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Self-organized Criticality and Earthquakes. 
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Laboratoire de Physique de la Matiere Condenshe, CNRS UAl90 
FacultS des Sciences, Parc Valrose, 06034 Nice Cedex, France 

(received 28 December 1988; accepted in final form 28 March 1989) 

PACS. 05.40 - Fluctuations phenomena, random processes, and Brownian motion. 
PACS. 05.705 - Critical point phenomena. 
PACS. 05.70L - Nonequilibrium thermodynamics, irreversible processes. 
PACS. 91.30P - Phenomena related to earthquake prediction. 

Abstract. - We suggest that the concept of self-organized criticality (SOC) is relevant for 
understanding the processes underlying earthquakes. Earthquakes are an important part of the 
relaxation mechanism of the crust which is submitted to inhomogeneous increasing stresses 
accumulating at  continental-plate borders. The SOC concept then implies that earthquakes in 
turn organize the crust both at the spatial and temporal levels. This idea allows to rationalize 
observations on occurrences and magnitudes of earthquakes. Variants of SOC as well as a novel 
type of dynamics based on *waiting times>> are discussed within a mean-field-like approach 
which shows the existence of lif noise in the time gap between large earthquakes. The 
corresponding long-time correlations have important implications for the statistical long-time 
forecasting of earthquakes. 

1. General ideas. 

In a recent series of papers, Bak, Tang and Wiesenfeld[ll proposed that a spatio- 
temporal nonlinear dynamical system, with quasi-static incoming and outcoming fluxes 
localized, for instance, at  the borders, evolve spontaneously towards a stationary self- 
organized critical state (SOCS) with no length or time scales others than those deduced from 
the size of the system and that of the elementary cell. They argue that the SOCS is general 
and robust and might be the underlying mechanism for the apparition of llfnoise in many 
different systems (l). 

In this letter, we suggest that the concept of self-organized criticality is particularly well 
suited for rationalizing observations on occurrences and magnitudes of earthquakes. In this 
goal, we explore the idea that, if earthquakes are the natural consequences of the stationary 
dynamical state of the crust submitted to  steady increasing stresses, they also organize the 
crust in a self-consistent way. We consider mainly the continental collision situation where 
stresses are created at the border of continental plates and diffuse slowly inland, according 
to current ideas on 4ndentationn [2]. 

(') Such as sandpiles, hourglasses, light from quasar, motion of dislocations in resistors, charge 
density wave systems, sliding vortex lattices in magnetic fields, glassy systems, turbulence, water 
flow, traffic, interactive economical systems. 
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According to current plate tectonics [2], it is believed that continental-plate motions, 
induced by mantlewide convection, create on-going c<plate-collisions>> and thus stresses 
which accumulate at  the borders of the plates. This can be viewed as an incoming stress flux 
at the border of the system (we consider here a single continental plate). When the land 
plate, which is stressed, sheared and/or compressed and/or pulled up or down, is deformed 
so strongly that the deformation exceeds a certain limit (which may change from place to 
place), rupture occurs [3,4] and an earthquake (avalanche in the terminology of [l]) follows. 
In this case, the land plate rebounds because it becomes free and the accumulated strain 
energy is radiated in the form of seismic waves (which are the deadly agents for humanity). 

Since earthquakes are highly complex events involving significant irregularities of 
geometry as well as stresses and strengths of materials, the common wisdom is to assume 
that the complexity and scaling of earthquakes stem from the built-in complexity of the 
crust. For instance, a given distribution of faults [51 or of stresses [6] is assumed from the 
start. This common procedure is often justified from a priori empirical observations or a 
posteriori verification of its predictions. In this way, several attempts have recently been 
made for predicting the cumulative frequency-magnitude statistics from an assumed self- 
similar distribution of stresses and material strengths [6]. Also, the inter-earthquake time 
distribution has been analysed on the assumption that the stresses evolve with time 
according to a random walk[7]. In short, power laws are used to derive the existence of 
other power laws! 

