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FRACTIONAL KINETIC EQUATION (FKE)

Any kind of kinetic equation is an approximate way to describe an ensemble
of trajectories or particles, while neglecting some details of dynamics. All this
means that, depending upon the information about the system we would like to
preserve, the type and specific structure of the kinetic equation depends on our
choice of the reduced space of variables and on the level of coarse-graining of
trajectories.

The origin of the fractional kinetic equation (FKE), or simply fractional
kinetics (FK) is two-fold. First, it is based on the existence of singular zones in
phase space that create a set of sticky domains. We can map the dynamics con-
sidering only parts of trajectories in sticky domains and neglecting the parts of
trajectories of their transition from one sticky domain to another one. In such
a way we define a new support of the reduced part of phase space. Second, the
new support based on a set of sticky domains is of a fractal or multifractal struc-
ture, generally speaking, in time and in phase space (or configuration space)
simultaneously. These properties of dynamics require a new approach to kinetics
when the scaling features of the dynamics dominate others and, moreover, do
not have a universal pattern as in the case of Gaussian processes, but instead,
are specified by the phase space topology and the corresponding characteristics
of singular zones.

This chapter consists of a specific approach to the kinetic description of
Hamiltonian chaotic dynamics. The derived equation is called the Fractional
Fokker-Planck-Kolmogorov (FFPK) equation, or simply FKE (Note 16.1).

Some elements of fractional calculus proved to be useful for FFPK and we put
the necessary definitions and useful formulas in Appendices C and D (Note 16.2).

16.1 Derivation of FKE

A derivation of the FFPK consists of two steps: a formal phenomenological
derivation of the equation and an establishment of the relations between the
critical exponents. At the first step we follow a similar scheme as introduced by
Kolmogorov for the FPK equation, with some modification (see Section 14.2).
We use the same notation as in Section 14.2:

W(z,zo;t,t0) = W(x,z0;t — to) = W(x,x0;t) = P(z,t) (16.1)
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for the transition probability (14.11) with time uniformity (14.12), and the
notation (14.15) for a convenience.

Let us start from a general expression for kinetic equations and let AtP(x, t)
be a generalized infinitesimal shift of P(z,t) along t by At. In a ‘regular’ case of
the smooth variable ¢t we have simply

AyP(z,t) = P(z,t + At) — Pz, t) = %At +O(Af?), t>0. (16.2)

In the case of fractal time with fractal exponent 3 we have

6P1:t)

APP(x,t) = —5. 57~

(16.3)

where the fractional derivative of order 3 has been introduced (see its definition
in Appendix C). The explicit form of the shift difference operator Atﬁ is given
in Appendix D. The main feature of (16.3) is that in the limit At — 0 the
right-hand side is proportional to (At)? and it shows a singular behaviour.

Let us now introduce an infinitesimal change of P(z,t) due to transitions
from other states P(z’,t) during the same time interval At. Since At — 0, these
transitions are local and they can be performed only from the points z’ in the
vicinity of z, assuming the absence of infinite velocities. A local structure of
the phase space near a point z can be characterized by the fractal dimension
a, and the corresponding changes A2 P(z,t) can be presented in a form similar

o (14.16):

A2P(z,t) = /dy W (z,y; At)P(y,t) — P(z,t) + O((At)?2), B2 > B.

(16.4)

Since P(z,t)dz can be interpreted as a number of particles at time ¢ in the
volume dz, the conservation of particles can be expressed as a balance equation

Al P(z,t) = A2P(z,t) + O((At)%),  Bs = min(By, B2) (16.5)
or

=5 A P(z,t) = ———A%P(z,t). (16.6)

s (At) (At)

This expression is a formal representation of the FKE and its development
depends on how the right-hand side will be calculated. Substituting (16.3)
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and (16.4) into (16.6), we obtain

PP(z,t) . 1
5 =Alil—I}OW{/dy W(x,y;At)P(y,t)—P(:z:,t)}, 0<pB<1.

