
The dynamics of marginality and self‐organized criticality as a paradigm for turbulent
transport
D. E. Newman, B. A. Carreras, P. H. Diamond, and T. S. Hahm 
 
Citation: Physics of Plasmas 3, 1858 (1996); doi: 10.1063/1.871681 
View online: http://dx.doi.org/10.1063/1.871681 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/3/5?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
A self-organized critical transport model based on critical-gradient fluctuation dynamics 
Phys. Plasmas 9, 841 (2002); 10.1063/1.1455630 
 
Self-organized criticality, long-time correlations, and the standard transport paradigm 
Phys. Plasmas 7, 1752 (2000); 10.1063/1.873995 
 
Long-time tails do not necessarily imply self-organized criticality or the breakdown of the standard transport
paradigm 
Phys. Plasmas 6, 3731 (1999); 10.1063/1.873677 
 
On the dynamics of turbulent transport near marginal stability 
Phys. Plasmas 2, 3640 (1995); 10.1063/1.871063 
 
Anomalous momentum transport from drift wave turbulence 
Phys. Fluids B 5, 3876 (1993); 10.1063/1.860610 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  132.239.66.164 On: Thu, 09 Jun

2016 21:56:37

http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1274244008/x01/AIP-PT/Pfeiffer_PoPArticleDL_060816/15.12.09_3_Prod_1640x440_EN_USA.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=D.+E.+Newman&option1=author
http://scitation.aip.org/search?value1=B.+A.+Carreras&option1=author
http://scitation.aip.org/search?value1=P.+H.+Diamond&option1=author
http://scitation.aip.org/search?value1=T.+S.+Hahm&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.871681
http://scitation.aip.org/content/aip/journal/pop/3/5?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/9/3/10.1063/1.1455630?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/7/5/10.1063/1.873995?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/6/10/10.1063/1.873677?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/6/10/10.1063/1.873677?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/2/10/10.1063/1.871063?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pofb/5/11/10.1063/1.860610?ver=pdfcov


The dynamics of marginality and self-organized criticality as a paradigm
for turbulent transport *

D. E. Newman† and B. A. Carreras
Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, Tennessee 37831-8070

P. H. Diamond
University of California at San Diego, La Jolla, California 92093-0319

T. S. Hahm
Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543

~Received 8 November; accepted 2 January 1996!

A general paradigm, based on the concept of self-organized criticality~SOC!, for turbulent transport
in magnetically confined plasmas, has been recently suggested as an explanation for some of the
apparent discrepancies between most theoretical models of turbulent transport and experimental
observations of the transport in magnetically confined plasmas. This model describes the dynamics
of the transport without relying on the underlying local fluctuation mechanisms. Computations
based on a cellular automata realization of such a model have found that noise-driven SOC systems
can maintain average profiles that are linearly stable~submarginal! and yet are able to sustain active
transport dynamics. It is also found that the dominant scales in the transport dynamics in the absence
of sheared flow are system scales rather than the underlying local fluctuation scales. The addition of
sheared flow into the dynamics leads to a large reduction of the system-scale transport events and
a commensurate increase in the fluctuation-scale transport events needed to maintain the constant
flux. The dynamics of these models and the potential ramifications for transport studies are
discussed. ©1996 American Institute of Physics.@S1070-664X~96!91105-2#

I. INTRODUCTION

Anomalous transport in magnetic confinement devices
has defied simple characterization due in part to the observa-
tion that the dominant transport scale lengths have scaled
with machine size~Bohm or worse scalings!, while the sus-
pected transport mechanisms have much smaller scales
~gyro-Bohm scaling!. To shed some light on this apparent
discrepancy and to investigate the effect of sheared flow on
the transport dynamics and these scalings, a new approach to
transport has been suggested1 based on the idea of self-
organized criticality~SOC!.2–4 This concept seeks to de-
scribe the dynamics of the transport without relying on the
underlying local fluctuation mechanisms. Because of the in-
dependence of the transport dynamics on the specific local
instability, this has the advantage of being more broadly ap-
plicable and addresses some of the universal features such as
profile robustness. The dynamics of such systems can be
computationally investigated with a cellular automata model
of ‘‘running sandpile’’ dynamics. This model allows us to
investigate the major dynamical scales and the effect of an
applied sheared flow on these dominant scales. A correspon-
dence between many of the important quantities in turbulent
transport and the equivalent variables in the SOC model is
given in Table I. While this simple model provides a reason-
able analogy to turbulent transport, it should be noted that
the physics underlying the fluctuation dynamics is not ad-
dressed by this model.

