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A general methodology for describing the dynamics of transport near marginal stability is 
formulated. Marginal stability is a special case of the more general phenomenon of self-organized 
criticality. Simple, one field models of the dynamics of tokamak plasma self-organized criticality 
have been constructed, and include relevant features such as sheared mean flow and transport 
bifurcations. In such models, slow mode (Le., large-scale, low-frequency transport events) 
correlation times determine the behavior of transport dynamics near marginal stability. To illustrate 
this, impulse response scaling exponents (z) and turbulent diffusivities (D) have been calculated for 
the minimal (Burgers') and sheared flow models. For the minimal model, z= 1 (indicating ballistic 
propagation) and D-(S5)1/3, where S5 is the noise strength. With an identically structured noise 
spectrum and flow with shearing rate exceeding the ambient decorrelation rate for the largest-scale 
transport events, diffusion is recovered with z = 2 and D - (S5) 3/5. This indicates a qualitative 
change in the dynamics, as well as a reduction in losses. These results are consistent with recent 
findings from dimensionless scaling studies. Several tokamak transport experiments are 
suggested. © 1995 American Institute of Physics. 

I. MOTIVATION AND INTRODUCTION 

The concept of marginal stability! is an oft-used para­
digm in tokamak confinement physics. The marginal stability 
hypothesis is simply the notion that when a local gradient 
exceeds the critical value set by a stability criterion, the 
fluctuation-driven flux increases rapidly, and thus drives'the 
gradient back to marginality. As a consequence, energy con­
tent (and thus confinement time) is determined by the mar­
ginal stability criterion alone, and is not sensitive to the de­
tailed nonlinear evolution of the instability process. Possible 
applications of the marginal stability construct include the 
following. 

(i) The instance of transport near the f3 limit, where 
marginally stable magnetohydrodynamics (MHD) modes 
(Le., ballooning modes) and microturbulence jointly regulate 
confinement. This scenario has been invoked to explain gen­
eral L-mode confinement scaling, as well. 2 

(ii) The hypothesis that tokamak core transport is deter­
mined by the marginal stability threshold for ion temperature 
gradient instabilities in the presence of a background of elec­
tron drift waves.3- 5 

(iii) Edge transport in the H mode, where residual tur­
bulence (reduced, perhaps to marginality, by electric field 
shear) and neoclassical ion thermal conduction combine to 
control the edge transport barrier. 

All these specific realizations have certain basic con­
stituents in common. These include the following. 

(i) A marginally stable profile, which is defined by the 
threshold criterion (usually linear) for some instability. 

(ii) An "ambient" or "background" transport mecha­
nism, which is unrelated to any exceedance of the threshold 

')Also at General Atomics, San Diego, California 92186, 

condition. In addition, the ambient transport must be weak in 
comparison to any which results when marginal stability is 
strongly violated. 

(iii) A noise source, which accounts for fluctuations in 
heating and fueling about the levels (of external drive) nec­
essary for marginality. 

(iv) Some assumptions concerning profile boundary 
conditions. 

Taken together, these common constituents effectively 
define the marginal stability paradigm. The goal of this paper 
is to characterize the dynamics of transport near marginality 
and develop the theoretical foundations for predictive mod­
eling of tokamak plasmas near marginal stability. To do so, it 
is useful to observe that the dynamical models that govern 
marginal stability phenomena (i.e., the basic fluid or kinetic 
equations, field theories, etc.) are sometimes scale invariant, 
or, more frequently, support ranges of "approximate" spa­
tiotemporal scale invariance. A marginally stable system de­
scribed by a scale invariant dynamical model is an example 
of a self-organized criticality (SOC).6-8 A self-organized 
criticality is a general phenomenon where instability dynam­
ics tend to select a state or class of states that exhibit features 
akin to those observed near critical points (Le., long correla­
tion lengths, soft fluctuation modes, etc.). It is important to 
stress that in the context of turbulent transport, the self­
organized critical state is not necessarily the linearly mar­
ginally stable state. Indeed, the deviation of the SOC state 
from the linearly marginal state is a measure of the "tight­
ness" of the marginal stability, which is determined by the 
ratio of turbulent transport to drive (Le., heating, etc.). It may 
be said, then, that all realizations of the SOC paradigm in­
volve some sort of "marginal stability," but not all examples 
of "marginal stability" qualify as a self-organized criticality. 
The motivation for this distinction is that the key elements in 
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the dynamics of a SOC are stable, large-scale transport 
events, referred to as "modes."g Here a "mode" consists of 
many (evolved) instabilities. Such modes are excited by 
noise and weakly damped by ambient transport. As a conse­
quence of scale invariance, the large-scale modes exhibit 
long correlation times, which diverge at large scale (i.e., 
T;/ = k2 D). Thus, they make a significant contribution to the 
fluctuation-driven flux, even when they are only weakly ex­
cited. For example, consider the generic case, where 

a(p) 
r T= - DT-a;:-' 

It is easily seen that if Tc diverges at low k, r r can be 
k,OJ 

large, even if (fj2h,ru is modest. Indeed, should TC
k 

diverge 

sufficiently rapidly at low k, r T can develop an infrared 
divergence. Such infrared divergences of the turbulent trans­
port coefficient due to low-k modes with long correlation 
times ("slow modes") are a distinguishing characteristic of 
an SOC. Obviously, the dynamics of transport in a SOC is 
quite different from the conventional wisdom of linearly un­
stable modes and quasilinear diffusion, as linear instability 
of the slow modes is not required. We remark here that the 
observation of Bohm scaling, for which the system (ma­
chine) size apparently controls transport, suggests the ap­
proach of infrared catastrophe. Hence, slow modes are likely 
quite important to transport in tokamaks, where Bohm trans­
port is frequently observed. 