In contrast, we make here an attempt to unravel the basic phenomena at the origin of the 
power laws found in earthquakes. Our basic assumption is that not only the earthquake 
features are a consequence of the organization of the crust and its array of faults,  but also 
the large-scale structure of the crust emerges f rom the whole history of previous 
earthquakes, which have organized the crust and deteriorated it according to the current 
state of observation. In other words, the complexity and scaling of the crust indeed controls 
that of the earthquakes but also results from the large time scale dynamics of the crust 
submitted to the incoming stress or elastic potential energy flux. We thus view earthquakes 
as being part of the overall large-scale organization of the crust spontaneously evolving 
towards a SOCS. The different inhomogeneities are then believed to be irrelevant [ l ,  81 
relatively to the global dynamics (but of course not for the local behaviour). 

Here, our goal is not to discuss in details models which can be defined as variants of the 
paradigm of SOC introduced in[l]. Inspired by the earthquake problem, one can, for 
instance, consider models taking into account the local redistribution of stresses in the crust 
which are either conservative or dissipative and depending on space and time ... . Also, the 
role of the avalanches (earthquakes) of [ l ]  can be taken to redistribute the accumulated 
stress conservatively and (or) to dissipate and relax it. The analogy between SOC and 
earthquakes thus suggests many interesting variations on the theme! The investigation of 
some of these variants will be presented in a separate communication [8]. For our purpose, 
we keep the essential ingredients believed to control the occurrence of SOC, namely the 
existence of a spatio-temporal nonlinear dynamical system, with on the average stationary 
incoming and outcoming fluxes spatially localized. We now make use of the scaling laws 
which are consequences of the SOC hypothesis and which are relevant for the earthquakes 
and analyse the different consequences of our basic assumption. 

2. The frequency-magnitude distribution. 

The number N of earthquakes of magnitude M can be expressed by the quasi-universal 
empirical Gutemberg-Richter law [2,9] valid over a broad range of magnitudes (typically 
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2 < M < 8 )  

logN = a - bM, 

where a and b are two constants which may depend a little upon the particular region of 
observation. b is remarkably universal (0.8 < b s 1.1) for all earthquakes with 2 < M S 6.5 
anywhere in the world [2]! The exponent b seems however to depend a little upon the focal 
depth. For larger magnitudes, important fluctuations and deviations from this law are 
observed [lo, 111. 

In the following, we focus our attention to the case 2 < M s 6.5 for which relation (1) is 
well defined. This leads to the existence of a quasi-universal power law, since the 
earthquake magnitude M is related to the energy released at  the earthquake source by a 
logarithmic relationship [2] 

(2) 

where c = 11 and d = 1 for M < 7 (and d = 1.5 for M 2 7) [12], with E expressed in ergs (*I. 
Thus, the two eqs. (1) and (2) imply the following scaling law relating the number N of 
earthquakes of energy E :  

N - E - T + l  (3) 

logE = c + d M ,  

with z - 1 = bld leading t o  an observed value r = 2. 
Such a scaling law which has no general explanation is indeed expected within the SOCS 

hypothesis. A plausible link between <<avalanches>) and earthquakes consists in making the 
size s of an avalanche of [l] correspond to  the energy E released by the earthquakes. It is 
interesting to note that the numerically determined value for r in the model of [ l l  is z = 2 in 
two dimensions and ~ ~ 2 . 3  in three dimensions which are close to the observed value. 
However, z seems to depend upon the precise boundary condition involved in the model [81 
thus preventing a really accurate prediction. 

3. A mean-field theory of the return period of the same type of earthquake. 

In the following, we restrict ourselves to the case 2 2 2  corresponding to a finite 

integrated number of earthquakes [N(E’)dE’ < + W. In the case where r <  2, one has 

to introduce an upper energy cut-off in the power law (3) and with this addition the analysis 
camied below can be reproduced step by step. 

