
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 132.239.66.164

This content was downloaded on 09/06/2016 at 22:59

Please note that terms and conditions apply.

Study of ion turbulent transport and profile formations using global gyrokinetic full-f Vlasov

simulation

View the table of contents for this issue, or go to the journal homepage for more

2009 Nucl. Fusion 49 065029

(http://iopscience.iop.org/0029-5515/49/6/065029)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0029-5515/49/6
http://iopscience.iop.org/0029-5515
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION

Nucl. Fusion 49 (2009) 065029 (14pp) doi:10.1088/0029-5515/49/6/065029

Study of ion turbulent transport and
profile formations using global
gyrokinetic full-f Vlasov simulation
Y. Idomura1, H. Urano2, N. Aiba2 and S. Tokuda2

1 Japan Atomic Energy Agency, Higashi-Ueno 6-9-3, Taitou, Tokyo 110-0015, Japan
2 Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193, Japan

Received 29 December 2008, accepted for publication 16 April 2009
Published 26 May 2009
Online at stacks.iop.org/NF/49/065029

Abstract
A global gyrokinetic toroidal full-f five-dimensional Vlasov simulation GT5D (Idomura et al 2008 Comput. Phys.
Commun. 179 391)is extended including sources and collisions. Long time tokamak micro-turbulence simulations in
open system tokamak plasmas are enabled for the first time based on a full-f gyrokinetic approach with self-consistent
evolutions of turbulent transport and equilibrium profiles. The neoclassical physics is implemented using the linear
Fokker–Planck collision operator, and the equilibrium radial electric field Er is determined self-consistently by
evolving equilibrium profiles. In ion temperature gradient driven turbulence simulations in a normal shear tokamak
with on-axis heating, key features of ion turbulent transport are clarified. It is found that stiff ion temperature Ti
profiles are sustained with globally constant Lti ≡ |Ti/T ′

i | near a critical value, and a significant part of the heat flux is
carried by avalanches with 1/f type spectra, which suggest a self-organized criticality. The Er shear strongly affects
the directions of avalanche propagation and the momentum flux. Non-diffusive momentum transport due to the Er
shear stress is observed and a non-zero (intrinsic) toroidal rotation is formed without momentum input near the axis.

PACS numbers: 52.30.Gz, 52.35.Ra, 52.65.Tt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Five-dimensional (5D) gyrokinetic simulations are essential
tools to study anomalous turbulent transport in tokamak
plasmas [2–6]. Although a number of gyrokinetic simulations
have been developed so far, most of the existing simulations
are δf simulations in an isolated system without sources and
collisions or in an open system with fixed gradients. In a
δf approach, only the perturbed distribution function δf is
solved by forcing the equilibrium distribution f0 to be fixed.
δf gyrokinetic simulations with fixed gradients have been
successful in estimating steady transport levels for profiles
observed in experiment (see e.g. [6]). However, it still has
difficulty in addressing open issues such as the profile stiffness,
transient transport properties and the formation of transport
barriers [6]. In particular, it is very difficult to simulate
turbulent transport with stiff profiles, because the experimental
data contain finite errors and a slight change in fixed gradients
leads to a large increase in turbulent transport [7]. To
resolve this issue, a recent advanced gyrokinetic δf simulation
adopts an approach in which equilibrium profiles are adjusted
until turbulent transport levels reach the experimental values,
where the balance conditions of particle and heat fluxes are

satisfied [4]. By using this approach, ion and electron heat
fluxes in the experiment were successfully reproduced [8].
However, when one intends to reproduce the particle transport,
the momentum transport and the heat transport for each particle
species, simultaneously, one has to optimize all the related
equilibrium profiles such as the density, the toroidal rotation,
the temperature, the radial electric field and so on at each radial
position. This may be a formidable task because turbulent
transport often has non-local properties, and several transport
channels have off-diagonal terms, which lead to indirect
interaction among different transport channels. In addition,
global δf simulations normally use an adaptive source model
to fix the equilibrium profiles on average [9], and its particle,
momentum and heat source profiles also have to match the
experiment. On the other hand, in a full-f approach, such
flux balance conditions are automatically satisfied by simply
imposing experimentally relevant source profiles. Then, one
observes turbulent transport and evolving equilibrium profiles,
and if these profiles deviate from the experiment, one proceeds
to improve physical models. This is the validation process of
a full-f approach, which may have less ambiguity.

In addition, former fluid simulations with fixed fluxes or
fixed sources [10, 11] revealed an interaction between turbu-
lent transport and equilibrium profiles, where gradients are
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not fixed but fluctuate near their critical values via avalanche
like transport processes with 1/f type spectra. This kind of
power law in the frequency spectrum is a typical feature of self-
organized criticality (SOC) like phenomena [12] and suggest
non-local transport properties related to Bohm like features in
the tokamak micro-turbulence [13]. Fluid simulations in [11]
also showed qualitative and quantitative differences between
fixed gradient and fixed flux approaches, which may corre-
spond to δf and full-f approaches in the context of a gyroki-
netic simulation. In general, SOC phenomena have a scale
free character in space and time. This raises a serious question
about the validity of the former approach, in which an evo-
lution equation of δf is derived by assuming a separation of
characteristic spatio-temporal scales between f0 and δf . Ano-
ther important issue is to simulate the edge turbulence where
the perturbation amplitude reaches δf/f0 ∼ O(1). From
these backgrounds, recently, developments of global gyroki-
netic full-f Vlasov simulations have been started [1, 14–17].

In a full-f approach, turbulent transport and equilibrium
profiles are solved self-consistently following the same first
principles. In core plasmas, amplitudes of the density
fluctuation δn are small compared with the equilibrium density
n0, δn/n0 < 1%, and the normalized collisionality ν∗ is very
small ν∗ � 1. In order to treat such small amplitude and
weak dissipation phenomena in a full-f approach, we need a
numerical scheme which satisfies high accuracy and numerical
stability simultaneously. To resolve this requirement, we
developed a new non-dissipative conservative finite difference
scheme (NDCFD) [18], which keeps the numerical stability
by conserving the phase space volume, f , and f 2, which
are conservation properties inherent to the gyrokinetic Poisson
bracket operator. The NDCFD was successfully applied to a
global gyrokinetic toroidal full-f 5D Vlasov code (GT5D) [1],
and the code was verified through linear and nonlinear
benchmarks of the ion temperature gradient (ITG) driven
turbulence against a global gyrokinetic δf 3D particle-in-cell
code (GT3D) [19]. In the benchmark, robustness and accuracy
of NDCFD were examined, and a possibility of long time full-f
gyrokinetic simulations was demonstrated. At the moment,
GT5D uses a gyrokinetic model for the ITG turbulence in
core plasmas, and will be improved to an extended gyrokinetic
model for edge plasmas in future works.