Transport in the "confinement zone" of a tokamak is a 
naturally scale-invariant process, since by definition the 
"confinement zone" is distinguishable from regions of 
strong heat and particle deposition, because in the confine­
ment zone, turbulent transport dominates all other local pro­
cesses (i.e., collisional transport, anomalous heat transfer, 
etc.). Thus, confinement zone transport dynamics near mar­
ginal stability is a realization of a self-organized criticality. 
The more detailed characteristics of a SOC are displayed as 
well, since (i) "noise" is present, i.e., Beam Emission Spec­
troscopy (BES) fluctuation measurements9 clearly suggest 
the presence of large-scale fluctuations; (li) small-scale fluc­
tuations have long been10 observed. These drive the back­
ground or "ambient" transport process; and (iii) the inverse 
transfer of cascade of energy to large scales typical of 
strongly magnetized plasmas naturally couples the noise to 
the large-scale modes of the system. 

Taken in together, these arguments suggest that a broad 
class of problems pertaining to tokamak transport near mar­
ginal stability may be amenable to analysis using methods 
from the theory of self-organized criticality. 

At this point, it is useful to briefly review the SOC 
theory paradigm. The prototypical realization of SOC is the 
running sandpile, which supports avalanches when the local 
slope exceeds the angle of repose. Localized avalanches oc­
cur, but net balance with noise excitation (i.e., associated 
with randomly sprinkling sand on the pile) occurs when the 
avalanches overlap and discharge sand from the pile, thereby 
maintaining a globally quasisteady state close to the critical 
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profile (given by the angle of repose). An avalanche should 
be thought of as analogous to a transport "event," not a 
(linear) instability (i.e., a drift wave, etc.). The avalanche 
power spectrum is consistent with 1 / f, so that the biggest 
avalanches occur most infrequently and smaller avalanches 
most often,8 in accord with our expectations for a driven 
system that is "bubbling" near marginal stability. In addi­
tion, large-scale global discharges of the sandpile (termed 
great events) occur infrequently (i.e., at intervals that exceed 
a confinement time). The frequency and wave number of the 
avalanches are related by the "critical exponent" 11 Z, i.e., 
such that w = c kZ

, where c is some constant. Indeed, the 
principal output of the SOC theory is the exponent z, which 
also characterizes the dynamics of the impulse response of 
the system. Obviously, z = 2 indicates a diffusive response, 
Z = 1 suggests a ballistic response, etc. The theory also pre­
dicts an effective turbulent transport coefficient (i.e., renor­
malized diffusivity), which exhibits a (previously mentioned) 
infrared divergence. 12 Such a divergence effectively renders 
the renormalized diffusivity scale dependent, i.e., if 8x2 

-DTT, D=Dr (8x). Such scale dependency underlies the 
anomalous value of the critical exponent (i.e., z<2, indicat­
ing superdiffusive behavior), and represents a significant de­
parture from the quasilinear diffusion paradigml3 of trans­
port. 

In this paper, the dynamics of tokamak plasma transport 
events near marginal stability are studied, and a simple 
model derived from the SOC paradigm is advanced. The 
form of the basic nonlinear evolution equation for the local 
deviation of the profile from criticality is derived using 
simple symmetry concepts.8 In its simplest incarnation, this 
equation reduces to Burgers' equation. However, we also 
show that it is possible to formulate alternative model equa­
tions, including ones appropriate for describing systems with 
sheared flow [i.e., due to neutral beam injection (NBI)-driven 
sheared toroidal rotation]l4 or systems that exhibit a transport 
bifurcation,15,16 which are consistent with the fundamental 
symmetry constraints. The basic model is then analyzed, 
with the goal of determining the following. 

(a) The critical exponent z, which characterizes the dy­
namics of the nonlinear response of the plasma transport 
SOC. 

(b) The (scale-dependent) effective turbulent transport 
coefficient. The analysis is implemented in two different 
ways, via a one-loop renormalization groupl? (RNG) calcu­
lation and using the Direct Interaction Approximation 
(DIA).l8 Not too surprisingly, the results agree. This agree­
ment is a consequence of the random Galilean invariance of 
the basic equation and the focus on hydrodynamic (low k, w) 
phenomena. These together eliminate coupling coefficient 
and field amplitude renormalization, leaving only propagator 
renormalization, an effect that is captured by both the DIA 
and the one-loop RNG. To elucidate the effect of slow modes 
on transport, the analysis was then repeated for the relevant 
case when a sheared flow is present. The sheared flow accel­
erates the rate of decorrelation of long-wavelength, slow 
modes,14 thus greatly reducing the severity of the infrared 
divergence in the turbulent diffusivity and eliminating its de­
pendence on kxmin altogether. As a consequence, the critical 
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FIG.!. Depiction of PoX and P(x,t). Note 8P(x,t) contains information 
about Pox. 

exponent increases from z = I to Z = 2. Moreover, 
DT~ (S6) 113 (S6 is the noise strength) without shear flow, 
while D T - (S6)3/5 with shear flow. The first case exhibits 
"strong turbulence" scaling, while the latter seems more 
akin to weak turbulence. 

A lengthy discussion of SOC modeling of tokamak 
transport phenomena follows. This discussion focuses on the 
following. 

(a) Possible experiments (especially transients) to iden­
tify and elucidate characteristics of core transport event dy­
namics that follow from the SOC hypothesis and the impli­
cations of this hypothesis for interpreting results. 

