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ABSTRACT It is shown, following Shockley [Shockley, W.
(1957) Proca IRE 45, 279-290,] that, when a population is engaged
in tasks whose completion requires the successful conclusion of
many independent subtasks, the distribution function for successes
in the primary task is log normal. It is also shown that, when the
dispersion of the log-normal distribution is large, the distribution
is mimicked by a 1/x distribution over a wide range of x. This
argument provides a generic set of processes that yields the much
observed 1/x distribution, and will also lead to a 1/fnoise spec-
trum. It is commonly found that distributions that seem to be log
normal over a broad range (say to the 95th percentile of a popu-
lation) change to an inverse fractional power (Pareto) distribution
for the last few percentile. Annual income distributions are ex-
amples with this structure. The very wealthy generally achieve
their superwealth through amplification processes that are not
available to most. We have introduced a simple amplification
model to characterize the transition from a log-normal distribution
to an inverse-power Pareto tail.

Generally, a 1/f distribution is demonstrated graphically on
log-log graph paper by plotting log g as a function of log x. For
this purpose, we write

log g(xlx) = -log(x/i) -{[log(x/i)]2/2o} - '/21og(27T0o2), [3]
the last term being a constant. Let us measure the variable x
in multiples f of its mean value x, with

x =fA
Then Eq. 3 becomes

log g(f)= -logf- 1/2[(logf)/o]2-_/21og(21ror2).

[4]

[5]
If the distribution g(f) is to be 1/f, then only the linear term
in log g(f) should remain in Eq. 5, as would be the case as or

0o. Let o be large but finite and letf be expressed as a power
n of e:

log-normal distributions and 1/f distributions
1/f "noise" has been observed in numerous systems. Whole
conferences have been devoted to it, the most recent being that
held at the National Bureau of Standards last year. The pro-
ceedings (1) of that meeting provide an excellent survey of the
state of the field. It has been felt by some that this distribution
should be a consequence ofsome simple generic stochastic pro-
cess in the same sense that the "central limit theorem" of the
theory of the probability states that, under certain rather weak
conditions, the probability distribution ofa sum ofrandom vari-
ables is gaussian (or normal). One of the aims of this paper is
to present such a process.
A purely 1/f distribution function cannot exist in the range

0 <f< oo since it would not be normalizable; its normalization
integral diverges as logfashfy- 0 andff-.oo Hence, iff is to
extend over the positive half line, corrections must exist at both
the small and largef extremes. A distribution that satisfies the
requirement ofbeing 1/f-like in the intermediate range and yet
remaining normalizable in the full range is the normal distri-
bution of the variable log x:

F(log x) = exp[-(log x - log i)2/2o-2]
F~~logx) - (27Tro2)'12[1

where x is the mean and cr2 is the square of the dispersion of
the distribution. Since d log x = dx/x, the probability that the
variable x/x lies in the interval d(x/x) at x/x is

g(x/i)d(xA) - exp[ -(log x/i)2/22I](x) [2]
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f = exp n, [6]
then

log g(f) = -n - 1/2(n/o.)2 -_ /210g(21r&). [7]
When o is large, we can estimate the largest integer value of
n that allows Eq. 7 to be regarded as linear in n to within a
prescribed precision (always omitting the constant term in the
precision estimation). If the middle term on the right-hand side
of Eq. 7 is to be less than a fraction 0 of the first term, then

/2(n/f)' 60 In or In| - 26cr2. [8]
Suppose that 6 = 0.1 and or = 5. Then, for any Inl 5 5, g(f)
mimics a 1/f distribution to within 10%. This corresponds to
11 integer n values or, from Eq. 8, 11 e-folds, which is equiv-
alent to four orders of magnitude. Generally, the function g(f)
mimics a 1/f distribution for (46cr2 + 1) e-folds to within a rel-
ative error 6. Clearly, the larger or, the more orders of magni-
tude the mimicking persists.
We have produced the normalizable log-normal distribution

with large dispersion that approximates the 1/f distribution
over a wide range. Does a simple stochastic model exist to form
the basis ofour log-normal distribution?The answer is yes, since
Shockley (2) has already discussed such a mechanism (or model)
in a completely different context.

