## Physics 235 — Nonlinear Plasma Theory Spring 2022

# Transport in Random Media, Fat Tails and Intermittency, Avalanching and Entrainment

Instructor: Patrick H. Diamond

Class: MWF: 2:00 p.m. – 2:50 p.m. MW: Center Hall, F: Remote

This course looks in depth at the physics of transport and beyond the usual mean field/quasilinear approaches. Examples are drawn from plasmas, fluids, and statistical mechanics. The course may be of interest to students in plasma, fluid, bio, astro or statistical physics.



Physics 235

### Topics

#### A) Transport in Random Media

- i) Review of Hamiltonian chaos and quasilinear theory of transport
- ii) Transport in stochastic magnetic fields Ku < 1 ( $Ku \equiv Kubo \#$ )
- iii) Particle transport and self-consistency
- iv) Toward high *Ku*, with strong scattering
- v) Systems: random media, shear dispersion, cellular arrays
- vi) Percolation and statistical topography

#### B) Intermittency and Transport

- i) Intermittency and fractals, multi-scaling
- ii) Hurst exponent, R/S analysis, relation to fractal dimension
- iii) Lévy stability and Lévy flights
- iv) Fat tails, "mild vs. wild" behavior
- v) CTRW models of anomalous diffusion
- vi) Theory and applications of fractional kinetics

#### C) Avalanching, Entrainment and Self-Organized Criticality (SOC)

- i) Basic concepts of avalanching and turbulence entrainment/turbulence spreading
- ii) SOC: origins and basic concepts, l/f noise
- iii) Traffic flow and jams
- iv) Hydrodynamic models of SOC; Burgers turbulence; subcriticality
- v) Models of entrainment
- vi) Spreading, zonal patterns, staircases implications for magnetic confinement

#### D) Selected Topics — TBD

## **Course Requirements**

Each student is required to:

i) Prepare lecture summaries, in turn. These will be read, corrected and ultimately posted.

ii) Participate actively.