(b) Ways to exploit the SOC paradigm in transport 
theory and modeling. 

The remainder of this paper is organized in the following 
manner. In Sec. II, the basic models are derived and dis­
cussed. Section III contains the analysis, for both the cases 
with and without sheared flow. Section IV consists of a sum­
mary and a detailed discussion. 

II. BASIC DYNAMICAL MODEL 

In this section, constraints on the form of a "generic" 
model for scale invariant dynamics of transport near mar­
ginal stability are formulated and discussed. A number of 
simple models that capture various pieces of the essential 
underlying physics at large scales are presented. Symmetry 
properties of the model equations are identified. 

The simplest aspect of transport dynamics near marginal 
stability is the behavior of long-wavelength (large-scale) 
transport events about a marginally stable profile in one di­
mension, as shown in Fig. 1, which corresponds to the radial 
dimension of a tokamak. For concreteness, consider the dy­
namics of pressure P(r,t) near some marginally stable pro­
file Po ( r). This might correspond to the instance transport 
near the f3limit, for example. Then op(r,t), the deviation of 
P(r,t) from Po(r), evolves according to 

a a a a 
at oP+ ax r[oP]- ax Do ax oP. (1) 

It is important to again stress that OP should be thought of as 
a deviation from the mean (Le., SOC or marginal) profile due 
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FIG. 2. Depictions of bump and void. 

to a transport event, and not as a pressure fluctuation associ­
ated with a linear instability. More precisely, a "transport 
event" will be generated by the interaction of several quasi­
linear instabilities. Here f [OP] is the flux of pressure, which 
is, in general, a nonlinear functional of oP. Here Do is the 
ambient or background transport (Le., as due to drift waves, 
etc.), so k 2Do<laflaxl, and s is the noise source. Equation 
(1) states that OP is conserved, up to noise input (5) and 
small-scale dissipation (k 2 Do). The nonlinearity of rr OP] 
follows from the dependence of the turbulent transport on 
deviation from marginality. Since w'PeDo, Eq. (1) is ap­
proximately scale invariant. The conservative structure of 
Eq. (1) is crucial for scale invariance. Also, note that 
oP(x,t) = P(x,t) - Po (x) implicitly contains information 
about the mean pressure gradient, too. 

The nontrivial content of Eq. (1) is, of course, buried in 
the form of f [ oP], which is, in turn, constrained by the 
presence of a mean gradient P o( r)' and by the fact that the 
flux must be down the total gradient, locally. Thus, bumps 
(Le., localized perturbations with oP>O) must travel down 
the mean gradient, while voids (i.e., localized perturbations 
with oP < 0) must travel up the mean gradient. These condi­
tions are equivalent to the requirement that rr oP} be invari­
ant under the dual transformations x-+-x and op-+-oP. 
This constraint, first identified by Hwa and Kardar,8 is 
termed joint reflection symmetry. The underpinnings of the 
joint reflection symmetry constraint are best illustrated pic­
torially. Figure 2 defines bump and void, respectively. Fig­
ures 3(a) and 3(b) show the evolution of a bump in the ab­
sence of a mean gradient (i.e., Pb = 0). Consideration of 
reflection symmetry reveals that the bump will spread out 
due to the action of transport. However, the barycenter of the 
bump remains fixed. Now, consider a bump on a profile with 
mean Pb < 0 (Fig. 4). Here, reflection symmetry about the 
center of the bump is broken, as P ~ < O. Thus, the piece of 
the bump enclosed by the curve passing thru points BCD in 
Fig. 3(a) will propagate down the mean gradient (here down 
the total gradient, as well), while the piece enclosed by the 
curve passing thru points BAD in Fig. 3(b) will move up the 
mean gradient (but locally down the gradient of total pt). 
Since the area enclosed by BCD exceeds the area enclosed 
by BAD, the net motion of the bump is down the mean 
gradient. A similar pictorial argument reveals that a void 
must propagate up the mean gradient. These simple consid-
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1---<0.'------

(3a) 

(3b) 

FIG. 3. Time evolution of a symmetric bump. 

erations clearly establish the principle of joint reflection 
symmetry. Note that the requirement of bumps moving 
"down" and voids moving "up" the local gradient is consis­
tent with non-negative entropy production, as well. 

The form of r[ 8P] must be invariant under x-+ - x and 
8P-+ - 8P. Thus, if 

r[8P]=~ [An(8P)n+Bm(~ 8Pt 
q,r 

+C 8Pq(~8P)r+ ... ] q,r ax ' (2) 

then, for odd n, all An=O. All m are allowed. However, 
Cq,r=O for q odd, as well. Noting that m= 1 simply rede­
fines Do, it follows that in the hydrodynamic limit, the sim­
plest possible form of r[p J is ('11.12) 8P2, so that 8P evolves 
according to 

a, a (A 2) a2 
_ 

- (5P+- - 8P -Do ~ 8P=s. 
at ax 2 ax 

(3) 

Observe that a similar result would follow from the familiar 
r=-D ap/ax [recall 8P=p(x,t)-Po(x,t)] with D~8P, 
as typical of fluctuations near marginal stability. However, 

FIG. 4. Net motion of bump is down gradient. 
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other forms are possible, as well. In particular, a class of 
forms of r[8p], which allow the possibility of a transport 
bifurcation15

,16 above a critical noise level is 

(4) 

with m an integer. Here, r[ 8P] is manifestly invariant under 
8P -+ - 8P, x-+ - x increases as 8P2 for small 8P [Le., as 
in Eq. (3)], but decreases or remains constant (for m = 1) 
with increasing 8P (i.e., above a critical noise level) for 
a 8P2m> 1. This highly nonlinear choice of r[ 8P] is 
motivated by the familiar transport bifurcation ansatz 
D-+Do/(l + aE;2), and the form of the radial force bal­
ance equation. Note also that mean shear flOW 14 effects may 
be introduced into the propagation in two dimensions, via 

a , aSp ( a
2 

a
2 

) a (A 2) _ 
at 8P+ VoX iiY- Do a? + if? 8P+ ax 2" 8P =s. 

