed, un-cut, self-avoiding (no circle in the trajectory, since it makes no contribution to the 

global transport) random walk connecting point A and B. 

Another motivation for studying percolation is its relevance to fluid flow, which originates from 

Broadbent and Hammersley’s research in 1950s [8]. Especially, we are interested in hydrology 

(like Hurst’s work), transport/flow through porous media, and microscopic underpinnings of 

Darcy’s law and Kozeny equation: 

𝒒 = −
𝜅

𝜇
∇𝑝, (4 − 1) 

where 𝒒 is flow flux, 𝜅  is permeability. Also, percolation cluster distribution is a measure of 

emergent order and its statistical characterization. Percolation is a simpler problem than avalanche 

distribution. Self-organized criticality is originally defined in terms of “percolation cluster” of 

single toppling (See BTW [9]). It is also a prototype of many-body, short range interaction system 

with universality, scaling, etc. 

Mathematically, it is easy to formulate percolation problem on a lattice. There are two ways to 

study percolation of a lattice: site percolation and bond percolation. For site percolation, every site 

of the lattice is either occupied with a probability 𝑝 or unoccupied with a probability (1 − 𝑝). As 

illustrated in figure 12, on a 2D lattice, we can define a N-cluster by the number of occupied sites 

it includes. A cluster is bounded by a layer of unoccupied sites. For bond percolation, every site 

Figure 12 Clusters on a 2D square lattice. 



of the lattice is occupied while each bond on the lattice is present with a probability 𝑝 or absent 

with a probability (1 − 𝑝) . It can be proved that a bond percolation 𝐿  is equivalent to site 

percolation on the “covering lattice” 𝐿∗, but no vice-versa [10]. For example, in the case of a square 

lattice in figure 13, the covering lattice is formed by placing a site in 𝐿∗ at the center of every bond 

in 𝐿 and connecting these sites in 𝐿∗ whose corresponding bonds share a common site in 𝐿. A 

closed bond in 𝐿 is mapped into an occupied site in 𝐿∗. 

Consider a lattice of 𝑁 sites (𝑁 ≫ 1). The occupation probability is 𝑝, which is a tuning parameter 

of the system. When 𝑝 is very small, only isolated small clusters appear. As 𝑝 increases, larger and 

larger clusters form. Until 𝑝 is greater than a critical value 𝑝𝑐, a large cluster spanning the whole 

lattice forms, corresponding to percolation. As we can see, this phenomenon owns the properties 

of phase transition, which is accompanied by critical exponents. So what interests us is statistical 

characterization of these clusters as 𝑝 → 𝑝𝑐. Another important question is, “How do I know it 

when I see it?” Specifically, how do we identify or visualize percolation in a simulation? Since 

percolation is intrinsically a static concept (i.e., a snapshot), we can analyze clustering, distribution 

in an image. The picture (figure 14) in Boffetta’s work beautifully shows vorticity clustering in 

2D turbulence, which appeals to intuition from percolation [11]. We can also introduce the concept 

of time to percolation. If we broadcast a sequence of cluster images, it should manifest avalanches, 

i.e., large clusters discharges across the system. In this note we mainly focus on site percolation. 

In the rest of this section, we will introduce the scaling theory of percolation. 

Assume the probability of a site being occupied is 𝑝. A cluster containing 𝑠 occupied sites is called 

Figure 13 Mapping a bond percolation to a site percolation. 



a 𝑠-cluster. To characterize the statistics of the lattice, we can define a new quantity 𝑛𝑠, which is 

the average number of 𝑠-clusters over the number of total sites. So 𝑛𝑠(𝑝) is a function of 𝑠 and 𝑝. 

When 𝑝 < 𝑝𝑐, ∑ 𝑛𝑠𝑠  is the total number of clusters and ∑ 𝑠𝑛𝑠𝑠  is equal to 𝑝. N.B., here 𝑠-clusters 

only refer to clusters containing a finite number of sites. However, when 𝑝 > 𝑝𝑐, clusters spanning 

the whole lattice emerges. Then we can define percolation probability 𝑝∞, which is the fraction of 

occupied sites belonging to a percolation network. It measures the “strength” of infinite network. 

Therefore, for an arbitrary lattice site, it can be empty with a probability (1 − 𝑝), part of a 

percolation cluster with a probability 𝑝𝑝∞, or part of a finite cluster 𝑝(1 − 𝑝∞), which is equal to 

∑ 𝑠𝑛𝑠𝑠 . Then we have the relation 

1 − 𝑝 + 𝑝𝑝∞ + 𝑝(1 − 𝑝∞) = 1. (4 − 2) 

Near 𝑝𝑐, one important observation is that the system has a divergent correlation length and a 

self-similar structure, i.e., which indicates a power law of ∑ 𝑛𝑠𝑠 , ∑ 𝑠𝑛𝑠𝑠 , etc. Due to this fact, we 

can define several scaling exponents by following power laws 

Figure 14 Illustration of vorticity clusters in Boffetta’s simulation. These 
clusters are defined as connected regions with the same sign of vorticity. 
Different clusters are filled in different colors. 