Two of the barriers in the way of understanding anoma-

lous transport are~1! the questions of which instabilities are
responsible for the transport and~2! the issue of the transport
scale being reconciled with the fluctuation scale. It has long
been believed that some linear instability~mode! is driving
turbulent fluctuations, which are causing the anomalous
transport.5 A number of instabilities have been put forward as
candidates for dominating transport in magnetic confinement
devices. In many of these modes, a linear marginal stability
condition has been assumed for the profile. This is based on
the assumption that the turbulent system would relax its driv-
ing gradient back to the linearly least unstable profile~the
marginal profile!, just allowing for the drive to continue. In
the case of tokamaks, ballooning modes near theb limit 6 are
among the modes for which this has been suggested. In ad-
dition, ion temperature-gradient-driven modes at the mar-
ginal limit have been suggested as the dominant core trans-
port mechanism.7,8 Unfortunately, all of these instability
mechanisms suffer from the drawback that, experimentally,
the profiles seem to be stable to the candidate modes over
much if not all of the radius.9 The second difficulty is related
to the fact that the transport from most of these modes is
governed by the fluctuation scales, which are typically on the
order of ion gyroradii~gyro-Bohm scaling!.10 These fluctua-
tion scales define the characteristic ‘‘step size’’ of the turbu-
lent diffusion, leading to a confinement time that scales with
the step size. Once again the experimental evidence is that
the confinement in real magnetic confinement devices, at
least in the low confinement mode~L-mode!, scales with the
machine size~Bohm scaling!11 rather than with the theoreti-
cal fluctuation step size. Interestingly, there is evidence that
in the enhanced confinement modes~H mode, etc.!, which
have a sheared flow coincident with the transport barrier, the
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confinement scaling seems to go from Bohm-like to
gyro-Bohm-like.11

The major results in this paper are summarized below. It
has been found that noise-driven SOC systems maintain av-
erage profiles that are linearly stable~submarginal! and yet
are able to sustain active transport dynamics, in contrast to
naive marginal stability arguments. This transport can occur
on very fast time scales, exhibiting either very fast diffusive
transport or even ballistic propagation. It is also found that
with no sheared flow or sheared flow decorrelation times
smaller than the natural system decorrelation times the domi-
nant scales in the transport dynamics are system scales rather
than the underlying local fluctuation scales. However, the
addition of sheared flow into the dynamics leads to a large
reduction of the system scale transport and a commensurate
increase in the fluctuation scale transport. This may be con-
sistent with the transition from Bohm to gyro-Bohm scaling
observed in improved confinement modes. Analytics on the
Burgers’ equation1 show this transformation with the addi-
tion of shear, as this is a change in the transport propagation
scaling exponent with the propagation going from ballistic
without shear to diffusive with shear.

The remainder of the paper is organized as follows: Sec.
II is a brief discussion of the heuristics of sheared flow in
turbulent systems. Section III contains the SOC model inves-
tigated and the results from simulations without sheared
flow. This is followed by Sec. IV, consisting of the results
due to the addition of sheared flow to the SOC system. Fi-
nally, Sec. V is the conclusion and summary.

II. HEURISTICS OF SHEARED FLOW IN TURBULENT
SYSTEMS

Due in part to the existence of a shear flow region coin-
cident with the transport barrier in enhanced confinement
modes, there has been much interest recently in the effect of
shear flows on turbulent systems. This interaction can take a
number of forms. The first and most often quoted is the shear
suppression of the turbulence.12 This occurs when the flow
shear scale length is less then the turbulent scale length of
interest and the shearing rate is higher then the eddy turnover
rate. In this case, the turbulent fluctuations are decorrelated
by the shear more quickly than they would be by the turbu-
lent interactions; consequently, the turbulent amplitude and
scale lengths are reduced. This mechanism is very general

and, assuming the sheared flow is stable and therefore not
generating more turbulent fluctuations, should be a valid ef-
fect with all fluctuation models. The next and sometimes
more important impact of the shear flow on the fluctuation
amplitude is at the linear stabilization level. This effect is
mode dependent and is therefore not as general as the non-
linear shear suppression, but for the modes on which it is
effective there can be a significant impact.13 The mechanism
is often straightforward, since the growth rate for many
modes isv dependent, the addition of shear can changev
and therefore change the growth rate or even completely sta-
bilize the mode by raising the effective stability boundary. A
third mechanism closely related to the first one is a direct
effect on the transport. The previous two mechanisms re-
duced the turbulent transport by reducing the turbulence; this
method can reduce the turbulent transport by changing the
phase relationship between the advecting and advected
fields. Because the transport comes from the cross correla-
tion of two fields ~i.e., n andf!, if the phase relationship
between these fields is changed, the transport can be as well.
Sheared flow can have an effect on the average phase be-
tween the fields, thereby changing the transport.14,15

