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A general paradigm, based on the concept of self-organized criti€SIE), for turbulent transport

in magnetically confined plasmas, has been recently suggested as an explanation for some of the
apparent discrepancies between most theoretical models of turbulent transport and experimental
observations of the transport in magnetically confined plasmas. This model describes the dynamics
of the transport without relying on the underlying local fluctuation mechanisms. Computations
based on a cellular automata realization of such a model have found that noise-driven SOC systems
can maintain average profiles that are linearly stéaldmargingland yet are able to sustain active
transport dynamics. It is also found that the dominant scales in the transport dynamics in the absence
of sheared flow are system scales rather than the underlying local fluctuation scales. The addition of
sheared flow into the dynamics leads to a large reduction of the system-scale transport events and
a commensurate increase in the fluctuation-scale transport events needed to maintain the constant
flux. The dynamics of these models and the potential ramifications for transport studies are
discussed. ©1996 American Institute of Physids$$1070-664X96)91105-2

I. INTRODUCTION lous transport arél) the questions of which instabilities are
responsible for the transport af@) the issue of the transport
Anomalous transport in magnetic confinement devicescale being reconciled with the fluctuation scale. It has long
has defied simple characterization due in part to the observaseen believed that some linear instabilityods is driving
tion that the dominant transport scale lengths have scaledirbulent fluctuations, which are causing the anomalous
with machine siz¢Bohm or worse scalingswhile the sus-  transport A number of instabilities have been put forward as
pected transport mechanisms have much smaller scaleandidates for dominating transport in magnetic confinement
(gyro-Bohm scaling To shed some light on this apparent devices. In many of these modes, a linear marginal stability
discrepancy and to investigate the effect of sheared flow ogondition has been assumed for the profile. This is based on
the transport dynamics and these scalings, a new approachttge assumption that the turbulent system would relax its driv-
transport has been suggestdthsed on the idea of self- ing gradient back to the linearly least unstable proftlee
organized criticality(SOO.>* This concept seeks to de- marginal profilg, just allowing for the drive to continue. In
scribe the dynamics of the transport without relying on thethe case of tokamaks, ballooning modes nearatienit® are
underlying local fluctuation mechanisms. Because of the inamong the modes for which this has been suggested. In ad-
dependence of the transport dynamics on the specific localition, ion temperature-gradient-driven modes at the mar-
instability, this has the advantage of being more broadly apginal limit have been suggested as the dominant core trans-
plicable and addresses some of the universal features suchgsrt mechanism® Unfortunately, all of these instability
profile robustness. The dynamics of such systems can h@echanisms suffer from the drawback that, experimentally,
computationally investigated with a cellular automata modethe profiles seem to be stable to the candidate modes over
of “running sandpile” dynamics. This model allows us to much if not all of the radiu$.The second difficulty is related
investigate the major dynamical scales and the effect of am the fact that the transport from most of these modes is
applied sheared flow on these dominant scales. A correspogoverned by the fluctuation scales, which are typically on the
dence between many of the important quantities in turbulengrder of ion gyroradiigyro-Bohm scaling These fluctua-
transport and the equivalent variables in the SOC model ision scales define the characteristic “step size” of the turbu-
given in Table 1. While this simple model provides a reason-lent diffusion, leading to a confinement time that scales with
able analogy to turbulent transport, it should be noted thathe step size. Once again the experimental evidence is that
the physics underlying the fluctuation dynamics is not adthe confinement in real magnetic confinement devices, at
dressed by this model. least in the low confinement mode-mode), scales with the
Two of the barriers in the way of understanding anoma-machine siz€Bohm scaling*! rather than with the theoreti-
cal fluctuation step size. Interestingly, there is evidence that
*paper 21A3, Bull. Am. Phys. Sod0, 1667 (1995. in the enhanced confinement modés mode, etg, which
TInvited speaker. have a sheared flow coincident with the transport barrier, the
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TABLE I. Analogies between the sandpile transport model and a turbulent transport model.

