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1 Fractal Brownian Motion (FBM)

From previous lectures, we’ve discussed the fractals and the β-model. Since space intermittency
has been discussed, nowwe consider Brownian time series B(t). We have discuss the multi-fractal
structure in space with a given structure function δV = v(r + l)− v(r) . Now, we are interested
in the fractal in time with a given structure function in time.

1.1 Hurst Exponent

Harold Edwin Hurst, a British hydrologist, is the first one to investigate in the long-term storage
capacity of reservoirs. His research on the fluctuations of the water level in the Nile river gave
a Hurst exponent which has been used in finance, cardiology, and other fields. He proposed a
generalization of Brownian time series by considering its expectation value of first and second
order of time structure function

E{(B(t+ τ)−B(τ))2} = τ1, (1)

where the E{F} is the expectation value of F, an arbitrary function. He generalized this equation
by release the exponent from unity:

E{δB2} = τ2H , 0< H <1, (2)

where the H is the Hurst exponent (or Holder exponent). The reason that 0 < H < 1 is related
to Levy-stable distribution. When H = 1, the system is governed by a Wiener process. We’ll
discuss Levy-stable distribution in section 2. This Hurst exponent is used as a measure of several
properties–

• long-term memory of time series,

• dispersion, concentration (roughness) of data,

• and the anomalous diffusion.

The Hurst parameter can be generalized as

E{δBq} = τ qH(q), 0< H <1, (3)

where q is the multi-scale, H(q) is the Hurst exponent with a continuous spectrum. This is for
multi-fractal cases, where the expectation value of the q-th order E{δBq} is q dependent. The
Hurst exponent has a relation to the box-counting dimension (or fractal dimensionD), and can
exhibit the multi-fractality:

compare:


H ∼ ln|∆B|

ln|∆t|
D =

lnN(ε)

ln(1
ε )

,
(4)

where ε is the length of grids. Hence, the Hurst exponent is a counterpart of the fractal dimension
for intermittency time series and it relates to Fractal Brownian Motion (FBM). The relation
between the Hurst exponent and the fractal dimension is

H +D = n+ 1, 0 < H < 1, (5)

with n < D < n + 1 in a n dimension space. For n = 1, we have H + D = 2 with 1 < D < 2.
For more details about the Hurst exponent and fractal dimension please see Mandelbrot et al.
(1984).

When H = 1
2 , the system dominated by Wiener Process. The expectation value of time series

reduces back to the Brownian time series.
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Figure 1: Brownian motion (H = 0.5) and Levy flight (H > 1
2
).

Table 1: Nonlinear Model Results

Case 0 < H < 1
2

1
2 < H < 1

memory short-term persistence long-term persistence
correlation temporally anti-correlation positive correlation
diffusion sub-diffusion super-diffusion
motion sticking process Levy flight, ballistic
example traffic flow
variation mild variation wild variation

1.2 Examples: Noah and Joseph effect (Mandelbrot & Wallis)

The Hurst exponent describes persistence, correlation, and the diffusion of events. A system
with a high Hurst exponent (H > 1

2) indicates that the events are temporally correlated, with
higher persistence, long memory. This suggests that a high-level events persist for a long period
of time, and then followed by the low events for another long period. Thus, the time series in this
system is ‘erratic’. In a longer period, however, the series of event looks stationary. Hydrological
data presents two forms of erratic behavior– the Joseph-erratic and the Noah-erratic Effect. The
“Joseph Effect” describes this long period of precipitation:

Seven years of great abundance are coming throughout the land of Egypt, but the seven
years of famine will follow them. (Genesis, 41, 29-30)

The “Noah Effect” describe that a extreme, concentrated precipitation is possible with infinite
variance.

On that day, all the springs of the greatest deep burst forth, and the floodgate of the
heavens were opened. And the rain fell in the earth forty days and forty nights.

(Genesis, 7, 11-12)

These Joseph- and Noah-erratic effects can simultaneously exist in a process.
By contrast, a low Hurst exponent (H . 1

2) describes the system has a shorter memory so
that the aftereffects die out in geometric progression and decrease rapidly, suggesting a anti-
correlated process. A low Hurst exponent system undergoes a sticky process– the movements of
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particles in space have a tendency to return back to a long-term mean. In terms of time series, the
‘leaps’ of the intensity in a time step won’t be too far away from the mean intensity. A classical
short memory mechanism can be depicted by the Gauss-Markov process (H = 0.5). The Gauss-
Markov models, however, do not match the finding by H. E. Hurst– typically the Hurst parameter
of precipitation 0.7 ∼ 0.85. More details can be found in Mandelbrot & Wallis (1968).