∑𝑛𝑠(𝑝)

𝑠

~|𝑝 − 𝑝0|
2−𝛼,

 ∑𝑠𝑛𝑠(𝑝)

𝑠

~|𝑝 − 𝑝𝑐|
𝛽 ,

 ∑𝑠2𝑛𝑠(𝑝)~|𝑝 − 𝑝𝑐|
−𝛾

𝑠

,

 𝜖(𝑝)~|𝑝 − 𝑝𝑐|
−𝜈 ,

(4 − 3) 

where 𝜖(𝑝) is the correlation length. For 2D percolation, we have 𝛼~0.7, 𝛽~0.14, 𝛾~2.4, and 

𝜈~1.35. This phenomenon is also known as universality, because the values of these exponents 

are independent of the details of a specific site element. In addition, they are also irrelevant to the 

lattice structure, i.e., whether it is a square lattice or a triangular lattice doesn’t matter. However, 

we note that the first three power laws belong to 𝑛𝑠 and its moments. In principle, we can define 

the moment of 𝑛𝑠 all the way to infinite order. Does this mean we will get infinite number of 

scaling exponents? The answer is no. Quickly we can see all these scaling exponents can be derived 

from two scaling exponents. 

For 1D percolation, the expression for 𝑛𝑠 is 

𝑛𝑠 = 𝑝
𝑠(1 − 𝑝)2, (4 − 4) 

which is easy to understand—𝑝𝑠 is the probability that 𝑠 adjacent sites are occupied and (1 − 𝑝)2 

is the probability that two ends are connected to two empty sites. Using equation (4-4), we can get 

∑𝑛𝑠𝑠

𝑠

=∑𝑝𝑠(1 − 𝑝)2𝑠

𝑠

= (1 − 𝑝)2𝑝
𝑑

𝑑𝑝
∑𝑝𝑠

𝑠

= (1 − 𝑝)2𝑝
𝑑

𝑑𝑝
(
𝑝

1 − 𝑝
) = 𝑝, (4 − 5) 

which is not a surprise. Now define 𝜔𝑠 as the probability of 𝑠-cluster to which an arbitrary site 

belongs. Mathematically, 

𝜔𝑠 =
𝑛𝑠𝑠

∑ 𝑛𝑠𝑠𝑠
. (4 − 6) 

So the average cluster size is 

𝑠̅ = ∑𝑠𝜔𝑠
𝑠

=
∑ 𝑛𝑠𝑠

2
𝑠

∑ 𝑛𝑠𝑠𝑠
. (4 − 7) 



Using the same trick we used for the calculation of ∑ 𝑠𝑛𝑠𝑠 , we get 

𝑠̅ =
∑ (1 − 𝑝)2𝑝𝑠𝑠2𝑠

∑ (1 − 𝑝)2𝑝𝑠𝑠𝑠
=
1 + 𝑝

1 − 𝑝
. (4 − 8) 

Obviously, as 𝑝 → 𝑝𝑐, 𝑠̅ → ∞, which means 𝑝𝑐 = 1. If 𝑝 = 1 − 𝛿, then 𝑠̅ scales as 2/𝛿. 

Things are more complex in the 2-dimensional case. For 1D percolation, 𝑛𝑠~𝑝
𝑠. So it is reasonable 

to assume that for 2D percolation we still have 

𝑛𝑠~𝑒
−𝑐𝑠, (4 − 9) 

where 𝑐 is a function of |𝑝 − 𝑝𝑐|. But near criticality, 2D lattice also owns a self-similar structure, 

so 𝑛𝑠 should also be proportional to 𝑠−𝜏. In a word, the scaling of 𝑛𝑠 is 

𝑛𝑠~𝑠
−𝜏𝑒−|𝑝−𝑝𝑐|

1/𝜎𝑠, (4 − 10) 

which is a stretched exponential function. The exponential part of the scaling defines effective cut-

off on the range of cluster sizes, i.e., only clusters smaller than |𝑝 − 𝑝𝑐|
−1/𝜎 contribute to cluster 

average. The power law part of the scaling law reflects the self-similarity near criticality, i.e., 

𝑛𝑠 → 𝑠−𝜏 as 𝑝 → 𝑝𝑐. Equation (4-2) tells us that when 𝑝 → 𝑝𝑐
+, 

𝑝𝑝∞ +∑𝑠𝑛𝑠
𝑠

= 𝑝. (4 − 11) 