In this work, we extend GT5D including sources and
collisions, and develop long time source driven ITG turbulence
simulations based on a full-f approach. Source and sink
models are needed to simulate open system tokamak plasmas,
in which a heat flux is imposed by auxiliary heating. A
sink model is closely related to boundary conditions. Since
the edge turbulence is out of the scope of this study, the
boundary condition of core plasmas is imposed by a sink
model reflecting conditions given by edge plasmas. Collisions
work as a physical dissipation mechanism of fine scale
velocity space structures, which are produced by mixing due
to the ballistic mode. From the viewpoint of the entropy
balance relation [20–22], such a dissipation mechanism is
essential for reaching statistically steady states in long time
gyrokinetic turbulence simulations [23]. In addition, the
collisional effect or the neoclassical physics itself is an
important physics ingredient in gyrokinetic simulations. The
neoclassical transport gives a baseline of transport levels,

when turbulent transport is quenched, e.g. in transport barriers.
The neoclassical physics dictates relevant kinetic equilibrium.
In our previous collisionless gyrokinetic simulations, f0

was chosen as a gyrokinetic Vlasov equilibrium distribution
defined by a function of three constants of motion, the
canonical toroidal angular momentum Pζ , the energy ε and
the magnetic moment µ [19]. However, particle distributions
given by such Vlasov equilibria do not coincide between ions
and electrons because of their different orbit widths, and the
charge neutrality is not exactly satisfied. This means that we
need to determine relevant kinetic equilibria with equilibrium
radial electric fields Er, which are dictated by the neoclassical
physics in a perturbative manner. The equilibrium Er and mean
Er ×B flows play critical roles in turbulent transport. In order
to keep the standard neoclassical physics in core plasmas, we
implement ion–ion collisions using the linear Fokker–Planck
collision operator, and verify it through comparisons against
standard local neoclassical theories. In source driven ITG
turbulence simulations, we trace long time evolutions of the
ITG turbulence and equilibrium profiles in a normal shear
tokamak. As a qualitative validation of GT5D, we study
stiffness of the ion temperature Ti profile, intermittent transport
phenomena and momentum transport in the ITG turbulence,
and discuss their correspondence with the experiment.

This paper is organized as follows. In section 2, the
gyrokinetic equations, the linear Fokker–Planck collision
operator and source models are given, and their numerical
methods are explained. In section 3, benchmark calculations of
the neoclassical transport phenomena are shown. In section 4,
source driven ITG turbulence simulations are presented,
and long time behaviour of turbulent transport and profile
formations is addressed. Finally, in summary, qualitative
comparisons between the present simulation results and the
experiment are discussed.

2. Calculation model

In this study, we consider the electrostatic ITG turbulence
described by gyrokinetic ions and adiabatic electrons in
an axisymmetric toroidal configuration. In the modern
gyrokinetic theory [24], the gyrokinetic equation is written
using the gyro-centre Hamiltonian,

H = 1
2miv

2
‖ + µB + e〈φ〉α, (1)

and the gyrokinetic Poisson bracket operator,

{F, G} ≡ �i

B

(
∂F

∂α

∂G

∂µ
− ∂F

∂µ

∂G

∂α

)

+
B∗

miB
∗
‖

·
(

∇F
∂G

∂v‖
− ∂F

∂v‖
∇G

)

− c

eB∗
‖

b · ∇F × ∇G, (2)

in the gyro-centre coordinates Z = (t; R, v‖, µ, α), where
R is a position of the guiding centre, v‖ is the parallel
velocity, µ is the magnetic moment, α is the gyro-phase angle,
B = Bb is the magnetic field, b is the unit vector in the
parallel direction, mi and e are the mass and charge of ions,
respectively, c is the velocity of light, �i = (eB)/(mic) is the
cyclotron frequency, B∗

‖ = b · B∗ is a parallel component of
B∗ = B + (Bv‖/�i)∇ × b, φ is the electrostatic potential and

2



Nucl. Fusion 49 (2009) 065029 Y. Idomura et al

the gyro-averaging operator is defined as 〈·〉α ≡ ∮ ·dα/2π .
By using equations (1) and (2), the gyrokinetic equation in
the collisionless and sourceless limit is simply given as the
Liouville equation,

Df

Dt
≡ ∂f

∂t
+ {f, H }

= ∂f

∂t
+ {R, H } · ∂f

∂R
+ {v‖, H } ∂f

∂v‖
= 0, (3)

where f is the guiding centre distribution function, and the
nonlinear characteristics are given as

Ṙ ≡ {R, H } = B∗

miB
∗
‖

∂H

∂v‖
+

c

eB∗
‖

b × ∇H

= v‖b +
c

eB∗
‖

b × (e∇〈φ〉α + miv
2
‖b · ∇b + µ∇B), (4)

v̇‖ ≡ {v‖, H } = − B∗

miB
∗
‖

· ∇H

= − B∗

miB
∗
‖

· (e∇〈φ〉α + µ∇B). (5)

Since f and H are gyro-phase independent, the first term
in equation (2) vanishes automatically in equations (3)–(5).
Equations (4) and (5) satisfy the phase space volume
conservation, which is written as an incompressible condition
of the Hamiltonian flow,

∇ · (J Ṙ) +
∂

∂v‖
(J v̇‖) = 0, (6)

where J = m2
i B

∗
‖ is the Jacobian of the gyro-centre

coordinates. From the phase space volume conservation (6),
the gyrokinetic equation (3) yields its conservative form,

∂J f

∂t
+ ∇ · (J Ṙf ) +

∂

∂v‖
(J v̇‖f ) = 0. (7)

By adding a collision term C(f ), a source term Ssrc and a sink
term Ssnk, a conservative gyrokinetic equation used in GT5D
is written as
∂J f

∂t
+ ∇ · (J Ṙf ) +

∂

∂v‖
(J v̇‖f )

= J C(f ) + J Ssrc + J Ssnk. (8)

The self-consistency is imposed by the quasi-neutrality
condition or the gyrokinetic Poisson equation,

−∇⊥ · ρ2
ti

λ2
Di

∇⊥φ +
1

λ2
De

(φ − 〈φ〉f)

= 4πe

[∫
f δ([R + ρ] − x) d6Z − n0e

]
, (9)

where R + ρ is a particle position, d6Z = m2
i B

∗
‖ dR dv‖ dµ dα

is the phase space volume of the gyro-centre coordinates, ρti is
the Larmor radius evaluated with the thermal velocity vti, λDi

and λDe are the ion and electron Debye lengths and 〈·〉f is an
integral flux surface average operator involving the geometry
coupling effect [2]. In equation (9), the first term in the l.h.s.

is an ion polarization effect coming from the first order term of
the pull back transformation in the gyrokinetic ordering [24].
In this study, we use a linearized ion polarization term with a
long wavelength approximation. This approximation may be
valid for the core ITG turbulence, which is characterized by
k2
⊥ρ2

ti � 1 and δn/n0 � 1.
In order to implement the neoclassical physics in core

plasmas, ion–ion collisions are modelled by the linear
Fokker–Planck collision operator [25, 26], which is valid for
δf/f0 � 1:

C(f ) = ∂

∂s
(ν⊥1v

2f ) +
∂

∂u
(ν‖1uf ) +

1

2

∂2

∂s2
(ν⊥2v

4f )

+
1

2

∂2

∂u2
(ν‖2v

2f ) +
∂2

∂s∂u
(ν‖⊥v3f ) + CF, (10)

where s = 2µB/mi and u = v‖ −U‖ are a moving frame with
respect to the parallel flow velocity U‖ and v2 = u2 + s. The
definitions of the collision frequencies, ν⊥1, ν‖1, ν⊥2, ν‖2, ν‖⊥,
and the field particle operator CF are given in the appendix. The
moving frame and collision frequencies are calculated at each
position using evolving equilibrium profiles, which provide
indirect nonlinear effects on C(f ). Operator (10) is annihilated
by a shifted Maxwellian distribution with an arbitrary flow
velocity. It is noted that equation (10) is given in the drift-
kinetic limit, and we ignore corrections related to finite Larmor
radius (FLR) effects to satisfy local conservation properties of
the particle number, the momentum and the kinetic energy:∫

