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1 Motivation

How many magnetic field lines are there in our universe?

The answer is probably only one! Because of the perturbation to mag-
netic field in the real world, field lines can wander and diffuse in space, forming
a stochastic distribution and chaotic system. Therefore, even a single field
line can fill the volume of the entire universe. This phenomenon leads
to the perpendicular transport of charged particles and energy. Perpendicu-
lar transport is a crucial issue for the researches on magnetic confinement for
nuclear fusion reaction, and the magnetohydrodynamic (MHD) turbulence in
interstellar-medium (ISM). Therefore, it is appealing to study this interesting
system. In this lesson, we’ll start from reviewing the theory of Hamiltonian
chaos, then apply it to the system of magnetic field lines, and finally derive
the heat transport rate (thermal diffusivity) in the stochastic fields.
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2 Basics of Hamiltonian chaos

Hamiltonian mechanics is a formalism of classical mechanics that is dif-
ferent from but equivalent to Newtonian mechanics and Lagrangian mechan-
ics. In the following we review its framework and discuss chaotic systems.
This section follows the content in [Edward Ott, Chaos in dynamical systems
(Cambridge University Press, 2002), Ch. 7].

2.1 Hamiltonian mechanics

In Hamiltonian mechanics, a system can be described by a set of general-
ized coordinate q and generalized coordinate p, which are not necessarily the
real coordinate and momentum of particles. Both q and p have a dimension
N equal to the degree of freedom of the system. The dynamics of a mechani-
cal system can be solely specified by a single scalar function H(p, q, t) called
”Hamiltonian”. The equations of motion in Hamiltonian mechanics are the
Hamiltonian equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

qi and pi satisfying the Hamiltonian equations are said to be ”canonically
conjugate”. If the equations defining qi, pi does not explicitly depend on
time, and if the forces are derivable from a conservative potential V , H is
identical to the total energy E = K + V . If the Hamiltonian has no explicit
time dependence, i.e. H = H(p(t), q(t)), we have

dH

dt
= q̇i

∂H

∂qi
+ ṗi

∂H

∂pi
=
∂H

∂pi

∂H

∂qi
− ∂H

∂qi

∂H

∂pi
= 0

Thus we say that E = H is a ”constant of the motion” since it’s conserved.

The space described by the canonical coordinates (p, q) is called ”phase
space” (2N -dimensional). Liouville theorem states that Hamiltonian equa-
tions preserve the phase-space volume. Poincaré recurrence theorem
states that a closed volume will eventually return to its original state within
long enough but finite time. We can interpret it as stating that any trajectory
in phase space must be a closed orbit. However, the theorem doesn’t specify
how long it is needed to finish one complete cycle.
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2.2 Canonical transformation

Similar as coordinates in Newtonian mechanics, the choice of (p, q) is
not unique in Hamiltonian mechanics. We can change from (p, q) to an-
other canonical coordinate (p, q) as long as there exists a new Hamiltonian
H(p, q, t) such that Hamiltonian equation is satisfied:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

Such process of changing from H(p, q, t) to H(p, q, t) that preserves the
Hamiltonian equation is called a ”canonical transformation”. A canonical
transformation can be achieved by finding the corresponding generating func-
tion S such that

λ(piq̇i −H) = piq̇i −H +
dS

dt
for some constant λ.

It is clear that S is not unique for a transformation. For convenience, we
can choose S = S(p, q, t), and Hamiltonian equations require that

∂S

∂pi
= qi ,

∂S

∂qi
= pi

As a consequence, we will have

H(p, q, t) = H(p, q, t) +
∂S

∂t
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2.3 Integrable systems

We already see that for a time-independent system, the total energy H =
E is a constant of the motion. A time-independent system is called ”inte-
grable” if it has N constants of the motion, where N is the degree of freedom.
It can be shown that for an integrable system, a trajectory (p(t), q(t)) in the
2N -dimensional phase space lies on an N -dimensional torus.

A convenient choice of canonical coordinates for an integrable system is

(p, q) = (J ,θ)

, where the ”action variables”

Ji =
1

2π

∮
γi

p · dq

are chosen to be constants of motion with i = 0, 1, 2, · · · , N , γi are N ir-
reducible paths on the torus, and θi are called the ”action angle variables”.
When one travels through an entire cycle on the irreducible orbit γi, value of
the corresponding θi will increase by 2π, while values of the other components
θj (j 6= i) will return to their original value. That is the reason why they
are called ”angle” variable. An example for irreducible orbits on a ”2 torus”
(N = 2) is shown in Fig. 1.

Figure 1: (a) An orbit on a 2 torus (b) Two irreducible orbits γ1 and γ2 on a 2 torus

By construction, dJi/dt = 0. From Hamiltonian equation we have ∂H/∂θi =
0, thus the new Hamiltonian is only a function of the action variables H =
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H(J). Hamiltonian equations then becomes:

dJ

dt
= 0

dθ

dt
=
∂H(J)

∂J
≡ ω(J)

,where ω is an angular velocity vector. For given J , ω(J) is constant so that
θ(t) = θ0 + ω(J)t.

Recall Poncairé recurrence theorem, a trajectory on the phase-space torus
has ”periodicity” in the sense that it will eventually return to its original
position if time is long enough. But depending on the choice of torus, some
trajectories might have to fill the entire surface before returning back (namely
ergodic). A torus such that m = (0, 0, · · · , 0) is not the only solution to

ω ·m = 0,mi ∈ integer

is called a ”resonant” torus, otherwise it’s called a ”non-resonant” one. We
shall see the reason for such naming later by examining the Hamiltonian’s
response to perturbation. It can be shown that resonant tori are countable,
so the probability of finding a point on a non-resonant torus in phase space
is 1. But resonant tori are also dense in phase space, so arbitrarily near to
any non-resonant torus there exist resonant tori.

Suppose we have a 2-torus (N = 2) system where ω = (ω1, ω2), then a
resonant torus has

ω1

ω2
=
p

q
; p, q ∈ integer

, so it is called a ”rational surface”. On the other hand, a non-resonant torus
has

ω1

ω2
∈ irrational number

We use Fig. 2 to illustrate their difference between them. When a trajectory
pass through the θ2 = (const.) cross section, one crossing point is made. Next
time it pass through the cross section, another crossing point is made. Since
each trajectory is on a certain toroidal surface, every crossing point is on
the same circle. Lets start from a black point, and the crossing points for
the following few times are as shown. We can see that for trajectories on
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a rational surface, since δθ1 = 2πω1/ω2 between two neighbouring crossing
points is a rational multiple of 2π, the trajectory eventually comes back to its
original position and repeats the same motion. Therefore, the crossing points
are in a countable set, and the trajectory is a closed orbit on the rational
surface. However, if the trajectory is on an irrational surface, since δθ1 is not
a rational multiple of 2π, the crossing point never comes back within finite
time. That is to say, the crossing points will finally ”fill” the whole circle,
and the trajectory on an irrational surface is a so-called ”ergodic” trajectory
that fills the whole surface.

Figure 2: Example of trajectory on the θ2 = (const.) cross section for (a) a rational (resonant)
surface (b) a non-resonant surface.
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2.4 Effect of Perturbation for Single Orbit

Integrable systems are easier to study because in phase space, each torus
is a constant-Hamiltonian surface specified by a constant vector J . It is our
interest to see if integrability still holds if we perturb an integrable system.
We will see that the rational surfaces define natural resonances of the system.