Turbulent transport in toroidal

plasmas Sandpile model
Localized fluctuation(eddy) Grid site (cell)
Local turbulence mechanism Automata rules
Critical gradient for local instability Critical sandpile slogg.;,)
Local eddy-induced transport Number of grains moved if unstahlg (
Total energy/particle content Total number of graftetal masg
Heating noise/background fluctuations Random rain of grains
Energy/particle flux Sand flux
Mean temperature/density profiles Average slope of sandpile
Transport event Avalanche
Sheared electric field Sheared flggheared wing

confinement scaling seems to go from Bohm-like toand, assuming the sheared flow is stable and therefore not
gyro-Bohm-like! generating more turbulent fluctuations, should be a valid ef-

The major results in this paper are summarized below. Ifect with all fluctuation models. The next and sometimes
has been found that noise-driven SOC systems maintain avaore important impact of the shear flow on the fluctuation
erage profiles that are linearly stalfiubmargingl and yet amplitude is at the linear stabilization level. This effect is
are able to sustain active transport dynamics, in contrast tmode dependent and is therefore not as general as the non-
naive marginal stability arguments. This transport can occulinear shear suppression, but for the modes on which it is
on very fast time scales, exhibiting either very fast diffusiveeffective there can be a significant impatThe mechanism
transport or even ballistic propagation. It is also found thatis often straightforward, since the growth rate for many
with no sheared flow or sheared flow decorrelation timeanodes isw dependent, the addition of shear can chamge
smaller than the natural system decorrelation times the domand therefore change the growth rate or even completely sta-
nant scales in the transport dynamics are system scales rath#lize the mode by raising the effective stability boundary. A
than the underlying local fluctuation scales. However, thehird mechanism closely related to the first one is a direct
addition of sheared flow into the dynamics leads to a largeffect on the transport. The previous two mechanisms re-
reduction of the system scale transport and a commensuratieiced the turbulent transport by reducing the turbulence; this
increase in the fluctuation scale transport. This may be cormethod can reduce the turbulent transport by changing the
sistent with the transition from Bohm to gyro-Bohm scaling phase relationship between the advecting and advected
observed in improved confinement modes. Analytics on thdields. Because the transport comes from the cross correla-
Burgers’ equatioh show this transformation with the addi- tion of two fields (i.e., n and ¢), if the phase relationship
tion of shear, as this is a change in the transport propagatidoetween these fields is changed, the transport can be as well.
scaling exponent with the propagation going from ballisticSheared flow can have an effect on the average phase be-
without shear to diffusive with shear. tween the fields, thereby changing the transpbtt.

The remainder of the paper is organized as follows: Sec. A final mechanism, which may be in some cases essen-
Il is a brief discussion of the heuristics of sheared flow intially the same as the first mechanism, by which sheared flow
turbulent systems. Section Il contains the SOC model invesean have an impact on turbulent transport is the one that will
tigated and the results from simulations without shearede explored in the rest of this paper. If the transport takes
flow. This is followed by Sec. IV, consisting of the results place as correlated transport events, similar to avalanches in
due to the addition of sheared flow to the SOC system. Fisnow or sand, rather than as the sum of individual local

nally, Sec. V is the conclusion and summary. transport, it is plausible to imagine that the sheared flow
could decorrelate the long transport events. These correlated

II. HEURISTICS OF SHEARED FLOW IN TURBULENT “avalanches” could be due to modulational interactions of

SYSTEMS the small-scale fluctuatios'’ or a simple sequential trans-

) ) ) . port of some evolving fieldtemperature, density, etcThe
_Due in part to the existence of a shear flow region coiny,yer s very much like the traditional picture of a snow or
cident with the transport barrier in enhanced confmemengand avalanche, propagating and spreading after being initi-

modes, there has been much interest recently in the effect %fted at one point. This is the model we will investigate.
shear flows on turbulent systems. This interaction can take a

number qf forms. The first and mqst often quoted is the sheaﬁL THE RUNNING SANDPILE MODEL

suppression of the turbulent&This occurs when the flow

shear scale length is less then the turbulent scale length of Because of the expense and difficulty of accurately mod-
interest and the shearing rate is higher then the eddy turnoveting large regions of a magnetic confinement device and
rate. In this case, the turbulent fluctuations are decorrelatebdecause of the monumental task of dealing with and inter-
by the shear more quickly than they would be by the turbupreting the data that one does get, it is often useful to con-
lent interactions; consequently, the turbulent amplitude andtruct the simplest model that captures the dynamics of in-
scale lengths are reduced. This mechanism is very genertdrest. Starting from the assumptions of the importance of
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of sand grains in the pilé&he total massis the total energy/
particle content of the device. The “sand grain” flux is
clearly the particle/heat flux in the turbulent system, and for
later reference, the sheared flowind) is the sheared electric
field often coincident with transport barriers.