C(f )m2
i B

∗
‖ dv‖ dµ dα = 0, (11)

∫
miv‖C(f )m2

i B
∗
‖ dv‖ dµ dα = 0, (12)

∫ (
1
2miv

2
‖ + µB

)
C(f )m2

i B
∗
‖ dv‖ dµ dα = 0, (13)

which are basic requirements used in the neoclassical
theory [27, 28]. It should be noted that the gyrokinetic Vlasov–
Poisson system, equations (8) and (9), naturally reduces to a
physical model of the neoclassical theory in the axisymmetric
limit with macroscopic radial electric fields Er. Firstly, it
is trivial that for macroscopic perturbations with k⊥L ∼
O(1), the gyrokinetic equation (8) reduces to the drift-kinetic
equation [27]. Here, L is a characteristic scale length of
equilibrium profiles. Secondly, by taking the time derivative
and the flux-surface average of equation (9) and substituting
equation (8), we derive a particle balance relation:

∂

∂r

[
−

〈
ρ2

ti

4πeλ2
Di

〉
f

∂Er

∂t
− �

]
=

〈∫
C(f )m2

i B
∗
‖ dv‖ dµ dα

〉
f

= 0, (14)

where the particle flux is defined as

� ≡
〈∫

f (Ṙ0 · ∇r)δ([R + ρ] − x) d6Z

〉
f

�
〈∫

f (Ṙ0 · ∇r)m2
i B

∗
‖ dv‖ dµ dα

〉
f

=
〈∫

δf (vB · ∇r)m2
i B

∗
‖ dv‖ dµ dα

〉
f

. (15)
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Here, Ṙ0 = {R, 〈H 〉ζ } is a particle orbit given by an
axisymmetric part of the Hamiltonian 〈H 〉ζ , vB is the magnetic
drift terms in equation (4), and δf = f −fM is a deviation of f

from a local Maxwellian distribution fM at each flux surface.
When the collision operator conserves the particle number,
equation (14) leads to the equation for Er:

−
〈

ρ2
ti

4πeλ2
Di

〉
f

∂Er

∂t
= �, (16)

which was used to determine neoclassical electric fields
[29, 30]. Therefore, the present physical model is expected
to recover the neoclassical theory in the axisymmetric limit.
Equation (16) shows a balance between second order terms in
the gyrokinetic ordering, while they are derived from the first
order gyro-centre transform. In [31], it was pointed out that the
gyrokinetic equations derived from the first order transform in
a so-called recursive approach cannot determine macroscopic
electric fields. However, the above discussion shows that in
the modern gyrokinetic theory, its flux-surface averaged form
has high enough accuracy to determine Er even with the first
order transform.

A source term requires an empirical modelling. In this
study, we simulate heat and momentum transport due to the
ITG turbulence driven by on-axis heating with a given power
input. On the other hand, at the boundary of core plasmas, we
fix the ion temperature Ti and the parallel flow U‖ on average
reflecting boundary conditions in H-mode plasmas, where the
pedestal temperature is limited by edge localized modes and a
no-slip boundary U‖ = 0 is imposed by the charge exchange
with the neutrals. Following the above consideration, we use
models for a heat source Ssrc near the axis and a heat sink Ssnk

in a boundary region:

Ssrc = Asrc(R)τ−1
src (fM1 − fM2), (17)

Ssnk = Asnk(R)τ−1
snk(f0 − f ), (18)

where Asrc and Asnk are deposition profiles, fM1 and fM2

are (shifted) Maxwellian distributions, τsrc and τsnk are time
constants for the energy sink and f0 is the initial distribution.
In equation (17), Asrc, τsrc, fM1 and fM2 are chosen to fix power
input without particle and momentum input:∫

Ssrcm
2
i B

∗
‖ dv‖ dµ dα = 0, (19)

∫
miv‖Ssrcm

2
i B

∗
‖ dv‖ dµ dα = 0, (20)∫ (

1
2miv

2
‖ + µB

)
Ssrc d6Z = Pin, (21)

where Pin is power input. In equation (18), Ti and U‖ in the
boundary region are modified towards their initial values by a
Krook operator with the time constant τsnk. This model works
not only as a heat sink but also as a momentum source (sink)
when a negative (positive) momentum flux is absorbed. This
kind of momentum source at the boundary is considered as the
origin of the intrinsic toroidal rotation.

A power balance in the above gyrokinetic equations is
given as follows:∫

H
∂f

∂t
d6Z = dEkin

dt
+

dEfld

dt
= dEcol

dt
+

dEsrc

dt
+

dEsnk

dt
,

(22)

dEkin

dt
= d

dt

∫ (
1

2
miv

2
‖ + µB

)
f d6Z, (23)

dEfld

dt
=

∫
e〈φ〉α ∂f

∂t
d6Z

= d

dt

1

8π

∫ [
ρ2

ti

λ2
Di

|∇⊥φ|2 +
1

λ2
De

|φ − 〈φ〉f |2
]

dx, (24)

dEcol

dt
=

∫
e〈φ〉αC(f ) d6Z, (25)

dEsrc

dt
=

∫
HSsrc d6Z ∼ Pin, (26)

dEsnk

dt
=

∫
HSsnk d6Z −

∫
[m2

i B
∗
‖ ṘHf ]R=Rb.c. dv‖ dµ dα

−
∫

[m2
i B

∗
‖ v̇‖Hf ]v‖=v‖b.c. dR dµ dα. (27)

In the simulation, we impose the Dirichlet boundary condition
f = f0 at the boundary of a computational domain, R = Rb.c.,
v‖ = v‖b.c., which leads to finite outgoing and incoming fluxes
across the computational boundary. These boundary fluxes
are taken into account in equation (27). It is noted that the
boundary flux in a configuration space is absorbed by the
sink term in a buffer region in the outside of the core plasma
boundary, and f at the velocity space boundary is very small.
Therefore, these boundary fluxes do not affect core plasmas
so much. Equation (25) shows collisional power transfer
due to the FLR effect, which is O(k2

⊥ρ2
ti) contribution to the

power balance. Although this power transfer is a spurious
effect coming from a mismatch between the gyrokinetics and
a drift-kinetic like collision operator, its influence on the power
balance is negligible in the simulation (see figure 8).

In GT5D [1], the gyrokinetic Poisson bracket operator
in equation (3) is discretized using the fourth order NDCFD,
which enables robust and accurate computation of nonlinear
turbulent dynamics based on a full-f approach. The
gyrokinetic Poisson equation (9) is computed using toroidal
mode expansion and a 2D finite element approximation on
the poloidal plane. The linear Fokker–Planck operator (10)
is discretized using the sixth order centred finite difference.
It is noted that, in the simulation, conservation properties,
equations (11)–(13), are not satisfied exactly because of small
numerical errors coming from a finite difference operator
and a truncated velocity space. In order to compensate
these numerical errors in the collision operator, we add a
correction term to the field particle operator. More details
concerning an implementation of the collision operator are
given in the appendix. The time integration is performed
using the second order additive semi-implicit Runge–Kutta
method [32] and a stiff linear term involving the parallel
streaming is treated implicitly. The code consists of
three components, a gyrokinetic solver in the cylindrical
coordinates, (R, ζ, Z, v‖, µ), a Poisson solver in the flux
coordinates, (r, θ, ϕ) and a Fokker–Planck solver in the
moving frame, (u, s), where θ is the poloidal angle and
ϕ = −ζ is the toroidal angle. In a configuration space,
the cylindrical coordinates used in the gyrokinetic solver is
less effective in resolving flute perturbations or ballooning
modes aligned with the magnetic field. However, this approach
enables straightforward treatments of the magnetic axis and
open field regions in diverted tokamak configurations keeping

4
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conservation properties of the NDCFD [1]. Although this
approach requires a transformation between (R, ζ, Z) and
(r, θ, ϕ), a cost of the field solver including the transformation
is ∼5% in the simulations presented in section 4. In a velocity
space, (v‖, µ) or (u, s) coordinates are aligned to fine scale
structures produced by ballistic modes, and the µ coordinate
is useful for parallelization. However, the coordinates are less
effective to capture trapped-passing boundaries. The accuracy
of collisionless turbulent dynamics of GT5D was verified
through linear and nonlinear ITG benchmark tests against
GT3D, which is based on a mesh free Lagrangian approach,
and reasonable agreements were confirmed [1]. On the other
hand, the collision operator will be tested in neoclassical
benchmark calculations in section 3. In long time source driven
ITG turbulence simulations, the accuracy of the nonlinear
simulation is monitored by checking the power balance (22).

