2. Reductive Perturbation Method

Small-amplitude osciliations near the Hopf bifurcation point are generally gov-
erned by a simple evolution equation. If such osciilators form a field through dif-
fusion-coupling, the governing equation is a simple partial differential equation
called the Ginzburg-Landau equation.

2.1 Oscillators Versus Fields of Qscillators

Many theories on the nonlinear dynamics of dissipative systems are based on the
first-order ordinary differential equations

dC;:’:Fi(XhXZ.-..;XA;H)a i=1,2,....n,

which include some parameters represented by g a more convenient vector form

ax =F(X;u) (2.1.1)
dr .

is sometimes preferred. As a specific example, we mention the dynamics of chem-
ical reaction systems which are maintained uniformly in space, In this case, X
usually represents a set of concentrations of the chemical species involved, and u
may be taken to be the flow rate at which certain chemicals are constantly fed
into the system so that their consumption due to reactions may be compensated,

For some range of u, the system may stay stable in a time-independent state.
In particular, this is usually the case for macroscopic physical systems which lie
sufficiently close to thermal equilibrium. In many systems, such a steady state
loses stability at some critical value u. of 4, and beyond it (say u > u;), gives way
to periodic motion. In the parameter-amplitude plane, this appears as a branch-
ing of time-periodic solutions from a stationary solution branch, and this pheno-
menon is generally called the Hopf bifurcation. For various mathematical
aspects of the Hopf bifurcation, one may refer 1o the book by Marsden and
McCracken (1976). In chemical reactions, the corresponding phenomenon is
called the onset of chemical oscillations. Besides chemical reactions, one may
point out many examples from electrical and mechanical engineering, optics,
biology, biochemistry, and possibly some other fieids, for which ordinary-dif-
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ferential-equation models form a natural basis for mathemaucal analysis, so that
the appearance of oscillations may be understood in the way stated above,

As u increases further, the system may show more and more complicated
dynamics through a number of bifurcations. It may show complicated periodic
oscillations, quasi-periodic oscillations or a variety oi non-periodic beliaviors.
For instance, we know of the recent discoveries of fantastic bifurcation struc-
tures in the spatially homogeneous Belousov-Zhabotinsky reaction, see Hudson
et al., 1979.

COmmg back to limit cycle oscillations shown by systems of ordinary dif-
ferential equations, this simple mode of motion still seems to deserve some more
attention, especially in relation to its role as a basic functional unit from which
various dynamical complexities arise, This seems to occur in ai least two ways.
As mentioned above, one may start with a simple oscillator, increase g, and
obtain complicated behaviors; this forms, in fact, a modern topic. However,
another implication of this dynamical unit should not be left unnoticed. We
should know that a limit cycle oscillator is also an important component system

in vanious sel{-orgapization phenomena and also in other forms of spatio-
temporal complexity such ast . In this book, particular emphasis will be

placed on this second aspect of oscillator systems. This nawrally leads to the
notion of the “many-body theory of limit cycle oscillators™; we let many oscil-
lators contact each other to form a “field”, and ask what modes of self-organiza-
tion are possible or under what conditions spatio-temporal chaos arises, etc. A
representative class of such many-oscillator systems in theory and practical
application is that of the fields of diffusion-coupled oscillators (possibly with
suitable modifications), so that this type of system will primarily be considered in
this book.

In any case, we should begin with some investigation of the component
systems, i.e., limit cycle oscillators. Although the specific feature of limit cycle
oscillations (e.g., orbital forms, oscillation patterns, etc.) may vary greatly from
system to system, there exists one remarkable universal fact, namely, that all

systems come.to hehaye in a similar manner sufficiently close o the onset of

ions. Mathematicians-may say_that thic is a consequence of the ceuser
manifold theqrem. More physically, we are left with only a couple of rclevant
dynamical variables close to criticality, whose time scales are distinguishably
slower than those of the remaining variables, so that the latter can be eliminated
adiabaticaliy. As a result, (2.1.1) is contracted to a very simple universal equation
which is sometimes called the Stuart-Landau equation. In fact, Landau was the
first to conjecture the equation form (Landau, 1944), and Stuart was the first to
derive it through an asymptotic method (Stuart, 1960). In quite a different
context, specifically in laser theory, Haken and Sauermann (1963) derived a
similar but more general equation. We shall outline in Sect. 2.2 how the Stuart-
Landau equation is derived. The fact that dynamical systems can be reduced to
some simple universal systems is by no means restricted to this particular bifurca-
tion type. However, we do not intend in this book to present theories from such a
general viewpoint. The method employed in Sect. 2.2 is a well-known multi-scale
method, although there may be some possible variants leading to identical
results. A practical use of the theory in Sect. 2.2 lies in the fact that it enables
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us to calculate explicitly a certain constant
appearing in the Sfuarg-l.andau equation, whose sign determines the stabili
W%Othemise, the Stuart-Landau equation itseif is
not likely to arouse much thedretical interest, although it may have some value in
serving as an ideal nonlinear oscillator model.