The figure 2 exhibits the variation for different Hurst exponents. Figure 2 (a) shows the anti-
correlated property for low Hurst exponent H = 0.043. Here, the system barely has a persistent
memory. While for hight Hurst exponent H = 0.95 system in figure 2 (c), the long-term memory
and positive correlation has been shown. The variation is “wild”. Figure 2 (b) shows when the
system is dominated by the Wiener process (H = 0.53). The variance of time series reduce back
to the Brownian time series which has the same properties with the “white noise”. The variation
is “mild”.

Figure 2: Variation of the time series with different Hurst parameters. (a) H = 0.043, (b) H = 0.53, (c) H = 0.95.

1.3 How to calculate Hurst exponent from a time series?

On the list of a recipe for the Hurst exponent, we have

• a standard deviation S,

• and a range R of the cumulative deviation from mean

We first calculate the mean:

m =
1

n

n∑
i=1

Xi, (6)

where Xi = X1, X2, ...., Xn is the data set in time series (t = t1, t2, ..., tn), n is the time span of
the observation (number of data points in a time series). Then, calculate the deviation from the
mean for every time step:

Yt = Xt −m, t = 1, 2, ..., n. (7)

Then calculate the cumulative deviation from the mean:

Zn =

t=n∑
i=1

Yi, (8)

where Zn is accumulated from the beginning t = t1 to t = tn. The range of the cumulative
deviation could be found by calculate the R:

R(n) ≡ max(Z1, ....., Zn)−min(Z1, ....., Zn) (9)
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Also, the standard deviation S(n) is defined as

S(n) =

√√√√ 1

n

n∑
n=1

(Xi −m)2. (10)

The Hurst exponent then can be expressed as:

H =

lnE{R(n)

S(n)
}

ln(n)
, (11)

where n indicates the time series (t = t1, t2, ..., tn). Or alternatively,

CnH = E{R(n)

S(n)
}, (12)

where C is an arbitrary constant.

1.4 Gini Coefficient

The range R(n) is actually related to Gini coefficient (G), or Gini index, developed by the Italian
statistician and sociologist Corrado Gini. This Gini index is ameasurement of statistical dispersion
of the income or wealth distribution of a nation’s residents, and is the most commonly used
measurement of inequality. The form of Gini index is

G =

n∑
i=1

n∑
j=1
|xi − xj |

2n
n∑
i=1

xi

, (13)

where n is the total population, and xi is the wealth or income of person i. Notice that the
denominator is a the total wealth of the population times 2n, which has area A + B, and the
numerator has area equal to A (see figure 3). Therefore, the Gini coefficient can be rewritten as

G =
area(A)

area(A+B)
.

Comparing the elements of the Gini coefficient and the Hurst exponent, one can realize that
the ”accumulated mean” in the Hurst calculation resembles the ”perfect distribution line” where
every one has a ”mean” wealth. If we, in Hurst exponent calculation, sort Xi from low to high
and assume the Xi are all positive, then Yt can be resembled to the difference between the
perfect distribution (the accumulated mean) and the real distribution curve (the accumulated
distribution of Xi, see figure 3). Thus, the accumulated deviation for all population Zn=all will
be the area A. Since we sorted the ”deviation” Yt from low to high, we have Z1 ≤ Z2 ≤ .... ≤ Zn,
which gives max(Z1, ....., Zn) = Zn = A and min(Z1, ....., Zn) = Z1 = Y1 = X1 −m. If we have
large n, then we’ll have A� (X1−m). As a result, the range R(n) in Hurst exponent calculation
can be approximated as A−X1 +m ∼ A:

lim
n→∞

R(n) ∼ area (A) ∝ Gini coefficient. (14)

Thus, the range R(n) is related to the Gini coefficient. Cynical questions for Gini coefficient is
what’re the diffusion in population D(x) and time D(t).
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Figure 3: Gini index. Let shaded region has a area A, and the area under the distribution curve (here is the Lorenz
Curve) is B.