3. Benchmark test of neoclassical transport

In the neoclassical benchmark, we solve the gyrokinetic
equations (3) and (4) in the axisymmetric and sourceless
limit to estimate the ion neoclassical transport in relevant
kinetic equilibria. Although GT5D can simulate steep profiles
and low aspect ratio configurations with finite orbit width
effects, in the present benchmark, we use a circular concentric
tokamak configuration with a relatively large aspect ratio
(R0/a = 5, a/ρti ∼ 150, q(r) = 0.85 + 2.18(r/a)2) and
moderate density and temperature gradients (R0/Ln = 1,
R0/Lti = 1) to make quantitative comparisons with standard
local theories, where R0 is the major radius, a is the minor
radius, Ln = |n0(dn0/dr)−1| and Lti = |Ti(dTi/dr)−1|. In
these parameters, the ratio of the ion banana orbit width
�b to Lti is �b/Lti ∼ 0.006, where a local approach
is a good approximation. The normalized collisionality is
chosen as ν∗ = 0.01–10, and the parallel flow is given as
U‖ = −0.1vti, 0, 0.1vti corresponding to counter-, balance-
and co-rotating tokamaks. From convergence tests, the time
step width and the grid numbers are determined as �t =
4�−1

i and (NR, Nζ , NZ, Nv‖, Nµ) = (160, 1, 160, 80, 20).
We perform axisymmetric simulations starting from a local
Maxwellian distribution fLM. Since fLM does not annihilate
the gyrokinetic Poisson bracket operator, the radial electric
field Er quickly develops in a transit time and the geodesic
acoustic mode (GAM) is excited. Through the damping
of GAMs, Er develops to satisfy the ambipolar condition,
and then, the system gradually approaches the neoclassical
solution. Figure 1 shows the time histories of the particle
flux � and the heat flux QNC. As is noted in section 2,
the physical model of the neoclassical simulation reduces to
that of the neoclassical theory except for minor corrections
such as remaining FLR effects on macroscopic perturbations.
Therefore, in the present benchmark, we compare particle
and heat fluxes defined following standard definitions in the
neoclassical theory [27, 28]:

� ≡
〈∫

f (vB · ∇r)m2
i B

∗
‖ dv‖ dµ dα

〉
f

, (28)

QNC ≡
〈∫ (

1
2miv

2
‖ + µB

)
f (vB · ∇r)m2

i B
∗
‖ dv‖ dµ dα

〉
f

− 5
2Ti�. (29)

Figure 1. The particle flux � and the heat flux QNC observed at
r = 0.5a in a neoclassical benchmark simulation with R0/a = 5,
ν∗ ∼ 0.1 and U‖ ∼ 0. After transient damping of GAMs, � and
QNC approach the ambipolar condition � = 0 and the neoclassical
heat transport level, respectively.

Figure 1 shows transient evolutions of � and QNC, respectively.
Equation (16) leads to the ambipolar condition � = 0 in a
steady state. In figure 1, this ambipolar condition is satisfied
after the initial transient damping of GAMs. This result shows
that the system follows the Er equation (16). Then, the system
enters a relaxation phase, where the heat flux coincides with
the energy flux (the first term in the r.h.s. of equation (29)).
It is noted that during GAM oscillations, QNC is positive on
average. This heat flux is an order of magnitude larger than
the neoclassical level, and is observed also in the collisionless
limit. Since the present neoclassical simulation keeps only
(m, n) = (0, 0) component of the electric field, this flux is
not produced by the E × B drift but by a coupling between
up–down asymmetric GAM perturbations and the magnetic
drift. This collisionless transport mechanism may be important
when GAMs are excited in a plasma. Figure 2 shows QNC

observed in simulations with ν∗ ∼ 0.1 and ν∗ ∼ 1, which give
transport levels comparable to Chang–Hinton’s formula (C–H
formula) [33]. In figure 3, the neoclassical heat diffusivity
χi = −QNC/(ni∇Ti) observed in GT5D agrees with that
estimated from the C–H formula over a wide ν∗ regime.
Another important property of the ion neoclassical transport is
the force balance relation among the parallel flow, the Pfirsh–
Schlüter flow and the neoclassical poloidal flow. A force
balance relation in the local neoclassical theory [27] is given as

〈U‖〉f = TiI

mi�i

(
dψ

dr

) [
(k − 1)

d ln Ti

dr
− d ln ni

dr
+

e

Ti
Er

]
,

(30)

where ψ is the poloidal flux, I = RBζ , ni is the ion density
and k = k(ν∗) is a coefficient of the neoclassical poloidal
flow. In figure 4, Er in a steady state is plotted for counter-,
balance- and co-rotating tokamaks, and the results show good
agreement with those estimated from equation (30). In figure 5,
k(ν∗) observed in GT5D is compared with equation (6.136)
in [27] (H–H formula) and with a banana limit solution with
a finite aspect ratio correction, 1.17Fc (see equation (11.58)
in [28]). It is noted that the former solution is obtained in
the large aspect ratio limit ε = r/R0 → 0, while the latter
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Figure 2. The radial profiles of the heat flux QNC observed at
t/τii ∼ 0.8 in neoclassical benchmark simulations with R0/a = 5,
ν∗ ∼ 0.1, 1 and U‖ ∼ 0. Dotted lines show the heat flux estimated
by Chang–Hinton’s formula.

Figure 3. ν∗ dependence of the neoclassical ion heat diffusivity χi

observed at r/a = 0.5 in neoclassical benchmark simulations with
R0/a = 5, ν∗ = 0.01–10 and U‖ ∼ 0. A dashed curve shows χi

estimated by Chang–Hinton’s formula.

solution takes account of a finite aspect ratio effect through a
factor Fc = fp/(fp + 0.462ft), where the effective fraction of
trapped particles is ft ∼ 1.46

√
ε and fp = 1 − ft . Over a

wide ν∗ regime, k(ν∗) shows qualitatively similar behaviour
as the H–H formula, and a flip of the poloidal rotation in the
collisional regime is captured. However, in the banana regime,
k is close to 1.17Fc rather than the H–H formula. A similar
discrepancy in k between neoclassical simulations and the H–H
formula in the banana regime was reported also in [34]. These
benchmark results show that GT5D can determine Er self-
consistently by evolving equilibrium profiles. It is noted that
in the neoclassical simulation, χi and k reach steady state values
at t ∼ τii. This gives a minimum time duration required to have
the neoclassical physics in gyrokinetic simulations, where τii

is the ion–ion collision time.
In the present neoclassical benchmarks, standard local

neoclassical theories are recovered in the steady state, and the
collision operator is verified quantitatively. In addition, the
present axisymmetric simulations clarified transient behaviour
of collisional and collisionless transport processes, which

Figure 4. The radial electric field Er observed at t/τii ∼ 0.8 in
neoclassical benchmark simulations with R0/a = 5, ν∗ ∼ 0.1 and
U‖ ∼ −0.1vti, 0, 0.1vti. Dotted lines show Er estimated using the
force balance relation (30).