So far, the discussion has been concerned with systems of ordinary differen-
tial equations, In many physical problems, partial differential equations describ-
ing processes in the space-time domain prove to be a more useful mathematical
tool. For instance, one may mention the Navier-Stokes fluids, chemical reactions
including diffusion, some ecological systems with migration, etc. Suppose that
oscillatory motions occur in any of these continuous media as some control para-
meter is varied, and consider how to describe them. It is true that if the systemis
confined within a finite volume. the gaverning paryial differential equations.cax,

in principle -be trapsformed into a digcrete set of ordinary differentiai equations,
which describe the evolution of the amplitudes of the basis functions satisfying

prescribed boundary conditions. Although the system then involves an infinite
number of degrees of freedom, a mode-truncation approximation is usually
allowed. Thus, as far as the onset of oscillations is concerned, there seems to be
nothing theoretically new, compared to the bifurcation theory for systems of
ordinary differential equations. Specifically, the apphcation of a mulii-scale
method will lead to a Stuart-Landau equation again. (For a mathematical theory
of the Hopf bifurcation for systems of partial differential equations in bounded
domains, see Joseph and Sattinger, 1972, bifurcation analyses of reaction-dif-
fusion systems have been developed by Auchmuty and Nicolis, 1975, 1976, and
Herschkowitz-Kaufman, 1975.}

There may be some situations, however, where keeping to formal bifurcation
theories easily makes us overlook a fact of considerable physical importance. The
situation of particular interest in this connection seems 10 be when the system size
is very large. Then, formal bifurcation techniques applied near g, cannot claim
full validity except in an extremely limited parameter range about u.. This is
basically because the eigenvalue spectrum obtained from the linearization about
the reference steady state is almost continuous for large system size, so that, in
addition to the couple of modes which are becoming unstable, a large number of
degrees of freedom come into play as soon as g deviates from u. (a more detailed
description will be given in Sect. 2.3). Thus it is desirable that the Stuart-Landau
equation be generalized so as to cover such circumstances. People in the field of
fluid mechanics have developed theories in this direction, which proved to be
very useful in understanding instabilities (not restricted to the Hopf type) arising
in systems with large dimensions at least in one or two directions. Tyvpical
examples are the Newell-Whitehead theory (1969) on a fluid layer heated from
below with infinite aspect ratio, and the Stewartson-Stuart theory (1971) on
plane Poiseuille flow. In these theories, one works with partial differential equa-
tions throughout, not transforming them into ordinary differential equations. A
method was contrived to reduce the equations to a generalized form of the
Stuart-Landau equation, thereby admitting slow spatial and temporal modula-
tion of the envelope of the bifurcating flow patterns. We call that equation the
Ginzburg-Landau equation (named afler a similar equation appearing in super-




B 2. Reductive Perturbalion Method

conductivity) or the Stewartson-Stuart equation. In this book we adopt the
former name.

Independently of the hydrodynamical context, the Ginzburg-Landau equa-
tion was derived by Graham and Haken (1968, 1970) in multimode lasers as a
further development of the Haken-Sauermann theory (1963); it should be noted
that fluctuations are included in most of their series of works. For various
non-eqguifibrium phase transitions described by the Ginzburg-Landau-type equa-
tion, see the review article by Haken (1975b) and his more recent monograph
(1983).

The derivation of the Ginzburg-Landau equation usually involves the method
of multiple scales (in space and time), and again there are some variants in
technical details. For convenience, we sometimes call all the related techniques
involving the use of stretched space-time coardinates the reductive periurbation
method, a term originally coined for a systematic method of deriving various
nonlinear wave equations mainly in dissipationless media (Taniuti and Wei,
1968; Taniuti, 1974). It is now widely known that the Ginzburg-Landau equation
is not only related to a few tluid mechanical or optical problems but that it can be
deduced from a rather general class of partial differential equations (Newell,
1974; Haken, 1975a; Gibbon and McGuiness, 1981; Lin and Kahn, 1982).
Chemical reactions with diffusion form a simple and particularly interesting class
of systems in this connection {Kuramoto and Tsuzuki, 1974; Wunderlin and
Haken, 1975), and we shall derive in Sect. 2.4 the Ginzburg-Landau equation for
general reaction-diffusion systems. Just as the Stuart-Landau equation describes
the simplest nonlinear oscillator, so the Ginzburg-Landau equation describes the
simplest field of nonlinear oscillators. In later chapters, this equation will be fre-
qUEnTLy IvoKed 10 dlscussing cnemical waves and chemical turbulence.