The simulations are done in a two-dimensional system
(slab geometry wherex is equivalent to the radial coordi-
nate f) andy to the poloidal anglg6). We have used a
FIG. 1. A cartoon representation of the simple cellular automata rules useiariety of domain sizes varying from %@ (x andy direc-
to model the sandpile. tions) to 800x100 with most of the two-dimensional 2-D
calculations being performed at 2060. The boundary con-
- . ditions for the computation domain are periodic in the
marginality to turbulent transport and the importance of tur'direction, open ax=L (particles that reach the edge are

bulent transport to relaxation of gradients, a very simplelost) and closed ag=0. Computations are typically started
natural model presents itself. In this model, local turbulentfrom’ a marginal statéi.e., Z, = Z 1) and allowed to relax
S bnT Lt

flgctu_anons are excited by th? Iocfal gradient exceeding Mal, the steady state. The relaxation time is a functioh,d®,
ginality, and the local fluctuations in turn relax the local gra-

. . . ' .and N;, and anL=200 for typical values oP, and N; is
dient, transporting the excess gradient down the profile. This . .- -
. . around 40 000 time steps. To accumulate sufficient statistics,
sandpile SOC model has the gradient modeled by the slop o ) .
) . . the system is iterated for 3910’ time steps after saturation

of the sandpile, while the turbulent transport is modeled by,

the local amount that fall@overturng when the sandpile be- is reached. The main diagnostic for the sandpile model ava-

comes locally unstable. The model system is driven by noislanche dynamics is the time history of the number of flips

from the heating sources or background fluctuations, Whiclfoverturmng events with poth thg ‘F’t‘?" number in the sys-
in the sandpile model are represented by a random “rain” Oftem_a_md the number of fllps_for individugl values _tracked.
sand grains on the pile. This model allows us to study th(_ﬁb\ddltlonally, local and poloidally averaged particle fluxes

dynamics of the transport independent of the local instabilityare tracked at a few radial positions. Finally, the evolutions

mechanism and independent of the local transport meché’—f both the total masgthe sum of all the grains in the sys-
tem) and the average profiles are followed.

nism. Because of the relative simplicity of the model, we are To | tigate th | SOC t td . d
also able to do very long time calculations and collect rea- 0 Investigate the norma ransport dynamics an

sonably large statistical samples provide control results with which to compare computations

A standard cellular automata algoritihis used to study V_Vith sheared_ flow, we ha_tve re_produced the prev_iously pub-
the dynamics of the driven sandpile. The domain is divided"_sheOI s_andplle computatichbwith shear free running sand-
into cells, which are evolved in steps. First, “sand grains” piles. Since the model only has four parameters?oL, Ny,
are added to the cells with a probabiliBy. Next, all the andZ;;, we have performed scans of each of these param-

cells are checked for stability against a simple stability rule®t€rs keeping the otr:lgrs fixed. The results of these scans are
and either flagged as stable or not, and finally, the cells arsUmmarized elsewhereéBelow we review the results from a

time advanced, with the unstable cells overturning and moy-tyPical” case and compare its dynamics to that of a mar-

ing their excess “grains” to another cell with the size, dis- 9@l system. In our typical rurt, =200, P;=0.0025,N=3,

tance, and direction of the fall being determined by the over@"d Zcii=8. This run was started marginally stale=7)
turning rules. The most simple set of rules used is and then run~10° steps into the SOC regime. The relaxation

n

if from the marginal profile to the SOC profile can be seen in
the time evolution of the number of fliggig. 2). The SOC
Ln=Ley, state is not reached until the average level of the number of
then flips saturates at approximately 30 000 time steps.

