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The simplicity of fundamental physical laws manifests

itself in fundamental symmetries. Although systems with

an infinite number of strongly interacting degrees of

freedom (in particle physics and critical phenomena) are

hard to describe, they often demonstrate symmetries,

in particular scale invariance. In two dimensions (2D)

locality often extends scale invariance to a wider class

of conformal transformations that allow non-uniform

rescaling. Conformal invariance enables a thorough

classification of universality classes of critical phenomena

in 2D. Is there conformal invariance in 2D turbulence,

a paradigmatic example of a strongly interacting

non-equilibrium system? Here, we show numerically that

some features of a 2D inverse turbulent cascade show

conformal invariance. We observe that the statistics of

vorticity clusters are remarkably close to that of critical

percolation, one of the simplest universality classes of

critical phenomena. These results represent a key step

in the unification of 2D physics within the framework of

conformal symmetry.

We consider here 2D incompressible turbulent motion of
a fluid, which represents an appropriate description of
large-scale motions of the atmosphere, and can also be

realized in different laboratory settings1–5. As predicted1, stirring
at some forcing length scale Lf results in two turbulence cascades,
with the formation of fine-scale vortical structures and large-scale
velocity structures. In 2D, squared vorticity ω2 = (∇×v)2 performs
a direct cascade to small scales whereas kinetic energy (1/2)v2

flows from Lf to large scales, opposite to the three-dimensional case
(v being velocity). We focus here on the inverse cascade of energy
for which, not surprisingly in view of the presence of a strong
interaction, there is no exact analytic theory. Phenomenological
dimensional arguments give consistent predictions, although in
two seemingly unrelated ways. Consider the velocity difference vr

at the distance r. On the one hand, it may be required that the
kinetic energy v2

r divided by the typical time r/vr must be constant
and equal to the energy flux ε: v3

r ∼ εr. On the other hand, it can
be argued that vorticity, which cascades to small scales, must be in
equipartition in the inverse cascade range6. If this is the case, the
enstrophy rdω2

r accumulated in a volume of size r is proportional
to the typical time r/vr at such a scale, that is, rdω2

r ∼ r/vr , where
d is the space dimensionality and ωr is the vorticity coarse-grained
over the scale r. Using ωr ∼ vr/r we derive v3

r ∼ r3−d , which for
d =2 is exactly the requirement of constant energy flux. Amazingly,
the requirements of vorticity equipartition (that is, equilibrium)
and energy flux (that is, turbulence) give the same Kolmogorov–
Kraichnan scaling in 2D. Experiments4,5,7 and numerical
simulations8 indeed demonstrate scale-invariant statistics with the
vorticity having scaling dimension 2/3: ωr ∝ r−2/3.

Our goal here is to find out whether scale invariance can be
extended to conformal invariance at least for some properties of
2D turbulence. Under conformal transformations, the lengths are
re-scaled non-uniformly yet the angles between vectors are left
unchanged (a useful property in navigation cartography where it is
often more important to aim in the right direction than to know
the distance)9,10. The novelty of our approach is that we analyse
the inverse cascade by describing the large-scale statistics of the
boundaries of vorticity clusters, that is, large-scale zero-vorticity
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Figure 1 Vorticity clusters. These are defined as connected regions with the same
sign of vorticity (here positive). Colours are arbitrarily attributed to different clusters.
Regions of negative vorticity are black. Lf is one hundredth of the box side.

lines. In equilibrium critical phenomena, cluster boundaries in
the continuous limit of vanishingly small lattice size were found
to belong to a remarkable class of curves that can be mapped
into a brownian walk (called stochastic Loewner evolution or SLE
curves)11–19. Namely, consider a curve γ(t), where t is time, that
starts at a point on the boundary of the half-plane H (by conformal
invariance any planar domain is equivalent to the upper half-
plane). One can map the half-plane H minus the curve γ(t) back
onto H by an analytic function gt (z), which is unique on imposing
the condition gt (z) ∼ z +2t/z +O(1/z2) at infinity. The growing
tip of the curve is mapped into a real function ξ(t). In 1923 it
was found20 that the conformal map gt (z) and the curve γ(t)
are fully parametrized by the driving function ξ(t). Almost 80
years later, random curves were considered11 in planar domains
and it was shown that their statistics are conformally invariant if
ξ(t) is a brownian walk, that is, its increments are identically and
independently distributed and 〈(ξ(t)−ξ(0))2〉= κt , where κ is the
diffusivity. In simple words, the locality in time of the brownian
walk translates into the local scale invariance of SLE curves, that
is, conformal invariance. SLEκ provides a natural classification (by
the value of κ) of boundaries of clusters of 2D critical phenomena16