2.2 The Stuart-Landau Equation

In this section, we outline how a small-amplitude equation valid near the Hopf
bifurcation point is derived from the general system of ordinary differential
equations (2.1.1).

Let X and F be n-dimensional real vectors and u a real scalar parameter. Let
Xo(u) denote a steady solution of (2.1.1) or

d Z .
F(Xo(u)iu)=0. Eetiy,
We express (2.1.1) in terms of the deviation # = X — X in a Taylor series;
du
d—=Lu+Muu+Nuuu+... . 2.2.1)
t
where i ix wh T is__gi

Ly =0F(Xo)/8Xs,;; the abbreviations Muu and Nuuu, etc., indicate vectors
whose ith components are given by
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and the higher-order terms in ¥ may be expressed similarly. We shall later use
quantities like Muv and Nuvw for different vectors &, v and w, and their defini-
tions may be understood as an obvious extension of the above. Note, in par-
ticular, that Mup and Nunw are symmetric functions of ¢, v and w. Note also
that the expapsion coefficients, which are symbolically expresced by M, N, etc.,
ZRenerally depend op yat leasy through Xo(u).

Quppose that g is varied in some range about y = Q. We assume that up to
u=101bhe solution X remains-stable ta sufficiently smallpertuchations, while it
loses.stahility for 4.0, Consider the linear eigenvalue problem associated with
2.2.1),ie.,

Lu=Au. 2.2.2)
Th bility of X, is istributi e ej in the co

plex plane. By assumption, this distribution changes with £ in the following way:
all 4 stay in the left half-plane if 4 <0, and at least one cigenvalue crosses the
imaginary axis at g = 0. Since the eigenvalues are given by the zeros of an nth-
order polynomial with real coefficients, we have the following two general
possibilities: (4) one eigenvalue on the real axis crosses the origin (Fig. 2.1a),
(b) a pair of complex-conjugate eigenvalues cross the imaginary axis simul-
taneously (Fig. 2.1b). In each case, the eigenvalues are assumed to have nonzero
transversal “velocity™ when crossing the imaginary axis, or

aRefi)} | _,
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Fig. 2.1a, b. Two typical distributions of the eigenvalues at caticality
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Furthermore, the rest of the eigenvalues are assumed to remain at a nonzero dis-
tance from the imaginary axis. In the following, we shall restrict our attention to.
case (b), since this corresponds to the Hopf bifurcation.

Near criticality, the matrix L may be developed in powers of u:

L=Lo+puli+pLy+... . (2.2.3)
To save notation, let 1(u) denote a special eigenvalue which is becoming critical
rather than denoting a general one, and A(y) its complex conjugate (we use a bar
to signify a complex conjugate throughout). We assume a power-series expansion
for A also:

A=Ao+udy+piipg+..., (2.2.9)
where 1, are generally complex, or A, = g,+i¢,. By assumption,

O'()=O, 01)0.

Let U7 denote the right eigenvector of Ly corresponding to the eigenvalue
Ao(—iﬂ)@)l

LoU=2U, L0=121,0.
Similarly, the left eigenvector is denoted by U*:
U‘L(]:A.oU*, G*L(]:Iog*,

where U*U = U*{/ =0, and these vectors are normalized as U*U = U*0 =1.
Note that 4y and A, are expressed as

;{0= i(lJo = U*LoU B (2.2.5 a)
A|=al+ia)|=U*L1U. (22.5b)

It is convenient to define a small positive parameter & by &2y = 1, where
¥ = sgn u; £ is considered to be a measure of the amplitude to lowest order, so

that one ndy assume the expansion

u=euy+eluy ..., (2.2.6)
profile FEL L /NFARIEXREHIN T
The expression in (2.2.3) now becomes

L=Lo+ eyl +e'Lo+... . (2.2.7)

Similarly, for some higher-order expansion coefficients in (2.2.1), we write
symbolically



=

profile 的改变小于本征矢量的改变
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M=.M°+EZXM1+..- 3

(2.2.8)
N=Nog+e2gN +... .