Suppose the perturbed system is still time-independent, we can assume
the new Hamiltonian to be:

H(J ,θ) = H0(J) + εH1(J ,θ)

, where H0 is the unperturbed Hamiltonian of the integrable system, H1 is
the perturbation, and ε is a small number. Integrability of the new system is
equivalent to state that there exists a new coordinate (J ′,θ′) such that

H(J ,θ) = H ′(J ′)

Then in terms of the generating function S(p, q) = S(J ′,θ), we must have

H ′(J ′) = H(J ,θ) ;
∂S(J ′,θ)

∂J ′ = θ′ ;
∂S(J ′,θ)

∂θ
= J

⇒ H ′(J ′) = H

(
∂S

∂θ
,θ

)
= H0

(
∂S

∂θ

)
+ εH1

(
∂S

∂θ
,θ

)

For an unperturbed system, ε = 0 and J ′ = J , we have

J ′ =
∂S0

∂θ
⇒ S0 = J ′ · θ = J · θ

Then expand S near S0 by ε

S = J · θ + εS1 + ε2S2 + · · ·

Substitute it into the equation for H ′,

H ′(J ′) = H0

(
J + ε

∂S1

∂θ
+ ε2

∂S2

∂θ
+ · · ·

)
+ εH1

(
J + ε

∂S1

∂θ
+ · · · ,θ

)
Expand it by ε and keep only up to first-order terms,

H ′(J ′) = H0(J) + ε
∂H0

∂J
· ∂S1

∂θ
+ εH1(J ,θ)
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The system has periodicity in θ with 2π period, thus we can express the
perturbation H1 and S1 as Fourier series of θ

H1 =
∑
m

H1,m(J) exp(im · θ)

S1 =
∑
m

S1,m(J) exp(im · θ)

, where m is an N dimensional vector of integers. Substitute it into the
equation, we have

S1 = i
∑
m

H1,m(J)

m · ω0(J)
exp(im · θ)

, where ω0(J) ≡ ∂H0(J)
∂J is the unperturbed angular frequency vector.

Now it’s clear that if the unperturbed torus (defined by J) is chosen to
make m · ω0 = 0, our linearized solution does not work. We then encounter
a small denominator problem. These tori are called ”resonant tori”,
analogous to the resonant particles in Landau damping phenomena. In a
2-torus system, the condition of a resonant torus is expressed as

mω1 + nω2 = 0⇒ m

n
= −ω2

ω1
=
q

p

, where m
n is the pitch of the perturbation of Hamiltonian, and q

p is the pitch
of the trajectory.

On the other hand, the non-resonant tori keep their integrability under
perturbation. Their perturbed Hamiltonian continuously approaches the un-
perturbed H0 as ε → 0. We say that they ”survive” the small perturbation,
while the resonant tori are ”destroyed”. Since resonant surfaces are count-
able in phase space, the Kolmogorov-Arnold-Moser (KAM) theorem states
that for small ε, ”most” tori survive the perturbation. [Edward Ott, Chaos
in dynamical systems (Cambridge University Press, 2002), Ch. 7] However,
we should note that resonant tori are also dense in phase space, so we also
have to consider the interaction between multiple nearby resonant tori.
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2.5 The fate of a resonant 2 torus

What happens to the resonant tori is the central issue in chaos theory.
Let’s start from studying a single resonant torus. For simplicity, we study
the case for a 2 torus.

To label each torus in a simpler way, we take a cross section of phase space
that’s defined by θ2 = (const.). Intersection of each constant-J torus with
the cross section is a contour. Without loss of generality, we assume that
these contours are concentric circles of constant radii r, and the angle θ1 ≡ φ
indicates the angular position of a point on each contour. See Fig. 3 for
visualization of the coordinate system.

Figure 3: Definition of r and φ on a constant θ2 cross section

We can define the rotation rate for each torus

R(r) =
ω1

ω2

, where ω1 is the angular velocity of φ for a trajectory on the torus, and ω2

that of θ2. For a resonant torus, R is a rational number p/q defined by inte-
gers p and q that have no common factors. The intersection of a trajectory
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on a resonant torus with the θ2 = (const.) cross section consists of exactly p
points on the circle, since it travels back to its original position for every p
times passing through the cross section. However, for a non-resonant torus,
R is an irrational number. The intersection of a trajectory on it would be
the entire circle.

For convenience, we define a mapping M q̃ locally near a resonance circle
R(r̂) = p̃/q̃, which projects a point on the cross section to the point its trajec-
tory piercing through the cross section for the qth time later. We denote the
two points (rn, φn) and (rn+1, φn+1). Then the mapping for the unperturbed
system (denoted by ”0”) is:

(rn+1, φn+1) = M q̃
0 (rn, φn)

It is obvious that
rn = rn+1

for any initial points rn, since they travel on the corresponding torus. How-
ever,

φn = φn+1

only holds for the resonance circle r = r̂ itself. Suppose R(r) is a smooth
function of r, we’ll have the angular displacement

φn+1 − φn

having opposite sign between inside and outside r = r̂. We can find a circle
r = r+ in the vicinity of r = r̂ where M q̃

0 is counter-clockwise rotation, and
on the opposite side a circle r = r− where M q̃

0 is clockwise rotation. See Fig.
4(a) for conceptual picture.

Now we can consider that the system have a sufficiently small perturbation
(denoted by ε) in the Hamiltonian. Although we don’t know the effect of the
new mapping M q̃

ε on the resonant circle r = r̂ itself, we do know that the
effect on the nearby non-resonant circles are negligibly small. Therefore, in
the vicinity of r = r̂ there still exists a circle r = r+ making M q̃

ε a counter-
clockwise rotation, and on the opposite side a circle r = r− making M q̃

ε a
clockwise rotation. Then use intermediate-value theorem, there must be a
circle r = r̂ε where M q̃

ε corresponds to no angular rotation, which means its
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effect is only in the radial direction. Moreover, Liouville theorem guarantees
that M q̃

ε still preserves the area enclosed by the the contour r = r̂ε. This
leads to the geometry illustrated by Fig. 4(b).

Figure 4: (a) The unperturbed circles (b) the r = r̂ε circle

Such geometry of the contour r = r̂ε tells us that the mappingM q̃
ε (r̂ε) = r′ε

makes some sections of the contour move outward, others move inward, and
some countable fixed points, as shown in Fig. 5(a). Depending on the rel-
ative position of a static point, it can be an ”elliptic point” where points
around it rotate about it, otherwise a ”hyperbolic point” where motion of
points around it are like hyperbola, as shown in Fig. 5(b). Poincaré Birkhoff
theorem states that there are same number of elliptic and hyperbolic points.

The rotation of points around an elliptic point forms KAM curves sur-
rounding it, hence it’s also called an ”O point”. Between these surrounding
curves is the destroyed resonant region, corresponding to the chaotic resonant
orbits. On the other hand, a hyperbolic point tends to be heteroclinic inter-
section points, thus also called an ”X point”. Then we have the formation
of an island chain. Such filamentation effect is illustrated by Fig. 6(a). The
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Figure 5: (a) The r = r̂ε and r = r̂′ε contours and the motion of points, (b) The elliptic and
the hyperbolic points

island width ∆J can be estimated as

∆J ≈

√
εH1

∂ω0/∂J

, where εH1 represents the strength of perturbation in Hamiltonian, and
∂ω0/∂J represents the unperturbed shear (differential of rotation in phase
space). The derivation is given in [M. N. Rosenbluth, et al. Nucl. Fusion 6,
297 (1966)] for magnetic field lines in torus by Fourier series expansion of the
field fluctuation.

We can also derive the result by a simple argument as following. Recall
the definition of the generating function S:

H = H0 +
∂S

∂t

⇒ H0 + εH1 = H0 +
∂S

∂t

⇒ ∂S

∂t
= εH1

, but S also satisfies that:
∂S

∂J
≈ θ0
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Therefore,
∂ω0

∂J
=

∂

∂J

dθ0

dt
=

∂

∂J

d

dt

∂S

∂J
≈ ∂2

∂J2
(εH1) ≈

εH1

∆J2

⇒ ∆J ≈

√
εH1

∂ω0/∂J

Figure 6: (a) Destruction of a single resonant surface (b) Overlapping multiple resonances
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2.6 Multiple resonant 2 tori

We’ve seen the fate of a single resonant surface. Now, as Fig. 6(b) shows,
one would inquire what happens when there are two resonant surfaces forming
overlapping island chains? It is intuitive that a trajectory in the overlapping
region will wander between different radius. It no longer belongs to a cer-
tain surface, but fills some volume in phase space. Thus it’s a chaotic picture.