A final mechanism, which may be in some cases essen-
tially the same as the first mechanism, by which sheared flow
can have an impact on turbulent transport is the one that will
be explored in the rest of this paper. If the transport takes
place as correlated transport events, similar to avalanches in
snow or sand, rather than as the sum of individual local
transport, it is plausible to imagine that the sheared flow
could decorrelate the long transport events. These correlated
‘‘avalanches’’ could be due to modulational interactions of
the small-scale fluctuations16,17 or a simple sequential trans-
port of some evolving field~temperature, density, etc.!. The
latter is very much like the traditional picture of a snow or
sand avalanche, propagating and spreading after being initi-
ated at one point. This is the model we will investigate.

III. THE RUNNING SANDPILE MODEL

Because of the expense and difficulty of accurately mod-
eling large regions of a magnetic confinement device and
because of the monumental task of dealing with and inter-
preting the data that one does get, it is often useful to con-
struct the simplest model that captures the dynamics of in-
terest. Starting from the assumptions of the importance of

TABLE I. Analogies between the sandpile transport model and a turbulent transport model.

Turbulent transport in toroidal
plasmas Sandpile model

Localized fluctuation~eddy! Grid site ~cell!
Local turbulence mechanism: Automata rules:
Critical gradient for local instability Critical sandpile slope~Zcrit!
Local eddy-induced transport Number of grains moved if unstable (Nf)
Total energy/particle content Total number of grains~total mass!
Heating noise/background fluctuations Random rain of grains
Energy/particle flux Sand flux
Mean temperature/density profiles Average slope of sandpile
Transport event Avalanche
Sheared electric field Sheared flow~sheared wind!
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marginality to turbulent transport and the importance of tur-
bulent transport to relaxation of gradients, a very simple
natural model presents itself. In this model, local turbulent
fluctuations are excited by the local gradient exceeding mar-
ginality, and the local fluctuations in turn relax the local gra-
dient, transporting the excess gradient down the profile. This
sandpile SOC model has the gradient modeled by the slope
of the sandpile, while the turbulent transport is modeled by
the local amount that falls~overturns! when the sandpile be-
comes locally unstable. The model system is driven by noise
from the heating sources or background fluctuations, which
in the sandpile model are represented by a random ‘‘rain’’ of
sand grains on the pile. This model allows us to study the
dynamics of the transport independent of the local instability
mechanism and independent of the local transport mecha-
nism. Because of the relative simplicity of the model, we are
also able to do very long time calculations and collect rea-
sonably large statistical samples.

A standard cellular automata algorithm18 is used to study
the dynamics of the driven sandpile. The domain is divided
into cells, which are evolved in steps. First, ‘‘sand grains’’
are added to the cells with a probabilityP0. Next, all the
cells are checked for stability against a simple stability rule
and either flagged as stable or not, and finally, the cells are
time advanced, with the unstable cells overturning and mov-
ing their excess ‘‘grains’’ to another cell with the size, dis-
tance, and direction of the fall being determined by the over-
turning rules. The most simple set of rules used is
if

Zn>Zcrit ,

then

hn5hn2Nf ,

and

hn115hn111Nf .

With hn defined as the height of celln, Zn being the differ-
ence betweenhn andhn11, Zcrit is the critical gradient and
Nf is the amount of ‘‘sand’’ that falls in an overturning event
~Fig. 1!. In terms of the normal physical quantities we asso-
ciate with turbulent systems, each cell can be thought of as
the location of a local turbulent fluctuation~eddy!. HereZcrit
is the critical gradient at which fluctuations are unstable and
grow andNf is the amount of ‘‘gradient’’ that is transported
by a local fluctuation~local eddy-induced transport, for ex-
ample!. The average sandpile profile is equivalent to the
mean temperature or density profile, while the total number

of sand grains in the pile~the total mass! is the total energy/
particle content of the device. The ‘‘sand grain’’ flux is
clearly the particle/heat flux in the turbulent system, and for
later reference, the sheared flow~wind! is the sheared electric
field often coincident with transport barriers.