1.5 1/f noise and Zipf’s Law

Consider the frequency spectrum for the generalized time series.

〈B2(ω)〉 =

∫ t+τ

t
dτ〈B(t)B(t+ τ)〉. (15)

We have:
〈B2(ω)〉 = ω−γ (16)

where γ is defined as:

γ ≡ 2H − 1 =


0, H =

1

2
, white noise

1, H = 1,
1

f
noise (or pink noise), ”Joseph” effect.

(17)

White noise is the generalized mean-square derivative of the Wiener process or Brownian motion.
Notice that the ”noise” here is nothing to do with the “thermal noise”; instead, the “noise” here
describes the profile for the time series spectra. Mandelbrot and Van Ness proposed that the
exponent of the power spectrum could take non-integer values and be related to FBM.

The 1
f noise is ubiquitous in physical system, and is the drive of the Self Organized Criticality

(SOC) correlated to avalanches.
Notice that the form of spectrum density 〈B2

(ω)〉 ∝
1
ω is similar to the Zipf’s Law:

f(k) ∝
1

ks
, (k = integer), (18)

where f(k) is the appearance frequency of a word with a rank k in the words’ frequency of table,
and s is the value of the exponent characterizing the distribution. When s = 1, we have

f(k) ∝
1

k
, (k = integer)

f(∆x) ∝
1

∆x

(19)

and this relates to the 1
f noise, and the distribution with higher events (large ∆x) has a power-

law decay. Zipf’s law is proposed by an American linguist George Kingsley Zipf, delineating the

6



Figure 4: Power spectral density of the white noise and pink noise.

fact that the frequency of any word is inversely proportional to its rank in the frequency table.
In human languages, word frequencies have a very heavy-tailed distribution, and can therefore
be modeled reasonably well by a Zipf distribution with an s close to 1. The nth most common
frequency of a word occurs 1

n as often as the most common frequency. Notice that the rank k is
an integer. But with a wide range and good approximation, the Zipf distribution is related to the
1
f -noise power spectrum distribution.

Figure 5: Zipfian distribution. The frequency of human language is described by Zipf’s Law with s = 1.
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2 Levy-Stable Distributions

Since we are interested in the process where H 6= 1
2 , we need to broaden our view of random

processes– real life is outside Central Limit Theorem (CLT). The CLT points out that when the
variance of the independent and identically distributed (IID) 1 variables are finite, the attrac-
tor distribution is the normal distribution. We need to find out the attractor for the processes
beyond CLT in a stable 2 distribution family, which is also referred to as the Lévy alpha-stable
distribution.

2.1 Generalized Central Limit Theorem

A simple way to derive the form of Lévy alpha-stable distribution is to start with the Chapman-
Kolmogorov equation and assume this stochastic process is Markovian. So we have:

Pi(x) =

∫
dyPi−1(y)Pi(x|x− y), (20)

Pi(x) is the probability to find a particle at position x at step i, Pi(x|x− y) is the probability for
a particle moving from position x− y to position x through a path y, and Pi−1(x− y) is the
probability to find particles at position x− y at step i− 1.

This equation can be extended by convoluting several points in-between positions x and x− y
(see figure 6). We define ∆t = ti+1 − ti and N∆t = tN − t0, and assume N � 1. Assuming the
Markovian process that the time and space interval is stationary, we have

P(xi+1,ti+1;xi,ti) = P(xi+1−xi;ti+1−ti) = P(xi+1−xi;∆t), (21)

where P(xi+1,ti+1;xi,ti) is probability for a particle move from xi to xi+1 in time interval ti to ti+1.
Therefore, the probability of transition from (x0, t0)→ (xN , tN ) is

PN(x0,t0;xN ,tN ) =

∫
dx0...

∫
dxN−1 · P(x0,t0;x1,t1)p(x1,t1;x2,t2)...P(xN−1,tN−1;xN ,tN ) (22)

=

∫
dy1...

∫
dyN · P(y1,∆t)P(y2,∆t)...P(yN ,∆t), (23)

where yi = xi+1 − xi. And we introduce generating functions{
P̂(k) =

∫
eikyjP(yj ,∆t)dyj ,

P̂N(k) =
∫
eiky

N
P(yN ,N∆t)dy

N ,
(24)

where yN =
N∑
i=1

yi = xN − x1.