Shockley was concerned with the measurement of produc-
tivity of research scientists, especially in the dispersion in their
publication rates. He investigated the output of88 research staff
members ofthe Brookhaven National Laboratory and found the
distribution function ofthe number ofpapers published by them
to be log normal, thus having a long tail. Generally, he asso-
ciated long tails with primary achievements that require the
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successful completion ofnumerous independent secondary sub-
tasks, with the failure of any one being sufficient to cause the
failure of the primary project. The publication of a scientific
paper is an example of such a process.

Shockley explained that, to publish a paper, one must (i) have
the ability to select an appropriate problem for investigation,
(ii) have competence to work on it, (iii) be capable ofrecognizing
a worthwhile result, (iv) be able to choose an appropriate stop-
ping point in the research and start to prepare the manuscript,
(v) have the ability to present the results and conclusions ade-
quately, (vi) be able to profit from the criticism of those who
share an interest in the work, (vii) have the determination to
complete and submit a manuscript for publication, and (viii)
respond positively to referees' criticism.

Given a set of investigators, let p, be the probability that one
of them is able to complete the ith step in the process. Then,
assuming that the various probabilities are independent ofeach
other, the probability P that our chosen investigator will pro-
duce a paper in a given time is the product of the probabilities
that he successfully deals with each of the individual items,

P = PIP2 ... P8 [9a]

and

log P = log1pP + 10g P2 + - + log p8. [9b]

When the individual distributions of the log pi values satisfy
certain weak conditions (3) that include the existence of second
moments, the central limit theorem is applicable, so that the
distribution function of log P (and therefore of the sum) is the
normal distribution. Hence, in the Shockley model, the distri-
bution function for the number ofpapers published per research
worker should be log normal, as was observed. Incidentally, this
result would remain even if the Shockley list of attributes were
not quite correct, or if certain important items were omitted,
or new ones were added.

As noted above, the publication of a paper is an example of
a complex task whose completion depends on the successful
outcome of several independent subtasks. When the number
of required subtasks is large, the number of terms in the sum

analogous to Eq. 9b is large, so that the central limit theorem
is applicable to the characterization of the probability distri-
bution of successes in a population seeking to complete a re-

quired complex task.
Consider a task whose success follows the completion of N

subtasks. Then, the sum similar to Eq. 9b for our process will
contain N terms. Since the square ofthe dispersion, ac2, ofa sum
ofN independent random variables is the sum of the squares,
o-, of the component random variables, O.2 should be of order
Nf, with cr2 = N&2, where

1N
2 [10]

The greater the value of N, the greater the number of e-folds
or decades over which the distribution function for task suc-

cesses mimics a 1/f distribution.
1/f noise from a 1/f distribution
The above analysis leads directly to a 1/fdistribution. That such
a scale-invariant distribution function of relaxation times [p(T)dT
= dT/T] ofrandom events leads to a 1/fnoise spectrum was first
pointed out by van der Ziel (4), who was interested in the noise
characteristics ofsemiconductors. van der Ziel's model assumed
that (i) the electronic motion was energy activated-i.e., T a
exp(E/kT) with E a random variable-and (ii) within a certain
energetic range, all energies E appear with equal likelihood.

This model has been neglected because too large a range of a
constant energy distribution is needed to reproduce the 1/f
noise data (5). However, in a recent article (6) entitled "Earth-
quakes, Thunderstorms, and Other 1/f Noises," Machlup
stressed that the p(T)dT = dT/ part of van der Ziel's argument
is correct, even if the particular physical model leading to this
result may not be. Machlup views 1/f noise as a reflection that
nature "is sufficiently chaotic to possess ... a large ensemble
ofmechanisms with no prejudice about scale. " In this view, the
semiconductor noise is just a particular example of the basic
message that nature is scale invariant.
The connection between p(T) and the noise spectrum is [again

quoting from Machlup (6)] " ... a purely random process is one
with an autocorrelation of the form exp(-t/T). The power spec-
trum of such a process has the Lorentz shape:

S(w) X Fourier transform of e`UT
on T/(1 + W272)

If we have a large collection of different random processes,
each with its own correlation time T, then the power spectrum
of the whole ensemble depends on the statistical distribution
p(T) of these correlation times. Ifthese processes have not been
filtered, then our conjecture is that the weighting function is
scale-invariant:

p(T) do o dT/T.