(5) 

Here x is analogous to the radial direction (with mean sym­
metry about x = 0) while y is analogous to () As Vbx is in­
variant under x-+ - x, it is clear that Eq. (5) is consistent 
with joint reflection symmetry. An equation of the form of 
Eq. (5) may be interpreted as describing marginal stability in 
a tokamak with sheared toroidal flow or in a long, thin sand­
pile with a strong sheared wind blowing along its face. 

The prototypical model for the long-wavelength trans­
port event dynamics of a system near marginality is that of 
Eq. (3). This equation is recognized as Burgers' equation for 
one-dimensional (I-D) hydrodynamics with a random source 
(i.e., take 8P-+v). Thus, it is invariant under a random Gal­
ilean transformation, as is Burgers' equation. 17 Specifically, 
the substitution 8P(x,t)-+ 8Po + 8P(x- A 8Pot,f), with 8Pa 
a constant, leaves Eq. (3) unchanged. This invariance is a 
consequence of the "convective" character of the nonlinear­
ity. Thus, the addition of a sheared flow (in two dimensions), 
as in Eq. (5), yields a model that is also Galilean invariant. 
However, the form of r[ 8P] given in Eq. (4), which sup­
ports a transport bifurcation, is not Galilean invariant. This 
suggests that the nonlinear dynamics of a model system with 
transport bifurcations are likely to be fundamentally different 
from those of the simplest (Burgers') system. This point will 
be discussed further in the following section. 

III. ANALYSIS 

In this section, we analyze the basic models presented in 
Sec. II. The goal is to determine the critical exponents for the 
system that characterize the functional form of the (nonlin­
ear) impulse response. The nontrivial exponents and form of 
response are a consequence of infrared divergence of the 
turbulent flux (caused by slow modes), which is calculated as 
well. Such features are not described by the familiar quasi­
linear paradigm. To elucidate these aspects of the physics 
and to illustrate the underpinnings of certain technical meth­
ods, we first discuss the simple system8 [Le., the minimal 
Burgers' model of Eq. (3)] of Sec. III A, and proceed to the 
sheared flow model in Sec. III B. 
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A. Minimal model 

Here, we analyze Eq. (3), the simplest model of a SOC 
or marginal stability. We seek the critical exponents or, 
equivalently, the nonlinear "dispersion relation." We com­
pare three approaches, namely those of simple scaling and 
symmetry considerations, the familiar direct interaction ap­
proximation (DIA), and the dynamic renormalization group 
(RNG) approach. 

Simple scaling yields most of the pertinent and signifi­
cant results. In particular, if one rescales Eq. (3) according to 
x-.bx,t----.bZt and 8P->bx 8P, one obtains 

A critical issue emerges immediately, namely that random 
Galilean invariance implies that A is unrenormalized by non­
linear interaction. This is a consequence of the fact that A 
enters the position dependence of 8P for the boosted frame 
[Le., 8P(x,t)->8P(X-A8Pot,t)], which must also be a so­
lution of Eq. (3), which is scale invariant. Hence, the only 
way to reconcile Galilean invariance and scale invariance is 
to impose the condition that A be unrenormalized. Thus, Z + x 
- 1 == O. As we are concerned with large-scale, hydrody­
namic (Le., k-.O,w->O) behavior, we require that the noise 
be unchanged by rescaling, Le., limk.W .... O(S2)k.w must remain 
invariant after rescaling. Thus (noting dimensions!) z - x-I 
== O. It follows directly that z == 1 and x = O. This establishes 
that the correlation function (8P2( 8x, r» has the form 
(8P2(8xz/r», with z= 1. Alternately, w~ckz (with z== 1 
and c a proportionality constant) is revealed to be an effec­
tive nonlinear "dispersion relation" for the system. Both po­
sition and wave number space representations suggest ballis­
tic propagation of perturbations. This is significant, as 
ordinary quasilinear theory would suggest diffusive propaga­
tion [Le., w=k2D,(8P2)==(8P2(8x2/r)], at a rate set by an 
anomalous diffusivity. The effective "pulse speed," namely 
the proportionality factor between wand k, must be obtained 
using approximation methods, such as dimensional analysis, 
the DIA, or the RNG. 

We now seek to identify the cause of the departure from 
diffusive dynamics and to determine the critical exponents 
and pulse speed proportionality factor using the familiar di­
rect interaction approximation. Observe that, in this example, 
symmetry arguments preclude renormalization of A or 8P 
(analogous to vertex function and wave function renormal­
ization, respectively). Hence, the DIA, which involves only 
viscosity renormalization (analogous to mass renormaliza­
tion), contains the features of a general renormalized pertur­
bation theory essential to this application. Specifically, we 
calculate the renormalized response function. Following 
standard procedures, the nonlinearity of Eq. (3) is given by 

." (2) Nk•w= IkA L.J 8P -k' 8P k+k' , (7a) 
k'.w' -w' w+w' 

where 
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[ - i( w+ w') + (k+ k' )2Do]8P~lk' 
w+w' 

=-iA(k+k')8Pk,8pk. (7b) 
w' w 

The contribution from the second term on the right-hand side 
(RHS) of Eq. (7b) will vanish upon substitution into Eq. (7a) 
and integration in the hydrodynamic limit. Thus, 

Nk•w==k2D8Pk,w, 

where, for k, w->O, 

_ 2" 2 k,2Do 
D-A k~' 18Pk ',w,1 W f2 +(k,2Do)2' 

(8a) 

(8b) 

Now, the essence of the DIA is to derive a recursion equation 
for D, the renormalized diffusivity, by (i) taking Do->D in 

Eq. (8b), Le., the propagator used to solve for 8Pi?-lk must 
w'+w 

be treated self-consistently; and (ii) using the renormalized 
diffusivity to relate 8P k' .w' to the noise spectrum in Eq. 
(8b). 