By playing the Fourier transform, we have:

PN(x) =

∫
eikx

∏
i=1

P̂N(k)dk. (25)

And we assume that all the distribution is IID, so that

P̂1(k) = P̂2(k) = P̂3(k) = .... = P̂N(k) ≡ P̂(k)

lim
N→∞

N∏
i=1

P̂(k) = P̂N(k).
(26)

1In probability theory and statistics, a collection of random variables is independent and identically distributed
(IID) if each random variable has the same probability distribution as the others and all are mutually independent.

2In probability theory, if a linear combination of two independent random variables has the same distribution,
location, and scale parameters, then we could say that this distribution is stable.
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Figure 6: Lévy alpha-stable PDF.

This indicates that the infinite product of a sequence of functions becomes a defined function,
i.e. the generating function of the Lévy distribution (RHS in eq. 26). This is the key point in the
Lévy stable distribution.

Now we have:
PN(x) =

∫
eikx[P̂(k)]

N dk

2π
, (27)

where P(k) =
∑∞

n=0(−i)n knmnn! , wheremn = in ∂
nP
∂kn and thus P̂ (k) = 1− im1k− 1

2m2k
2. Themn

here is the moments mn = 〈xn〉 If we let P̂ (k) ≡ eψ(k), we have ψ(k) = −iC1K1 − 1
2Csk

2
2 + ....

Here Cn are the cumulants– C1 = m1, and C2 = m2 − m2
1 = σ2 (variance). Notice that the

property of ψ that k ∂ψ∂k = ψ implies the scalar invariance and leads us to the self-similarity of
the Lévy alpha-stable distribution. After some calculations with an assumption of a zero mean
C1 = 0, we have the distribution of the generalized CLT:

PN(x) =

∫
eikxeNψ(k) dk

2π
=

1

2π

1

(NC2)1/2
e
− x2

NC2 . (28)

The CLT is still hold, but we have larger deviation on the tail. For Lévy alpha-stable distribution,
the higher moments are divergent, and thus the cumulants become dubious– indicating the fat-
tail effect. This indicates that we have anomalies in the higher order moments.

When the numberN is large enough, the function [P̂N (k)]
n will converge to a defined function

P̂N (Cnk). The mapping from [P̂N (k)]
n to P̂N (Cnk) indicates P̂N (Cnk) similar to a fixed point3,

but in the function space. This fixed point acts as an attractor 4 in Lévy alpha-stable distribution
that attracts the system to a stable equilibrium (see figure 7). Notice that the importance of
Lévy stable probability distributions is that they are “attractors” for properly normed sums of
IID variables. That is, the garden-variety Gaussian, one of the cases of Lévy distribution, is an
attractor.

This equation [P̂N(k)]
n = P̂N (Cnk) has the solution:

P̂a,α(k) = e−a|k|
α
, (29)

3A fixed point will be mapped to itself by a function or a transformation. The final state that a dynamical system
evolves towards corresponds to an attracting fixed point of the evolution function for that system, such as the center
bottom position of a damped pendulum, the level and flat water line of sloshing water in a glass, or the bottom center
of a bowl contain a rolling marble.

4In the mathematical field of dynamical systems, an attractor is a set of numerical values toward which a system
tends to evolve, for a wide variety of starting conditions of the system. An attractor can be a point, a finite set of
points, a curve, a manifold, or even a complicated set with a fractal structure known as a strange attractor.
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Figure 7: Visual representation of a strange attractor.

where a = a(t) is a function of t . And we have Lévy alpha-stable distribution Lα(a, x):

P(x0,t0;xn,tN ) = Pa,α(x) = Lα(a, x) =
1

2π

∞∫
−∞

eikxP̂a,α(k)dk

=
1

|x|1+α

[
cα(1 + sgn(x)β)sin(

πα

2
)
Γ(α+ 1)

π

]
,

(30)

where α is the stability parameter that characterizes the distribution. This is a generalization of
CLT. It states that the sum of a number of random variables with symmetric distributions having
power-law tails (Paretian tails), decreasing as |x|−α−1 where 0 < α 6 2, and therefore have
infinite variance. The divergence of variance means a standard Fokker-Plank approach to solving
for the time evolution of the distribution function is not applicable.