(16.7)

This equation is still exact and no assumption has been done about the properties
of W(z,y; At).

Let us assume now the existence of the expansion, similar to (14.19), in the
limit At — 0:

W (z,y; At) = §(z — y) + A(y; At)5) (z — y) + B(y; At)6@) (z — y),
O0O<a<a <2) (16.8)

with appropriate fractal dimension characteristics @ and «;. Beginning from
(16.8), the approach to the kinetic equation becomes approximate. The approx-
imation is in taking a finite number of terms in (16.8) and, what is more
important, in assuming of the coefficients A(y; At), B(y; At) independent on
P(z,t). Since the transition probability W (z,y; At) represents the local features
of the dynamics (|z — y| — 0) and P(z,t) represents strongly non-local features
(z,t — 00), a physical nature of the assumption is independence of local trans-
itions from the large time behaviour. At that point it is necessary to mention that
the local-non-local independence hypothesis is the same for the FPK equation in
Section 14.2 and here for the fractal space-time case. But the major difference
is in the way the splitting of local-non-local distribution appears: for the FPK
equation there exists a finite time t* such that for ¢+ > #* one can assume an
independence of W (z,y; At) from the distribution P(z,t), and there is no such
t* for fractional kinetic case as it will be clear later.

It is still possible to write the definition of the coefficient B(y; At) through
a moment of W:

(|Azjr)) = / dale — Y| W (z,y; At) = T(1 + o) B(; At),  (16.9)

which is similar to (14.22), but the coefficient A(y;¢) does not have so simple an
interpretation for the general case unless B = 0, or a; = a + 1.
By integrating (16.8) over y we obtain a relation

0% A(x) 5 0 B(z)
o(—z)>  O(—z)™

=0, (16.10)
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where
Aw) = Jim, oD,
(16.11)
B(y; At) 1 . ((|Az]*1))

Bl = lm e T T+ ) atme (AP

similar to (14.25). Equation (16.10) is a generalization of (14.23) for the detailed
balance principle. Existence of the limits (16.11) when At — 0 is instead of the
Kolmogorov conditions (16.25). Fractional values of a, a1, and 3 represent a new
type of the fractal properties of coarse-grained dynamics.

An important particular case is a; = a + 1, and (16.10) transforms into

60
o(—z)e

[A(x) — agi“’)] =0 (16.12)

equivalent to (14.31), up to a constant in the notations, with

-1 . {(|Az]*tT))
B0)= tora) A2 @op
ol =l . {(lAz]*))
= Tita) o (At)B

(16.13)
A(z)

The generalization of the Landau formulas (14.23) and (14.24) is:

({l1Az]%) _T(1+a) 8 ((|Az|*t))

R e T2+a) 0z (At)P

(16.14)

The existence of the limits (16.13) can be considered as a generalized Kolmogorov
condition (compare to (14.25)).
The FKE can be derived from (16.7) rewritten as:

B T
- Iz;fﬂ’t) L (Alt)ﬁ {/dy[w(z’yit + At) — 6(z — y)]P(y,t)} . (16.15)

Using the expansion (16.8) and definitions (16.11), we obtain

B o oy
= S AP ) + g B@P@Y). (1616

This equation will be called the Fractional Fokker-Planck—Kolmogorov equation
(FFPK). It can be simplified in the case a; = a + 1

P oo (8P)

e B (16.17)

which transfers into regular diffusion equation for « = 1 and B = 1D.