Thus, 

so 

ISk',w,I2 1 
(k'2D)3 [1+(w'/k '2D)2]2' 

Integrating over wf
, assuming white noise, then yields 

_ C IA2S6 foo dk' 
D- D2 . -k,4' 

kmm 

(9a) 

(9b) 

(10) 

Here S6 is the mean square noise strength (with dimensions 
of length/time for dimensionless 8P) and C 1== r::dx' / 
( 1 + X 2

)2 == 1T/2, from the w integral. It follows directly that 

_ C I 2 2 -3 
D- 3D2 A SOkmio' (Ila) 

or, equivalently, 

D== (S A 2SZ) 113 k-1 
3 0 mm' (Ub) 

Note that D diverges as k~i~' on account of slow modes. Put 
another way, the infrared divergence - k;;ti~ obscures the dis­
tinction between microscales (characteristic of the scatterers) 
and macroscales implicit to any concept of a transport coef­
ficient. As a consequence, D exhibits an implicit scale de­
pendence D = D ( 8x). Hence, if one considers the micro­
scopic propagation of a pulse according to 8x2 = Dr, it 
follows that D==(CIA2S5/3)1I3k;;Ie:(CIA2S6/3)1I3 
X [8x 2] 112, so then 8x2~( C IA 2 S~/3 )2/3? Thus, the critical 
exponent is revealed to be z = 1 , indicating ballistic response 
at the velocity (C IA

2S6/3)113. Observe that the infrared di­
vergence of D due to slow modes underlies the departure 
from quasilinear intuition. 

An alternative approach for calculating z is to use the 
dynamical RNG. This method utilizes scale transformation 
recursion equations, constructed using perturbation theory. to 
calculate renormalized transport coefficients. Here lowest-
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order (i.e., third-order) perturbation theory yields a "turbu­
lent diffusivity" in the form of one summation over the 
"background" mode spectrum. This is, of course, equivalent 
to a summation over Feynman graphs containing one closed 
loop (computed by one integration over an internal 
momentum).19 From Eqs. (8a) and (8b), it follows that, to 
one loop, 

(12a) 

or, upon integrating (assuming white noise), 

( 
Clx.2S5 -3) 

D=Do 1 + 3D6 kmin • (12b) 

At this point, it is convenient to define the (bare) interaction 
parameter, U10)=C1X. 2S6/D5, so DT=DoCl + U}0)/3k~in)' 
Observe that U}O)lk~n is analogous to a "Reynolds number" 
for this system. Then, noting from the scaling of Eq. (6) that 
Do~bz-2, it follows that the rescaling recursion equation for 
Dr is (for blo=k- 1

, so that b is the dimensionless scale 
parameter): 

a a [ (U(O) )] 
b ab Dr=Dob ab bz

-
2 1 + + (blo)3 , (13a) 

or, to lowest order in U}O), 

(13b) 

Similarly, a recursion equation for U[, the renormalized in­
teraction parameter (as distinct from U~o), the bare param­
eter) may be derived, noting U[= UiDT,)-..,S6). As X. and S6 
are unrenormalized, it follows directly that, in the one loop 
approximation, 

a -3 (aDT) 
al U[= DT at U[. (14) 

Here balab=alal, where 1 is dimensionless (unlike 10)' 
Now, noting that for (blo)3U5°)-tu[ and z= 1, Eq. (13b) 
becomes equivalent to 

(15) 

Thus, it is now possible to eliminate DT from Eq. (14) for 
U I, and obtain 

a 
al U/=3(1- U/)U[. (16) 

Equation (16), a nonlinear recursion equation for U/, is the 
principal result of the RNG analysis. It is straightforward to 
solve, and working to lowest order in U I gives 

(17) 

Finally, recalling that UI=U}0)(l'el)3=Cl)-..2S6(l'el)31D~ 
(i.e., note that U/ is defined with the renormalized diffusiv­
ity), we find the result 

Dr~ (CX. 2S5) 1I3[ 1 + (1' el)3] 113. (18) 
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FIG. 5. Depiction of a sandbar. 

Here 1 is the normalized scale ratio. As we expect a result 
with the generic scaling form Dr=DoCl +a[ox2]f312 )y, it 
follows that 

( 
C )-..2S2 )lD 

DT=Do l+-t D6°[OX2
]312 , (19) . 

i.e., a=CI)-..2S61D5, y=t, f3=3. Note that for U~>1 (the 
regime of interest), DT=(CIX.2S6/3)1I3[ox2]lI2, in agree­
ment with the DIA result of Eq. (ll). The scaling Dr 
~ (S6) 113 is suggestive of "strong" turbulence. Of course, 
having deduced that z = 1 via similarity arguments, one 
could obtain the value of a directly from simple dimensional 
analysis by observing that U}0)lk~in~(DrlDo)3~R;, where 
Re is an effective "Reynolds number" for the system. Hence, 
the principal benefit of an approach via RNG is the construc­
tion of a foundation for systematic application to more com­
plex problems, such as those related to transport bifurcations, 
involving coupling coefficient and wave-function renormal­
ization. 