The width of distribution for different α can be derived by discretizing the Lα(a, x) into N
time steps:

PN(x) =
1

N
1
α

Lα(a,
x

N
1
α

). (31)

Thus, the width is proportional to ∝ N
1
α . When α < 2, the distribution has a width that is

broader thanN
1
α . This indicates a supper-diffusive flow. If α = 1, the width is proportional toN ,

indicating that the width is spreading ballistically. Notice that an asymptotic behavior for |x|→ ∞
has a propagator:

pα(x, t) ∼ t

|x|α+1
, 0 < α 6 2. (32)

At any time t, it doesn’t have finite second moment since α < 2. To maintain the equal probability
at every time and space, as the clock runs (t increases), the particle should go to a larger x (x
increases). This indicates that the tail of the distribution function is expanding outward with
time. This is an expanding tail solution. This relates to the Black Swan Theory polularized by
a statistician and risk analyst N. N. Taleb. This theory is built to explain the disproportionate role
of high-profile, hard-to-predict, and rare events that are beyond the realm of normal expectations
in history, science, finance, and technology.

The equation 30 resembles the Pareto distribution which is named after the Italian civil
engineer, economist, and sociologist Vilfredo Pareto. Its probability density function is

fX(x) =

{
αxαm
xα+1 x ≥ xm,
0 x < xm,

(33)
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Figure 8: Lévy alpha-stable PDF. The black line (α = 2) represents a Gaussian distribution. The Green line (α = 1)
represents the Cauchy distribution. If we compare all these lines, one can find that at large x, the smaller α are, the
fatter tail they’ll have.

where xm is the (necessarily positive) minimum possible value ofX, and α is a positive parameter.
The Pareto distribution has colloquially become known and referred to as the Pareto principle, or
“80-20 rule”. The empirical observation has found that the 80-20 distribution fits a wide range
of cases, including natural phenomena and human activities.

Figure 9: Pareto distribution.

Though the Zipf’s law is a discrete probability distribution, the Zipf’s Law can be derived from
the Pareto distribution if the x values (incomes) are binned into N ranks.
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2.2 Gaussian & Cauchy Distribution

When α = 1 the Lévy-stable distribution reduces to the Cauchy distribution (or Lorentz distri-
bution), and when α = 2 it’ll reduce to the Gaussian distribution:

Lα(a, x) ∝


1

x2+a2
, Cauchy distribution (α = 1)

e−x
2/a, Gaussian distribution(α = 2).

(34)

Notice that the terms (.....)
|x|1+α and 1

x2+a2
imply a fat power-law tail in the distribution. In par-

ticular, Mandelbrot (1960) referred to those maximally skewed in the positive direction with
1 < α < 2 as “Pareto-Lévy distributions”, which he regarded as better descriptions of stock and
commodity prices than the garden-variety normal distribution. The Pareto-Lévy distribution is
also know for exhibiting its “80-20 Law”.

Notice that when α = 2, the parameter a can be represented as Dt, where D is diffusivity.
We can recover the diffusion function by taking derivative of Pα=2(x,t) from equation (29) and
assuming a = Dt:

∂Pα=2(x,t)

∂t
=

∫
eikx(−D|k|2)e−Dt|k|

2
= D

∂2

∂x2
Pα=2(x,t). (35)

Clearly, we have parameterD is the diffusivity. Let’s generalize this the diffusivity (still assuming
a = Dt), for α 6= 2. We have

∂Pα(x,t)

∂t
=

∫
eikx(−D|k|α)e−Dt|k|

α
= D

∂α

∂xα
Pα(x,t), (36)

where α can be an arbitrary rational number that satisfies 0 < α ≤ 2, and therefore ∂α

∂xα is
fractional derivative. This leads us to the fractional calculus. A critical question thus arises:

• What is the physical meaning of the parameter a/t, when α 6= 2?

To get the physical meaning of a, wemight start from the basic continuum equations, i.e. Hasegawa-
Mina or gyro-kinetics, then proceed to the Lévy flight formulation.

All in all, a Lévy Walk is self-similar, and has long excursions because of the fat-tail effect–
large events weight more (see figure 9). The large excursion in a Lévy flight introduces the
non-locality in the flux-gradient relation.