1
2
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Fractional derivatives are well defined in a specified direction (see the
Appendix C), and there is no simple replacement z — —z or t — —t. That is why
a more general operator should be considered for the processes in z € (—00, 00).
For example, instead of the derivative of order o one can consider:

say, ATEE . AD

L ; 16.1
% Oz * o(—zx)e (L6153
For a symmetric case one can use Riesz derivative
0 1 8% a*
=— —t—, 1): 16.19
Blel® ~  2cos(na/2) [3:1:"‘ s a(—x)a] (el (1639}

The corresponding FKE (16.16) takes the form (Saichev and Zaslavsky (1997))

P _ o o

< 2: 5
55 6|:z:|°‘ —(AP) + Bl (BP), 0<a<a <2 (16.20)

In the case when the term with B can be neglected, we have a simplified version
of FKE

#p &

In the case 3 = 1, @ = 2 it is a normal diffusion equation. For 0 < 8 < 1, a = 2

8 92
%tf s(AP),  (B<1) (16.22)

is called the equation of fractional Brownian motion (Mandelbrot and Van Ness
(1968); Montroll and Shlesinger (1984)). For 3 = 1 and 1 < a < 2 the FKE
corresponds to the Lévy process (see Section 15.2):

opP

e ol |Q(AP) l<ax<?2) (16.23)

(Note 16.3).
Parameters 3, a, @y will be called the critical exponents. They are subjected
to be evaluated from the dynamics.

16.2 Conditions for the FKE

Any type of the FKE and its generalization can be considered as an independent
mathematical problem. If we want to stay close to specific applications of the
FKE to dynamical systems, restrictions related to the physical nature and the
origin of the FKE should be imposed. Before considering solutions to the FKE,
let us make a few comments about some constraints. Other conditions will be
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presented later.

(a) Interval condition. We should define interval of consideration in
space-time. Speaking about the space, we have in mind phase space (coordinate-
momentum) and the variable z can represent any or both of them. The infinite
intervals assume a possibility to have infinite moments of P(x,t) while finite
intervals (Zmins Zmax)s (fmins tmax), that will be called space and time windows,
lead to the finite moments since P(z,t) is integrable.

(b) Positiveness. Solution P(z,t) has the meaning of probability, and it
should be positively defined, i.e.

P(z,t) 20 (16.24)

in the domain of consideration. For the infinite space-time domains
condition (16.24) leads to restrictions on the possible values of critical expo-
nents. Particularly we have the condition 0 < a < 2 for the Lévy processes
(8 =1) or the condition:

0<B<1, 0<a<?2 (16.25)

(Saichev and Zaslavsky (1997)) for (16.21) with A = const. A rigourous consid-
eration of the P(z,t) positiveness for both fractal values of (o, 3) does not exist
yet. Examples of the violation of (16.25) will be shown later.

(c) Intermediate asymptotics. It can be that dynamics imposes different
asymptotics for different space-time windows. An example of two different
asymptotics for particles advection in convective flow can be found in (Young
et al. (1989)). Other examples will be indicated later. For such cases it should
be different pairs (o, 3;) for different windows. Particularly, we should mention
a multifractal situation when there are few different singular zones that impose
different critical exponents for the FKE.

(d) Definition of fractional integro-differentiation. This definition is not
unique (Samko et al. (1987)). We use the Riemann-Liouville form (see
Appendix C) while sometimes other definitions may be more convenient. In fact,
the structure of the FKE together with a type of the fractional derivative depends
on the specific physical problem and the corresponding boundary and initial
condition. More accurately, one can say that the distribution P(z,t) is defined
not only by the boundary-initial conditions but also by the type of derivatives
used in FKE. A similar situation exists with Fourier or Laplace transforms. Any
of them can be used if we know how to select a contour of integration in the
complex plane to satisfy the boundary-initial conditions.

16.3 Evolution of moments (transport)
Let P(z,t) be a solution for the FKE. The moments

(|z|®) = /dx |z|® P(z, t) (16.26)
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are the macroscopic observables. Their dependence on time defines the transport,
i.e. the macroscopic evolution of the system.