Numerical calculation in Fig. 7 gives an example on this concept. With
small perturbation, individual island chains still preserves and bounded by
some non-resonant KAM curves. But with large perturbation which is com-
parable with the distance between resonances, the smooth KAM curves are
destroyed and becomes stochastic points except for the vicinity of the O
points. It reflects that the trajectories in phase space no longer belong to
certain surfaces.

In this context, Chaos can be understood as that the deviation of the
perturbed resonant trajectory from the unperturbed one has linear instability:

∆J = J − J0 = ∆J0 exp(γt) ; γ > 0

, or called ”Lyapunov instability” where the exponent is ”Lyapunov expo-
nent”. To understand this, we can take ∆J0 → 0. Then for chaotic system,
γ > 0 implies that even an infinitesimal difference in initial condition will
finally diverge into considerable difference. In other words, the behavior of
the system is highly sensitive to the initial condition, which is exactly the
definition of chaos. More generally, if there exist multiple resonances, chaos
means that there’s at least one positive Lyapunov exponent γi > 0.

For a chaotic motion, we no longer have a deterministic solution of the
Hamiltonian equations. Instead, we need statistical approach to make pre-
diction or characterization of the system. The deterministic trajectory no
longer exists, but we can define the ”probability density function” f as an al-
ternative quantity to describe the motion. Then we can use Fokker-Planck
equation, which is based on a simple model of diffusion processes, to find
the evolution of f .
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Figure 7: Numerical calculation of multiple resonances by changing a factor K (a) K = 0.5,
(b) K = 1, (a) K = 2.5, (a) K = 4. (p, θ) is analogous to (J , φ) in 2-torus, and K is
analogous to perturbation ∆J
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To simplify Fokker-Planck problems even more, one convenient way is to
use the quasilinear theory. It assumes that the unperturbed trajectory is
still a good approximation to calculate the diffusion coefficient. However, we
should notice that the quasilinear equation is applicable for limited regime.
The first criterion is Chirikov overlap, which basically states that the island
chains of different resonances should ”overlap”. We already see this point in
Fig. 7 that stochastic field lines only appear when perturbation is large
enough. In terms of the action variable:

SC ≡
∆J1 + ∆J2

J1 + J2
> 1

, where 1, 2 denote two neighbouring resonant surfaces, and SC is the Chirikov
number. In terms of the island width:

SC ≡
∆w1 + ∆w2

|r1 + r2|
> 1

, where r is the radius of circle on the intersection (see Fig. 3), and w is the
island width.

The second criterion to be satisfied for quasilinear regime is small Kubo
number (Ku):

Ku < 1

We will give the definition of Ku for a realistic system, and examine this cri-
terion more carefully later. Naively, it says that the random kicks are so often
that the phase-space structure changes before a point has chance to bounce
in the structure for once. This criterion is equivalent to stating that using
unperturbed trajectories to calculate the diffusion of trajectories is a good
approximation, which is an important assumption for quasilinear equations.

The last thing to notice is that while KAM theorem is concerned with the
irrational surfaces, the onset of chaos is concerned with the rational (resonant)
surfaces.
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3 Stochastic magnetic field lines in a torus

Our discussion so far is based on the generic description of a Hamiltonian
system. For a more realistic discussion on the phenomena of our interest, we
now focus on a prime example, the magnetic field lines in a torus.

3.1 Magnetic field lines in a tokamak

”Tokamak” is a toroidal chamber designed for thermal nuclear fusion re-
action by magnetically confined plasma. One can imaging it as originally a
cylindrical object with radius a, but two ends connected to form a donut with
R the distance from the center to the symmetry axis of the original cylinder.
As shown in Fig. 8, a convenient coordinate system is (r, θ, φ), where r is
the radial position in the original cylinder, θ called ”poloidal” angle is the
polar angle in the original cylinder, and φ called ”toroidal” angle replaces
the original z coordinate Rdφ = dz. For simplicity, we shall still use the
cylindrical coordinate (r, θ, z) here.

Figure 8: Coordinate system for toroidal objects.

In the unperturbed system, an external coil generates constant toroidal
magnetic field Bz, another coil with time-varying current to induce plasma
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current in the toroidal direction, thus generate a poloidal magnetic fieldBθ(r),
and there’s no radial field Br = 0. Therefore, unperturbed magnetic field
lines are curves winding on toroidal surfacse with r = (const.), which are also
called magnetic surfaces. The winding rate of a field line can be found by the
ratio between the poloidal and the toroidal field.

rdθ

dz
=
Bθ(r)

Bz

We can define the ”rotational tranform” q(r), also called ”safety factor” when
dealing with MHD instability, to represent the winding rate:

q(r) ≡ dφ

dθ
=

dz

Rdθ
=

rBz

RBθ

Now we review the definition of an integrable Hamiltonian system with
degree-of-freedom N = 1 (a circle). First, let the action variable be x and the
action angle variable be y. They should be canonically conjugate (satisfying
Hamiltonian equations):

dx

dt
= −∂H

∂y
;
dy

dt
=
∂H

∂x

Secondly, Hamiltonian is not explicitly dependent on time so that it is a
constant of motion:

H(x, y, t) = H(x(t), y(t))⇒ dH

dt
= 0

Lastly, Liouville theorem states that for a Hamiltonian system the phase-
space volume is conserved. If we define the probability density function
f(x, y, t) in phase space, Liouville theorem can be expressed by the Liou-
ville equation:

df

dt
=
∂f

∂t
+
dx

dt
· ∂f
∂x

+
dy

dt
· ∂f
∂y

=
∂f

∂t
− ∂H

∂y
· ∂f
∂x

+
∂H

∂x
· ∂f
∂y

= 0

Considering perturbation, if we specify that H(x, y) = H0(x) + H̃(x, y), then
the Liouville equation becomes:

df

dt
=
∂f

∂t
− ∂H0

∂x

∂f

∂y
− ∂H̃

∂y

∂f

∂x
+
∂H̃

∂x

∂f

∂y
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=
∂f

∂t
− vy(x)

∂f

∂y
− (∇H̃ × ẑ) ·∇f = 0

Then we check the equations for magnetic field lines in a tokamak. The
Maxwell equation gives incompressibility of the field ∇·B = 0. By definition,
the magnetic flux density ψ (or ”field line density”) in any closed loop is
conserved when the loop is convected in the magnetic field. In differential
form,

(B ·∇)ψ = 0

We specify the form of the unperturbed field as what we described for a
tokamak B0 = B0ẑ + Bθ(r)θ̂. Let’s add a perturbation term to it in the
perpendicular (⊥ ẑ) direction:

B = B0ẑ +Bθ(r)θ̂ + B̃⊥

The conservation of magnetic flux in convection reads:

(B ·∇)ψ = B0
∂ψ

∂z
+
Bθ(r)

r

∂ψ

∂θ
+ B̃⊥ ·∇⊥ψ = 0

⇒ ∂ψ

∂z
+
Bθ(r)

rB0

∂ψ

∂θ
+
B̃⊥
B0
·∇⊥ψ = 0

⇒ ∂ψ

∂z
+
Bθ + B̃θ

rB0

∂ψ

∂θ
+
B̃r

B0

∂ψ

∂r
= 0

⇒ ∂ψ

∂z
+
rdθ

dz

∂ψ

r∂θ
+
B̃r

B0

∂ψ

∂r
= 0

There is clear analogy between the equation and that for the 1-D Hamiltonian:

ψ ↔ f

z ↔ t ; r ↔ x ; rdθ ↔ dy

B̃r

B0
↔ −(∇H̃ × ẑ) ·∇

Note that z plays the role of time here. The winding rate corresponds to the
angular velocity in an integrable Hamiltonian system:

rdθ

dz
=

1

Rq(r)
↔ vy(x)↔ ω(J)
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Therefore, the system of magnetic field lines in a tokamak is analogous to an
integrable Hamiltonian system of N = 1.