The simulations are done in a two-dimensional system
~slab geometry!, wherex is equivalent to the radial coordi-
nate (r ) and y to the poloidal angle~u!. We have used a
variety of domain sizes varying from 5031 ~x andy direc-
tions! to 8003100 with most of the two-dimensional 2-D
calculations being performed at 200350. The boundary con-
ditions for the computation domain are periodic in they
direction, open atx5L ~particles that reach the edge are
lost!, and closed atx50. Computations are typically started
from a marginal state~i.e.,Zn5Zcrit21! and allowed to relax
to the steady state. The relaxation time is a function ofL, P0,
andNf , and anL5200 for typical values ofP0 andNf is
around 40 000 time steps. To accumulate sufficient statistics,
the system is iterated for 105–107 time steps after saturation
is reached. The main diagnostic for the sandpile model ava-
lanche dynamics is the time history of the number of flips
~overturning events!, with both the total number in the sys-
tem and the number of flips for individualy values tracked.
Additionally, local and poloidally averaged particle fluxes
are tracked at a few radial positions. Finally, the evolutions
of both the total mass~the sum of all the grains in the sys-
tem! and the average profiles are followed.

To investigate the normal SOC transport dynamics and
provide control results with which to compare computations
with sheared flow, we have reproduced the previously pub-
lished sandpile computations3,4 with shear free running sand-
piles. Since the model only has four parameters,L, P0L, Nf ,
andZcrit , we have performed scans of each of these param-
eters, keeping the others fixed. The results of these scans are
summarized elsewhere.19 Below we review the results from a
‘‘typical’’ case and compare its dynamics to that of a mar-
ginal system. In our typical run,L5200,P050.0025,Nf53,
and Zcrit58. This run was started marginally stable~Z57!
and then run;105 steps into the SOC regime. The relaxation
from the marginal profile to the SOC profile can be seen in
the time evolution of the number of flips~Fig. 2!. The SOC
state is not reached until the average level of the number of
flips saturates at approximately 30 000 time steps.

Figure 3 shows the marginal profile~from a system with
the same parameters as the typical case, but withNf51! and
the average SOC profile, both averaged over the last 20 000
steps. It can be seen readily from the slope of the SOC pro-
file and the number of flips occurring after relaxation into the
SOC state that even with a significantly submarginal profile
the system is able to robustly transport the inputted flux. This
is an important characteristic of SOC systems and should
lead to a reexamination of the relevance of some of the
modes whose importance was discounted because the pro-
files were submarginal~i.e., ballooning modes!. The one con-
dition needed for the maintenance of a SOC profile rather
than a marginal profile is thatNf be greater than 1. As dis-
cussed earlier, this is equivalent to saying that a turbulent
eddy will attempt to transport enough to level the local gra-
dient in one eddy turnover. Physically, this says that the sub-

FIG. 1. A cartoon representation of the simple cellular automata rules used
to model the sandpile.
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marginal SOC state comes from the inertia or finite response
time of the fluctuations. The instability and the induced fluc-
tuations cannot instantaneously turn off when the profile is
relaxed to marginal, instead they continue to relax the gradi-
ent further. IfNf51, then whenever a sand grain is dropped
onto the pile it will fall all the way down to the bottom of the
pile and exit at the base. This fall is not an organized ava-
lanche, in the sense that it will not grow as it cascades down
the pile because only the local cell with the extra grain is
unstable~supermarginal!. Comparing a time history of over-
turning sites in a marginal system~Nf51! with a time history
of overturning a site in our prototypical SOC case~Nf53!
clearly shows the difference. In the marginal case@Fig. 4~a!#,
all of the falls are individual isolated events~except for the
places where two sand grains were dropped by chance in
neighboring cells!, while in the SOC case@Fig. 4~b!# there
clearly exist coherent avalanches of all different lengths.
These figures are time histories of a given poloidal location
with all the poloidal positions giving statistically the same
result. The dark cells are cells that are overturning at that
time step while the light cells are stable. It can be seen from

the diagonal lines of overturning sites that the transport in
the marginal case is continuous from the point of input~the
location of the random grain drop! to the bottom edge, where
the grain exits the system. In the SOC case, coherent ava-
lanches can be seen to grow and shrink. Some are seen to
propagate up the slope, while others propagate down or in
both directions. It should be kept in mind that the flux always
moves down, for these automata rules. The upward propaga-
tion is really a void moving up, which is by symmetry the
same as a bump moving down. This dual propagation is a
signature of the SOC system. Even though both cases are in
a steady state, meaning that the flux via the random rain of
grains is the same as the flux out at the bottom, there is
clearly a more bursty character to the SOC case, with the flux
often exiting in coherent avalanches rather than the continu-
ous single transport events that make up the marginal system.
To quantify the distribution of these avalanche events that
typify the transport dynamics of the flowing sandpile, we
analyze the avalanches in a number of different ways.