described by conformal field theories (CFT)10,21 and allows many
results to be established (see refs 16–19 for a review).

The fractal dimension of SLEκ curves is known to be22,23

Dκ = 1 + κ/8 for κ < 8. To establish a possible link, let us try to
relate the Kolmogorov–Kraichnan phenomenology to the fractal
dimension of the boundaries of vorticity clusters. Note that it
should be distinguished between the dimensionality two of the
full vorticity-level set (which is space-filling) and a single zero-
vorticity line that encloses a large-scale cluster24. Consider the
vorticity cluster of gyration radius L that has the ‘outer boundary’
of perimeter P (that boundary is the part of the zero-vorticity
line accessible from outside, see Fig. 3 for an illustration). The
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Figure 2 Fractal dimensions and probabilities of size and boundary length for
vorticity clusters. a, The fractal dimensions are the slopes of the length–diameter
dependencies in log–log coordinates for the boundary of filled clusters (red), for the
outer boundary (blue) and for the necks of large fjords/peninsulae (green). The solid
lines have slopes with the exact values for SLE6 curves, 7/4, 4/3 and 3/4,
respectively. Fractal dimensions are obtained by computing the average length for a
given diameter of the cluster. b, The fraction of clusters with sizes between s and
1.25s (red) and with boundary lengths between b and 1.25b. The solid lines are the
predictions from the percolation theory. Inset: The same data multiplied by s96/91

and b8/7, respectively. The vertical scale is linear to appreciate the plateau in the
compensated plot.

vorticity flux through the cluster,
∫

ωdS ∼ ωL L2, must be equal to
the velocity circulation along the boundary, Γ =

∮
v ·d!, where dS

and d! are respectively differentials of contour area and length. The
Kolmogorov–Kraichnan scaling is ωL ∼ ε1/3L−2/3 (coarse-grained
vorticity decreases with scale because contributions with opposite
signs partially cancel) so that the flux is proportional to L4/3. As
for circulation, as the boundary turns every time it meets a vortex,
such a contour is irregular on scales larger than the pumping scale.
Therefore, only the velocity at Lf is expected to contribute to the
circulation; such a velocity can be estimated as (εLf)

1/3 and it is
independent of L. Hence, circulation should be proportional to the
perimeter, Γ ∝P, which gives P ∝L4/3, that is, the fractal dimension
of the exterior of the vorticity cluster is expected to be 4/3.

Let us check this hypothesis by data analysis. A powerful tool
for the study of 2D turbulence is the numerical integration of the
incompressible Navier–Stokes equations in a planar domain. By this
method it is possible to achieve a range of dynamical length scales
of about 104, whereas current laboratory experiments are limited
to a scale separation of about 100. We present here the analysis
of very-high-resolution numerical simulations (with up to 16,3842

grid points) of 2D inverse cascade (see Table 1 for the details).
Vorticity clusters are shown in Fig. 1. We denote D∗ the fractal
dimension of their exterior boundary (without self-intersections).
As shown in Fig. 2a, D∗ is indeed close to 4/3. Moreover, the
fractal dimension of the boundary itself is close to D = 7/4. Of
course, having some particular dimension does not by itself imply
that the curve belongs to SLE. Note, however, that the exterior
perimeter of SLEκ with κ > 4 is conjectured25 to look locally
as a SLEκ∗ curve with κ∗ = 16/κ < 4 resulting in the duality
relation (D − 1)(D∗ − 1) = 1/4, as observed in our turbulence
data. Moreover, D∗ = 4/3 corresponds to a SLE8/3 curve, which
represents the continuum limit of a self-avoiding random walk,
whereas the dual SLE6 curve corresponds to a cluster boundary in
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Figure 3 A portion of a candidate SLE trace obtained from the vorticity field.
The red curve is a zero-vorticity line in the upper half-plane. The dashed blue line is
the ‘outer boundary’ of the red curve, that is, the boundary of the region that can be
reached from infinity without getting closer than Lf to the red curve. The green dots
mark the necks of large fjords and peninsulae.