This gives a power spectrum
T2IrdT

I S,()p(T)dT a: 1

2T
tanl(OT.

If the scale invariance extends over many orders of magni-
tude-i.e., if T2/T1 is a large ratio-then, the spectrum is
11w over a correspondingly large range. For many years, we
have been scratching our heads to find special mechanisms that
would have that special distribution of time constants over
many decades."
We propose that if, in a system of interest, the distribution

of relaxation times is determined by a multiplicative process as
characterized by Eq. 9, then that distribution becomes log nor-
mal. However, as discussed above, for a considerable range, a
log normal p(r) is mimicked by 1/r, as required by Machlup for
his analysis.
Two popular sayings help us distinguish between those pro-

cesses that should be characterized by normal distributions and
those that should be characterized by log-normal distributions.
This first is " ... foot bone 'tached to the leg bone, leg bone
'tached to the knee bone, knee bone 'tached to the thigh bone,
thigh bone 'tached to the hip bone," etc. With some dispersion
in the length of member of each type bone in bones selected
from a large population, the central limit theorem tells us that
heights of individuals should be normally distributed.

Log-normal distributions would be expected in processes
whose successful execution follow Franklin's proverb "for the
want ofa nail the shoe was lost, for the want of a shoe the horse
was lost, for the want of a horse the rider was lost," etc.

The statistics of the flooding of the Nile has been a popular
example of l/f noise. We would explain this by considering the
many stages through which a drop of rain at the source ofa river
must successfully pass to reach the mouth of the river. First,
atmospheric conditions must lead to rain to create the drop and
then wind, temperature, and ground porosity conditions must
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allow the drop to continue downstream at each stage of the
river. The resulting log-normal distribution for the flow rate
yields, in a natural fashion, a 1/f noise in the river level at the
mouth.
Pareto and Levy distributions
One of the earliest investigations of distributions with long tails
was made by the social economist Pareto (1897) who collected
statistics on the income and wealth of individuals in many coun-
tries at various times in history. His data convinced him that
(7, 8) "In all places and at all times the distribution of income
in a stable economy, when the origin of measurement is at a
sufficiently high income level, will be given approximately by
the empirical formula y = ax-v, where y is the number of peo-
ple having an income x or greater and v is approximately 1.5."
A log-log plot of the data would yield a straight line of slope
-v (or -1.5 according to Pareto). As intimated by him, his for-
mula is an asymptotic one valid for high incomes. In more
modern times, the diligence of the Internal Revenue Service
has given us data over the full income range. The data (9) for
1935/1936 (plotted on probability paper such that a log-normal
distribution would yield a straight line; Fig. 1) indicate that the
population in the 5-97 percentile range has an excellent fit to
a log-normal distribution, while those in the last two or three
percentile have an inverse power distribution as proposed by
Pareto.

While it would seem that, for the range 5-97 percentile,
which includes most of us, the Shockley style model would ap-
ply to the manner that we earn money, it is evident that those
in the last 2 or 3 percentile operate in a somewhat different
mode. They frequently collect their extreme wealth through
some amplification process that is not available to the rest of
us; that process varies from case to case. At the height of the
Beatles' popularity, any new recording by them was soon sold
to millions of fans. During periods of prosperity, free money
becomes available for speculation-sometimes in real estate,
sometimes in stock or silver, or even in tulips. A common char-
acteristic of such times is that the daring may use their easy
money to acquire some speculative commodity with a small
margin payment (sometimes 10% or less of the value) plus
promises to pay the remainder later. If the commodity doubles
in price, a 10% margin payment is amplified to a nine-fold
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FIG. 1. Distribution of families and single individuals by income

level, 1935/1936. Data are from ref. 9. Most of the data follows a log-
normal distribution, while the last 1% is governed by a Pareto tail.

profit. Most readers can furnish other examples of amplifica-
tion in the acquisition of superwealth. As the percentile level
approaches 100, the number of remaining examples decreases.
The few individuals left in the sample tend to become special
cases in the dynamics of their success with increasing diversity
of means appearing.