First and most simply, one can construct the probability
distribution function~PDF! for the total number of instanta-
neous flips~an overturning event!. This is explored in more
detail in Ref. 19. The PDF for the SOC case has a mean
given by the flux into the system,P0L, times the average

FIG. 2. Time history of the total number of overturning sites at each instant.
The figure shows the relaxation from the marginal profile in the first 30 000
time steps followed by the evolution within the SOC state.

FIG. 3. The average sandpile profiles for a marginal case and a SOC case.
For both casesZcrit58 and both cases are transporting the same number of
grains.

FIG. 4. A visualization of the overturning sites at all radiuses at oneu
location as a function of time. The bottom of the figure is the bottom edge of
the sandpile. Light colored cells are stable while dark cells are the unstable
~overturning! sites.~a! Shows the avalanches for a marginal case. All the
grains that fall onto the sandpile move down the pile singly exiting at the
bottom. This can be seen by the diagonal lines angling down as time in-
creases.~b! Shows the avalanches in a marginal case. The avalanches can be
seen to grow to radial sizes and last various lengths of time. The propagation
of the disturbance can be seen to move both up and down the slope.
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time for the grains to leave the system,L/2, weighted with
the amount transported in one flip,Nf , giving a mean of
P0L

2/2Nf . The variance for the SOC cases seems to scale
with the mean, as one would expect from a Poisson distribu-
tion. Because of the need for very large samples to quantify
the higher-order moments of the PDF in which differences
often appear, a better method for differentiating between the
dynamics is the correlation function. The autocorrelation
function can give information about the average length of the
avalanches~transport events!, while cross-correlation func-
tions between radially separated points quantifies the radial
correlation length of these events. The average length of the
avalanche~the width of the autocorrelation! is seen to be;1
in the marginal case, but in the SOC case it is;8 ~Fig. 5!.
The radial correlation length is found to be;14 in our typi-
cal SOC case@Fig. 6~a!#. Recalling that the individual cell
represents the local fluctuation, the relatively long correla-
tion length signifies much longer transport correlation
lengths than fluctuation correlation lengths. This feature of
SOC dynamics is borne out in a model realization using a
3-D resistive pressure-gradient-driven turbulence model. The
results of this realization will be presented elsewhere. The
marginal case has even longer radial correlation lengths be-
cause of the nature of a transport event. In the marginal
system, once a transport is started it continues all the way to
the bottom. Therefore, we need another method to separate
the marginal system from the SOC system. This can be done
easily using the structure of the cross-correlation function.
Remembering that the SOC system avalanches propagated
both up and down while the marginal system only propa-
gated down, the cross-correlation function between radially
separated points can be expected to have a peak at the lag
given by the separation of the radial points~assuming one
radial step in one time step!. The marginal case will have this
peak only on the lag side of the correlation function, while
the SOC case will have a peak on both the lag side, signify-
ing downward propagating avalanches, and the lead side,
signifying upward propagation@Fig. 6~b!#. The relative
heights of these two peaks give the local ratio of upward to
downward propagation and may be used as a local measure

of the profile’s deviation from marginal. These quantities de-
pend weakly on the flux through the given radial location,
which is in this case simplyP0x; this leads to a radial de-
pendence of the auto- and cross-correlation functions in the
SOC system.

The third method for quantifying the avalanche dynam-
ics is with frequency diagnostics applied to the time history
of instantaneous flips~only using the saturated region!. A
typical spectrum can be divided into three regions following
Hwa et al.3 ~Fig. 7!. The first region is the high-frequency

FIG. 5. The autocorrelation functions for a marginal system having a width
of about 1 and a SOC system having a width of about 10. These widths
show the difference in avalanche lengths between the marginal and SOC
systems.

FIG. 6. ~a! The radial correlation length of the flux is given by the half-
height of the falloff of the cross-correlation functions with radial separation.
~b! A typical cross-correlation function forDr540 cells. Note the double
peaks at both a lag and lead of 40~the separation distance!. These are due to
the dual propagation nature~both up and down! of the SOC avalanches.

FIG. 7. An autopower frequency spectrum of the flips in the saturated SOC
state. This typical sandpile frequency spectrum shows the three dynamical
regimes.