2.3 Direct evidence for Lévy flight and anomalous process

As we knew, the normal diffusion can be derived from the Fokker-Plank approach and can be
described by Lévy alpha-stable distribution with stability parameter α = 2. In this case, the
relation between space and time in diffusion is

〈(x− 〈x〉)2〉 = 〈δx2〉 ∝ tγ , where γ = 1. (37)

For anomalous diffusion, however, is denoted when γ 6= 1:{
0 < γ < 1 sub-diffusion,
γ > 1 super-diffusion.

(38)

And there are two methods to deal with anomalous diffusion. One is the Continuous Time Ran-
domWalk (CTRW) and the other is the Fractal Kinetics (FK). Bothmethods are similar but beyond
the Fokker-Plank approach. We’ll discuss this in section 3.
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Solomon et al. (1993) did an observation of anomalous diffusion and Lévy flights in a two-
dimensional rotating flow. The setup is a rotating annular tank at a frequency of 1.5 Hz. The
inner and outer radii are 10.8 and 43.2 cm respectively. A laminar velocity field is maintained
in the flow. A sheared counter-rotating azimuthal jet is created and leads to a chain of vortices
that move around the annulus. They follow the trajectories of a large number of particles for a
long time and have direct evidence for Lévy flight and anomalous diffusion. A bunch of tracers
are designed to follow the chaotic trajectories, sticking to vortices intermittently. They move as
a “Lévy flight” for a long distance. These tracers collect the movements of trajectories and thus
the variance in angle displacement 〈(θ − 〈θ〉)2〉 can be calculated. The azimuthal displacement
as a function of time for the particles is in figure 10 and 11.

Figure 10: Vortices and time evolution of particle trajectories in a rotating tank.

Figure 11: The azimuthal displacement as function of time for the particles. The “flat” parts of curves denotes the
sticking process. The diagonal lines are the “Lévy flight” between two sticky events.
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Figure 12: Variance of azimuthal displacement of a distribution of tracer particles for a time-periodic laminar flow.

In the figure 11, the “flat” parts of curves denote the sticking process. These flat parts corre-
sponds to oscillatory movements of the tracers within one vortex ring– i.e. circulations. Here the
flow is sub-diffusive that retard the motion of particles– the particles are trapped in a confined
region. On the other hand, the diagonal, steeper lines represent the “Lévy flight” between two
sticky events (flat oscillations). The tracer is moving from one vortex to another, thus trajectories
of tracer in the experiment have long excursions which indicate the “Lévy flights” that form frac-
tal scaling trajectories. In this region, the excursion is super-diffusive, and it’s second moment is
divergent.

They also estimate how the exponent γ evolves with time. Observation results indicates that
the transport of tracer particles in laminar flow is super-diffusive (γ > 1), with an average ex-
ponent γ = 1.65 (see figure 12). Notice that this experiment suggests a combination of “Joseph
effect”– the long persistent oscillating movement, and the “Noah effect”– the sudden growths in
the angle variance (see figure 11).
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3 Continuous Time Random Walk (CTRW)

3.1 Review of the Fokker-Plank Equation

Starting from the Chapman-Kolmogorov equation, we have:

P(x1,t1|x3,t3) =

∫
dx2P(x1,t1|x2,t2)P(x2,t2|x3,t3). (39)

We expand this equation into several steps between (x1, t1) and (x3, t3) with ∆t is stationary and
∆x has its own distribution. Then we can derive the Fokker-Plank equation

∂

∂t
P(x,t|x′,t′) = − ∂

∂x

[
A(x,t)P(x,t|x′,t′) −

1

2

∂

∂x
B(x,t)P(x,t|x′,t′)

]
︸ ︷︷ ︸

probability flux

, (40)

where A(x,t) is the drift velocity, B(x,t) is the diffusivity:

A(x,t) = lim
∆t→0

1

∆t
〈∆x〉

B(x,t) = lim
∆t→0

1

∆t
〈(∆x)2〉

(41)

The relation between these two A(x,t) and B(x,t) is:

A(x,t) =
1

2

∂

∂x
B(x,t). (42)

More details are in Lecture notes in 2016.