It is easy to obtain the time-dependence of some moments if A = const
n (16.21). Let us multiply the equation by |z|* and integrate it over z. Then

0°( 0P (|z|*) OP(z,t)
o =4 [ dele 00

- / i Pla,t) a? " =AT(+a), (1627

where we use the formulas from the Appendix C. After integrating (16.27) over
t? (or differentiation with respect to t=?) we obtain

I'l+a)

() = Ax s 3y

tP. (16.28)

For the case of the self-similarity of the solution for FKE, which we will discuss
more in Section 18.1, one may expect

(Jz]) ~ A/ = t#/2 (16.29)
where we introduce the transport exponent

26
Z.

I (16.30)

The meaning of the transport exponent is very simple: in the case that the second
moment exists, i.e. (z2) < oo and it is meaningful, we can write

(x®) ~ t*, (16.31)
that is, for the normal diffusion it should be p = 1. The case

p= % 1 (16.32)

will be called superdiffusion, and the case

2
p= ZB <1 (16.33)

will be called subdiffusion.
It will be shown in the next chapter that the moments with § > a diverge.

Nevertheless, there are some constraints on the application of the FKE to real
dynamics, which we discuss in the following section.
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16.4 Conflict with dynamics

Limitations for application of the FKE to dynamical systems can be compared
to the limitations for diffusional process described in Section 14.6. Consider
analogues (16.13) and (16.14) to the Kolmogorov condition (14.25):

((f;)); = v*(8t)* P = A = const, (6t — 0). (16.34)
At the same time,
_ A Iz ,
a—B—a(l—a>—a(1—2)>0 (16.35)

since p < 2. This means that in the limit 6¢ — 0 should be v — oo, and we arrive
at the same conflict as in the normal diffusion case, that is, to the existence of
infinite velocity in dynamics, which has no physical sense. A resolution of this
conflict is similar to the case of normal diffusion: there exists d¢,,;, such that for
Ot < Otmin the FKE cannot be applied.

More serious constraints are imposed by the condition of positiveness of
P, p(z,t),ie. B < 1,0 < a < 2. Some simulations show, as we will see later, the
values of a > 2. A theory of the FKE is not developed yet for 3 > 1 and a > 2.

We also need to consider truncated distribution function

(&)
Pas(a,t) = {(’)’aﬁ (@,1),  0<Z< Zmax, (16.36)

s T > Tmax

(compare to (14.66)) and truncated moments
(lz[™)ee = /d:c P)(2,t) < 00 (16.37)

in order to avoid infinite velocities in the solutions, forbidden by the dynamics.
All these comments will be necessary when real experimental or simulation data
are compared to the theory. As it follows in the case of self-similarity

(Jz[™)er ~ t™/2 (16.38)

and all truncated moments are finite, although there is a restriction on the value
of m which depends on #,.x (see the discussion in Section 14.7). Particularly

(|z*)er ~ t# (16.39)

introducing the transport exponent p instead of (16.29).
For 3 = 1 we have the Lévy process with u = 2/a < 2 since the second and
higher moments (i > 2) diverge. The Lévy condition o < 2 means that

L i (16.40)
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or that the permitted values of o are
I <2 (16.41)

and it is not clear from the dynamics why the values of 0 < a < 1 are not
achievable. For the interval (16.40) u > 1, that is, the transport is superdiffusive,
and it is not clear from the dynamics if subdiffusive transport with g < 1 is
forbidden or not. The value p = 2 corresponds to the pure ballistic case. This
will be discussed more later (Note 16.4).

All simulation data in the book will only be truncated moments and truncated
distribution functions, although it will not be indicated explicitly.

16.5 Dynamical origin of critical exponents

In this section we demonstrate two examples of how the critical exponents can
be obtained from the dynamical consideration of a model. More examples and
speculations will be proposed in Chapter 17. These two examples are related to
the web map and standard map (Note 16.5).