If we don’t treat z = Rφ as time but use q = (θ, φ) coordinate system,
one can show that the magnetic field lines in tokamak is an N = 2 integrable
Hamiltonian system (2 torus). In such system, the condition of resonance is
more easily to understand:

m · ω ≡ m
dθ

dt
− ndφ

dt
= 0

⇒ q(r) =
dφ

dθ
=
m

n
for some integers m and n. Therefore,

Resonance⇔ q ∈ rational number
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3.2 Wandering of magnetic field lines

Recall that the magnetic flux density ψ is equivalent to the density of field
lines, or the number of field lines penetrating through an unit area. In the
following we denote it as f because the field line density is analogous to the
probability density function f in Hamiltonian system, which is the number of
trajectories penetrating through an unit area in phase space. Now we use the
incompressibility of magnetic field ∇ ·B = 0 (analogous to Liouville theorem
for Hamiltonian systems),

∂f

∂z
+
Bθ(r) + B̃θ

rB0

∂f

∂θ
+
B̃r

B0

∂f

∂r
= 0

⇒ ∂f

∂z
+
Bθ(r)

rB0

∂f

∂θ
+

∂

∂θ

(
B̃θ

rB0
f

)
+

∂

∂r

(
B̃r

B0
f

)
− f

(
∂B̃θ

r∂θ
+
∂B̃r

∂r

)
= 0

The last term in LHS is just

f

(
∂B̃θ

r∂θ
+
∂B̃r

∂r

)
= f (∇ · B̃⊥) = 0

Hence, we have

∂f

∂z
+

∂

∂θ

(
Bθ(r) + B̃θ

rB0
f

)
+

∂

∂r

(
B̃r

B0
f

)
= 0

Let us assume f = 〈f〉+f̃ , where 〈· · · 〉 denotes averaging along θ direction.
Then we take average of the whole equation. Note that the system has
periodicity in θ direction, so the second term vanishes. However, although
the fast perturbation terms (.̃..) are periodic in z direction, the averaged
density 〈f〉 might not. The reason is that z now plays the role of time here.
As one travel through the field lines, some irreversible changes might take
place in the system. Such changes are reflected only in the mean profile.
Thus we have:

∂〈f〉
∂z

+
∂

∂r

〈
B̃r

B0
〈f〉

〉
+

∂

∂r

〈
B̃r

B0
f̃

〉
= 0

⇒ ∂〈f〉
∂z

+
∂

∂r

(
〈f〉
B0

〈
B̃r

〉)
+

∂

∂r

〈
B̃r

B0
f̃

〉
= 0
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The fast perturbation term B̃r must average to zero. Hence,

∂〈f〉
∂z

+
∂

∂r

〈
B̃r

B0
f̃

〉
= 0

Recall that f is the line density, and z effectively acts as time here. The
structure is exactly a Fick’s law:

∂〈f〉
∂z

+
∂Γr,B
∂r

= 0

, where

Γr,B =

〈
B̃r

B0
f̃

〉
is the flux of field line density.

One can imaging that due to the B̃r perturbation, the field lines can move
(”wander”) in the r direction, thus leave their original flux surface. It is
tempting to estimate the displacement δr. We notice that:

dr

dz
=
B̃r

Bz

Hence,

δr ≈
∫ l

0

B̃r

B0
dz

But the fluctuation field B̃r is time-dependent, which means the field lines
won’t move in r direction at the same velocity forever. The ”auto-correlation
time” τac estimates the time scale in which a field at one point remains the
same value. During this time, a point can travel in z direction for an ”auto-
correlation length” lac. Beyond this length, the trajectory de-coheres from the
present fluctuation pattern. lac can be simply estimated by the z-direction
spectrum k‖ of the fluctuation B̃r:

lac =
1

|∆k‖|

, where ∆k‖ is the bandwidth of the spectrum. We can conceptually under-
stand this result by imagining a monochromatic (single-frequency) fluctuation
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in space. If the wave does not decay Ã = A0 exp(ik0z), then the correlation
length is lac = ∞ and the spectrum is a delta function A(k) ∼ δ(k − k0).
However, if the fluctuation is generated at origin and exponentially decays
with characteristic length scale lac, namely Ã = A0 exp(−|z|/lac) exp(ik0z),
the peak start to broaden and becomes a Lorenzian function whose band-
width is ∆k ∼ 1/lac, which is exactly what we got. Then we can express δr
by lac:

δr = lac
B̃r

B0

is the excursion of field lines in one lac.

On the other hand, B̃r also has an r dependence. This means that even
if the structure of Br didn’t change with time, the motion of field lines in r

direction might be changed due to the change of B̃r in r direction. Such ”ra-
dial correlation length” ∆r is the radial correlation length of the ”scatterer”.
We then understand that the ratio between δr and ∆r is important, since the
wandering of magnetic field lines is governed by different mechanisms. This
ratio is exactly the Kubo number (Ku):

Ku ≡
δr

∆r
=
B̃r

B0

lac
∆r

If Ku < 1, namely δr < ∆r, we would imagine that when moving in one
entire coherence length of B̃r, B̃r have already changed for many times. Since
B̃r is a random fluctuation, this means that the field lines have experienced
many ”random kicks” when travelling in an entire coherence length in radial
direction. This leads to a diffusion process of radial wandering.

In contrast, if Ku > 1, or δr > ∆r, the field lines are influenced by the
same B̃r structure without being disturbed by random kicks. Hence, the field
lines will experience strong scattering by B̃r. This is a percolation picture,
and we won’t discuss it in this lesson yet.

Lastly, Ku ≈ 1 is the regime that B. B. Kadomtsev called ”natural state
of EM turbulence” [B. B. Kadomtsev and O. P. Pogutse, Plasma Phys. Con-
trolled Nucl. Fusion Res. 1], and Ku = 1 is the regime of critical balance.
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Critical balance indicates that the linear term ( ∂∂t or B0
∂
∂z) and the non-

linear term (ṽ ·∇ or B̃ ·∇) has the same strength. A rough estimation is
B0/lac = B̃/∆r, since the fluctuation has characteristic length lac in z direc-

tion and ∆r in r direction. This estimation then gives us Ku = B̃r
B0

lac
∆r = 1 as

the criterion of critical balance.
We shall restrict ourselves to the Ku < 1 diffusive regime in the following,

and calculate the diffusion coefficient of magnetic field lines.
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3.3 Diffusion of magnetic field lines

Now we assume Ku < 1 and SC > 1, which is the quasilinear regime,
where field line distribution is stochastic and has no memory about the his-
tory. The equation of the radial flux of field line density (denoted ΓM here):

∂〈f〉
∂z

+
∂ΓM
∂r

= 0 ; ΓM =

〈
B̃r

B0
f̃

〉
is exactly the form of a quasilinear equation. Quasilinear theory assumes
the validity of using a ”mean field”. That is, the density function has linear
response f = 〈f〉+ f̃ , where f̃ � 〈f〉. This assumption is guaranteed by the
low Kubo number, since no strong scattering happens so that the field lines
don’t deviate from the unperturbed trajectories very much.

