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ABSTRACT We construct a random walk on a lattice having
a hierarchy of self-similar clusters built into the distribution func-
tion of allowed jumps. The random walk is a discrete analog of a
Levy flight and coincides with the Levy flight in the continuum
limit. The Fourier transform of the jump distribution function is
the continuous nondifferentiable function of Weierstrass. We
show that, for cluster formation, it is necessary that the mean-
squared displacement per jump be infinite and that the random
walk be transient. We interpret our random walk as having an
effective dimension higher than the spatial dimension available to
the walker. The difference in dimensions is related to the fractal
(Hausdorff-Besicovitch) dimension of the self-similar clusters.

For a one-dimensional random walk on an infinite perfect lattice
ofspacing A, let the probability ofoccupancy ofthe 1th site after
n steps be denoted by P.(l) and let p(l) be the probability of a
step having a displacement of 1 sites. Then,

Pn+1(1) E Ypl'I)Pn(l )- II]

This equation can be solved for Pn(l) given any PO(l) by a com-
bination of discrete Fourier transform and generating function
techniques (1). For a walk commencing at the origin-i. e., PO(l)
= 61,0-it is found that

Pn(k) = [A(k)] , [2]
where

P.(k) = > ekP.(l) [3]
J= _x0

and

A(k) = I eIk0 p(l). [4]
I=-co

For a symmetric random walk [p(l) = p(-l)] having finite mean-
square displacement per jump,

(12)= > f2p(Y) [5]
1= -00

the "structure function" A(k) has the asymptotic form

A(k) = 1 - 1/2 (12)k2 + o(k2).

Then, for large n and k =O(n- 12

Pn(k) (1 - * (12)nk2) exp -1/2n(12)k,

so that

Pn(1) - 2w(12)n- 1t2
exp {12/ (2(12)n .

[7]

This Gaussian form corresponds to a diffusing packet of prob-
ability and ensures that, as n -c 00, the walk spreads out to oc-
cupy all sites with a slowly varying and essentially unstructured
distribution. Walks on a multidimensional space lattice are
characterized by similar equations with 1 being interpreted as
a lattice point vector and k being interpreted as an appropriate
vector.

Suppose now that the walk is symmetric but that (12) = cc.
Then, passage to the continuum limit in space and time in the
standard fashion will give one of the symmetric "stable" distri-
butions of Levy (2) for the probability density function P(x,t) a
time t after the walk begins. These distributions are most easily
characterized in Fourier space by the equation

td

P(q,t)= et9xP(x,t)dx = expi-Alql'tl,
0x

[9]

where A and ,u are real positive constants and 0 < A < 2. One
of the many possible distributions of individual step lengths
leading to Eq. 9 is the Levy distribution of order A itself, for
which

p(x) constant *x|l-M (0 < ,u< 2) [10]

as IxI -x 00, so that the mean-square displacement per step
fx

(x2)= X2P(x)dx
X0

[11]

is infinite. Mandelbrot's computer simulations of such "Levy
flights" in two dimensions (3) yield much more interesting tra-
jectories in the case ,u < 2 than in the "diffusive" case (,u = 2
or any flight for which (x2) <0). Points visited appear in clus-
ters, well separated in space. Under magnification, each cluster
is found to consist of a set of clusters, each of which in turn is
a set of clusters and so on, giving a nested hierarchy of "self-
similar" clusters. The clustering is found to be more pronounced
(i.e., tighter clusters, further apart in space) as ,t decreases. In
a Levy flight, the trajectory spreads out over space as t -400 but
in a qualitatively different manner from the diffusive case.
To illustrate how the self-similar clusters can arise, we pre-

sent a discrete analog of the Levy flight that has the clustering
property built into the transition probability distribution p(l).
Furthermore, we show how the effective dimensionality of the
random walk is increased by the clustered nature ofthe random
walk paths.