Figure 3 shows the marginal profiffrom a system with

hn=h, =N, the same parameters as the typical case, butMjthl) and
and the average SOC profile, both averaged over the last 20 000
steps. It can be seen readily from the slope of the SOC pro-
file and the number of flips occurring after relaxation into the
With h,, defined as the height of cell, Z, being the differ- SOC state that even with a significantly submarginal profile
ence betweem, andh, ., Z.; is the critical gradient and the system is able to robustly transport the inputted flux. This
N; is the amount of “sand” that falls in an overturning event is an important characteristic of SOC systems and should
(Fig. 1. In terms of the normal physical quantities we asso-lead to a reexamination of the relevance of some of the
ciate with turbulent systems, each cell can be thought of amodes whose importance was discounted because the pro-
the location of a local turbulent fluctuatideddy). HereZ.;;  files were submargindl.e., ballooning modgsThe one con-
is the critical gradient at which fluctuations are unstable andlition needed for the maintenance of a SOC profile rather
grow andN; is the amount of “gradient” that is transported than a marginal profile is thad; be greater than 1. As dis-
by a local fluctuation(local eddy-induced transport, for ex- cussed earlier, this is equivalent to saying that a turbulent
ample. The average sandpile profile is equivalent to theeddy will attempt to transport enough to level the local gra-
mean temperature or density profile, while the total numbedient in one eddy turnover. Physically, this says that the sub-

Pn+1=hns1+ Ny,
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FIG. 2. Time history of the total number of overturning sites at each instant.
The figure shows the relaxation from the marginal profile in the first 30 000
time steps followed by the evolution within the SOC state.

-~

marginal SOC state comes from the inertia or finite response
time of the fluctuations. The instability and the induced fluc-
tuations cannot instantaneously turn off when the profile is
relaxed to marginal, instead they continue to relax the gradi-
ent further. IfN¢=1, then whenever a sand grain is dropped
onto the pile it will fall all the way down to the bottom of the ()
pile and exit at the base. This fall is not an organized ava-
lanche, in the sense that it will not grow as it cascades dowpG. 4. A visualization of the overturning sites at all radiuses at 6ne
the pile because only the local cell with the extra grain islocation as a function of time. The bottom of the figure is the bottom edge of
unstable(supermarginal Comparing a time history of over- the sandpile. Light colored cells are stable while dark cells are the unstable
turnina sites in a marainal s ste(rlN _1) with a time histo (overturning sites.(a) Shows the avalanches for a marginal case. All the

9 : . g Y = ry grains that fall onto the sandpile move down the pile singly exiting at the
of overturning a site in our prototypical SOC cadé;=3) bottom. This can be seen by the diagonal lines angling down as time in-
clearly shows the difference. In the marginal cHSig. 4(a)], creases(b) Shows the avalanches in a marginal case. The avalanches can be
all of the falls are individual isolated eventsxcept for the seen to grow to radial sizes and last various lengths of time. The propagation

. of the disturbance can be seen to move both up and down the slope.

places where two sand grains were dropped by chance in
neighboring cells while in the SOC caséFig. 4(b)] there

clearly exist coherent avalanches of all different lengthsthe diagonal lines of overturning sites that the transport in
These figures are time histories of a given poloidal locationne marginal case is continuous from the point of infibe

with all the poloidal positions giving statistically the same |o¢ation of the random grain drdfo the bottom edge, where
result. The dark cells are cells that are overturning at thafhe grain exits the system. In the SOC case, coherent ava-
time step while the light cells are stable. It can be seen fronjanches can be seen to grow and shrink. Some are seen to
propagate up the slope, while others propagate down or in
both directions. It should be kept in mind that the flux always
moves down, for these automata rules. The upward propaga-

1400 mgr—————— —

e I tion is really a void moving up, which is by symmetry the
1200 1 S ] same as a bump moving down. This dual propagation is a
. .".. . ) B signature of the SOC system. Even though both cases are in
1000 | “u Marginal profile ; ; .
B ; . ] a steady state, meaning that the flux via the random rain of
-, 800 “u ] grains is the same as the flux out at the bottom, there is
E 600 3 .‘\ 1 clearly a more bursty character to the SOC case, with the flux
[ Sey ] often exiting in coherent avalanches rather than the continu-
[ e N . .
400 F . s, ] ous single transport events that make up the marginal system.
200 I SOC profile SN To quantify the distribution of these avalanche events that
5 ] typify the transport dynamics of the flowing sandpile, we
0 S — analyze the avalanches in a number of different ways.
0 50 100 150 200