We now proceed via quasilinear theory. First recall the Liouville equation:

∂f

∂z
+
Bθ(r) + B̃θ

rB0

∂f

∂θ
+
B̃r

B0

∂f

∂r
= 0

If apply the linear response of f , and linearize the equation, we have:

∂〈f〉
∂z

+
∂f̃

∂z
+
Bθ(r)

rB0

∂f̃

∂θ
+

B̃θ

rB0

∂〈f〉
∂θ

+
B̃r

B0

∂〈f〉
∂r

= 0

Recall that the unperturbed magnetic field is only a function of r, B(r) =
B0 + Bθ(r). Therefore, the unperturbed flux density must also be only a
function of r, so the first and the fourth term vanish.

∂f̃

∂z
+
Bθ(r)

rB0

∂f̃

∂θ
+
B̃r

B0

∂〈f〉
∂r

= 0

Then we take Fourier series expansion of Liouville equation in z and θ direc-
tion. Define for any physical quantity A:

A(z, θ, r) =
∑
kz,kθ

ak(r) exp[i(kθr)θ − ikzz]

(Note that we take ”− ikz” because z resembles time here. It won’t change
the physics.) We have the transformed Liouville equation:

−ikzf̃k +
Bθ(r)

B0
ikθf̃k +

B̃r,k

B0

∂〈f〉
∂r

= 0
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⇒ −i
(
kz −

Bθ(r)

B0
kθ

)
f̃k⊥ = −B̃r,k

B0

∂〈f〉
∂r

⇒ f̃k(r) = −i

(
B̃r,k

B0

1

kz − Bθ(r)
B0

kθ

)
∂〈f〉
∂r

Plug it into the density flux equation.

ΓM =

〈∑
k′z,k

′
θ

B̃r,k′(r)

B0
exp[i(k′θr)θ − ik′zz]

∑
kz,kθ

f̃k(r) exp[i(kθr)θ − ikzz]

〉

= −i

〈 ∑
kz,kθ,k′z,k

′
θ

(
B̃r,kB̃r,k′

B2
0

)
1

kz − Bθ(r)
B0

kθ
exp[i(kθ + k′θ)rθ − i(kz + k′z)z]

〉
∂〈f〉
∂r

≡ DM
∂〈f〉
∂r

Use Sokhotski–Plemelj theorem with causality (add a small positive imagi-
nary part to kz),

DM =− i

〈 ∑
kz,kθ,k′z,k

′
θ

(
B̃r,kB̃r,k′

B2
0

)[
iπδ

(
kz −

Bθ(r)

B0
kθ

)]
exp[i(kθ + k′θ)rθ − i(kz + k′z)z]〉θ,z

Then take average along θ and z direction. Remember to divide the value by
corresponding periods for normalization.

DM =
∑

kz,kθ,k′z,k
′
θ

{(
B̃r,kB̃r,k′

B2
0

)
πδ

(
kz −

Bθ(r)

B0
kθ

)
��2πδ[r(kθ + k′θ)]

��2π

��2πδ(kz + k′z)

��2πR

}
=
π

rR

∑
kz,kθ,k′z,k

′
θ

{(
B̃r,kz,kθB̃r,−kz,−kθ

B2
0

)
δ

(
kz −

Bθ(r)

B0
kθ

)
δ(kθ + k′θ)δ(kz + k′z)}
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And convert summation over k′z, k
′
θ to integrations. Remember to divide the

value by the smallest unit δk′z, δk′θ for normalization

DM =
π

rR

∑
kz,kθ

∣∣∣∣∣B̃r,kz,kθ

B0

∣∣∣∣∣
2

δ

(
kz −

Bθ(r)

B0
kθ

)
1

δk′z

1

δk′θ

=
π

�r��R

∑
kz,kθ

∣∣∣∣∣B̃r,kz,kθ

B0

∣∣∣∣∣
2

δ

(
kz −

Bθ(r)

B0
kθ

)
��2π��R

��2π

��2π�r

��2π

Note that the unperturbed field lines already wind on the magnetic surfaces
due to Bθ(r):

Bθ(r)

B0
=
rdθ

dz
=
kz
kθ

This means when we follow the unperturbed field lines:

kz −
Bθ(r)

B0
kθ = 0

Hence,

DM = π

∑
k‖

∣∣∣∣∣B̃r,k‖

B0

∣∣∣∣∣
2
 1

∆k‖

Where ∆k‖ is conceptually the smallest difference in k‖. We can use 2π/lac
as a reasonable approximation, since lac is the largest length within which
parallel structures remain coherent.

⇒ DM ≈

〈(
δBr

B0

)2
〉
lac

And the radial displacement of magnetic lines when travelling in z direction
for distance Z can be estimated by:〈

(δr)2
〉
≈ DMZ

A more rigorous derivation of DM can be found in [M. N. Rosenbluth, et al.
Nucl. Fusion 6, 297 (1966)]
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Lastly, we note that the Liouville equation can also be derived from sim-
plifying the drift-kinetic equation (DKE). Assume steady state, no electric
field and collisionless:

�
�
��∂f

∂t
+ v‖n̂0 ·∇f +��vD ·∇f − c

B0
(���∇φ× ẑ) ·∇f

+ v‖
δB⊥
B0
·∇f − |e|

me
�
�E‖
∂f

∂v‖
= ��

��C(f)

⇒n̂0 ·∇f +
δB⊥
B0
·∇f = 0

Such method works because from a broader perspective, we derived the equa-
tion for the electrons guiding-center (center of gyromotion) motion, which is
what DKE is based on.

29



3.4 Length scales in diffusion of field lines

There are different length scales in the diffusion mechanism. The relation
between them is important. First we estimate lac. Note that we can change
the coordinate system from (rθ, z) to (θ, φ) by:

i[(kθr)θ − kzz] = i[(kθr)θ − (kzR)φ] = i[mθ − nφ]

Along the parallel direction,

kz −
Bθ(r)

B0
kθ = 0

⇒ n

R
− Bθ(r)

B0

m

r
= 0

⇒ n =
RBθ(r)

rB0
m =

m

q

Hence,

dn =

∣∣∣∣mq2
q̇

∣∣∣∣ dr
⇒ d(Rkz) =

∣∣∣∣kθq rq̇

q

∣∣∣∣ dr =

∣∣∣∣kθq s
∣∣∣∣ dr

, where s is the radial shear of the rotational transform q. And the magnetic
shear length Ls is defined as:

Ls ≡
Rq

s

⇒
∣∣∣∣dkzdr

∣∣∣∣ =

∣∣∣∣kθLs
∣∣∣∣

, which is the change in kz when we move in r direction due to a shear in the
Bθ. Recall that the coherence length is lac in parallel direction, and ∆ in r
direction. Therefore,

1

lac∆r
≈
∣∣∣∣kθLs
∣∣∣∣

⇒ lac ≈
Ls
|kθ|∆r

This is the parallel correlation length of the fluctuation field. Above lac the
fluctuation structure changes, so the field lines experience ”kicks”, or ”scat-
tering”. Therefore, lac can also be viewed as the ”memory length” of field
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lines.