B. SOC in sheared mean flow 

We now focus on the dynamics of a SOC in a sheared 
mean flow. One concrete realization of this paradigm is a 
long thin sandpile or sandbar, with a sheared wind blowing 
along its face, as shown in Fig. 5. Another is a tokamak 
plasma near the f3 limit, executing differential toroidal rota­
tion. The motivation for devoting such attention to this para­
digm is that it highlights the importance of large-scale, slow 
modes to SOC behavior. We emphasize at the outset that the 
impact of the sheared flow is not related to its effect on the 
marginality condition (i.e., the linear instability criterion), 
which is unchanged. As in Sec. III A, we calculate the criti­
cal exponent z and determine the fluctuation-driven flux. 

Equation (5) contains the basic description of sandbar 
dynamics in a sheared wind. Here, x is the distance across 
the pile, assumed to be symmetric about its center at x = 0, 
and y is the distance along the sandbar (see Fig. 6). For 
simplicity, Vy = V~x. We further assume radially extended 

FIG. 6. Depiction of a sandbar in a sheared wind. 
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FIG. 7. Sandbar with perturbations due to large-scale noise. 

noise. By this we mean that (S2(kx ,ky) > contains large radial 
scales, comparable in magnitude to that of the sandbar width. 
Such noise on large radial scales corresponds to "shaking" 
the sandbar. With ky > ky min' such "shaking" is equivalent to 
random displacement of spanwise uniform slices of the sand­
bar. Noise with this structure may alternatively be thought of 
as shaking a loaf of thin-sliced bread, with slices displaced 
perpendicularly to the loaf's axis (Fig. 7). Radially extended 
noise is clearly a "worst case" limit from the standpoint of 
confinement. This is because radially extended noise elimi­
nates the need for avalanche (or eddy) overlap, in order that 
sand be ejected from the sandbar. We also remark that radi­
ally extended perturbations, with ky> k x' have a structure 
similar to twisted slicing modes2o in confined plasmas. 

For the case of radially extended noise, the nonlinear 
term in Eq. (5) may be written as 

X. (2) 
N k.w=ikx 2, L 8P-k' 8P k'+k. 

k'~w' -WI w'+w 
(20) 

Here k=(kx ,ky), as the perturbations are two dimensional in 
structure. Proceeding as in standard renormalized perturba­
tion theory (Le., the DIA), 

(-i(W+W')+(ky+k;)v~ a~;+k"2Do 

, 2 ) (Z) 
+(kx+kx) DT Pk;+k 

w +w 

-x. 
=2 (8Pk' ikx 8Pk+ik;8Pk' 8Pk), 

w' w w' w 
(2Ia) 

which, in the hydrodynamic limit, reduces to 

( 
. , k'V' a k,2D +k,2D ) "p(2) 

-lW + y 0 --,;: + 0 x T u. k' +k 
a x w'+w 

-x. 
=2 (8Pk,ikx 8Pk+ik; 8Pk' 8Pk). 

w' w w' w 
(21b) 

Now, the crux of the issue is, of course, what, precisely, is 
the turbulent decorrelation rate controlling the left-hand side 
(LHS) of Eq. (2Ib). There are three possibilities, namely the 
"collisional" scattering rate k,2 Do, the turbulent radial scat­
tering rate k; 2 D T, and the turbulent shear decorrelation rate 
(k;2V~DT) 113, produced by the synergism of shearing and 
radially scattering. 14 As k; - k;, and DT>Do, the collisional 
scattering rate may be immediately discarded. The relative 
importance of turbulent radial scattering and shear decorre­
lation is determined by comparing k; V~I k; (from 
k;V~alak~) with k~2DT' as in the shear suppression l4 crite-
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rion comparison. Here, anticipating that transport will be 
dominated by slow, large scales (i.e., in the case of infrared 
divergence), the comparison at the maximum scale is rel­
evant. Hence, if k;zmin DT > (k;V2Ik;)min, the slow mode 
correlation time is given by (k~ miPT)-I, as before. If 
(k;Volk;)min > k;~inDT' then 11 Tck' = (k;2minV~T)1/3. For 
the case where shear decorrelation is dominant, 

-a a 
Nk=-D T - 8P k w ax ax ,w 

(22a) 

where 

x.2 
D T=4 L 18Pk ',w,1 2

R k "w' (22b) 
k',w' 

is the (Markovian) turbulent diffusi vity and R k' ,w' is the 
resonance function, 

11 Tck' 
Rk"w'=( '-k'V' )2+ II 2 (22c) 

W y OX Tck' 

with 11 Tck' = (k; zV02 D T) 1/3. In deriving Eq. (22), it is use­

ful to note that ~k'.w' 8P-k' k; 8Pk,R k"w'-'0, by sym-
-w' w' 

metry. Note that here, Tck' ,w' is determined by shear decor-
relation. Since Rk, .w' is treated self-consistently, DT (not Do) 
appears in the shear decorrelation rate. Assuming "white 
noise" in k yields (upon substitution for 8Pk , ,w,), 

(k'2 v,2D )113 
_22'" yO T 

D T- X. So £..J [( w' _ k' V'2x)2+ (k,2 V ,2D )Z/3f' 
k~ ,w' y 0 y 0 T 

. (23) 