1862 Phys. Plasmas, Vol. 3, No. 5, May 1996 Newman et al.
 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  132.239.66.164 On: Thu, 09 Jun

2016 21:56:37



end of the spectrum, which follows approximately andv24

power law. This region is identified as the noninteracting~or
overlapping! avalanche region. IfP0 is made small enough,
this region completely envelops region 2~middle to low fre-
quencies!, which is identified as the overlapping avalanche
region. The spectral falloff in the overlapping region is ap-
proximatelyv21, and this is the region of primary interest to
us. Finally, there is region 3, the lowest frequencies. In this
region the spectral power is relatively flat and finally rolls
over at the lowest frequencies. This region is identified with
global discharge events that have extremely long correlation
times. It is easiest to see these discharge events by looking at
the time history of the total mass~the integrated heights!.
Figure 8 shows the total mass in a case that was run for 107

time steps and encompasses perhaps two of the largest ‘‘glo-
bal discharge events.’’ Note that the frequency of these larg-
est events is proportional to the rain rate~the input flux!, as
one would expect for relaxation-type oscillations, because
the rate of refilling of the pile after a massive discharge is
proportional to the input flux. Region 3 is a very interesting
regime dynamically and is the region of primary interest to
those using SOC models to study earthquakes. However, be-
cause this region involves time scales probably much longer
than a confinement time~which is on the order ofL2, assum-
ing transport goes one fluctuation size in one time step!, we
will only explore the high-frequency end of this region.

To compare these cellular automata model results with
analytic results,1 we construct a diffusion coefficientD0.
HereD0 is built in the typical fashion from the average local
flux and average local gradient, givingD05^G&/^dh/dx&.
However, since the system is in the steady state, the average
local flux throughx0 is simply the average number of grains
falling into the region abovex0, which is given byP0x0 .
This then allows us to writeD0 asD05P0x0/^dh/dx&. It is
found that^dh/dx& scales withP0x, allowing a natural way
to look at the diffusion by plottingD0 againstP0x, which is
shown in Fig. 9. It is found thatD0 has a functional depen-
dence of (P0x)

b with b'0.95 in the region whereP0x is less
thanNf /2. This ‘‘fast’’ transport that scales with the system
size is in agreement with the analytic work by Diamond and

Hahm on the Burgers’ equation. Very fast diffusion or ballis-
tic propagation is also observed in the 3-D resistive pressure-
gradient-driven turbulence model realization of a SOC sys-
tem. These results will be published elsewhere.

IV. SHEARED SOC MODEL

Into the basic model described above we now add a re-
gion of poloidal sheared flow. This is implemented by adding
a constant flow in one direction to the top of the sandpile and
a constant flow in the other direction to the bottom. The two
constant flow regions are then connected by a shear flow
region~Fig. 10! with a variety of possible shear profiles. The
shear is defined as the velocity increment,DV, between two
adjacent cells in thex direction. The poloidal flow is added
to the dynamics in the time advance step after moving any
falling grains to their new positions. The impact of the shear
flow is quantified by changing a shear parameter,S, equal to
DV times the size of the shear region,LS(S5LS DV).

The effect of the sheared flow on the transport dynamics
can be first and most easily observed in a time history of the
overturning sites@Fig. 11~a!#. The sheared flow region in the
middle is easily differentiated from the unsheared ends by

FIG. 8. The time evolution of the total mass~the space integrated number of
grains! displays less of the high-frequency oscillations then the ‘‘flips’’ but
more low-frequency oscillations. Note that in 23107 time steps there are
only one or two of the largest relaxation-type oscillations.

FIG. 9. The diffusion coefficent as a function of flux for a case with sheared
flow and one without sheared flow. Note the different functional forms.

FIG. 10. A cartoon of the sandpile with a shear flow zone. The whole pile is
flowing to the right at the top and to the left at the bottom connected by a
variable sized region of sheared flow.
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the absence of correlated transport events~avalanches! in the
shear zone. This can be contrasted to the unsheared SOC
case shown in Fig. 11~b!. While the difference in avalanche
dynamics is visually striking and shows clearly the decorre-
lation of the long transport events by the sheared flow, to
quantify the changes we must use the other diagnostics. The
PDF of the flips displays a marked decrease in the variance
for a running sandpile with flow shear when compared to one
without shear. This trend continues when the shearing rate
and/or the size of the shear zone increases. This suggests that
the larger-scale transport events are being suppressed by the
sheared flow and, since the total flux must remain the same,
the medium- and small-scale events must increase to make
up the difference. The frequency spectra make an even more
compelling case for the impact of sheared flow on the trans-
port dynamics of the running sandpile. Simply comparing the
spectra for an unsheared case with a sheared case~Fig. 12!,
one can see a suppression of the low-frequency end of the
spectrum and an increase in the high-frequency end. This can
be quantified through the mean frequencyÃ, defined as

Ã5*vS(E)dv. Figure 12~b! shows the variation inv as the
shear parameter is increased. This shows the decorrelation
time of the transport decreasing as the shear parameter in-
creases. Once again, it is important to note that this effect is
completely different from the shear suppression of turbu-
lence. In this model the turbulent amplitude and stability
boundary are not being affected at all; it is only the corre-
lated transport events that are being modified. Therefore, this
decorrelation time is not the standard turbulent decorrelation
time but rather a new quantity, a transport decorrelation time.
In the shear free case, the transport decorrelation time is
longer thanL2, while in the sheared flow case, the decorre-
lation time becomes shorter thanL2.