On the other hand, we can also define a ”de-correlation length” lc in z di-
rection, over which the field lines is scattered (deviates) from its unperturbed
trajectory. To estimate such scale, we first note that for an unperturbed
magnetic line:

rdθ

dz
≡ dy

dz
=
Bθ(r0)

B0

But now Bθ has perturbation. We denote the effect of radial wandering by
”δ” so that:

dy

dz
=
Bθ(r0)

B0
+

1

B0

[
∂B̃θ(r0)

∂r
δr

]

⇒ d(δy)

dz
≈ 1

B0

[
∂B̃θ(r0)

∂r
δr

]

⇒ δy =

∫ Z B̃′θ(r0)

B0
δrdz

⇒
〈
δy2
〉

=

〈(∫ Z B̃′θ(r0)

B0
δrdz

)2〉

⇒
〈
δy2
〉

=
1

B2
0

B̃
′2
θ Z

2
〈
δr2
〉

Then from the quasilinear diffusion equation:〈
δr2
〉
≈ DMZ

⇒
〈
δy2
〉
≈ B̃

′2
θ

B2
0

DMZ
3

To be more precise, recall that in 1D diffusion:

〈δx2〉 = Dv
T 3

3

Hence, 〈
δy2
〉

=
B̃

′2
θ

3B2
0

DMZ
3

31



The definition of field line de-correlating from its unperturbed trajectory can
be viewed in y direction (dy = rdθ) as it leaves the local fluctuation structure.
That is,

k2
θ

〈
δy2
〉
≈ 1

⇒ 1

k2
θ

≈ B̃
′2
θ

3B2
0

DM l
3
c

lc(k) ≈

(
k2
θ

B̃
′2
θ

3B2
0

DM

)− 1
3

Then we use the definition of magnetic shear length:

1

Ls
=

∣∣∣∣∣ 1

B0

∂B̃θ

∂r

∣∣∣∣∣
⇒ lc(k) =

(
k2
θ

L2
s

DM

3

)− 1
3

, which is analogous to shear dispersion of fluid:(
k2
θv

2

3
D

) 1
3

Also, the physical picture of such de-correlation is as Fig. 9 shows, the
separation of field lines by ”stretching” them in the perpendicular direction.
If we have a distance d0 on the z = 0 plane perpendicular to field lines. Now
d0 is convected by field lines in z direction. The effect of field line stretching
can be expressed as

d(z) = d0 exp

(
z

lc

)
, where lc is the characteristic length in z direction. Such effect is also called
stochastic instability, exactly the Lyapunov instability which gives chaos to
this system. The Lyapunov exponent is 1/lc here.

As we explained, for quasilinear theory to be valid, we need the unper-
turbed trajectory to be good approximation. This means that the field lines
don’t have the chance to deviate from its unperturbed trajectory before be-
ing ”kicked” by de-coherence in the z direction. The criterion is, as has been
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Figure 9: Field lines stretching

stated:

Ku ≡
δr

∆r
=
B̃r

B0

lac
∆r

< 1

According to diffusion equation, when the field lines deviates from its unper-
turbed trajectory 〈

δr2
〉
≈ DM lc

But this radial displacement can also be viewed as the result of field lines
wandering in r direction due to the radial fluctuation B̃r:√

〈δr2〉 ≈ B̃r

B0
lc

⇒ DM lc ≈

(
B̃r

B0

)2

l2c

⇒ B̃r

B0
≈
√
DM

lc
Hence, the criterion becomes

Ku ≈
√
DM

lc

lac
∆r

=

√
DM

lc

l2ac
Ls
|kθ| =

√
DMk2

θ

L2
slc

l2ac < 1
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Now apply the value of lc:

l−3
c ≈

DMk
2
θ

L2
s

Therefore, the criterion becomes:

Ku ≈
(
lac
lc

)2

< 1⇒ lac < lc

for the quasilinear theory to be valid.

In the next section, we shall discuss the transport of charged particles and
heat in tokamak. In such topic, the length scale is also an important issue.
The most common means of transport is, of course, the collisional transport.
The characteristic length of collision is the mean-free path lmfp. However, in
tokamak, since charged particles move helically around a field line, the devi-
ation of field lines from their unperturbed trajectory also causes transport.
Therefore, the relation between the de-correlation length lc and the mean-free
path lmfp is an important criterion for separating regimes. We then have, for
transport phenomena:

Collisionless regime: lac < lc < lmfp

Collisional regime: lac < lmfp < lc
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4 Transport in stochastic fields

We introduced the diffusion of field lines in the previous section. However,
most people don’t really care about just the diffusion of field lines. The reason
of studying it is because of its influence on the important physical questions.
For example, the transport of (charged) particles, their momentum, and the
accompanying heat are what experimental researchers care about.

In the following, we will discuss heat transport of electrons in the perpen-
dicular (to field lines) direction for the collisionless and the collisional regimes
separately. The central themes are (1) how irreversibility is generated, and
(2) the interacting processes. An article written by Rechester and Rosenbluth
[A. B. Rechester and M. N. Rosenbluth. Phys. Rev. Lett. 40, 38 (1978)] is a
must-read one for this topic. In the first and the second subsection following,
we will use their idea to estimate the heat transport. Then we will introduce
another approach in the third subsection.
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4.1 Collisionless heat transport

In the collisionless regime, lac < lc < lmfp, we would imagine that the
perpendicular electron heat transport is mainly contributed by the wandering
of field lines rather than the perpendicular diffusion of electrons. Recall that
the thermal diffusivity χ is defined by:

∂T

∂t
= χ∇2T

, where T is the temperature. It has a dimension of [L2/t]. Naively, we would
imaging that the collisionless χ⊥ is directly proportional to the quasilinear
diffusion coefficient of field lines DM , and the thermal velocity of electrons
vth at which they travel along the field lines. This gives as:

χ⊥ ≈ vthDM

But is the story so simple? Let’s check what happens to our naive story.

Consider a thought experiment. The electrons only move in the parallel
direction, so that one electron is always on a certain field line. Besides the
influence of field line wandering, collision will take place at a distance of lmfp.
Therefore, in the long run, electron motion along the field lines is ”diffusive”,
which gives us:

δz2 ≈ D‖t ≈ χ‖t

, where D‖ ≈ v2
th/γc is the parallel particle diffusion coefficient, and χ‖ is the

parallel heat diffusivity. For the heat transport in perpendicular direction,
we can use the quasilinear diffusion:〈

δr2
〉
≈ DMδz ≈ DM(χ‖t)

1/2

Hence, the perpendicular thermal diffusivity is:

χ⊥ ≡
d〈δr2〉
dt

≈ DM

√
χ‖
t

, which will vanish as t → ∞! Therefore, the naive story won’t give us per-
pendicular thermal transport. But what’s the reason?

The problem of this story is that particles get ”kicked back” by collision
along the line. As Fig. 10 shows, with such kicks, particles’ motion on the
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perturbed field line is a diffusive process. The probability density function
(or distribution) is always centred at the initial point 〈δz〉 = 0. Electrons
don’t really ”travel” along field lines to anywhere far away. Therefore, the
effect of stochastic instability d(z) = d0 exp(z/lc) is not able to take place,
thus no radial wandering of particles. The lesson here is that we need
irreversibility for the particle motion, so that they won’t be kicked back.
Irreversibility is controlled by collisions. Rather than collision along field
lines, an irreversible collision is that kicking particles off the field lines!

Figure 10: Parallel collisions not contributing to irreversibility.

What is the mechanism of this perpendicular kicking? Recall that isotrop-
ically thermalized electrons also have perpendicular velocity, so that they
move helically around the field lines. Therefore, there is uncertainty in their
perpendicular position due to the gyromotion. It effectively ”smear” the
electron location in a circle of electron gyro-radius ρe on the perpendicular
plane. In other words, this defines the ”minimal resolution scale” (or ”grain”)
of electron location on the perpendicular plane. Such phenomenon is called
”coarse graining”.

To understand its influence, let’s consider the following argument. As il-
lustrated in Fig. 11, on the plance perpendicular to the field lines, an electron
motion is smeared on a disk with radius ρe. As electron travel in the parallel
direction within one lmfp, which means the longest range without parallel
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collision, the field line deviates from its unperturbed trajectory. This leads
to the deformation of the disk. The length of it increases due to stochastic
instability

l ≈ ρe exp(lmfp/lc)

But ∇ · B = 0 (analogous to Liouville theorem) preserves the area of it, so
the width (w) of the area becomes:

w ≈ ρe exp(−lmfp/lc)
And the original disk is deformed into a more complicated contour as Fig.
11(c) shows.

Figure 11: Deformation of the particle motion contour.