But at 𝑝 = 𝑝𝑐, 𝑝∞ = 0. So  

∑𝑛𝑠(𝑝𝑐)𝑠

𝑠

= 𝑝𝑐. (4 − 12) 

Plugging equation (4-12) into equation (4-11), we get 

𝑝𝑝∞ =∑(𝑛𝑠(𝑝𝑐) − 𝑛𝑠(𝑝))𝑠

𝑠

+ Ο(𝑝 − 𝑝𝑐) ≅∑𝑠1−𝜏(1 − exp(−𝑐𝑠))

𝑠

. (4 − 13) 

Transforming the summation in equation (4-13) into an integral, we have 

𝑝𝑝∞~𝑐
𝜏−2∫𝑧2−𝜏𝑒−𝑧𝑑𝑧 = 𝑐𝜏−2Γ(3 − 𝜏). (4 − 14) 

Since 𝑐~|𝑝 − 𝑝𝑐|
1/𝜎, we can conclude 



𝑝∞~(𝑝 − 𝑝𝑐)
𝛽 = (𝑝 − 𝑝𝑐)

(𝜏−2)
𝜎 . (4 − 15) 

So 𝛽 = (𝜏 − 2)/𝜎. The same strategy applies to the calculation of 𝑠̅. According to equation (4-7), 

when 𝑝 → 𝑝𝑐, we have 

𝑠̅ =
∑ 𝑠2𝑛𝑠𝑠

𝑝𝑐
= ∫𝑑𝑠𝑛𝑠𝑠

2~𝑐3−𝜏∫𝑧2−𝜏𝑒−𝑧𝑑𝑧~|𝑝 − 𝑝𝑐|
−𝛾, (4 − 16) 

where 𝛾 = (3 − 𝜏)/𝜎. Consider a more general case, the 𝑘-moment of 𝑠 scales as 

𝑚𝑘 =∑𝑠𝑘𝑛𝑠
𝑠

~∫𝑑𝑠𝑠𝑘−𝜏𝑒−𝑐𝑠~𝑐𝜏−1−𝑘∫𝑑𝑧𝑧𝑘−𝜏𝑒−𝑧 ~|𝑝 − 𝑝𝑐|
(𝜏−1−𝑘)/𝜎. (4 − 17) 

So 𝜎 and 𝜏 are the only two independent scaling exponents. If we know the 𝜎 and 𝜏, we can obtain 

all the other scaling exponents. 

Actually, to get these results, it is unnecessary to assume that 𝑛𝑠~𝑒
−𝑐𝑠. Instead, we can assume 

𝑛𝑠~𝑠
−𝜏𝑓[(𝑝 − 𝑝𝑐)𝑠

𝜎], (4 − 18) 

where 𝑓 is to be determined from computation. In this light, we have 

𝑠̅~∫𝑑𝑠𝑠2−𝜏𝑓[(𝑝 − 𝑝𝑐)𝑠
𝜎] ~|𝑝 − 𝑝𝑐|

−(3−𝜏)/𝜎∫𝑑𝑧𝑧2−𝜏𝑓(𝑧)~|𝑝 − 𝑝𝑐|
−(3−𝜏)/𝜎, (4 − 19) 

which is consistent with equation (4-16).  

What? You ask how to get 𝜎 and 𝜏? Well, you can get it by running a numerical simulation. But 

here I’d like to introduce a method called renormalization group (RG) theory that exploits the self-

similarity of the system near the critical point [10]. Trust me, don’t be scared by its big name. RG 

is not as hard as you expected. 

A RG transformation always has two steps: (1) coarse graining or decimating; (2) rescaling 

parameters to map the coarse-grained system back to the original one. Suppose 𝛼 is a parameter 

of the system, e.g., a scaling exponent defined in equation (4-33). After a mapping as described 

above, it becomes 𝛼∗ = 𝑅(𝛼). Near a fixed point, system is self-similar, so 

𝛼∗ = 𝑅(𝛼) = 𝛼, (4 − 20) 

which provides a way to calculate the value of 𝛼 near criticality. Now let’s take 2D triangular 



lattice as an example. First, we break up the original lattice 𝐿 into clusters of three sites each. As 

shown in figure 14, these clusters themselves form a new triangular lattice 𝐿′ whose lattice constant 

is larger that of the original lattice by the factor √3. Then we coarse grain each cluster into a site 

in this new triangular lattice 𝐿′ based on a “majority rule”, which means this site in 𝐿′ is occupied 

if the majority of the sites in the small cluster of 𝐿 are occupied, and the cluster maps into an empty 

site otherwise. Then we rescale the lattice constant of 𝐿′ to make it identical to the that of 𝐿. 