Figure 5. ν∗ dependence of k observed at r/a = 0.5 in neoclassical
benchmark simulations with R0/a = 5, ν∗ = 0.01–10 and U‖ ∼ 0.
A dashed curve shows k estimated by equation (6.136) in [27]. A
dotted line shows a banana limit solution multiplied by the finite
ratio correction Fc [28].

cannot be explained in the framework of conventional
neoclassical theory.

4. Source driven ITG turbulence simulation

In the present study, we use a circular concentric tokamak
configuration with R0/a = 2.79, a/ρti = ρ∗−1 ∼ 150,
1/3 wedge torus and q(r) = 0.85 + 2.18(r/a)2, which
gives cyclone like parameters [35], rs/R0 ∼ 0.18, q(rs) ∼
1.4 and ŝ(rs) = [(r/q) dq/dr]r=rs ∼ 0.78 at rs =
0.5a. In this configuration, simulation parameters are chosen
as follows: the time step width is �t = 2�−1

i , grid
numbers used in the gyrokinetic solver and the Fokker–Planck
solver are (NR, Nζ , NZ, Nv‖, Nµ) = (160, 32, 160, 80, 20),
finite elements used in the field solver are (Nr, Nθ) =
(150, 150) and the system size is R − R0 = −1.07a–
1.07a (�R = 2ρti), Z = −1.07a–1.07a (�Z = 2ρti),
ζ = 0 ∼ 2π/3 (n = 0, 3, 6, . . . , 48), v‖ = −5vti ∼ 5vti,√

2µB0/mi = 0–5vti, where n is the toroidal mode number
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Figure 6. The initial ne, U‖, Ti profiles and deposition profiles of
Asrc and Asnk.

and B0 is the magnetic field at the magnetic axis. Here,
n = 48 corresponds to kθρti ∼ 1 at r/a = 0.5 and
kθρti ∼ 0.65 at r/a = 0.9, respectively. The velocity
space resolution is determined by neoclassical benchmark
calculations, which suggest lower velocity space resolution
than previous collisionless ITG turbulence simulations [1],
because of the collisional dissipation of fine scale velocity
space structures. Figure 6 shows the initial ne, U‖ and Ti

profiles, and the deposition profiles of Asrc and Asnk. In
the initial condition, a weak co-rotation is given to study
momentum transport, and the ion temperature profile is far
above linear and nonlinear thresholds at R0/Lti ∼ 4.5 and
R0/Lti ∼ 6, respectively. Here, this nonlinear threshold value
is identified using two different gyrokinetic codes, GT5D and
GT3D, through collisionless and sourceless ITG benchmark
simulations with similar cyclone like parameters [1] (see
figure 7). Plasma parameters at r = rs are ne = ni ∼ 5 ×
1019 m−3, Te ∼ Ti ∼ 2 keV, R0/Ln = 2.22, R0/Lte = 6.92,
R0/Lti = 10.0 and ν∗ ∼ 0.025. Near the magnetic axis, the
heat source model (7) is given by fM1 (ni = n̄i, U‖ = 0,
Ti = 2T̄i) and fM2 (ni = n̄i, U‖ = 0, Ti = T̄i), where n̄i and T̄i

are the volume averaged density and temperature. Power scan
simulations with Pin = 2 MW and Pin = 4 MW are performed,
where τsrc is determined by equation (21) and the source
deposition profile Asrc is chosen to be broad enough so that the
heating process does not produce negative values of f in the
heating region. It is noted that Pin is defined as power input in
a full torus configuration, and therefore, practical power input
is Pin/3 in a 1/3 wedge torus configuration. In a boundary
region, the time constant in the sink model (8) is given as
τ−1

snk = 0.1vti/a. This parameter is chosen to be large enough
to fix U‖ and Ti in the boundary region. Since the present
simulation model satisfies a power balance in a steady state
and the heat flux is imposed by input power Pin, the simulation
is not so sensitive to τsnk, provided that the sink is strong enough
and the boundary conditions for U‖ and Ti are unchanged.

Figure 8 shows the time histories of the kinetic energy
Ekin, the field energy Efld, the collisional power transfer Ecol,
the input power Esrc and the output power in the sink Esnk in
the simulation with Pin = 2 MW. In the simulation, we trace
long time evolutions of the ITG turbulence and equilibrium
profiles over ∼1.2τii or ∼103τc, where τc is the correlation
time of the turbulent fields. The simulation is initialized using
fLM as in the previous neoclassical benchmark, leading to

Figure 7. The time evolutions of χi and R0/Lti observed at
r/a = 0.5 ± 0.0625 in collisionless and sourceless ITG benchmark
simulations with cyclone like parameters [1]. Arrows show time
histories. After the transient saturation of ITG modes, profile
relaxation occurs towards nonlinear marginal states. Results from
GT5D and GT3D converge to the same nonlinear critical gradient
R0/Lti ∼ 6, where the ion heat transport is quenched.

Figure 8. The time histories of the kinetic energy Ekin, the field
energy Efld, the collisional power transfer Ecol, the input power Esrc

and the output power in the sink Esnk in the source driven ITG
turbulence simulation with Pin = 2 MW. The plot is normalized by
the initial kinetic energy Et=0, and Esrc and Esnk are scaled by 1/100.
In the plot, the energy conservation is shown by a balance between
Efld − Ecol and Ekin − Et=0 − (Esrc + Esnk). After tvti/R0 ∼ 300, a
power balance condition, Ėsrc + Ėsnk ∼ 0, is established.

the initial excitation of Er and GAMs. After the damping
of GAMs, the system relaxes towards a kinetic equilibrium
condition, {f, H } ∼ C(f ). However, in the simulation
with non-axisymmetric components, the ITG mode shows
linear growth, provided that R0/Lti exceeds the nonlinear
threshold. In the initial nonlinear phase, the saturation of
linear ITG modes shows transient bursts, which produce
an order of magnitude larger heat transport than the quasi-
steady transport level. Although these initial bursts due
to linear ITG modes are unphysical phenomena, their large
heat transport quickly adjusts the Ti profile towards nonlinear
marginal states in turbulent time scales. In collisionless and
sourceless ITG turbulence simulations, the turbulent transport
is almost quenched after these bursts [1] (see figure 7).
However, in the present source driven ITG simulation, the
turbulent transport is sustained by constant power input, and
a power balance condition, Ėsrc + Ėsnk ∼ 0, is established
in physically meaningful quasi-steady states. In figure 8, the
energy conservation (9), which is shown by a balance between

7
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Figure 9. The spatio-temporal evolutions of (a) the ion heat diffusivity χi, (b) the normalized ion temperature gradient R0/Lti, (c) the radial
electric field shear dEr/dr and (d) the parallel flow U‖ in a simulation with Pin = 2 MW.