A RANDOM WALK WITH CLUSTERS
A random walk on the one-dimensional continuum that exhibits
clustering may be constructed by taking a discrete, but un-
evenly spaced, distribution ofallowed step lengths. Specifically,
we consider a symmetric walk with step lengths {Abn} and prob-
abilities corresponding to these step lengths proportional to
a-n, where a, b, and A are positive constants and both a and
b exceed unity. The probability density function for a step x is
then
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n0P(X) =a Ea-nIO5X -AV) + 8(x + &bn)l. [12]
This density function has the property that a step of length Abn
is a times more likely than the next longest step. It follows
(roughly speaking) that the walker will make about a steps of
a given order of magnitude (and many shorter steps), forming
a cluster, before moving an order ofmagnitude further away and
beginning a new cluster. While a determines the number of
points in a cluster, b determines the spatial separation of the
clusters.

The mean-square displacement per step, given by Eq. 11,
is

(x2) =a - 1 A2 > {b2/a}n
a n=O

[13]

and is thus infinite if b2 2 a. Only the case V > a will be dis-
cussed here. (The case b2 < a leads ultimately to diffusive be-
havior and therefore nothing new, and the case V = a requires
but a few modest extensions of the present analysis.)

If b is an integer, then the walk takes place on a lattice of
spacing A, and the probability of a displacement of 1 sites at a
given step is

()=a a 02a
n=

81b +s b}

The structure function [4] for this lattice walk is

A(k) = a a cos (b k).a n=0

[14]

[15]

Its small-k behavior will determine the differential equation for
P(x,t) in the continuum limit and the persistence or transience
of the walk (Eq. 33). The nonanalytic behavior of A(k) at k = 0
is most easily exhibited if the cosine is replaced by its inverse
Mellin transform with respect to IkI (4)

cos(b'k) = _
1 (bnk)-0F(s)cos(11/2is) ds,cm.-im

0<c=Re(s)<1. [16]

(We have taken k >0 to avoid the need to write Ikl everywhere.)
Interchanging orders of integration and summation gives a con-
tour integral for A(k), namely

A(k) = (a - )/a | kT'F(s)cos('/2irs) ds

0 < c = Re(s) < 1 [17]

(the infinite series being identified as a geometric progression).
The integrand is a meromorphic function ofs, with simple poles
at s = 0, -2, -4, ... [arising from the factor F(s)cos(irs/2)] and
at s = -,a + 2nM1i/lnb, n = 0, +1, ±2, ... (arising from zeros
of the denominator), where

,u= lna/lnb. [18]

Q(k) = %lb > F(s,)cos(frsn)exp(-2nwilnk/Inb),
n=-0

Sn = -u + 2nrAnb. [20]

By bounding certain contour integrals, the analysis leading to
Eqs. 19 and 20 can be justified rigorously when 1/2 < I < 2.
For 0 < Au S 1/2, a convergence factor is needed and the same
result is obtained if the summation in Eq. 20 is interpreted ap-
propriately. An alternative approach, via Poisson's summation
formula, is given in the Appendix. It follows from Eq. 15 that
A(k) satisfies the functional equation

A(k) = a-'A(bk) + cosk.
a

[21]

The singular part of A(k) at k = 0 has the form of a power (kit)
modulated by an oscillatory function Q(k), which is periodic in
Ink with period lnb, making A(k) a much more complicated
structure function than is usually encountered in lattice walks.
One can generalize the random walk with clusters defined

above to multidimensional space lattices. We quote here the
results for a two-dimensional square lattice (the extension to d
dimensions being obvious). When Eq. 14 is replaced by

=4a 1> n{(,61, -bn + il1,bn)6l2,0
4an=

+ (612,-bn + 512,0511,01,

the structure function becomes

A(k) = 2 E a-'{cos(klb') + cos(k2b')}2a n=0

= a-1E (-1)m(k,2m + k22m)
2a m=0 (2m)! {1 - b2m/a}

+ 1/2{IklILQ(IklI) + Ik2l'LQ(lk2l)},
and we have the functional equation

A(k) = a-'A(bk) + a2 {cosk, + cosk2}.