First and most simply, one can construct the probability
distribution function(PDP for the total number of instanta-
FIG. 3. The average sandpile profiles for a marginal case and a SOC casn.eou.s.ﬂlps(arl overturning event This is eXplored In more
For both caseZ;=8 and both cases are transporting the same number o etail in Ref. 19. The PDF for the SOC case has a mean

grains. given by the flux into the systenk L, times the average
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FIG. 5. The autocorrelation functions for a marginal system having a width

of about 1 and a SOC system having a width of about 10. These widths
show the difference in avalanche lengths between the marginal and SOC
systems.

time for the grains to leave the systelm?, weighted with

the amount transported in one flipl;, giving a mean of
PoL?/2N; . The variance for the SOC cases seems to scale
with the mean, as one would expect from a Poisson distribu- ot ; ! ‘ ! ‘ ‘ v
tion. Because of the need for very large samples to quantify () “200 150 -100 'g’elay " (15)0 100 150 200

the higher-order moments of the PDF in which differences

often appear, a better method for differentiating between th%lG. 6. (8 The radial correlation length of the flux is given by the half-
dynamics is the correlation function. The autocorrelationheight of the falloff of the cross-correlation functions with radial separation.
function can give information about the average length of theb) /li tyr;igalhcgogs?rﬁ?;igr; ffléggtig; ;?gtri::gi ch;i-a'r\lhcgsetgfe%%ibi
a}valanChes(tranSp(.)rt evenjs while CItOSS-COI’I’Gb"[IOﬂ func- . fheeadigl pr?)pagatigon natutboth up ang downof the SOC avalanches.
tions between radially separated points quantifies the radial
correlation length of these events. The average length of the

avalanchethe width of the autocorrelatigns seen to be-1  of the profile’s deviation from marginal. These quantities de-
in the marginal case, but in the SOC case it-8 (Fig. 5.  pend weakly on the flux through the given radial location,
The radial correlation length is found to bel4 in our typi-  which is in this case simplf,x; this leads to a radial de-
cal SOC cas¢Fig. 6@]. Recalling that the individual cell pendence of the auto- and cross-correlation functions in the
represents the local fluctuation, the relatively long correlasocC system.

tion length signifies much longer transport correlation The third method for quantifying the avalanche dynam-
lengths than fluctuation correlation lengths. This feature ofcs is with frequency diagnostics applied to the time history
SOC dynamics is borne out in a model realization using ®f instantaneous ﬂ|p$0n|y using the saturated regmm

3-D resistive pressure-gradient-driven turbulence model. Thgpical spectrum can be divided into three regions following
results of this realization will be presented elsewhere. Theqwa et al® (Fig. 7). The first region is the high-frequency
marginal case has even longer radial correlation lengths be-
cause of the nature of a transport event. In the marginal
system, once a transport is started it continues all the way to

Cross-correlation amp.

9
the bottom. Therefore, we need another method to separate 10 e ]
the marginal system from the SOC system. This can be done 108 L «° ‘gfw\gm .f: ]
easily using the structure of the cross-correlation function. : w 4“"’“;
Remembering that the SOC system avalanches propagated 107 3 ’ﬂ'i,u
both up and down while the marginal system only propa- 5 s i '
gated down, the cross-correlation function between radially & 3
separated points can be expected to have a peak at the lag 10° |
given by the separation of the radial poirfEsssuming one L
radial step in one time ste¢prhe marginal case will have this 107 ¢
peak only on the lag side of the correlation function, while 1000 e e
the SOC case will have a peak on both the lag side, signify- 0.0001 0.001 freq 0.01

ing downward propagating avalanches, and the lead side,
Slg'nlfylng upward propagatlpr[Flg. G(b)]' T_he relative FIG. 7. An autopower frequency spectrum of the flips in the saturated SOC
heights of these tWO_ peaks give the local ratio of upward tQate. This typical sandpile frequency spectrum shows the three dynamical
downward propagation and may be used as a local measur&imes.
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FIG. 9. The diffusion coefficent as a function of flux for a case with sheared