Observe that the trivial k; integral has been absorbed into S6 
as a normalization factor. Note also that the noise spectrum 
need only be white at large scales, as diffusive decorrelation 
(k;2D T ) will surpass any contribution from small scales. The 
crucial point is, of course, that now (k;2V02DT)I/3 deter­
mines the decorrelation rate for the slow modes. This deco­
rrelation rate exhibits much weaker k' scaling than the dif­
fusive decorrelation rate does. Performing the w' integration 
gives 

(24a) 

or 

s~x.2 -113 

D T= c; (DTV~2)2/3 ky min' (24b) 

where C; = 3 C I 14. Thus, we finally find 

(C'S2x.2)3/S 
I 0 -1/5 

DT = (Vb)4/S ky min' (25) 

Here DT is infrared divergent, but much less severely, so then 
in the case V~ = 0 [Le., compare Eq. (20) with Eq. (11 b)]. 
Note also that DT is independent of kx min! This is an ab 
initio consequence of the fact that shear deconelation con­
trols the slow mode dynamics, because of the weaker infra­
red divergence of the shear decorrelation time [ Tc 
- (k;V~2DT)-1I3] than the diffusive decorrelation time 
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[Tc-(k~DT) -I]. Shearing thus "speeds up" the decorrela­
tion of slow modes, so they do not contribute as heavily to 

Th k -1I5 h h k- I . E transport. us, DT - y min' rat er t an DT - 'x min' as ill q. 
CUb). Finally, we caution the reader that taking the limit 
(k~. Vblk~)min > k~~inDTearly in the calculation for simplicity 
precludes a result that may be extropolated directly to Vb 
=0. 

To obtain the critical exponent, it is usefuf to note that 
DT is independent of kx min' so that D T- DT([ ox2]o). As a 
result, ox2 

- D TT, so that z = 2. Diffusive propagation is thus 
restored when (kv V~/kx)min > !l;minDT' Moreover, in this re­
gime D T-(S6)'S15, suggestive of a "weaker" turbulence 
scaling. Thus, we arrive at the central result of this section, 
which is the observation that a strongly sheared wind raises 
the critical exponent for a SOC sandbar from the ballistic 
limit value z = 1 to the diffusive value z = 2. This represents 
a qualitative change in the transport dynamics, not just a 
decrease in the magnitude of the diffusivity. Note that the 
cross-stream noise structure is the same in both cases and 
that the sheared wind does not affect the marginality condi­
tion. Hence, the observed trend toward diffusive dynamics 
can only be ascribed to the acceleration of slow modes by 
shear decorrelation. It is important to recall that ky and kx are 
the wave numbers of "transport events" (as opposed to lin­
ear modes) and that the shear suppression criterion need ap­
ply only in the infrared limit (i.e., to slow modes), not 
throughout the spectrum. It suggests that shearing, via its 
effect on the infrared behavior of the correlation time, may 
alter the observable, qualitative macroscopic hydrodynamic 
response of sacs, such as sandbars in a sheared wind or 
differentially rotating tokamak plasmas, to invariant noise 
spectra. Finally, note this argument does not rely on turbu­
lence amplitude suppression! 

IV. DISCUSSION AND CONCLUSION 

In this paper we have formulated and presented a general 
methodology for describing the dynamics of transport near 
marginal stability. In particular, the scaling exponents of the 
impulse response have been identified as quantitative indica­
tors of the dynamical behavior of the marginal system. In 
turn, the relationship of the observable scaling exponents to 
the infrared structure of the turbulent transport theory has 
been established. The principal results of this paper are sum­
marized below. 

(a) Simple, one field, one-dimensional models of mar­
ginal sacs have been formulated. The structure of these 
models is constrained by the requirement of joint reflection 
symmetry. The minimal version of the SOC model reduces to 
the familiar Burgers' equation form, and alternative, more 
complex, models incorporating sheared mean flow and trans­
port bifurcations have been derived. 

(b) The renormalized diffusivity and impulse response 
scaling exponents have been calculated. Galilean invariance 
and interest in hydrodynamic behavior eliminate coupling 
coefficient and wave function renormalization in the case of 
the minimal (Burgers') model. As a result, only diffusivity 
renonnalization survives, so the DIA and RNG methods 
yield identical results. However, coupling coefficient and 
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wave-function'renormalization must be treated in the analy­
ses of more complex models, such as those involving trans­
port bifurcations. 

(c) Scaling exponents for the minimal (i.e., Burgers') 
and sheared flow model have been calculated. For the mini­
mal model z= 1, indicating a ballistic response. Moreover, 
D T- (S6) 1/3, as in strong turbulence. For shear flow (with 
(ky Vblkx) min > k;minDT, z=2, indicating diffusive response. 
The values of the scaling exponents are set by the degree of 
infrared divergence of the turbulent transport coefficient. 
Thus" since ",:itho~t shern: flow, DT---=-~~~bn' z= 1. With shear 
flow (but for Identlcal nOIse) D T- k y minkx min' SO Z = 2. Here, 
D T-(S6)3/5, indicating "weaker" turbulence. Note that the 
dominance of shearing results in a qualitative change in 
transport dynamics, not just a reduction in diffusion. This 
contrast suggests that the scaling of the slow mode correla­
tion time determines the qualitative features of the macro­
scopic dynamics of transport in a SOC. It also suggests that 
the long-wavelength correlation times of stable, large-scale 
modes are crucial to predicting transport. 