According to the majority rule, the probability that a site in 𝐿′ is occupied is equal to the probability 

of at least two sites of the cluster in 𝐿 are occupied. Then we have 

𝑝′ = 3𝑝2(1 − 𝑝) + 𝑝3 = 3𝑝2 − 2𝑝3. (4 − 21) 

Due to the self-similarity of the system near the critical point, 𝑝′ = 𝑝 . By solving equation (4-21), 

we get 𝑝𝑐 = 0.5, which is exactly the accurate percolation threshold for 2D triangular lattice. As 

for scaling exponents, recall equation (4-3d) 

𝜖(𝑝)~|𝑝 − 𝑝𝑐|
−𝜈 . (4 − 3𝑑) 

Let  𝑝 = 𝑝𝑐 + Δ. After a RG transformation, we have 

𝑝′(𝑝) ≈ 𝑝𝑐 + (
𝜕𝑝′

𝜕𝑝
)
𝑝=𝑝𝑐

Δ. (4 − 22) 

Since we reduce the scale of 𝐿′ by √3 in step (2), the correlation length is also reduced by √3. 

Plugging equation (4-22) into equation (4-3d), we obtain 

Figure 15 Illustration of the coarse graining of a triangular lattice 



𝜖(𝑝) = |𝑝 − 𝑝𝑐|
−𝜈 = √3𝜖′(𝑝′) = √3(

𝜕𝑝′

𝜕𝑝
)
𝑝=𝑝𝑐

−𝜈

|𝑝 − 𝑝𝑐|
−𝜈. (4 − 23) 

Utilizing equation (4-21), we get 

𝜈 =
ln√3

ln(𝜕𝑝′/𝜕𝑝)𝑝=𝑝𝑐
= 1.3547… , (4 − 24) 

which is very close to the true value 𝜈 = 1.35. 

Now we go back to the percolation of magnetic field lines [5]. Different from the case we discussed 

in section 2 (⟨𝐴⟩ = 0, ⟨𝐴2⟩ = 𝐴0
2), we now have a weak but non-zero mean field, i.e.  ⟨𝐵⟩ ≠ 0 and 

⟨𝐵⟩ ≪ 𝐵̃. As shown in figure 16, the mean field is distorted by the small-scale fields. Mean field 

lines now look like sinews threading through a “soup” of cells. 

The question is “does ⟨𝐵⟩ percolate through the system as 𝑎, the size of the system, approaches 

infinity?” Since 𝑎 is the largest spatial scale in this system, the minimum wave vector is 𝑘𝑚𝑖𝑛 =

2𝜋/𝑎. Assume the spectrum of 𝐴 is 

⟨𝐴2⟩𝒌 = {

𝑒−𝑘
2/𝑘0

2
, 𝑘 > 𝑘0

(
𝑘

𝑘0
)
𝑚

, 𝑚 > 0  𝑘 < 𝑘0
. (4 − 25) 

Then define the mean field as 

⟨𝐵⟩ = (⟨𝑏2⟩𝑘<1/𝑎)
1/2
. (4 − 26) 

Figure 16 Percolation of mean field lines 



Plugging equation (4-25) into equation (4-26), we get 

⟨𝐵⟩ = (∫ 𝑑𝑘𝑘𝑘2𝑚𝑘2
1/𝑎

0

)

1/2

≅ (1/𝑎)−𝑚−2. (4 − 27) 

Clearly, when 𝑚 = −2, ⟨𝐵⟩ = 𝑐𝑜𝑛𝑠𝑡 ≠ 0 as 𝑎 → ∞. Moreover, since 𝑗𝑧𝒌 ≅ 𝑘
2𝐴𝒌~𝑐𝑜𝑛𝑠𝑡, we can 

conclude that random current (i.e., white noise spectrum) will result in a percolating mean field. 

More generally, we need ⟨𝑗(𝒙)𝑗(𝒙 + 𝒓)⟩ ≥ 0 (correlated currents) for percolating ⟨𝐵⟩. It is easy to 

imagine that there is percolation for anti-correlated currents since fields they produce will cancel. 

5. Conclusion 

In this note, we explain why we are interested in 𝐾𝑢 > 1  regime and why we should study 

percolation theory. We use resonance broadening theory to calculate the effective diffusivity of 

system under nonlinear scattering correction. But in the end, we prove that the system behaves 

more like percolation than diffusion. We also study systems intermediate between diffusion and 

percolation: Taylor cell problem and Taylor shear dispersion. Site percolation of lattice is studied 

by using scaling theory. Scaling exponents and critical occupation probability are calculated via 

renormalization group theory, which utilizes the self-similarity of the system near a relevant 

critical point. Finally, we study the percolation of mean magnetic field and conclude that a random 

current density will result in a percolating mean field. 
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