The next logical questions to ask are~1! if the transport
events are being decorrelated, what is the impact on the dif-
fusion coefficient; and~2! does this build up a transport bar-
rier? The answers to both of these questions are somewhat
subtle. In the sheared flow region, there is a substantial
change in the functional form of the steady-state sandpile
slope. Therefore, the diffusion coefficientDeff changes func-
tional form, leading to an increase in the diffusion coefficient
for smallP0x and a decrease for largeP0x. Again, we find a
universal curve forG/^dh/dx& when plotted versusP0x ~Fig.
9!. In this case, the slope ofh cannot be described by a
power function, but it is just a linear function ofP0x. As a
consequence, the effective diffusion coefficient is

Deff5
P0x

a1bP0x
. ~1!

Asymptotically, forx→`, Deff→b21, which becomes inde-
pendent ofx. ForNf53 andDV51, a fit to all the data gives
a54.85 andb51.59. This change in functional form is con-
sistent with the change in dynamics predicted by analytic
work on the Burgers’ equation model by Diamond and
Hahm.2 The analytic form of the diffusion coefficient goes
from infrared divergent (D}kr

21) in the shear free case to
independent ofkr(D}kr

0) in the sheared flow case. The as-

FIG. 11. Time evolution of the overturning sites~like Fig. 4!. The ava-
lanches do not appear continous in time because only every 50th time step is
shown. ~a! The shear-free case shows avalanches of all lengths over the
entire radius.~b! The case with sheared flow shows the coherent avalanches
being decorrelated in the shear zone in the middle of the pile.

FIG. 12. ~a! Frequency spectra with and without a shear flow region. This
shows a marked decrease in the low-frequency power~with shear! and a
commensurate increase in high-frequency power.~b! The insert shows the
decorrelation time~td51/Ã! as a function of the shear parameter~the prod-
uct of the shearing rate and the size of the shear zone!.
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ymptotic limit ~x→`! of the diffusion coefficients in the
sandpile model shows the same dependence going to a con-
stant with shear andkr

20.98 without.
Due to the discrete nature of the system, the impact of

increasingDV saturates whenDV is larger than unity. This is
because whenDV is larger than unity, all avalanches down to
the cell size are decorrelated. Strong sheared flow with a
given scale length will decorrelate all transport events with a
larger scale length. Therefore, if the shear scale length is
made smaller than the smallest transport event~which would
be unphysical in a continuous turbulent system!, all the ava-
lanches would be decorrelated. Because of this effect, the
method used to investigate the dependence of the asymptotic
Deff on the shearing rate was to decreaseDV below 1. The
effective asymptotic diffusivity is found to decrease~Fig. 13!
with increasing shear asDeff}(DV)

20.51. This is in compari-
son to the analytic form from the Burgers’ equation model by
Diamond and Hahm, which gives aDeff dependence onDV
with g54

5. While the coefficients are not the same, given the
differences in the models~one being continuous the other
being discrete!, the similarity in scalings is remarkable.

In the model as presented up to this point, the inclusion
of sheared flow either can cause a transport barrier, a steep-
ening of the gradient with the coincident decrease in the
diffusion coefficient, or an antitransport barrier in which the
gradient is further reduced and the diffusion coefficient~as
defined! is therefore increased. Which occurs depends on the
ratio of Nf to P0x; whenNf /P0x approaches 3~for typical
parameters!, the diffusion coefficient crosses the shear-free
SOC coefficient~Fig. 9!, and a transport barrier is formed. It
should be kept in mind that the two other effects of shear on
turbulent transport, the shear suppression of turbulence and
the increased stability of the mode, are not included in this
model. These will be dealt with briefly later.