How long must one wait in order to observe an earthquake of energy E after a first 
earthquake of the same magnitude? In a mean-field spirit, we propose to forget the spatio- 
temporal complexity of the SOC problem and focus on a global variable, namely the energy 
E released by an earthquake occurring at  time t anywhere within the plate. This is of course 
a terrible approximation which, however, allows one to develop a basis for more elaborate 
theories which could take fully account of spatio-temporal fluctuations. By using the single 
condition of stationarity, we derive below the mean-field value T M F  = 3. 

d) 

(‘1 The seismic moment is often considered as the best parameter for measuring the size of an 
earthquake corresponding to a given fault motion. Since the seismic moment is proportional to  the 
released energy, expression (2) is unchanged when relating M to  S apart from a different value for c. 



200 EUROPHYSICS LETTERS 

In this goal, let us now introduce a “gap. dynamics which is different from the <<duration, 
dynamics discussed in [ll. We assume that, on the average, the increase of energy in the 
system is made step by step, say one step c0 per unit time to. During a time t ,  there will be an 
increase of stored energy of order ( t / to)c0.  Since earthquakes have a typical duration 
(minutes) much shorter than the time gap (months or years) between two earthquakes, they 
can thus be considered as instantaneous. Since N(E) - E-i+l is the probability of observing 

an earthquake of energy E ,  [N(E’)dE‘ is the probability that an earthquake has an 

energy larger than Em%. During a time t ,  suppose there are a total of n(t) earthquakes of 

arbitrary energy. Then, the condition n(t) / N(E’)dE’ - 1 means that at most one 

Emax 

m 

J 
E ,  

earthquake of energy of order Em,(t) has occurred in the time t. With the power law (3), we 
obtain 

n(t) - Emax(t)’-‘. (4) 

Equation (4) gives the value of the typical largest earthquake observed after a waiting time 
t :  E,,(t) - n(t)”(’-’). We can also derive the probability P(t )  that all earthquakes occurring 
between time 0 and t have an energy release less than E: 

L 

where C is a constant. Knowing n(t), the corresponding <<waiting timen or return period as a 
function of magnitude is deduced from a condition of conservation on the average energy 
flux J ( t )  defined by 

The average earthquake energy released over a time t is defined by 
E,@) 

( E ) ( t ) =  1 EN(E)dE. 
1 

(7) 

We have taken as a unit of energy the energy scale c0. Equation (6) means that the total 
energy released during a time t ,  which is Jot ,  scales as the number of events multiplied by 
the average energy ( E ) ( t )  released per earthquake. Due to the long tail (3), ( E )  depends on 
time according to 

( E )  ( t )  - n(t)@-:)/(‘-Z) (8) 

Now, from our general hypothesis, the system is at  a global stationary stable SOCS and 
therefore the energy flux entering the system must be on the average dissipated by the 
earthquakes which implies the condition of stationarity J - const. From eq. (6) with (7), this 
leads to the scaling law for n(t>: 

n(t) - t ‘ - 2 .  (9) 

The condition of stationarity also implies that n(t) must be proportional to t since the 
average number of earthquakes n(t)/t per unit time is constant. This imposes the mean-field 
value for 5 in our <<gap model.: zMF= 3. It is different from the exponent obtained 
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numerically or from geological observations which takes account of spatio-temporal 
fluctuations. Note that it implies (E)(t)  = const which is also consistent with the stationary 
condition. 

The condition n(t)-t with eq. (4) yields 

E,-t. (10) 

This divergence of E,,,(t) at long times is bound to saturate due to finite-size effects which 
act as cut-offs. Therefore, one must consider eq. (10) and the other scaling laws valid only in 
a certain range of values constrained by the finite size of the system. The existence of a finite 
incoming stress flux also acts as a finite-size cut-off (see the discussion of ref. [l]). 