First, let us demonstrate the presence of the superdiffusion for the two maps.
Figure 16.1 shows the behaviour of the second moment:

D= lim l(R?,) = lim l(u?,+v,’{)
n—oon n—oon

LOG o (D/Dg)
2.00 4
1.25
0.50 |
-
-0.25 -
-1.00 . = ;
0 10 20 30 40

K

Fic. 16.1. Diffusion coefficient D from the simulation of the web map vs. K,
normalized over the value Dy = K?/2 that corresponds to the normal
diffusion (so-called quasi-linear approximation).
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for the web map. In the case of a normal diffusion D = const = Dy = K?/2. In
the superdiffusive case

(R?) = (u® + %) ~ t# (16.42)

with g > 1, that is, (R?)/t — oo as t — oo. Sharp peaks in Fig. 16.1 indicate
the phenomenon of superdiffusion near special values of K. The larger t is, the
sharper and higher are the peaks.

A set {KU)} of the special values of K corresponds to the occurrence of
accelerator mode islands of different resonance order (see Section 9.2), and there
are intervals AK where the set of KU) € AK is as dense as rationals. This
property means that the topology of phase space is sensitive to the changes of
control parameter K and, particularly, we arrive to the important conclusion of
the dependence

p = p(K), (16.43)

which is non-analytical (Note 16.6).
A similar example exists for the standard map (Fig. 16.2) for which the
regular diffusion is governed by the equation

OF(p,t) _ 1,0°F(p,t)

5 =30 5 (16.44)
with D = Dy = K?2/2. It follows from (16.44) that
(p*) = Dt, (16.45)
that is, (p?)/Dt = const. In fact, simulations show the superdiffusion
(p?) = const - th», iy 30 (16.46)

with p, = p,(K) for some values of K. Figure 16.2 displays the values (p?)/t
that have sharp peaks due to y, > 1. For the normal diffusion 2D/K? = 1. The
larger the time, the larger the peaks. They also appear due to the accelerator
mode islands (Note 16.7):

These two examples show that there should be many different pairs (o, 3) of
critical exponents depending on the value of K. The way to observe the fractional
kinetics can be formulated in the following scheme of assumptions:

(i) The value of the control parameter, say K, would be selected to have ¢ — oo
domination of the only pair (a, 3) and the corresponding fractal structure
of phase space and flights.

(ii) Having only one scaling for time, say Ap, and for space or phase space,
say Ag, we link
1 1

= l—m, o= m, (1647)
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that is,

_ 28 _ 2l

= (16.48)

(i) The scaling constants Az, A¢ can be obtained from any characteristics of
space-time dynamics. For example, Ay can be obtained from the scaling
property of the Poincaré recurrences, or from the scaling of periods of islands-
around-islands, and \; can be obtained from the scaling parameter Ag of the
areas of islands-around-islands.

Let us show an example for the web map (Zaslavsky and Niyazov (1997)).
Table 16.1 shows parameters of islands for a special value of K = 6.34972 that
corresponds to the islands’ hierearchy and the corresponding HIT 1-8—-8—8—---
(see Section 12.2 and Fig. 12.4). The table is similar to Table 15.1:

35 ; U, ——T R

| |

. :
1 |

FIG. 16.2. Second moment (p?)/t dependence on K for the standard map.

TABLE 16.1 Parameters of self-similarity for the web map with K = 6.349972.

kg Tn  Ti/Tioy ASk ASk/ASk—1 08k 08k/0Sk—1
0 1 164 ... 0.436 0.436 s

1 8 131.8 8.04 524 x 1073 1.20x 1072 4.19x 1072 0.0961
2 8 1049 7.96 5.30 x 107° 1.01x 1072 3.39 x10~% 0.0809
3 8 8420 8.02 5.32%x 1077 1.00x 1072 2.72x10"* 0.0802
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Here the notations are the same as in Chapter 13, that is, ¢ is a constant of
proliferation of islands

Gn = Ag =const., n>0 (16.49)

and for the considered case A\, = 8;

86Sn = guAAS, (16.50)
(compare to (15.47)) and
0Sk
As = T const < 1,
(16.51)

Ty
A1 T ~ const > 1.
The values of A, A\g are evident from Table 16.1.