However, coarse graining also happens for the new contour. As Fig. 12
shows, if we conceptually divided the whole plane into ”cells” (or grids) of
minimal resolution, after travelling in one lmfp, the particle density function
is f re-distributed onto the nearest cells. The total density function should
be conserved:

A(z)f(z) = A0f0

, where A is the total area of cells possessed.
Then comes the parallel collision. Ludwig Boltzmann assures us that there

is no memory after collision. The particle contours in different cells will evolve
independently, but the density function has successfully spread on the per-
pendicular plane. Whenever travelling for one lmfp, particles experience such
spread, which is effectively a ”kick” for their random-walk motion in the per-
pendicular direction. Since the step size is exactly one lmfp, the perpendicular
expansion of the area becomes:

〈δr2〉 ≈ DM lmfp
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Figure 12: Effect of coarse graining on particle density function.

In other words, coarse graining interval sets 〈δr2〉 steps!

Lastly, we estimate the collisionless thermal diffusivity in stochastic field:

χ⊥ ≈
〈δr2〉
τc
≈ DM

lmfp
τc
≈ vthDM

⇒ χ⊥ ≈ vthDM

, which is exactly the same as our naive estimation. Interestingly, we find
that the diffusivity is manifestly independent of collisionality. However,
the mechanism is clearly dependent on collisions and coarse graining.

To look back on the whole argument, the lesson we learn here is that
coarse graining is essential to irreversibility. In other words, coarse
graining is essential to kick particle off field lines. Otherwise, collisional
back-scattering will reverse the wandering.

[Suggested exercises]

1. Derive the magnetic diffusivity with magnetic drifts. How do these mod-
ify DM? Explain why high energy particles (runaways) are confined
longer than thermal ones.

2. Formulate the theory of diffusion due to stochastic fields in toroidal
geometry using ballooning mode formalism for the fluctuations.

3. What happens to net cross field transport in a standing spectrum of
electrons and magnetic perturbations? When might transport vanish?
Why?
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4.2 Collisional heat transport

Now we consider the transport in collisional regime, which is more chal-
lenging. Here, we have a short mean-free path lac < lmfp < lc.

We already show that radial transport doesn’t happen if there is only
collision. Instead, what causes the radial transport is perpendicular spread
of particle trajectory due to coarse graining in stochastic field. Therefore,
the perpendicular spread still follows quasilinear equation:

〈δr2〉 ≈ DM lc,δ

for some length scale lc,δ. In the collisionless regime, this length scale is lmfp,
the length scale at which an irreversible ”kick” happens. The underlying
reason is that lc < lmfp, when the parallel collision take places, irreversibility
has already been produced by coarse graining within lc. However, since lmfp <
lc in collisional regime, within one lmfp irreversibility has not formed yet.
Then the lc,δ that sets the irreversibility here must be a longer length than
lmfp. Moreover, within this length scale particles experience many collisions,
so that the motion is diffusive:

〈δz2〉 = D‖δt ≈ χ‖δt

⇒ l2c,δ ≈ χ‖δtc,δ

Thus the perpendicular diffusivity can be found as

χ⊥ =
〈δr2〉
δtc,δ

≈ DM

χ‖
lc,δ

As we stated, lc,δ is the parallel length scale between two irreversible kicks.
But what is an irreversible kick? Conceptually, it’s the jump of particles from
one magnetic field line to another. In other words, that’s when the particles
originally belonging to one field line are now de-correlated. Therefore, we
have to find out (1) the original perpendicular distance between these parti-
cles, (2) the perpendicular distance at which they are de-correlated, and (3)
the mechanism that makes the distance evolve.

Naively for question (1), one would try to define particles ”belonging”
to one field line as those on a perpendicular disk with radius ρe centred at
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the field line. However, in the collisional regime, there are two processes to
deform the shape of this disk. The first mechanism is the shrinking in the
contour width δ due to stochastic instability of the length and ∇ ·B = 0 that
preserves the total area. This is addressed in the collisionless regime that:

δ(z) = δ0 exp(−z/lc)

⇒ dδ

dz
= − δ

lc
Another mechanism is from collision. As Fig. 13 illustrates, when a particle
is scattered by another particle, its perpendicular velocity changes direction,
so that the guiding center of the gyromotion changes. Hence, the guiding
center’s motion is a random walk with the step length around one gyro-
radius ∆ ≈ ρe, and collision frequency γee = 1/τc. Its influence on the width
δ is a classical perpendicular diffusion:

〈dδ2〉 ≈ D⊥dt

, where

D⊥ =
ρ2
e

τc
=
ρ2
evth
lmfp

Hence,
dδ ≈

√
〈δ2〉 ≈

√
D⊥dt

Recall that the motion in parallel direction is also diffusive, so we have:

〈dz2〉 ≈ χ‖dt ≈ vth lmfpdt

⇒ dδ ≈

√
D⊥
χ‖

dz

⇒ dδ

dz
=

√
D⊥
χ‖

The balance between the two processes sets the equilibrium size of δ:

−δ0

lc
+

√
D⊥
χ‖

= 0

⇒ δ0 = lc

√
D⊥
χ‖
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Thus we find the answer to question (1). Note that this length scale can also
be derived from thermal energy conservation:

dT

dt
=
∂T

∂t
− χ‖∇2

‖T −D⊥∇2
⊥T = 0

⇒
χ‖
l2c
≈ D⊥

δ2
0

⇒ δ0 ≈ lc

√
D⊥
χ‖

Figure 13: Guiding center (GC) random walk by scattering.

Next, question (2) is the perpendicular correlation length δc. As illustrated
in the collisionless case, the correlation length is between which one observes
significant change of the magnetic field structure. That is to say, we can
roughly estimate this length by:

k2
θ〈δ2

c 〉 ≈ 1

⇒ δc ≈
1

|kθ|
Lastly, question (3) is what makes the perpendicular width to grow from

δ0 to δc. The answer is, of course, the stochastic instability. Hence, we can
estimate the corresponding parallel length scale lc,δ between two ”kicks” by:

δc
δ0

= exp

(
lc,δ
lc

)
⇒ lc,δ = lc ln

(
δc
δ0

)
= lc ln

(
1

|kθ|lc

√
χ‖
D⊥

)
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Since log function is not a strong dependence function, we can also drop it
to have:

lc,δ ≈ lc

This is as expected because lc is the de-correlation length in collisionless
regime, at which irreversibility is generated.

Now plugging this into the equation for χ⊥, we finally find out:

χ⊥ = DM

χ‖
lc,δ
≈ DM

χ‖
lc

= DM
vth lmfp
lc

⇒ χ⊥ ≈ vthDM

(
lmfp
lc

)
Compare this result with the collisionless thermal diffusivity:

χ⊥,collisional

χ⊥,collisionless
≈
(
lmfp
lc

)
collisional

< 1

The lessons we learned here are:

1. Collisions reduce χ⊥ by (lmfp/lc) from the ”collisionless” case. But we
should remember that even the collisionless transport also requires
collisions.

2. The collisional heat transport is the interplay of perpendicular and
parallel diffusions.

3. Same as the collisionless case, it is critical to knock particles off field
lines to produce irreversibility.
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4.3 Systematic derivation of transport from hydrodynamics

So far we have successfully estimated the thermal diffusivity in the colli-
sionless and the collisional regimes. However, although such arguments only
require simple calculation, they do rely on deep insight into the problems. Is
there a more systematic approach to derive the diffusivity more mindlessly?
Kadomtsev and Pogutse gave an approach using hydrodanamics in [B. B.
Kadomtsev and O. P. Pogutse, Plasma Phys. Controlled Nucl. Fusion Res.
1, 649-662 (1978)]. In the following we briefly introduce it.