Efld −Ecol and Ekin −Et=0−(Esrc +Esnk), is satisfied for a long
time in the quasi-steady state. This is the stringent verification
of long time source driven ITG turbulence simulations.

Figure 9 shows the spatio-temporal evolutions of the ion
heat diffusivity χi, the normalized ion temperature gradient
R0/Lti, the radial electric field shear dEr/dr , and the parallel
flow U‖. Here, the ion heat diffusivity χi = −Q/(ni∇Ti) is
defined using the turbulent heat flux

Q ≡
〈∫ (

1
2miv

2
‖ + µB

)
f (Ṙ1 · ∇r)m2

i B
∗
‖ dv‖ dµ dα

〉
f

, (31)

where Ṙ1 = {R, H̃ } is given by a non-axisymmetric part of
the Hamiltonian, H̃ = H − 〈H 〉ζ , and ni and Ti are given by
evolving equilibrium profiles. Although the time history of
Efld suggests a quasi-steady turbulent state, figure 9 indicates
active turbulent dynamics. Remarkable features found in the
source driven ITG turbulence simulation are that the turbulent
transport in a source free region (r/a = 0.5–0.9) is dominated
by active avalanches (see figure 9(a)), and the Ti profile in this
region is tied to globally constant Lti at R0/Lti ∼ 6.5, which
is slightly above the nonlinear critical value at R0/Lti ∼ 6 (see
figures 9(b) and 10(b)). It is noted that in figure 10(b), R0/Lti

at r/a = 0.5 is very close to the cyclone parameter R0/Lti =
6.92. While the radial correlation length �rc ∼ 5ρti and the
correlation time τc ∼ 0.7R0/vti ∼ 2a/vti of the turbulent fields
suggest a gyro-Bohm like picture, the propagation width and
the fastest time scale of avalanches observed in the simulation
with Pin = 2 MW show an order of magnitude larger scales
lA ∼ 20ρti and τA ∼ 9R0/vti, respectively. Their propagation
velocity estimated from space–time autocorrelation analyses
shows a ballistic feature with VA ∼ ρtivti/R0. It is noted that
in this simulation, GAM activities are not observed except for
the initial relaxation phase, and the time scale of avalanches
ωA ∼ 2π/τA ∼ 0.7vti/R0 is slower than that of GAMs
ωGAM ∼ 2vti/R0. The avalanche propagation of heat flux
with similar spatio-temporal scales was reported also in other

gyrokinetic simulations [7, 36]. In the power scan, it is found
that with increasing Pin from 2 to 4 MW, Q is doubled with
almost the same Lti, showing strong profile stiffness (see
figure 10). Here, there is no significant change in �rc and τc,
and the increase of χi is mainly due to enhanced amplitudes
of avalanches. In figure 11, it is shown that a significant part
of the turbulent heat transport is produced by avalanches, and
their amplitudes are almost doubled with increasing Pin from
2 to 4 MW. These avalanches propagate with almost the same
velocity, but the propagation width becomes shorter lA ∼ 10ρti

because of stronger Ti corrugation and local Er shear, which
suppresses the ballistic propagation of avalanches. Although
τA is not changed so much, a quasi-periodic feature becomes
weak in the autocorrelation function of Q, and an intermittent
feature becomes strong. In figure 12, the power spectrum of Q

shows a small peak at ωA, where the power law changes from
1/ω to stronger decay. This kind of 1/f type spectrum is a
typical feature of SOC like phenomena [12].

In figure 9, not only χi but also Lti and dEr/dr show
similar avalanches. According to cross correlation analyses,
both Lti and Er show a delay �t ∼ 1.5R0/vti from χi,
but there is no delay between Lti and Er. This suggests
that avalanche components of Er are determined by some
local force balance or equilibrium condition. It is noted
that the radial electric field Er in the present source driven
ITG turbulence simulations is qualitatively different from that
observed in the collisionless and sourceless ITG turbulence
simulations, which are dominated by quasi-steady zonal
flows [1]. In figure 13, it is found that quasi-steady zonal
flows are observed only in a core region (r/a < 0.4), and
a source free region (r/a > 0.4) is dominated by mean Er

and avalanches. Although turbulence driven zonal flows have
been considered as an important saturation mechanism in the
ITG turbulence, the source free region, which is close to
nonlinear marginal states, is not subject to this picture, and
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(a) (b)

Figure 10. The quasi-steady profiles (time average over tvti/R0 = 400–650) of (a) Ti (log scale) and (b) Lti observed in power scan
simulations with Pin = 2 MW and Pin = 4 MW. Similar quasi-steady profiles are observed in two simulations with different input power,
showing strong profile stiffness. Both profiles are far from the initial condition (dotted curve), and source free regions (r/a = 0.5–0.9) are
tied to globally constant Lti (R0/Lti ∼ 6.5) near the nonlinear critical value (R0/Lti ∼ 6).

Figure 11. The time histories of Lti and Q at r/a = 0.7. The time
average of χi/(vtiρ

2
ti/Ln) over tvti/R0 = 400–650 is ∼0.4 and ∼0.8

for Pin = 2 MW and Pin = 4 MW, respectively. The neoclassical
heat transport is less than χi/(vtiρ

2
ti/Ln) ∼ 0.1.

other effects such as mean Er flows and avalanche phenomena
dictate turbulent transport levels. As a mechanism of Bohm
scaling, the importance of mean flows near marginal states was
pointed out in [9, 37]. In the source free region, mean Er is
significantly larger than that estimated from the force balance
relation (30) with the H–H formula. In order to understand
this discrepancy, we compare a radial profile of k against the
H–H formula, 1.17Fc, and a neoclassical GT5D simulation
in the axisymmetric limit, kGT5D. It is noted that from the
viewpoint of the ratio �b/Lti ∼ 0.08, the local neoclassical
theory seems to be still valid. In figure 14, k is smaller than the
H–H theory, but is close to kGT5D, which shows a similar radial
dependence as 1.17Fc. Therefore, a discrepancy between k

and the H–H formula can be explained by taking account of
a finite aspect ratio effect coming from Fc, and k is not so
far from the neoclassical level. To understand the remaining
discrepancy between k and kGT5D, further investigations on
effects of turbulent fluctuations and fluctuating equilibrium
profiles on the neoclassical physics are needed. Because of
relatively small k, Er in the source free region is determined
mainly by a force balance between the parallel flow and the
Pfirsh–Schlüter flow. As a result, avalanche components of Er

show a clear correlation with R0/Lti in figure 13.

ω

Figure 12. The power spectrum of the turbulent heat flux Q
averaged over source free regions (r/a = 0.5–0.9). The spectra in
low frequency region show 1/f type spectra.

Figure 13. The radial profiles of Er and Lti observed in a simulation
with Pin = 2 MW (tvti/R0 ∼ 550). ‘H–H’ shows Er estimated by a
force balance relation (30) with the H–H formula.

The shear of equilibrium Er affects propagation of
avalanches. In figure 9, the propagation direction of avalanches
is changed depending on the sign of dEr/dr . At r/a < 0.6
(r/a > 0.6), the Er shear is negative (positive) on average,
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Figure 14. The radial profiles of k (solid) estimated for Er in
figure 13. Also plotted are the H–H formula, 1.17Fc and k obtained
from an axisymmetric simulation of GT5D.