. . ) flow and one without sheared flow. Note the different functional forms.
FIG. 8. The time evolution of the total magke space integrated number of

graing displays less of the high-frequency oscillations then the “flips” but
more low-frequency oscillations. Note that irk20’ time steps there are
only one or two of the largest relaxation-type oscillations. Hahm on the Burgers’ equation. Very fast diffusion or ballis-

tic propagation is also observed in the 3-D resistive pressure-
gradient-driven turbulence model realization of a SOC sys-

end of the spectrum, which follows approximately and" tem. These results will be published elsewhere.

power law. This region is identified as the noninteractiog
overlapping avalanche region. IP, is made small enough, V. SHEARED SOC MODEL
this region completely envelops regior(raiddle to low fre-

quencie§ which is identified as the overlapping avalanche . Into the_basic mode| describ_eq ?bo"e we now add are-
region. The spectral falloff in the overlapping region is ap-91°" of poloidal sheared flow. This is implemented by adding

proximatelye %, and this is the region of primary interest to a constant flow i_n one directiqn to_the top of the sandpile and
us. Finally, there is region 3, the lowest frequencies. In thid constanftl flow m_the other (rj]wectlon 0 th% bt())ttom.r'll'he t¥;’°
region the spectral power is relatively flat and finally rolls con_star::t_ OiN reg;}ons are t efn coqg:acteh ya :I ea_rrh ow
over at the lowest frequencies. This region is identified withreg'on( ig. 10 with & variety of possible shear profiles. The

global discharge events that have extremely long correlatioﬁhear is defined as the velocity incremeklV/, between two

times. It is easiest to see these discharge events by looking ﬁ?‘l"’r‘l‘?egt ceII; n Fhahdlrgctlon.dThe poloidal ?OW IS added
the time history of the total masshe integrated heights to t € dynamics |n.t e time advance step after moving any
Figure 8 shows the total mass in a case that was run fbr 1dalllng grains to their new positions. The impact of the shear

time steps and encompasses perhaps two of the largest “glgpW is quantified by changing a shear parameBegqual to

bal discharge events.” Note that the frequency of these Iargév times the size of the shear regidry(S=Ls AV). .
The effect of the sheared flow on the transport dynamics

est events is proportional to the rain rdtke input fluy, as be fi q iIv ob di . hi fth
one would expect for relaxation-type oscillations, becaus&?" Pe firstand most easily observed in a time history of the

the rate of refilling of the pile after a massive discharge iSoverturning site¢Fig. 1X(@)]. The sheared flow region in the

proportional to the input flux. Region 3 is a very interestingmlddle is easily differentiated from the unsheared ends by
regime dynamically and is the region of primary interest to

those using SOC models to study earthquakes. However, be-

cause this region involves time scales probably much longer Closed end

than a confinement tim@vhich is on the order of 2, assum-

ing transport goes one fluctuation size in one time)step

will only explore the high-frequency end of this region.

To compare these cellular automata model results with
analytic results, we construct a diffusion coefficierd,.
HereD, is built in the typical fashion from the average local FEEeECh: ¢
flux and average local gradient, givirfg,=(I")/(dh/dx). +
However, since the system is in the steady state, the average
local flux throughx, is simply the average number of grains
falling into the region above,, which is given byPgx,.

This then allows us to writ®, asDy= Pyxy/{(dh/dx). It is
found that{(dh/dx) scales withPyx, allowing a natural way

to look at the diffusion by plottind , againstPx, which is 0 —»

shown in Fig. 9. It is found thab, has a functional depen- Open End

dence of POX).ﬁWIth £~0.95in the region Whe'r@()x is less FIG. 10. A cartoon of the sandpile with a shear flow zone. The whole pile is
thanN¢/2. This “fast” transport that scales with the system fio,ing to the right at the top and to the left at the bottom connected by a
size is in agreement with the analytic work by Diamond andvariable sized region of sheared flow.
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: =H FIG. 12. (a) Frequency spectra with and without a shear flow region. This
(a) time ———» shows a marked decrease in the low-frequency paow&h sheay and a
commensurate increase in high-frequency pow®rThe insert shows the
decorrelation timéry=1/w) as a function of the shear parametigre prod-
e 8 uct of the shearing rate and the size of the shear)zone