Equation (10) allows the prediction of the typical return period of earthquakes of a given 
magnitude. With eq. ( Z ) ,  it gives 

t = to exp [dM] , (11) 

where d % 1 for M < 7 and 1.5 for M 5 7. To understand the meaning of this result, suppose 
that earthquakes of M1 = 3 occur frequently, say every month on the average, in a given 
region of the world: tM, = 1 month. Then, the typical return time of an earthquake of 
magnitude M z  = 7 will be tMp = exp [1.5Mz - M,] tM1 = 1800 months = 150 years. 

This result also enables to rationalize the experimental observation on the relative 
occurrence of earthquakes with 6 < M < 7 with respect to earthquakes with M 3 7. In [13], 
about 10 earthquakes of 6 < M S 7 occur per decade (with large fluctuations) compared to 
the order of one per decade for earthquakes with M 5 7. With eq. (ll), we predict .a ratio of 
the order of 5 which is in reasonable agreement with the observation. 

Note, however, that the comparison with observation is difficult due to insufficient 
sampling and the existence of large fluctuations. 

4. llfnoise in the return events. 

Our mean-field approach leads directly to the prediction of llfnoise in the return events. 
Let us come back to eq. (5) and obtain from it the probability, P(t, E,,(t)) - const, that all 
earthquakes during a period of time t have an energy release less than Emax(t). The 
probability that no earthquake of energy E,,,(t) occurs between time 0 and t and that one 
earthquake of energy E,,(t) occurs between time t and t + dt is thus 

I"- J 
This power law is characteristic of llf noise [14,15], since it is invariant under a rescaling 
t+At and dt+Adt. This means that the probability of observing an earthquake of 
magnitude M - d-' log (tho) between one day and two days is the same as, say, that for 
observing an earthquake of magnitude M - d-' log (365tlto) between one year and two years 
(we have used eq. (2) relating M to E )  and so on. This law (13) compares well with empirical 
observations [31 which suggest the scaling law p ( t )  = Ct-" with m = 1. Once C and m are 
known, the mean return period and its standard deviation can be readily calculated [3]. 

Note that long periods of observation are needed to predict the maximum magnitude and 
its return period. Any form of regression analysis applied to general llfprocesses in general 
and earthquake prediction in particular would have to estimate not just the average value of 
a parameter (magnitude) over the entire extent of data, but also its value averaged over one 

'unit of time, 10 units, 100 units, etc., extending from the shortest to the longest times of 
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interest [15]. In practice, the situation is slightly bettere since llf" noise with a > 1 is 
expected on the basis of the existence of spatio-temporal fluctuations which change the 
exponent z from 3 to 2. As in [l], pure llfnoise corresponds to the mean-field approximation. 

5. Conclusion. 

The hypothesis of SOC for earthquakes leads to a power law for the temporal fluctuations 
for earthquake occurrence which rationalize many observations. We thus believe that our 
picture may constitute a general and powerful framework for the spatio-temporal 
description of the crust at large scales and times, and for the long-term prediction of 
earthquakes. We have presented a first description based on mean-field-like ideas of the 
earthquake return time statistics. However, spatio-temporal fluctuations are important and 
renormalize the exponent. This should be included in future more sophisticated theories. We 
hope that the present work will nucleate interest in the physical community for this 
challenging problem. 

The general ideas which have been presented in this work would also be relevant for 
other problems such as the average seasonal temperature, annual amount of rainfall, rate of 
traffic flow, etc. In these systems, there is also a competition between an average incoming 
stationary flux with inhomogeneous boundary conditions which is released by sudden and 
sometimes catastrophic events. With the appropriate translation, the preceding discussion 
of the size-frequency relationship and on the return time of extreme events should apply. 

We are grateful to P. ALSTROM, Y. Y. KAGAN, L. KNOPOFF and C. VANNESTE for 
stimulating discussions. We thank P. MANNEVILLE and an unknown referee for judicious 
remarks on the manuscript. 

* * *  
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