Figure 15. Radial propagation of avalanche fronts observed in a
simulation with Pin = 2 MW. The avalanche fronts, where χi shows
local peaks, are bounded by positive and negative Er shear shifted
by mean Er shear.

and avalanches propagate inwards (outwards). This can be
understood from a relation between Er and Lti. In the
avalanche front, flattening of Ti occurs, and local maxima of
Er and −R0/Lti are produced following a local force balance
relation (see figure 13). As a result, the avalanche front is
bounded by positive and negative local Er shear regions where
local Er shear is shifted on average by mean Er shear (see
figure 15). In the positive (negative) mean Er shear region,
local Er shear outside (inside) is always weaker than the other
side, and ITG modes in the avalanche front tend to couple
with modes outside (inside), leading to one-sided propagation
of avalanches. This mechanism may explain a change in the
direction of the avalanche propagation depending on toroidal
rotation reported in [7].

Another important effect of the Er shear is its influence
on the momentum transport. Before discussing the momen-
tum transport, we discuss a difference between the parallel flow
and the toroidal rotation. Figure 16 shows the toroidal rotation
profile and its parallel, perpendicular E×B and perpendicular
∇P components observed at t = τii. Although the parallel
and perpendicular flows observed are the same order in the

Figure 16. The toroidal rotation profile observed at t = τii in a
simulation with Pin = 2 MW. Co-rotation is sustained in a core
region (r/a = 0–0.5) without momentum input. On the other hand,
a notch structure of counter-rotation is formed in a source free
region (r/a = 0.5–0.9). F‖, FE×B , and F∇P , respectively, show
toroidal projection of parallel flows, perpendicular E × B flows and
perpendicular diamagnetic flows.

simulation with zero momentum input, toroidal projection of
the latter becomes an order of magnitude smaller than the for-
mer. Therefore, we focus only on the parallel momentum and
its transport. In the present simulation, initial parallel flows
with U‖/vti ∼ 0.1 are given in the co-current direction, and
the momentum diffusion is observed during initial transient
bursts leading to a relaxation of the U‖ profile (see figures 9(d)
and 17(a)). However, in the quasi-steady turbulent state,
co-rotation in the core region and counter-rotation in the source
free region build up without momentum input, which suggests
the existence of non-diffusive momentum transport. In order to
see the uniqueness of this rotation profile, we perform the same
simulation starting from U‖ ∼ 0. In the simulation, properties
of turbulent ion heat transport and Ti profiles are not changed.
Figure 17(b) shows evolutions of the U‖ profile observed in the
simulation. Here, small initial parallel flows with U‖ ∼ 0.02vti

come from the v‖ dependence of the Jacobian m2B∗
‖ . The res-

ult shows that even with different initial conditions, similar
co-rotation in the core region and counter-rotation in the source
free region build up without momentum input. This means
that the rotation profiles are intrinsic. It should be noted that
in figure 9, the heat transport and the Ti profile are in the quasi-
steady state after transient bursts. However, U‖ is slowly evolv-
ing even in this stage, while its evolution rate becomes slower
in the later phase. Since this level of U‖ does not work as a tur-
bulence drive, the U‖ profile is not stiff and its evolution is slow.

The turbulent momentum transport consists of the
momentum diffusion, the momentum pinch [38, 39] and the
Er shear stress [40, 41]. Since the rotation profile builds up
even from the initial condition with U‖ ∼ 0, the Er shear stress
is considered to play a role in the momentum pinch observed.
In figure 18, the time averaged momentum flux � is in the
opposite direction to the momentum gradient or −dU‖/dr ,
showing a non-diffusive feature. Here, the turbulent parallel
momentum flux � is defined as

� ≡
〈∫

v‖f (Ṙ1 · ∇r)m2
i B

∗
‖ dv‖ dµ dα

〉
f

. (32)
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(a) (b)

Figure 17. The time evolutions of parallel flow profiles observed in simulations starting from (a) U‖ ∼ 0.1vti and (b) U‖ ∼ 0. Other
simulation parameters are the same. Simulations starting from different initial U‖ profiles approach similar rotation profiles without
momentum input.

Figure 18. The momentum flux � and the radial electric field shear
dEr/dr observed in a simulation with Pin = 2 MW (time average
over tvti/R0 = 400–650).

Figure 18 also shows a correlation between � and dEr/dr ,
and � is outwards (inwards) in a positive (negative) dEr/dr

region at r/a > 0.6 (r/a = 0.4–0.6). Although this
result shows a signature of the Er shear stress, a quantitative
balance among the above three mechanisms is complicated
especially after the rotation profile builds up. In [42], the
relative importance of these mechanisms was quantitatively
investigated by δf flux-tube simulations, where U‖, dU‖/dr

and dEr/dr are imposed. In contrast, in the present full-f
global simulations, all these parameters are self-consistently
determined through complicated nonlinear processes. On
the one hand, U‖ is determined by the turbulent momentum
transport, and U‖ and evolving equilibrium profiles dictate Er

through a force balance relation. On the other hand, the non-
diffusive momentum transport depends on U‖ and dEr/dr ,
and turbulence suppression due to dEr/dr also affects the
turbulent momentum transport. Although full-f simulations
are useful to dictate the intrinsic toroidal rotation through the
above complicated nonlinear processes, further investigations
are needed to understand each mechanism separately.

5. Summary

In this work, long time source driven ITG turbulence
simulations are developed by extending sources and collisions

in a global gyrokinetic toroidal full-f 5D Vlasov code GT5D.
The key features of GT5D are summarized as follows.

1. The NDCFD enables robust and accurate long time full-f
simulations, where the turbulent transport and equilibrium
profiles are evolved self-consistently based on the same
first principles.

2. Ion–ion collisions are implemented using the linear
Fokker–Planck collision operator, which is important not
only as a physically relevant dissipation mechanism of fine
scale velocity space structures but also as the neoclassical
physics which dictates the equilibrium Er and a baseline
of transport levels.

3. Choices (and extensions) of source and sink models are
flexible. In this work, two source models are developed
reflecting conditions of on-axis heating and H-mode like
edge plasmas.

The collision operator is verified through benchmark
calculations of the neoclassical transport, in which standard
local neoclassical theories are recovered in the quasi-steady
phase. However, in the transient phase, it is found that
significant heat transport is driven by GAMs, and that the heat
diffusivity and the poloidal rotation approach the neoclassical
levels slowly in a collision time, which gives the minimum
time duration to simulate the neoclassical physics.

Source driven ITG turbulence simulations in a normal
shear tokamak with ρ∗−1 ∼ 150 and ν∗ = 0.025–0.1 are
performed using the source models to fix power input (zero
momentum input) near the axis and Ti and U‖ (∼0) at the
edge. In the simulation, long time behaviour of the turbulent
transport and profile formations is traced over a collision time,
and the following key features of the ion turbulent transport
are clarified:

1. The Ti profile in a source free region is tied to globally
constant Lti near the nonlinear threshold, and strong
stiffness is observed in the power scan. This kind of stiff Ti

profile with globally constant Lti was typically observed
in H-mode plasmas in JT60U [43].

2. In the source free region, a significant part of the heat flux
is carried by avalanche like phenomena, which have an
order of magnitude larger spatio-temporal scales than the
radial correlation length �rc ∼ 5ρti and the correlation
time τc ∼ 2a/vti of the turbulent fields. This suggests
a possibility of non-local or Bohm like features of the
turbulent transport produced by gyro-Bohm like turbulent
fields.
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3. The intermittent heat flux of avalanches shows 1/f

type spectra, which are typically observed in SOC like
phenomena. Similar 1/f type spectra were observed also
in the experiment [44]. The criticality of Lti and 1/f type
spectra suggests that stiff Ti profiles produced in the ITG
turbulence may be explained by a SOC type picture.