[14a]

[15a]

[19a]

[21a]

To show the connection between the clustered random walk
and Levy distributions, we consider the general random walk
defined by Eq. 12, so that b is no longer restricted to integer
values. The probability density function for the position after
n steps satisfies the recursion relation

00

Pn+l(X) = p(x - x')P.(x')dx',
0x

so that, if the steps occur at equal time intervals T,

1~~~~~~~~
- {Pn+1(x) - Pn(x)}

= fI0{P(x -x') - 8(x -x')}Pn(x')dx'

[22]

[23]

Translating the integration contour to Re(s) = -oc and taking
account of the residues at the poles crossed, we find that, for
k > 0,

A(k) = em(2kI +klQ(k), [19]

In the limit r -> 0, we obtain an equation for the probability
density function at time t:

-P(x,t) = lim -{p(x - x') - S(x - x')}P(x' ,t)dx' . [241ati a n ryo et

It is in fact also necessary to let At-- in Eq. 24 to ensure a finite
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result. The analysis is most easily performed in Fourier space:

atP(q,t) = ]im[ (q)-1} f(qt)at &,r -o -,
[251

For a random walk on a lattice having finite mean-square dis-
placement per jump,

P(q) = 1 - 'hA2(lq2) + o(A2), [26]
so that we obtain

at P(qt) = -Dq2P(q,t), [27]

provided that A,4T tend to zero in such a manner that

D= lim '2A2(12)/r [28]

is finite. Eq. 27 is the Fourier transform of the diffusion equa-
tion. For the clustered walk, however, we have

P(q) = A(Aq). [29]
It follows that, if a -* 1+ and b -* 1 + as A,rTtend to zero, such
that
{a = 1 + aA + o(A), b= 1 + 8A + o(A)l 0 2p

AM/Tr = constant j

[30]
then

lim [1 {(q) - 1}

( T12)jq( / .lim A'O/T. [31]

Hence (where D1 is a constant),

a P(q,t) = -D1 IqIa/,I P(qt), [32]

which implies, from Eq. 9, that P has a Levy distribution of
order a//3.

THE EFFECTIVE DIMENSIONALITY OF A
CLUSTERED WALK

A lattice walk is called persistent ifthe walker is certain to return
to his starting point and transient otherwise. A persistent ran-
dom walk will reach every lattice point with certainty. Thus,
walks that have clustering must be transient. It can be shown
(1) that, for a symmetric random walk on an N-dimensional lat-
tice, the probability that the walker escapes (never returns to
his starting point) is 1/u, where

IT

u = (21)N f f {1 - A(k)} ldNk.
-I

[33]

The walk is persistent if and only if this integral diverges. The
convergence or divergence of this integral is the same as the
convergence or divergence of the integral of {1 - A(k)}-' over
an N-dimensional sphere of radius r < 7ir, centered on k = 0,
namely

f..f{1 - A(k)}-1dNk = SN J {- A(k)}lIkIN-ldIkI, [34]
IFr

where SN is the surface area of a unit sphere in N dimensions.
(We have transformed to spherical polar coordinates, assuming

that A is a function only of IkI.) For awalkwith (P) <oo, the right-
hand side of Eq. 34 has the same behavior as

IkIN 3dlk = { e ifN -

22
finite value ifN>2 J'

[35]

so that we have Polya's theorem: An N-dimensional symmetric
lattice walk with (12) <0 is persistent ifN = 1 or 2 and transient
ifN 2 3. As 1 - A(k) can vanish no faster than 1k12 as Ikl -- 0,
irrespective of the value (finite or infinite) of (12), all walks are
transient ifN 2 3. In fewer than three dimensions, the leading
order behavior of 1 - A(k) as Ikl -- 0 is all-important.

Gillis and Weiss (5) have considered a one-dimensional lattice
walk, in which p(l) = constant * Ill-([+a) (0 < a ' 2), for which
it can be shown that 1 - A(k) constant *Jkla if 0 < a < 2, and
1 - A(k) constant*IkI2lnjk if a = 2. They show that, in the
case where a = 1, the number of distinct sites visited after n
steps has the same asymptotic form as that for a walk with (1)
<00 on a two-dimensional lattice, so that (12) = 00 increases the
effective dimensionality of the walk. From Eq. 35, we see that
the Gillis-Weiss walk is persistent if a - 1 and transient
otherwise.