critical percolation. That prompts us to compare the probability
distributions of sizes and boundary lengths between vorticity and
percolation clusters. The size s of a cluster is the number of
connected sites with the same sign of vorticity, the boundary length
b is the number of sites that belong to the cluster but are adjacent
to sites of different sign and the gyration radius L is the side
of the smallest square that covers the cluster. The results shown
in Fig. 2b are in a good agreement with the exact results from
percolation theory.

The two SLEs with κ = 6 and κ∗ = 8/3 correspond to CFT with
zero central charge, which means that the scale invariance remains
unbroken even when the system is on a manifold with corners or
with a non-zero Euler number (a topological invariant determined
by the number of handles and boundaries). Also, SLE6 curves are
singled out by a ‘locality property’ (the curve does not feel the
boundary until it touches it), whereas their dual SLE8/3 has the
‘restriction property’ (the statistics of the curves conditioned not
to visit some region are the same as in the domain without this
region)12–16. How does all this relate to 2D turbulence?

Now we show by a straightforward check that, within statistical
accuracy, large-scale zero-vorticity lines are indeed SLE curves, that
is they are conformally invariant and possess remarkable properties
of a kind that has never been studied in turbulence. Zero-vorticity
isolines that are candidate SLE traces are identified as follows. First,
a horizontal line representing the real axis in the complex plane
is drawn across the vorticity field. Second, an explorer starting
from the origin at the real axis walks on the zero-vorticity isoline

keeping the positive vorticity sites always on the right. Third, when
the explorer hits the real axis it treads on it, always leaving the
positive region on its right-hand side until it can re-enter the
upper half-plane. This eventually leads the explorer to infinity
in an unbounded domain. An example of the outcome of this
search is shown in Fig. 3. Strictly speaking, this procedure faithfully
reproduces all the details of the statistics only if there is a locality
property (meaning that the exploration process does not feel the
boundary before it hits it), which holds for SLE6. As we obtain
as a result SLE with κ ≈ 6, our procedure is self-consistent; we
also checked that shifting and turning the line does not modify
the results presented below. To determine which driving function
ξ(t) can generate such a curve, one needs to find the sequence of
conformal maps gt (z) that map the half-plane H minus the curve
into H itself. We approximate gt (z) by a composition of discrete,
conformal slit maps that swallow one segment of the curve at a
time (a slight variation of the techniques presented in http://www.
math.washington.edu/∼marshall/preprints/zipper.pdf). This results
in a sequence of ‘times’ ti and driving values ξi that approximate
the true driving functions. If the zero-vorticity isolines in the half-
plane are actually SLE traces, then the driving function should
behave as an effective diffusion process at sufficiently large times.
We have collected 1,607 putative traces. The data presented by blue
triangles in Fig. 4 show that the ensemble average 〈ξ(t)2〉 indeed
grows linearly in time: the diffusion coefficient κ is very close
to the value 6, with an accuracy of 5% (see inset). The average
〈ξ(t)〉 vanishes by the reflection symmetry of the Navier–Stokes
equations. In addition, the probability distribution functions of
ξ(t)/(κt)1/2 collapse onto a standard gaussian distribution at all
times t . Therefore, we expect that ξ(t) tend to a true brownian
motion and zero-vorticity lines to become SLEκ traces with κ very
close to 6 in the limit of vanishingly small Lf. To appreciate how
remarkable this property is, pink symbols in the lower inset in
Fig. 4 show for comparison the results of the same procedure for
the isolines of a gaussian field having the same Fourier spectrum
as vorticity but randomized phases. The slow incomplete recovery
to κ = 6 for the random-phase field occurs at the scales where the
power-law correlation is already cut off by friction and the field
becomes truly uncorrelated.