As mentioned before, most of these results are for cases
in which P0x does not exceedNf /2 anywhere in the compu-
tational domain. The reason for this is to enable the unam-
biguous study of the SOC dynamics. When the average local
flux exceedsNf /2, a distinct change in the dynamics occurs.
The average local gradient jumps from the ‘‘submarginal’’
SOC gradient to a supermarginal gradient. This jump is co-
incident with a region in which the avalanches are occurring
almost constantly, as would be implied by the supermarginal

gradient. This region allows for a natural definition of an
edge zone and has interesting implications for the initiation
of the transport barrier at the edge in an L–H transition.
Further investigation of this area will be published later, but
it should be noted that in this edge region, shear increases the
gradient further, creating a transport barrier that forces a
large pedestal to develop inside.

As discussed before, sheared flow can have multiple ef-
fects on turbulent transport. By using the simple automata
model, one is able to isolate the effect of the shear decorre-
lation on the transport events from any other stability effects.
Those other effects can be added to the simple model in an
ad hoc manner. In the sandpile model, the overturning events
are analogous to the turbulent fluctuations driving the trans-
port; therefore, since sheared flow can reduce the turbulence
amplitude, in the sandpile paradigmNf , the amount moved
in an overturning should be affected by the shear. Similarly,
because sheared flow often has an effect on the linear stabil-
ity of a mode, shear should have an impact onZcrit , the
marginal stability level. If we include in the sandpile model a
reduction inNf proportional to the shearing rate and an in-
crease inZcrit also proportional to the shearing rate, we ob-
tain a confluence of effects on the gradient, and therefore on
the diffusion also, due to the sheared flow that add up to
more than the sum of the individual changes~Fig. 14!. This
is mainly due to the increased avalanche rate needed to main-
tain the flux whenNf is decreased. This then forces the
sheared region to be more ‘‘edge’’ like, causing the develop-
ment of a large transport barrier. The inclusion of these two
additional effects is not meant to be self-consistent, but
rather is a demonstration that the real impact of shear on
transport is likely to be enhanced by the combination of ef-
fects.

V. CONCLUSIONS

Within the constraints of a simple cellular automata
model of critical gradient dynamics~the running sandpile
model!, the following is found.

FIG. 13. The diffusion coefficent as a function of the shearing rate.

FIG. 14. The slopes of a sandpile with a shear region in the middle, includ-
ing all the shear effects~diamonds! and just the transport decorrelation and
the linear effect~circles!.
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~1! Robust transport can occur in a noise-driven system with
profiles that are, on average, submarginal. This may be
relevant to the experimental observation that over much
of the radius the profile appears to be marginal or sub-
marginal to most of the instabilities suspected of domi-
nating transport.

~2! Transport events, avalanches, are found on all size and
time scales in the running system. The coherence of
large transport events can make the transport scale with
the system size~Bohm-like scaling!, even though the
local transport mechanism is the much smaller-scale lo-
cal fluctuations. Additionally, the dominance of the large
avalanches in the transport dynamics make the flux very
temporally bursty.

~3! The addition of sheared flow to the running sandpile has
a fundamental impact on the transport dynamics. The
dominant transport scales move from system size to
smaller scales, with the diffusion no longer being infra-
red divergent~k21!. The mechanism for this change is
the simple decorrelation of the large-scale transport
events by the sheared flow.

~4! With moderately strong driving~or in the limit of large
P0x!, the inclusion of shear can cause the formation of a
‘‘transport barrier’’~a region with decreased diffusivity!
consistent with theoretical predictions. However, in this
model, which does not include the standard sheared flow
effects such as linear stabilization, very weak driving can
lead to an increased diffusivity in the sheared flow re-
gion. When the other impacts of shear are included in an
ad hocmanner, the shear region always exhibits a de-
creased diffusivity with the coincident transport barrier.

The possibility of transport that is largely independent of
the nature of the local instability and furthermore can occur
even with average gradients that are submarginal should lead
to the reevaluation of some modes that may have been dis-
counted due to the stability of the profiles. Because the dy-
namics of the transport are not closely tied to the local dy-
namics~the instability driving the fluctuations!, this type of
model would suggest a universality in transport, even when
the instabilities are different~i.e., across machines!. The dis-
crepancy between the apparent observed Bohm scaling in
experiments and the gyro-Bohm scaling predicted by most
turbulence theories may be addressed by this universality in
the transport dynamics independent of the instability.

Finally, the change in dominant scales in the sandpile
model with the addition of shear is not inconsistent with the
experimental observation that transport scalings seem to go
from Bohm to gyro-Bohm when the system goes into the

enhanced confinement mode, which has flow shear. While it
is unlikely that this decorrelation of transport events is the
entire answer, it does provide interesting avenues to explore
both experimentally and theoretically.
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