From the fact that A has a small real part of order £?, it would be appropriate to
introduce a scaled time T via

1=¢%t,
and regard u as depending both on ¢ and 1, and having no explicit dependence on

g fand t will be treated as mutually independent. Correspondingly, the time dif-
ferentiation in (2.2.1) should be transformed as

i—,i+ s’i. (2.2.9)
dt or or

The substitution of (2.2.6—9) into (2.2.1) gives :: Pl gy

(_a_+ ezai Ly—¢e*yL,- ) (erry + 23+ .. 0)
T

= 2Myuqu, + QMo 3+ Nyt i uy) + O(€%) (2.2.10)

Equating coefficients of different powers of £in (2.2.10), we have a set of equa-
tions in the form

(-;——Lo)u..:m, v=1,2,... . (2.2.11)

The first few B, are

B, =0, (2.2.123)

Bz=Mou,ul, (2212b)
d

B3= - ?_xLl u,+2Mou,u2+Nou,ulu,. (2.212C)
T

In general, the B, are functions of the lower-order quantities .- (v’ < v).

For the system of linear inhomogeneous equations (2.2.11), we have an im-
portant property:

2/ wy

[ U*- Bye ‘™idt=0, L @2.13)
4}

which follows from
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27/ wy ) 2/
{ U*-B,e '“dr= | O[U"‘- (-ai—l_o)u,}ef“""’dl
] [¢] {

Zm’wo- . ;
= | (weU* u,—-iewpU* - u,)e '“'dt=0.
0

The equality (2.2.13) is called the solvability condition. By inspecting the general
structure of {2.2,11), it is expected that the u, can be found iteratively as 2 n-
periodic functions of wyr. This means that B, (¢, 7) is also 2 z-periodic in wyt, so
that it would be appropriate 10 express it in the form

B,t,t)= T BO(r)elen,

P
The solvability condition now reduces to
U BNV =0, (2.2.14)

which is the crucial condition used below.
For v =1, (2.2.11) may be solved in the form

uy(t, 1) = W(r)Ue'® +c.c., (2.2.15)

where c.c. stands for the complex conjugate, and W (1) is saome complex ampli-
tude yet to be specified. This is called the neutral solution. We shall soon find
later that the evolution equation for W, which is nothing but the Stuart-Landau
equation, is given by (2.2.14) for v=3, or by

U-B{"=90. (2.2.16)

Note that (2.2.14) is trivially satisfied for v= 2 because B3" vanishes identically
as is clear from (2.2.12b) and (2.2.15). In order to derive the equation obeyed by
W, it is thus necessary to express ¥, appearing in BS’) in terms of u, (or W}, and
this can be done by solving (2.2.11) for u, as a function of u. But B, contains
only the zeroth and second harmonics, and the same is true for &;. Thus, we try
to find 4, in the form

u, =V, Wlelin'y py_ Wwle- 2wl 4 Y |WE+ vou, . (2.2.17a)

By substituting this into (2.2.11) for v = 2, the quantities ¥, gare obtained in the
form
V,=V_=—(Ly—2iwy) 'MUU,

, _ (2.2.17b)
Vo= "'2L0 MOUU.

The constant vy cannot be determined at this stage,but we do not need it for the
present purpose. Substituting (2.2.15, 17a) into (2.2.12¢), we have


=


2.3 Onset of Oscillations in Distnbuted Systems i3

B = - (_;’_- xLi) WU+ QMU Vg+ 2M, UV, +3IN,UUT) |WEW.
? (2.2.18)

Then the solvability condition (2.2.16) itself turns out to take the form of the
Stuart-Landau equation

ia’ﬂ=xx,w—ggw12w, (2.2.19)
T

where g is a complex number given by
g=g'+ig" = —2UMuUVo=2U*M OV, -3U*N,UU T . (2.2.20)

Defining the amplitude R and the phase ® via W = R exp(i @), one may alter-
natively write (2.2.19) as

dR R

g XOR-IRT, (2.2.21)
ae 2

——=yw; g 'R".

dt !

The non-trivial solution

R=R,, @=dft+const,
R=Va/lg'], &=x(en—g"RD,

appears only in the supercritical region (¥ >0) for positive g' and in the
subcritical region for negative g'. In the former case, the bifurcation is called
supercritical, and in the latter case, subcritical. Linearization about R, shows that
the supercritical bifurcating solution is stable, while the subcritical one is
unstable. The bifurcating solution shows a perfectly smooth circular motion in
the complex W plane. The corresponding expression for the original vector
variable X is approximately given by

X =Xo+ euy = Xo+ elUR expli(wo+ 2 @) t] +c.c.},
which describes a small-amplitude elliptic orbital motion in the critical eigen-
plane.
2.3 Onset of Oscillations in Distributed Systems

The foregoing argument was about systems of ordinary differential equations.
For chemical reactions this corresponds to the dynamics of local systems which