4. Roles of the mean Er shear are found. The Er shear
dictates the direction of the avalanche propagation. The
mean Er shear profile and the non-diffusive momentum
flux show a clear correlation. This suggests a signature of
the Er shear stress.

5. Without momentum input near the axis, non-diffusive
momentum transport keeps non-zero toroidal rotation in
the co- (counter-) current direction in the core (outer)
region, which may be related to the intrinsic toroidal
rotation in the experiment [45, 46].

These features show, at least, qualitative agreement with the
experiment, and suggest the validity of the source driven
ITG turbulence simulation using GT5D. Since GT5D has a
capability of using shaped MHD equilibria and equilibrium
profiles in the JT60U database, further quantitative validation
will be addressed.

The SOC like phenomena of the ion heat transport is a
unique feature observed in the full-f gyrokinetic simulation,
and may be related to non-local or Bohm like features of the
turbulent transport. To study their impact on the turbulent
transport in future large devices, we need ρ∗ scan with
full-f gyrokinetic simulations. In this study, non-diffusive
momentum fluxes are observed and their correspondence with
the Er shear stress is discussed. However, a detailed balance
among the momentum diffusion, the momentum pinch and the
Er shear stress as well as the Prantl number have not been
identified, yet. To study the momentum transport further in
detail, we need simulations with different momentum input.
These simulations will be addressed in future works.
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Appendix A. Implementation of collision operator

By neglecting FLR corrections, the linear Fokker–Planck
collision operator [25] is given as

C(f ) = CT (f ) + CF, (A1)

CT (f ) = ∂

∂s
(ν⊥1v

2f ) +
∂

∂u
(ν‖1uf ) +

1

2

∂2

∂s2
(ν⊥2v

4f )

+
1

2

∂2

∂u2
(ν‖2v

2f ) +
∂2

∂s∂u
(ν‖⊥v3f ), (A2)

CF = PfM, (A3)

where s = 2µB/mi and u = v‖−U‖ consist of a moving frame
with respect to the parallel flow velocity U‖, v2 = u2 + s and

Figure 19. The convergence test of the test particle operator. The
remaining errors of

∫
CT (fM) d3v/

∫
fM d3v are plotted against the

velocity grid number Nv‖ = 2Nv⊥.

fM is a shifted Maxwellian distribution defined by the density,
the parallel flow and the temperature at each local position. By
using relations

F̂ = 2ν0�(x), (A4)

Ĝ = 1

2
ν0v

2

[(
1 − 1

2x

)
�(x) + � ′(x)

]
, (A5)

Ĥ = −1

2
ν0v

2

[(
1 − 3

2x

)
�(x) + � ′(x)

]
, (A6)

collision frequencies in the test particle operator are written as

ν⊥1 = 2s

v2
F̂ − 4

v2
Ĝ − 2s

v4
Ĥ , (A7)

ν‖1 = F̂ , (A8)

ν⊥2 = 2

v4

(
4sĜ +

4s2

v2
Ĥ

)
, (A9)

ν‖2 = 2

v2

(
Ĝ +

u2

v2
Ĥ

)
, (A10)

ν‖⊥ = 4su

v5
Ĥ , (A11)

where �(x) = erf(η) − η erf ′(η) is the Maxwellian
integral, erf(η) is the error function, x = η2, η =
v/(

√
2vt), vt = √

Ti/mi is a local thermal velocity,
ν0 = (4πnee

4)/(m2
i v

3) ln � and ln � is the Coulomb
logarithm. We further rewrite the test particle operator as

CT (f ) = C(1)f + νsv
2 ∂f

∂s
+

1

2
ν⊥2v

4 ∂2f

∂s2

+
1

2
ν‖2v

2 ∂2f

∂u2
+ ν‖⊥v3 ∂2f

∂s∂u
, (A12)

C(1) = ν0

√
2

π

(
v

vt

)3

e−x, (A13)

νs = ν⊥1 +
∂

∂s
(ν⊥2v

2) +
∂

∂u
(ν‖⊥v). (A14)

In equation (A12), all the coefficients are calculated
analytically by substituting equilibrium parameters estimated
at each local position, and derivatives of f are obtained by the
sixth order centred finite difference scheme. In order to see the
accuracy of the test particle collision operator, its annihilation
property with respect to fM is tested and the remaining errors
are plotted against the velocity grid number Nv‖ = 2Nv⊥. In
figure 19, the remaining errors are proportional to N−6

v‖ .
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Table 1. The conservation properties of the collision operator observed for C(fC) with Nv‖ = 2Nv⊥ = 32–128 and v‖max = v⊥max = 5vt .
The conservation of momentum and energy is satisfied with CF. All the conservation properties are further improved up to the machine
precision compared with CT by adding Ccorr .

CT CT + CF CT + CF + Ccorr

1

n0

∫
C d3v(Nv‖ = 32) −0.2541E–11 −0.1997E–11 −0.2104E–23

1

min0vti

∫
miv‖C d3v(Nv‖ = 32) 0.1868E−09 −0.3587E–11 −0.1654E–24

2

3n0Ti

∫
1

2
miv

2C d3v(Nv‖ = 32) 0.1226E−09 −0.2722E–11 −0.1613E–23

1

n0

∫
C d3v(Nv‖ = 64) −0.5189E–12 −0.6802E–12 −0.9947E–23

1

min0vti

∫
miv‖C d3v(Nv‖ = 64) 0.1801E−09 −0.1162E–11 0.1780E−24

2

3n0Ti

∫
1

2
miv

2C d3v(Nv‖ = 64) 0.1282E−09 −0.2120E–11 −0.5898E–23

1

n0

∫
C d3v(Nv‖ = 128) 0.1739E−12 −0.1711E–12 −0.2381E–23

1

min0vti

∫
miv‖C d3v(Nv‖ = 128) 0.1782E−09 −0.5210E–12 −0.1326E–24

2

3n0Ti

∫
1

2
miv

2C d3v(Nv‖ = 128) 0.1290E−09 −0.1967E–11 −0.1702E–22

In the field particle operator (A3), a function P , which is
determined from the momentum and energy conservation, is
written as [26]

P = −3

√
π

2
�η−3up̂ − 3

√
π

2

[
� − � ′] η−1Ê, (A15)

p̂ = 1

nv2
t

∫
uCT (f ) d3v, (A16)

Ê = 1

3nv2
t

∫
u2CT (f ) d3v. (A17)

With this field particle operator, C(f ) conserves the particle
number, the momentum and the energy. However, the
conservation property is not exactly satisfied with a finite
velocity grid number and a limited velocity space. Although
the remaining numerical error is small compared with f , its
accumulation (in particular, erroneous particle accumulation)
in a long time simulation may not be negligible compared with
δf . In order to compensate the remaining error, we add a
correction term given by

C(f ) = CT (f ) + CF + Ccorr, (A18)

Ccorr = νcorr(fM1 − fM2), (A19)

where νcorr is a constant and fM1 and fM2 are determined
in an iterative manner to satisfy the conservation properties,
equations (11)–(13). Table 1 shows the conservation properties
observed when the collision operator is operated on a
test function given by a gyrokinetic Vlasov equilibrium
fC(Pζ , ε, µ) defined at r/a = 0.5 and θ = 0 in a cyclone
like configuration used in section 4. The results show that the
errors of momentum and energy are cancelled by CF. However,
by adding Ccorr, all the conservation properties are improved
up to the machine precision compared with the original errors
in CT .
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