These results have interesting implications for experi­
ment, interpretation, and theory. First, they strongly suggest 
that impulse response scaling exponents be measured using 
electron cyclotron resonance heating (ECH) heat pulse 
propagation experiments?1 Previously, attention has been fo­
cused on the pulse propagation rate,22 rather than on spa­
tiotemporal evolution (i.e., shape). The latter is obviously of 
much greater, utility to the characterization of marginal sta­
bility states in tokamaks. Moreover, certain pulse propaga­
tion comparisons naturally suggest themselves. These in­
clude the following: 

(a) Comparing a neo-Alcator Ohmic discharge (likely 
below marginality) to a balanced injection L-mode discharge 
that is expected to be marginal to ion temperature gradient 
(ITG) instability and to a discharge near the f3 limit, where 
the marginality is tighter. 

(b) Comparing an L-mode plasma to a Very lIigh (VH)­
mode plasma,23 where strong shearing should accelerate the 
decorrelation of slow modes. In this case, one might expect a 
trend from z = 1 in the former to z = 2 in the latter. 

(c) Comparing a case of balanced, on-axis NBI to a case 
combining on-axis coinjection with off-axis counterinjection, 
to maximize the toroidal velocity shear. Here one could 
quantitatively test whether the predicted restoration of diffu­
sive dynamics (Le., z = I -+ Z = 2) is satisfied. 

It would be most amusing to complement these pulse 
propagation studies by fluctuation measurements. This would 
yield insight into the relative importance of changes in 
decorrelation rate and fluctuation amplitude. In particular, the 
relative change in transport could easily exceed the relative 
change in fluctuation levels. Most importantly, the observa­
tion of anomalous exponents (i.e., z<2) would be a clear-cut 
indication of marginal stability controlling the dynamics. 

A second application of the results is to the realm of 
interpretation. Here, we note that recently, a great deal of 
attention has been focused on p*-scaling experiments,24 with 
the aim of distinguishing gyro-Bohm transport from Bohm 
transport. Noting that Bohm transport implies that the system 
size significantly impacts the transport mechanism, it is ap-
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parent that Bohm scaling must be indicative of a trend to­
ward an infrared catastrophe. Moreover, the recent observa­
tion that p* scaling changes from Bohm in the L mode to 
gyro-Bohm in the H mode2s suggest that infrared catastrophe 
in the former (z = 1) is healed in the latter (z = 2), presum­
ably by the effect increased electric field shear on large-scale 
transport events. Our findings concerning the effects of 
changing slow mode decorrelation rates are consistent with 
these results. Hence, it would be quite interesting to comple­
ment p* -scaling scans with measurements of the pulse-shape 
scaling exponent. 

A third realm of application is to transport theory. First, 
the SOC theory should be extended to three dimensions and 
to the model where transport bifurcations can occur. In this 
case, the SOC is expected to heal itself at sufficient noise 
levels, i.e., af / a(S6) should change sign at a critical noise 
level. The evolution of scaling exponents through the bifur­
cation, as well as the sensitivity of the bifurcation to the 
structure of the noise are worthy of investigation, too. Note 
that the analytical theory of the transport bifurcation SOC is 
much more challenging than the simple noisy Burgers' 
model, since Galilean invariance is broken. Hence, coupling 
coefficient and wave-function renormalization are required. 
This is not surprising, since one way of looking at a transport 
bifurcation in a I-D SOC is as an amplitude-dependent cou­
pling, where A.-+A./( 1 + a op2m). Here, for S6 > S6 .' one 

cnt 

should expect the Burgers' shocks to smooth out and 
weaken. 

Another implication (for theory) of this work is that the 
nonlinear dynamics of slow, large-scale modes in the pres­
ence of noise is critical to transport, even if such modes are, 
in fact, not unstable or even weakly damped. This suggests 
that trapped ion turbulence, with self-consistent evolution of 
a radial electric field shear, be studied in the presence of 
general, short-wavelength, noise excitation. The importance 
of this problem is supported by the ubiquitous finding of 
Bohm diffusion, in the L mode as well. 

The concept of a dynamic marginal stability has impli­
cations for transport modeling, as well. For example, if, in 
fact, the tokamak core is ion temperature 'gradient (ITG) 
mode marginal, transient experiments can be simulated using 
a simple model similar to the ones discussed here. The pa­
rameters Do, A., etc., could be determined by scaling argu­
ments or by empiricism. Enormous savings in analysis and 
computer time would result, and insight would be furthered. 

A final, theoretical point is worthy of some additional 
discussion. The principal new calculation presented in this 
paper is that which predicts the superdiffusive scaling expo­
nent z = 1. An alternative approach26 to that problem was 
previously advanced in Ref. 26, by Lazzara and Putterman. 
In that work, it was suggested that superdiffusive scaling was 
linked to the radial propagation of turbulence envelope 
modulation waves. Such waves resemble second sound, i.e., 
oscillations in the gas of phonons, or, in the case of a toka­
mak plasma, "drift-ons." A complete and accurate assess­
ment of this interesting suggestion, however, requires analy­
sis of such drift-on envelope modes in the context of a 
realistic model of drift wave turbulence in a torus, including 
Landau resonance dissipation, etc. In the theory presented 
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here, superdiffusive scaling appeared as a natural conse­
quence of weakly damped, long-wavelength "transport" 
modes (called slow modes) that do not propagate radially. 
The envelope of such waves loosely corresponds to "second 
sound," but here, all perturbations are locally damped at suf­
ficiently long times. From a theoretical perspective, second 
sound emerges from modulational oscillations in the gas of 
phonons, while here the noise spectrum is prescribed and 
fixed. One could also envision calculating the feedback of 
ballistically propagating transport modes on short­
wavelength drift wave turbulence as part of an improved 
subgrid scale model for transport, which would combine as­
pects of the modulational wave and scale-dependent diffusiv­
ity calculations. 
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