When a trajectory sticks near the boundaries of islands that are of the k-th
generation, it rotates almost regularly in narrow annuluses around the islands.
Let /) be the full length of the corresponding piece of trajectory, that is, ¢ is
the length of a flight that corresponds to the stickiness to the islands of the k-th
generation. Self-similarity of flights means

Cry1 = Nely.. (16.52)
The particle flux due to the flight of the k-th generation is
N} = const - £1.d). = const - €k651/2, (16.53)

where d; is a diameter of the k-th generation island. When the particles
(trajectories) switch their flights from being around the islands of k-th gen-
eration to being around the islands of a nearest generation, say k =+ 1, there
should be preservation of the flux due to the Liouville theorem, that is,

N = const - €k65',1/2 ~ const (16.54)
or
bo - 6532 XEAE/2 ~ const. (16.55)
It follows that
Ao Allﬂ (16.56)

Substitution of (16.56) to (16.48) gives the transport exponent as

_|InAg|
N ]n)\T

(16.57)
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and the corresponding FFPK equation

PP(b,t) _ 9*P(L,1)
a7 ake

for the distribution function P(¢,t) of the flight length ¢ and time. The
corresponding transport equation reads

(16.58)

(¢*) = const - t°. (16.59)

The formula (16.57) shows how the dynamical features of trajectories, i.e.
the scaling constant Ag, A, define the transport features—the fractal space-
time exponents (a, 3) and the transport exponent p. All these conclusions can
be compared to experiments or to simulations that will be discussed in the
following section.

The final formulas (16.57) or (16.48) can be compared to (13.45) and (13.60)
for the Poincaré recurrences exponent. We have an important connection for the
case when the phase space topology provides a hierarchical set of sticky islands:

|InAg| In A,
= = = ; 16.
Tec=24+u=2+ i, 2 1+1I1/\T (16.60)

Performing collection of data we can obtain the exponents (16.47) for the flight
length and their time scaling and calculate the exponent for recurrences Yrec
or the transport exponent u, and vice versa. All these characteristics are now
linked. Particularly for the web map with the data given in Table 16.1, the phase
space with a clear stickiness topology is in Fig. 12.4, a sample of trajectory is
in Fig. 15.1, right, and the value of p from Table 16.1 is pu ~ 1.21, while the
directly obtained value p = 1.26 with a good agreement (Note 16.8).

16.6 Principles of simulations

Comparison of any kind of theoretical prediction to the experimental or simula-
tion data for fractal objects is very non-trivial, and here we discuss some major
principles of the simulation performance. The reason for that is a specific kind of
the randomness of trajectories when the Lyapunov exponent is small in singular
zones of the phase space.

(a) Non-universality. It is always desirable in physics to have some universal
constants for the most important phenomena. The only universal behaviour is
the normal, or Gaussian, transport. Anomalous transport is not universal and
the same is true of critical exponents «, 3, and p. Nevertheless, there are classes
of universality which will be discussed later. It is always necessary to select a
value of the control parameter K that defines a type of stickiness, dynamical
trap, or singular zone.

(b) Representativity of the ensemble of initial data. The phase space and
mixing is non-uniform in the case of stickiness of trajectories and presence of
singular zones. To have a correct averaging (---) over trajectories, their initial
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conditions should be taken uniformly at the most uniform part of phase space
to avoid influence of a fine structure of singular zones.

(c) Non-ergodicity. A specific value of the control parameter K* defines a
type of the singular zone in phase space. We assume that K* is selected in such
a way that the only singular zone dominates the transport. Nevertheless, the
value of K* can be selected only approximately and, due to that, for ¢ > #* some
other singular zones can influence the transport. Since the time of simulation
is bounded from above and there is no finite time of relaxation to the uniform
mixing, a long time of simulation does not provide a good approximation to
the transport exponent, related to K*, i.e. the value u = u(K*). The selection
of large number of initial conditions rather than long time of observation can
improve the situation.