x'nm-u- <

w=[wS(E)dw. Figure 12b) shows the variation im as the
shear parameter is increased. This shows the decorrelation
time of the transport decreasing as the shear parameter in-
creases. Once again, it is important to note that this effect is
completely different from the shear suppression of turbu-
lence. In this model the turbulent amplitude and stability
boundary are not being affected at all; it is only the corre-
lated transport events that are being modified. Therefore, this
decorrelation time is not the standard turbulent decorrelation
time but rather a new quantity, a transport decorrelation time.
In the shear free case, the transport decorrelation time is
longer thanL?, while in the sheared flow case, the decorre-
FIG. 11. Time evolution of the overturning sitétike Fig. 4. The ava-  lation time becomes shorter thas.
lanches do not appear continous in time because only every 50th time stepis  The next logical questions to ask B if the transport
Sh‘t’_W”-(Z)_ TTS) ?r‘]ea"free ,CtisehSho"‘c’jsﬂa"a'i”"hefhm a':] 'engtths ‘?Ve'hthévents are being decorrelated, what is the impact on the dif-
being decorrelated in the shear zone in the middie of the pile. | TUsion coefficient; and2) does this build up a transport bar-
rier? The answers to both of these questions are somewhat
subtle. In the sheared flow region, there is a substantial
change in the functional form of the steady-state sandpile
the absence of correlated transport evéatslanchesin the slope. Therefore, the diffusion coefficiebt changes func-
shear zone. This can be contrasted to the unsheared SQfgnal form, leading to an increase in the diffusion coefficient
case shown in Fig. 1f). While the difference in avalanche gy small Pox and a decrease for largx. Again, we find a
dynamics is visually striking and shows clearly the decorreyniversal curve fol'/(dh/dx) when plotted versuBx (Fig.
lation of the long transport events by the sheared flow, ta) |n this case, the slope df cannot be described by a
guantify the changes we must use the other diagnostics. T'”t?ower function, but it is just a linear function &,x. As a

for a running sandpile with flow shear when compared to one

without shear. This trend continues when the shearing rate

and/or the size of the shear zone increases. This suggests that p =———
the larger-scale transport events are being suppressed by the a+bPox
sheared flow and, since the total flux must remain the same,

the medium- and small-scale events must increase to maksymptotically, forx—o, D4—b ™%, which becomes inde-
up the difference. The frequency spectra make an even mopendent oik. ForN;=3 andAV=1, a fit to all the data gives
compelling case for the impact of sheared flow on the transa=4.85 andb=1.59. This change in functional form is con-
port dynamics of the running sandpile. Simply comparing thesistent with the change in dynamics predicted by analytic
spectra for an unsheared case with a sheared(Eégel?, work on the Burgers’ equation model by Diamond and
one can see a suppression of the low-frequency end of thdahm? The analytic form of the diffusion coefficient goes
spectrum and an increase in the high-frequency end. This cdrom infrared divergentDk; ') in the shear free case to
be quantified through the mean frequenay defined as independent ok,(Dxk?) in the sheared flow case. The as-
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FIG. 13. The diffusion coefficent as a function of the shearing rate.

FIG. 14. The slopes of a sandpile with a shear region in the middle, includ-

L . . . . ing all the shear effect&iamond$ and just the transport decorrelation and
ymptotic limit (x—o) of the diffusion coefficients in the the Jinear effectcircles.

sandpile model shows the same dependence going to a con-
stant with shear anll, °-°® without.