These considerations lead us to define a lattice walk having
finite variance on a space of dimension F (not necessarily in-
tegral) as a walk for which

{1 - A(k)}-1jkjN-1 constant*IkIF-3 as Ikl - 0. [36]
If (12) < 00, then F is the same as the spatial dimension N. How-
ever, if 1 - A(k) constant*IkIA, with 0 < u < 2, we have

{1 - A(k)}-1IkIN-1 constant JkJN-I- [37]
so that

F = N + 2- u. [38]

The effective dimension thus exceeds the spatial dimension if
,u < 2. [In the case where ,u = 1, we see that F = N + 1, which
is consistent with the Gillis-Weiss result that the effective di-
mensionality of a one-dimensional walk is increased to two if
1 - A(k) o |k|. ]A random walk is persistent ifF ' 2 and transient
otherwise.

The ideas outlined above in the context of lattice walks may
be extended to walks in continuous space. To simplify the dis-
cussion here, we consider only symmetric walks in one spatial
dimension. A walk in continuous space is called persistent ifthe
walker is certain to return infinitely often to any neighborhood
ofthe starting point and transient otherwise. In one dimension,
it can be shown (6) that a walk is persistent if, for every c > 0,

Jc

{1 - p(q)}'- dq = o

0
[39]

and transient if, for some c > 0, this integral is finite.
It has been shown that, for the random walk that has clusters

defined by Eq. 12, p(q) - 1 Q(jAqj)jAqjM, where Q is bounded
as q -O 0 and 0 < u = (ln a/ln b) < 2. This suggests that the
walk is persistent for u-1 and transient for 0 < IL < 1. The
easiest way to establish this rigorously is to use two criteria given
by Feller (6): (i) if 11 - P(q)I < constant.jqj in a neighborhood
of the origin, then a symmetric walk is persistent and (ii) if, for
some p > 0,

[40]
Jt

tF1 P x2p(x)dx -- 00 as t --+0,
-t

then the walk is transient. (Let t = b" with n -* 00. Then the
left-hand side is divergent ifp < 1 - u. To ensure that p > 0,
it suffices to have A < 1.) By analogy with the lattice walk, we
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describe the clustered walk as taking place in a space ofeffective
dimension

F= 3- IL, IL = Ina/lnb. [41]
The exponent a can be considered to be the fractal dimension
ofthe self-similar clusters. A definition ofthe fractal (Hausdorff-
Besicovitch) dimension of a set may be phrased as follows: If a
finite part [1 ofthe set can be divided into yidentical parts, each
of which is geometrically similar to Ql, with a similarity ratio r,
then D = lny/ln(l/r). For our clustered random walk, we note
that each cluster can be divided into a set of clusters one order
lower in the hierarchy and there are, on the average, about a
of these lower order clusters, so that y - a. Each lower order
cluster, when expanded by a factor b, returns the original clus-
ter, giving r 1/b. It follows that

D =lna/lnb = ,u. [42]

This argument is not precise but gives an immediate interpre-
tation of Au as the expected Hausdorff-Besicovitch dimension
of the trajectory of the walker. When D - 1, the set of sites
visited will fill the one-dimensional space in which the walk
takes place. This is why A 2: 1 implies persistence. On the other
hand, if IL < 1, then D < 1, the set of sites visited is not dense,
and the walk is transient.

Our discrete analog of a transient Levy flight in one spatial
dimension shows how self-similar clusters can arise in a sto-
chastic process. Other fractal random walks, as well as walks that
have non-self-similar clusters, in one or more spatial dimen-
sions, can be explored in a similar manner. A curious analogy
between the functional equation (Eq. 21) and the transformation
equation for the free energy of a system of lattice spins under
the renormalization group (7) merits further consideration.