Firstly, the heat transport in hydrodynamic system is the about the heat
flux q. We now consider the heat flux along wiggling fields.

q = −χ‖∇‖T b̂− χ⊥∇⊥T

, where b̂ is the unit vector along field direction. The first term in RHS is
the parallel heat conduction, and the second term is the perpendicular heat
conduction. Due to gyro-motion of particles in perpendicular direction, we
would imaging that

χ‖ � χ⊥

Then we include perturbation to the field:

b = b0 + b̃

, where the first term is the unperturbed term, and the second term is the
perturbed one. Now define z axis to be along the unperturbed field direction
ẑ ≡ b̃0. We then have:

∇‖ =
∂

∂z
+ b̃ ·∇⊥

Therefore, the (perpendicular) wiggling of field lines contributes to the per-
pendicular transport by the second term in the new ∇‖. Plugging this into
equation of q, and taking average of the radial heat flux, we have four con-
tributions:

〈qr〉 = −χ‖
〈
b̃2
r

〉 ∂〈T 〉
∂r︸ ︷︷ ︸

(a)

− χ‖

〈
b̃r
∂T̃

∂z

〉
︸ ︷︷ ︸

(b)

− χ‖

〈
b̃rb̃r

∂T̃

∂r

〉
︸ ︷︷ ︸

(c)

− χ⊥∇r〈T 〉︸ ︷︷ ︸
(d)
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Term (a) and term (b) are the usual quadratic terms of perturbation, term
(d) is just the perpendicular heat conduction, but now a cubic term (c) arises.
To see its influence, we take:

(c)

(b)
≈
χ‖b̃rb̃rT̃ /∆r

χ‖b̃rT̃ /lac
= b̃r

lac
∆r

=
B̃r

B0

lac
∆r

=
δr

∆r
= Ku

Therefore, the cubic non-linearity dominates for Ku > 1. But since we as-
sume small Kubo number Ku < 1, term (c) is negligible, and we will drop it.

To compute 〈qr〉, we shall retain term (a) (as usual) and term(b), and then
iterate for T̃ using ∇ · q = 0 via quasilinear theory. Now think about the
expression for radial heat flux:

〈qr〉 ≈ −χ‖

[〈
b̃2
r

〉 ∂T
∂r

+

〈
b̃r
∂T̃

∂z

〉]
− χ⊥∇r〈T 〉

From linearization,

b̃ ·∇T ≈ b̃r
∂T

∂r
+
∂T̃

∂z
Hence,

〈qr〉 ≈ −χ‖
[〈
b̃r b̃ ·∇T

〉]
− χ⊥∇r〈T 〉

The point here is that we need

b̃ ·∇T 6= 0

to drive net heat flux 〈qr〉 6= 0. That is to say, to drive parallel heat flux,
temperature can’t be constant along field line. But we still need ∇·q =
0. Hence, the result must imply χ⊥ dependence to balance the heat flux,
which is seen here:

〈qr〉 ≈ −χ‖

[〈
b̃2
r

〉 ∂T
∂r

+

〈
b̃r
∂T̃

∂z

〉]
− χ⊥∇r〈T 〉

We proceed to consider the total heat flux:

∇ · q = 0
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⇒ ∇‖q̃‖ + ∇⊥ · q̃⊥ = −χ‖
∂

∂z

(
b̃r
∂〈T 〉
∂r

)
, where

q = −χ‖
[(

∂

∂z
+ b̃

)
(T0 + T̃ )(b0 + b̃)

]
− χ⊥∇⊥T

Hence,

−χ‖
∂2T̃

∂z2
− χ⊥∇2

⊥T̃ = −χ‖
∂

∂z

(
b̃r
∂〈T 〉
∂r

)
Take spatial Fourier series expansion of the equation:

⇒ T̃k = −
χ‖ ikz b̃k

∂〈T 〉
∂r

χ‖k2
z + χ⊥k2

⊥

Then term (a) and term (b) can be written as:

−χ‖
〈
b̃2
〉 ∂〈T 〉

∂r
− χ‖

〈
b̃r
∂T̃

∂z

〉

= −χ‖
∑
k

− χ‖ k
2
‖

∣∣∣b̃k∣∣∣2
χ‖k2

z + χ⊥k2
⊥

+
∣∣∣b̃k∣∣∣2

 ∂〈T 〉
∂r

= −χ‖
∂〈T 〉
∂r

∑
k

(
− �

�
��χ‖ k
2
‖

χ‖k2
z + χ⊥k2

⊥
+ �

�
�χ‖k
2
z + χ⊥k

2
⊥

χ‖k2
z + χ⊥k2

⊥

)∣∣∣b̃k∣∣∣2
Thus we have:

〈qr〉NL = −χ‖
∂〈T 〉
∂r

∑
k

χ⊥k
2
⊥|bk|2

χ‖k
2
‖ + χ⊥k2

⊥

Note that it is proportional to χ⊥! We’ve already seen that the mechanism
behind χ⊥ is the irreversibility caused by coarse graining. Therefore, this
expression of 〈qr〉NL directly tells us the importance of coarse graining in
perpendicular heat transport.

Now replace the summation by integration,

〈qr〉NL ≈ −��
χ‖
∂〈T 〉
∂r

∫
dk⊥

∫
dkz

χ⊥k
2
⊥|bk|2

��
χ‖

(
k2
‖ + χ⊥

χ‖
k2
⊥

)
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= −∂〈T 〉
∂r

∫
dk⊥

∫
dkz

χ⊥k
2
⊥|bk|2(

k2z
(χ⊥/χ‖)k2⊥

+ 1
)(

χ⊥
χ‖
k2
⊥

)
Then we consider normalization and integrate over kz:

〈qr〉NL = −∂〈T 〉
∂r

∫
dk⊥

k2
⊥(χ‖χ⊥)1/2√

k2
⊥

|b̃k|2 lac

Note that the auto-correlation length enters here via normalization of kz
integration by bandwidth (lac = 1/∆kz) Then

〈qr〉NL ≈ −
√
χ‖χ⊥

〈
b̃2
〉
lac

〈√
k2
⊥

〉
∂〈T 〉
∂r

Note that,

1. We need ∇‖T̃ 6= −b̃r (namely, B̃ ·∇T 6= 0) to drive net perpendicular
heat flux q⊥.

2.
〈
b̃2
〉
lac ≈ DM

3.
√
k2
⊥ ≈ 1/∆⊥

Hence,

〈qr〉 ≈ −χ⊥,eff
∂〈T 〉
∂r
− χ⊥

∂〈T 〉
∂r

, where

χ⊥,eff ≈
√
χ‖χ⊥

DM

∆⊥
and

χ‖χ⊥ ≈
v2
the

��γ
ρ2
e��γ ≈ DB

, where DB is the Bohm diffusion coefficient. Plug this into thermal diffusiv-
ity:

χ⊥,eff ≈
DB

∆⊥
DM

Here we found that:

1. χ⊥,eff scales with Bohm diffusion coefficient rather than Spitzer diffusion
(χ‖)
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2. Kicking particles off the field lines is again seen as important.

To compare this result with what we estimate from Rechester and Rosen-
bluth’s method, we use:

χ⊥ ≈
√
χ‖χ⊥

〈b̃2〉
∆⊥

lac

But what is the length scale ∆⊥? It is the thickness of a small layer that
enters the spectrum. Now we have

χ‖
l2c
≈ χ⊥

∆2
⊥

∆⊥ ≈ lc

√
χ⊥/χ‖

Thus ∆⊥ is set by diffusion. Then we can plug it into χ⊥:

χ⊥ ≈
√
χ‖χ⊥

〈b̃2〉lac
lc(χ‖/χ⊥)1/2

⇒ χ⊥ ≈
χ‖
lc
DM = vthDM

(
lmfp
lc

)
So we found that

1. Using modulo k⊥, ∆⊥, the result here (fluid approach) agrees with
R.&R.’s result (single-particle approach) to within a logarithmic factor

2. χ⊥ ≈ vthDM
lmfp
lc

This covers diffusion in the quasilinear regime (Ku < 1, SC > 1). The
lesson we learned here is that we should take care of coarse graining, since
it is crucial to irreversibility!
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