. Dug to i?e czlscrtete nstt&r\e/ _oflthe Sﬁtem’ tt:e 'TT]F’""F‘ 0I]radient. This region allows for a natural definition of an
increasingAV saturates wheAV is larger than unity. This is edge zone and has interesting implications for the initiation

because whed V is larger than unity, all avalanches down to of the transport barrier at the edge in an L—H transition.

the cell size are de_correlated. Strong sheared flow W_'th further investigation of this area will be published later, but
given scale length will decorrelate all transport events with 8t should be noted that in this edge region, shear increases the

larger scale length. Therefore, if the shear scale length g, jient further, creating a transport barrier that forces a
made smaller than the smallest transport eyehich would large pedestal to develop inside

be unphysical in a continuous turbulent sysieall the ava- As discussed before, sheared flow can have multiple ef-

lanches would pe degorrelated. Because of this effect, th%cts on turbulent transport. By using the simple automata
method used to investigate the dependence of the asymptonodel, one is able to isolate the effect of the shear decorre-

Der on the sheanpg r.ate was .to decreasé below ,1' The lation on the transport events from any other stability effects.
effective asymptotic diffusivity is found to decrea$dg. 13 Those other effects can be added to the simple model in an

W|tht|n<t:rr1easm? f_hefar a:?eﬁoc(tAhV)B ' Th,|s IS Irt]' compzrl-l b ad hoc manner. In the sandpile model, the overturning events
son fo the analylic form from the burgers- equation model by, o analogous to the turbulent fluctuations driving the trans-
Diamond and Hahm, which gives.; dependence oAV

. . . . ort; therefore, since sheared flow can reduce the turbulence
with y=%. While the coefficients are not the same, given thep

. . . . amplitude, in the sandpile paradighy, the amount moved
differences in the modelsone being continuous the other P bre b oy

being di he similarity | i . Kabl in an overturning should be affected by the shear. Similarly,
eing discretg the similarity in sca INgS 1S rémarkabl€. —  phacause sheared flow often has an effect on the linear stabil-
In the model as presented up to this point, the inclusio

r]ty of a mode, shear should have an impact &g, the

efﬁarginal stability level. If we include in the sandpile model a

ening of the gr.ad|ent with the coincident Qec'rease' in thereduction inN; proportional to the shearing rate and an in-
diffusion coefficient, or an antitransport barrier in which the . - iz aiso proportional to the shearing rate, we ob-
crit 1

gra_dient_ is further r_educed and th_e diffusion coefficie tain a confluence of effects on the gradient, and therefore on
defined is therefore increased. Which occurs depends on thﬁ1e diffusion also, due to the sheared flow that add up to

ratio of Ny tohPoﬁ;_ﬁwhgn Nf/P]?f).( _approaches $fr(])r tyrEJicaIf more than the sum of the individual chand€%g. 14). This
g&(l)r?:metefl?s t € F'I uglon c(:joe icient cro;)sse; t.efs ea:j— rleeis mainly due to the increased avalanche rate needed to main-
coefficientFig. 9), and a transport barrier is formed. It tain the flux whenN; is decreased. This then forces the

should be kept in mind that the two other effects of shear ony, . g region to be more “edge” like, causing the develop-
turbulent transport, the shear suppression of turbulence ar}é]ent of a large transport barrier. The inclusion of these two

the increased stability of the mode, are not included in this, 4 jisional effects is not meant to be self-consistent. but
model. These will be dealt with briefly later. rather is a demonstration that the real impact of shear on

. A§ mentioned before, most of these res%*'ts are for Case[?ansport is likely to be enhanced by the combination of ef-
in which Pyx does not exceel;/2 anywhere in the compu- fects

tational domain. The reason for this is to enable the unam-

biguous study of the SOC dynamics. When the average local

flux exceedN;/2, a distinct change in the dynamics 0CCUrS.\; cONCLUSIONS

The average local gradient jumps from the “submarginal”

SOC gradient to a supermarginal gradient. This jump is co- Within the constraints of a simple cellular automata
incident with a region in which the avalanches are occurringnodel of critical gradient dynamic&he running sandpile
almost constantly, as would be implied by the supermarginainode), the following is found.
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(1) Robust transport can occur in a noise-driven system witlenhanced confinement mode, which has flow shear. While it
profiles that are, on average, submarginal. This may bés unlikely that this decorrelation of transport events is the
relevant to the experimental observation that over muctentire answer, it does provide interesting avenues to explore
of the radius the profile appears to be marginal or subboth experimentally and theoretically.
marginal to most of the instabilities suspected of domi-
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