The identification of isovorticity lines as SLEκ curves allows
powerful techniques borrowed from the theory of stochastic
differential equations and conformal mapping theory to be applied,
and analytic predictions to be obtained for some non-trivial
statistical properties of vorticity clusters. The first example is the
probability that a point z = ρeiθ , where θ is the angle between the
point and the origin, and ρ is the distance from the origin, inside
the upper half-plane is surrounded by a positive vorticity cluster
connected to the positive real axis. In this event, it is not possible to
reach infinity with a continuous path starting at z without treading
on positive vorticity sites. For this to happen, the zero-vorticity line
must leave the point z on its right. The probability of such an event
depends only on the angle θ and it assumes a particularly simple
form in terms of hypergeometric functions26. In the inset of Fig. 5

Table 1 Parameters of the simulations. N spatial resolution, dx grid spacing, ν viscosity, α friction, u r.m.s. root-mean-square velocity, Lf forcing length scale,
#d = ν1/2/η

1/6
ν enstrophy dissipative scale, εI energy injection rate, εν viscous energy dissipation rate, εα energy dissipation by large-scale friction (energy growth

rate for N= 16,384), ηI enstrophy injection rate, ην viscous enstrophy dissipation rate, ηα enstrophy dissipation by friction (enstrophy growth rate for N= 16,384).

N dx ν α ur.m.s. Lf *d εI εν εα ηI ην ηα

2,048 4.9×10−4 2×10−5 0.015 0.26 0.01 2.4×10−3 3.9×10−3 1.8×10−3 2.1×10−3 39.3 38.0 1.3
4,096 2.4×10−4 5×10−6 0.024 0.26 0.01 1.2×10−3 3.9×10−3 0.7×10−3 3.2×10−3 39.3 36.1 3.2
8,192 1.2×10−4 2×10−6 0.025 0.27 0.01 7.8×10−4 3.9×10−3 0.3×10−3 3.6×10−3 39.3 35.3 4.0
16,384 0.6×10−4 1×10−6 0.0 0.24 0.01 5.5×10−4 3.8×10−3 0.2×10−3 3.6×10−3 39.5 37.6 1.9

126 nature physics VOL 2 FEBRUARY 2006 www.nature.com/naturephysics

Untitled-1   3 1/24/06, 10:55:49 AM

Nature  Publishing Group ©2006



ARTICLES

t

t

〈ξ
(t)

2 〉
ξ

〈ξ
(t)

2 〉/
t

ξ

ξ(t )/(κt )1/2ξ κ

(  
t)

1/
2  P

(ξ
(t

))
ξ

κ

–3 –2 –1 0 321

0 0.005 0.01

0 0.005 0.01

4
5
6
7
8
9

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 4 The driving function is an effective diffusion process with diffusion
coefficient κ = 6±0.3. The inverse cascade range corresponds to
5×10−5 < t < 10−2. Main frame: the linear behaviour of 〈ξ(t )2〉. Lower-right inset:
Diffusivity, blue for vorticity isolines, pink for the field with randomized phases.
Upper-left inset: The probability density function of the rescaled driving function
ξ(t )/(κ t )1/2 at four different times t= 0.0012 (blue), 0.003 (green), 0.006 (red),
0.009 (grey); the solid line is the gaussian distribution g(x ) = (2π)−1/2 exp(−x 2/2).

we show that the analytic solution fits very well the numerical data
with κ = 5.9. The second example is the probability that a vorticity
cluster spans the rectangle joining two opposite sides. What is the
average number of such spanning clusters? What is the probability
that a ‘four-legged cluster’ joins all four sides? By scale invariance
these quantities depend only on the aspect ratio r of the rectangle,
and their precise dependence can be found by exploiting conformal
invariance. In the context of critical percolation, formulae for such
probabilities have been derived27,28 and later proven29,30. In the main
frame of Fig. 5 we show that numerical data for vorticity clusters
follow very closely the expectations for SLE6. We have also checked
(green symbols in Fig. 2) that the set of narrow necks that enclose
large fjords or large peninsulae has dimension31 3/4 (the set is
defined by the pairs of points on the curve that are closer than Lf

yet separated by an arclength larger than 1,000 Lf). This all gives
further support to the result that zero-vorticity lines are conformal
invariant and belong to the same class of universality as boundaries
of percolation clusters.