3.2 Why we need a CTRW?

One of the ways to analyze the anomalous diffusion is using the CTRW method. recall that in
Fokker-Plank approach, it’s necessary to have ∆x distribution– each step of a particle motion can
vary. The distribution of ∆t, however, is a delta function– the time step is fixed and acts like
a clock. We release the constraint of time step from the role of a clock, let it take a statistical
distribution, and let it evolve dynamically. Thus, we have two stochastic variables and we need
to specify the distribution functions for both ∆x and ∆t. The distribution of ∆t indicates that
the system’s memory can be enlarged or shortened, corresponding to Lévy flights and sticking
processes respectively. This indicates that the CTRW is non-local and thus is non-Markovian in
space-time.

First of all, we start with a general form of the Chapman-Kolmogorov equation:

Q(x, t) =

∫
d(∆x)

t∫
0

d(∆t) ·Q(x−∆x; t−∆t) · P (∆x,∆t), (43)

where Q(x, t) is an orbit distribution of space and time, and P (∆x,∆t) is the joint PDF of the
two stochastic variables ∆x and ∆t. This indicates that the weighting is fractalized. CTRW is
played in two different ways– the waiting time model and the velocity model.

3.3 Waiting Time Model

In the waiting time model, the stochastic distribution of ∆t and ∆x are independent, i.e. sepa-
rable:

P(∆x,∆t) = P(∆x)P(∆t). (44)

15



We expand Q(x−∆x; t−∆t) to first order in ∆x:

Qw(x, t) =

t∫
0

d(∆t)Q(x; t−∆t)Φw(∆t) (45)

where Qw(x, t) is a relabeling to indicate a jump PDF derived by the waiting model, and Φ(∆t)
is the probability to wait for at least ∆t. Of course, this equation can be extended by the Fokker-
Plank method with a well-behaved P (∆x). The probability Φ(∆t) is given by

Φw(∆t) =

∞∫
∆t

dt′P (t′). (46)

Thus, the distribution for the time step P (t′) need to be specified.
This model can be used to deal with sticking processes. The reason is that to discuss the

sticking process, we need to represent long-time trapping of particles in a confined region. And
this can be approached by setting spatial steps small and have a Pareto-Lévy distribution in time
steps which allows large |∆t| event highly possible. Thus, this model is especially suitable for
sub-diffusive systems.

3.4 Velocity Model

In the velocity model, ∆t is defined as a traveling time ∆r
V , where ∆r is the distance of traveling,

and V is the velocity constant. With a constant velocity, we can tide the time step ∆t to the
spatial step ∆x. the joint PDF can be expressed as

P(∆x,∆t) = δ

(
∆t− ∆x

V

)
P(∆x) (47)

Substituting this joint PDF into the Chapman-Kolmogorov equation, we have

Qv(x, t) =

V t∫
−V t

d(∆x)

t∫
0

d(∆t)Q(x−∆x; t−∆t)Φv(∆x,∆t), (48)

where Q(x, t) is an orbit distribution of space and time, and Φv(∆x,∆t) is the probability to
make a step of at least length |∆x| with duration ∆t. The Φv(∆x,∆t) can be expressed as

Φv(∆x,∆t) =
1

2
δ(|∆x|−V∆t)

∞∫
|∆x|

dx′
∞∫

∆t

dt′δ(dt′ − |dx
′|

V
)P (dx′) (49)

Thus, the distribution for the spatial step P (dx′) need to be specified.
This velocity model is especially suitable for the movements of Lévy flights. Since the Lévy

flight can have a long excursion within a small time duration, it can be approached by setting
the time steps is small, but with Lévy distributed spatial steps, which the fat-tails effect allows a
higher weighted large |∆x|. Thus, the velocity model is workable for super-diffusive cases.

For the cases that both time steps ∆t and spatial steps |∆x| are very small, the CTRWmethod
will reduce to the case of normal diffusion.

16



3.5 CTRW Summary

The key assumption for the CTRW is that the distribution depends on both of a stochastic variable
of time-step and that of spatial-step. This leads to the fact that the CTRW is non-local and thus
non-Markovian in time.

If we relate the Lévy flights and sticky processes to the percolation theory, one can suggest that
above the percolation threshold, the system is super-diffusive and has Lévy flights. In this regime,
the cells in phase space overlap, which allows long-distance “kicks” to be more possible. While
when the percolation is below the threshold, the system is sub-diffusive and the flow manifests
a sticky process.
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