(d) Values of critical exponents. It seems that a pure fractal situation with
accurate values of critical exponents is a fairly rare phenomenon for at least two
reasons: multiplicity of the islands’ topology of phase space and log-periodicity
discussed already in Section 10.6. A correct way is to introduce a spectral
function for the critical exponents similar to the spectral function of multifractals
(see in Zaslavsky (2000b)). Nevertheless, by a convenient choice of K* one can
create a situation close enough to the monofractality.

Notes

Note 16.1
The idea of exploiting fractional calculus and presenting kinetics in a form
of an equation with fractional integro-differentiation is not new. For example,
some variants of FK were used in Mandelbrot and Van Ness (1968) for signals;
Young et al. (1989) for kinetics of advected particles; Hanson et al. (1985)
for kinetics through cantori for the standard map; Nigmatullin (1986) for the
porous media; Douglas et al. (1986, 1987) in macromolecules (see also a review
paper by Douglas (2000)). For more recent publications, see Isichenko (1992)
and Milovanov (2001) for the problem of percolation; Hilfer (1993, 1995a,b)
for evolution and thermodynamics; West and Grigolini (2000) for time series.
The material of this chapter is based on the results in Zaslavsky (1992, 1994a,
1994b), where FKE was derived with fractional derivatives in space and in
time for the dynamics with singularities.

Note 16.2
For details on fractional calculus, see Gelfand and Shilov (1964); Samko et al.
(1987); Miller and Ross (1993); Podlubny (1999); West et al. (2003). Different
review articles and applications are collected in Hilfer (2000).

Note 16.3
There are different forms for the FKE that generalize forms (16.20)-(16.23):
anisotropic equations were considered in Yanovsky et al (2000);
Meerschaert ef al. (2001); equations with directional fractality in Weitzner
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and Zaslavsky (2001); Meerschaert et al. (2001); non-linear fractional equa-
tions (Biler et al. (1998); Barkai (2001); Schertzer et al. (2001)). Some of these
equations will be considered later.

We should mention that the investigation of the type and properties of
the FKE is at its beginning stage and a number of important questions are
not answered yet. Some of these questions will be discussed in the following
sections.

Note 16.4

The conclusion on the absence of subdiffusion in Hamiltonian dynamics occurs
after some assumption of applicability of the Lévy type process and the
Kac lemma. Subdiffusion can appear along some axis while the whole ran-
dom walk corresponds to the superdiffusion. We cannot exclude a possibility
of the ‘absolute’ subdiffusion (in all directions) due to violation of some
specific conditions of the lemma, for example, the absence of non-singular
distributions.

Note 16.5
For the details of simulations, see Zaslavsky et al. (1997); Zaslavsky and
Niyazov (1997); and Benkadda et al. (1997). More data and speculations
around them will be shown later.

Note 16.6
This conjecture was proposed in Chernikov et al. (1990) after considering
advection in a hexagonal variant of the so-called ABC-flow (see Section 23.1).
The dependence of the type p = pu(K) was presented from simulation, and its
singular dependence on K was linked to bifurcations and changes of the phase
space topology.

Note 16.7
Peaks in diffusion for the standard map were noted in Ichikawa et al. (1987).
Similar results with more details were also reported in Benkadda et al. (1997)
and Zaslavsky et al. (1997).

Note 16.8
The data are given from Zaslavsky and Niyasov (1997). The directly obtained
value y means calculation of moments (R®*™) with m = 1/2,1,2,....

We discuss them in Chapter 17. There are other simulations for differ-
ent values of control parameters and different problems (Benkadda et al.
(1997); Zaslavsky et al. (1997); White et al. (1998); Carreras et al.
(1999); Carreras et al. (2001); Kuznetsov and Zaslavsky (1998, 2000);
Leoncini et al. (2001); and others).

Problems
More complicated problems are marked by (*).
16.1 Starting from (16.58), calculate the constant in (16.59).