Whether the statistics of the zero-vorticity isolines indeed fall
into the simplest universality class of critical phenomena (and
the fractal dimensions are exactly 7/4 and 4/3) deserves to be a
subject of more study. Do our findings signify that the universal
nature of percolation extends to turbulence as well as to diffusion-
limited aggregation32 and quantum chaos33? At the present level it
has the status of a tantalizing conjecture with strong—although
not conclusive—support from the data. In view of the non-local
constraint imposed by the flow incompressibility, it is surprising
that the statistics of zero-vorticity isolines (within experimental
accuracy) enjoy the locality property inherited by their SLE6 nature.
Recall that continuous percolation can be constructed as a ‘flooded
landscape’ determined by some short-correlated random height
function. However, the vorticity field in the inverse cascade is not
short-correlated; it has power-law correlation 〈ω(0)ω(r)〉 ∝ r−4/3.
When the pair correlation function falls slower than r−3/2 then the
system is not expected generally to belong to the universality class of
uncorrelated percolation and to be conformal invariant34. Indeed,
we have seen that the field having the same pair correlation function
as the vorticity yet randomized phases of the Fourier harmonics
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Figure 5 Crossing and surrounding probability for vorticity clusters. Main frame:
the probability πv that a cluster crosses from top to bottom a rectangle of aspect
ratio r (blue), the average number Nv of vertically crossing clusters (green) and the
probability πhv of a ‘four-legged’ cluster joining all sides of the rectangle (red). The
lines are the exact results for κ = 6:
πv = (3Γ (2/3)/Γ (1/3)2)η1/3

2F1((1/3), (2/3);(4/3);η) with
η = [(1− k)/(1+ k)]2 and r= K(1− k2)/[2K(k2)] (Cardy–Smirnov, thick solid
line); Nv = (1/2)[πv +πhv − (

√
3/2π)logη] (Cardy, thick dashed line);

πhv = πv − (η/Γ (2/3)Γ (1/3)) 3F2(1,1, (4/3);2, (5/3);η) (Watts–Dubédat, thin
dotted line). 2F1 and 3F2 are confluent hypergeometric functions. Inset: the
probability that a zero-vorticity line in the upper half-plane leaves the point ρeiθ to
its right, for ρ = 0.048,0.064,0.080,0.096. The prediction for SLEκ traces is
P= (1/2)+ (Γ (4/κ)/

√
πΓ ((8− κ)/2κ)) 2F1((1/2), (4/κ);(3/2);−cot2 θ)cot θ,

shown as a thick solid line for κ = 5.9 (the best fit). The dashed lines are the
probabilities for κ = 5.7 (upper) and κ = 6.1 (lower).

does not have conformal invariant isolines (pink symbols in the
lower inset in Fig. 4). We thus conclude that there is indeed
something special about the vorticity (which has non-trivial phase
correlations and higher moments) produced by 2D turbulence.
It is also intriguing to notice that conformal field theory of
critical percolation possesses a field of scaling dimension 2/3,
identical to the one for the vorticity in Kolmogorov–Kraichnan
phenomenology. We may also wonder how conformal invariance is
broken in statistical properties of non-zero vorticity isolines. Let us
stress that we have found conformal invariance for zero-vorticity
isolines, but not yet for correlation functions as expected3; in the
related problem of a passive scalar in turbulent flow, the correlation
functions are not conformal invariant6,35.

We have developed a numerical tool for testing conformal
invariance in physical systems, established this symmetry (within
experimental accuracy) for 2D inverse cascade and used it as a
powerful tool in turbulence study, which allowed us to make
quantitative predictions confirmed by the experiment. This shows
how conformal invariance spans the whole range of physics,
from exalted subjects such as string theory and quantum gravity,
through statistical mechanics and condensed matter, down to
earthly atmospheric turbulence.
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