A REMARK ON THE HISTORY OF
THE FUNCTION A(k)

The structure function A(k), defined by Eq. 15, can be expressed
in terms of Weierstrass' function

W(x) = EA' cos (BN7T),
n=O

which is continuous in x for 0 < A < 1 but does not possE
finite derivative at any value ofx whenAB > 1. A history of I
and similar functions considered by Riemann and Cellerier
be found in books by Singh (8) and Mandelbrot (3). The d4
itive treatment of W(x) is that of Hardy (9), who established
result that, if ,u = [ln(l/A)/lnB] < 1, then

W(x + h) - W(x) = C(thl)
at every value of x but at no value of x is

W(x + h) - W(x) = o(IhjI).
The transformation of W(x) established by Eq. 19 is an illu
tion of Hardy's result at the point x = 0 and appears to be
although Berry and Lewis (10) have obtained a similar tr
formation, via the Poisson summation formula, for the WE
strass-Mandelbrot function:

E [1 - eityt]emleinjf(D-2)
n=-x-

=(In~y)-1 exp (1/2ilrD - /2ttir/lny) E (1) (t)
m=-x

[43]

(1 < D < 2, y> 1), with

(t) = e-̀2lnyr(D-2 + i(IL + 2irm) t2-D
Iny /

exp i(A + 2m)lnt3 [47]exp - lny J

There is no regular component of the function corresponding
to the first series in Eq. 19 because of the absence of a smallest
scale. The Weierstrass spectrum yn (-_m < n <oo) is shown by
Berry and Lewis to be generated by Schrodinger's equation
with a weakly singular potential.

APPENDIX: DERIVATION OF THE ASYMPTOTIC
FORM OF A(k) NEAR k = 0

It is possible to give a brief derivation of Eqs. 19 and 20 (rig-
orous for 1 < ,u < 2) by using Poisson's summation formula (11)

E fin) = lleo) Jflt)dt
n=OO

x r

+ 2 fit)cos(27rmt) dt,
m=l

[Al]

where At) = a-tcos(btk) = exp(-tlna)cos(kexp [tlnb]), so that

E a-n cos (bnk) = 1/2cosk
n=O

+ (Inb) 0 exp {(-it + 2mInb t cos(ke')dt
m=-x

00 r00 2onmi

= '/2 cosk + (lnb)-' v' Inb cos (kv)dv.
m=-00

For 0 < Re(z) < 1 and k > 0
0x

k-zr(z) cos (1/21Z) = O vz-1 cos (kv)dv

f00 L v1 (-1)rk2nv2n
=| vZ-l cos (kv)dv + |vZ-1 E -A2)!d

vZ- cos (kv)dv + a (2)!(2n)+ d)= ~ ~ ~ + ~n'=

[A2]

[A3]

[44] By the principle of analytic continuation, Eq. A3 holds for z
0, -2, -4, . . ., so that

00 kM w (-2irmilnk\
[45] > a1n cos (bnk) = g(k) + mb exp k n

F (- + 2lm7i)

where
g(k) = 1/2 cosk

[A4]

[A5]
- (InbY'>1I 27m

m=-- n=0 (2n)!(2n - k L b)

[46] Identifying the double series as

Proc. Natl. Acad. Sci. USA 78 (1981)

I I

I 2irmi
Cos I

- a + ..
2 Inb

I

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
72

.8
.1

28
.6

0 
on

 M
ay

 1
8,

 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
17

2.
8.

12
8.

60
.



Applied Mathematical Sciences: Hughes et al.

M x 0 M

lim E 2 lim EM OX m=-M n=O M'Ad n=O m=-M

and noting (12) that

> (m2 + z2)-1 = r{Rcoth () + } [A6]

we find, after a little algebra, that g(k) reduces to the required
series. This derivation is rigorous only for 1 <p <2 because
Eq. Al is derived on the assumption thatf is of bounded vari-
ation. However, a more powerful form of Poisson's summation
formula due to Borgen (13) can be used to extend the analysis
to the case 0< ,u s 1. It can be shown in this manner that Eqs.
19 and 20 remain valid for 0 < A - 1, provided that if £
l/2 the series for Q(k) is summed by Abel's means (14)-i.e., a
convergence factor exp(- 81nj) is inserted and the limit- a *+ 0
is taken after the evaluation of the sum.
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