The Pareto distribution applies best to the tail of the income
distribution. The diversity of style and performance in the am-
plification process of the superwealthy suggests that any sta-
tistical model used to characterize them should be without well-
defined moments. Mandelbrot (10), the devoted champion of
Pareto tails, identifies them with the distribution derived by
his teacher Paul Levy.
We can derive the Pareto-Levy tails from our log-normal

distribution by accounting for the process of amplification (and
amplification of the amplification, etc.). Let g(x) denote our log-
normal distribution, whose mean value we denote by x. With
a probability proportional to A, let g(x) be amplified such that
its mean value is Nx-i.e., g(x/O)dx/O -1 g(x/Ni)dx/Ni. Again,
with a probability proportional to A, let the amplification be
amplified-so the mean value of the distribution will be N2x. The
new distribution G(x) that allows for these amplifications is,
with x in units of x,

G(x) = [a +
1 A] [ag(x) + Ng(X/N) + &g(x/N2) +

where a determines the range of the initial log-normal behav-
ior and a and the first term on the right-hand side are chosen
to ensure the proper normalization of G(x). While one can solve
for G(x) in terms ofg(x) by using the method ofMellin transform,
here we just demonstrate that G(x) has a nonanalytic part lead-
ing to the Pareto-Levy tail. This is accomplished by noting that
G(x) satisfies the recursion relation

G(x) = NG(x/N) + [a + 1 A] [ag(x) + (1 - a)g

Since g(x) is assumed to be analytic, any singular behavior sat-
isfies the equation

G(x) = -Gs(x/N)N'

which has the solution
G,(x) = x-1-A(x),

where A = ln(l/A)/ln N and A(x) = A(x/N)-i.e., A(x) is os-
cillatory, periodic in log x with period log N. We note that g
appears here naturally in the form of a fractal dimension (11,
12) and is -3/2 for the income distribution in Fig. 1. If AN
2 1, then 0 < ,u < 1 and G(x) represents the distribution func-
tion of a divergent branching (bifurcating) process in which the
mean value of G(x) is infinite. If AN < 1 but AN2> 1, then 1
< A < 2 and the mean ofG(x) will be finite. However, the fluc-
tuations about the mean will be finite. The connection to the
tail of the Levy distribution can now be made.

Levy (13) investigated the statistics of a sum of independent
random variables

Xn = X1 + X2 + .-. + Xn [11]
for cases inapplicable for the central limit theorem. For sim-
plicity, we postulate the average value of each xj to vanish, (xj)
= 0. In the case that each xj has a gaussian distribution with
2 = (4), the distribution function ofthe sum X. is also gaussian
with the dispersion function
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[12] F(x) - 7a r(a)sin Ira (O < a < 2),

Lkvy considered the case of the xjs being devoid of second
and higher moments and whether there exist non-gaussian dis-
tributions common to each xi such that X. will have the same
type of distribution as the individual xj. This is the case for the
Cauchy distribution

Fj(x) = (aj/1r)(aj' + x2) for the jth x.

Then the distribution for Xn is

F/x) = (A/r)(A2 + x2) (A = a, + ... + an).

[13]

[14]

In general, Levy showed that, when the distribution of the in-
dividual xjs is given by the Fourier integral

F,(x) = 2f ei exp(-lklaajdk)

the distribution of Xn is

F(x) = eikx exp(-lklaAdk)

with

Aa = al + aa + ... + a.

(O < a c 2), [15]

(O < a c 2), [16]

[17]

The Cauchy case (Eq. 13) corresponds to a = 1 and the Gauss
case corresponds to a = 2. The Gauss distribution is singular.
It is the only case that enjoys the existence of moments for x;
and forXn. When a. < 2, it is not difficult to show (3) that, for

large x,

[18]

whose inverse power character shows F(x) to have the Pareto
form.
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