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Abstract

The Kuramoto model describes a large population of coupled limit-cycle oscillators whose natural frequencies are drawn
from some prescribed distribution. If the coupling strength exceeds a certain threshold, the system exhibits a phase transition:
some of the oscillators spontaneously synchronize, while others remain incoherent. The mathematical analysis of this bifur-
cation has proved both problematic and fascinating. We review 25 years of research on the Kuramoto model, highlighting
the false turns as well as the successes, but mainly following the trail leading from Kuramoto’s work to Crawford’s recent
contributions. It is a lovely winding road, with excursions through mathematical biology, statistical physics, kinetic theory,
bifurcation theory, and plasma physics. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the 1990s, Crawford wrote a series of papers about the Kuramoto model of coupled oscillators [1-3]. At first
glance, the papers look technical, maybe even a bit intimidating.

For instance, take a look at “Amplitude expansions for instabilities in populations of globally coupled oscillators”,
his first paper on the subject [1]. Here, Crawford racks up 200 numbered equations as he calmly plows through a
center manifold calculation for a nonlinear partial integro-differential equation.

Technical, yes, but a technical tour de force. Beneath the surface, there is a lot at stake. In his modest, methodical
way, Crawford illuminated some problems that had appeared murky for about two decades.

My goal here is to set Crawford’s work in context and to give a sense of what he accomplished. The larger setting
is the story of the Kuramoto model [4-9]. It is an ongoing tale full of twists and turns, starting with Kuramoto’s
ingenious analysis in 1975 (which raised more questions than it answered) and culminating with Crawford’s in-
sights. Along the way, | will point out some problems that remain unsolved to this day, and tell a few stories
about the various people who have worked on the Kuramoto model, including how Crawford himself got hooked
onit.
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2. Background

The Kuramoto model was originally motivated by the phenomenon of collective synchronization, in which an
enormous system of oscillators spontaneously locks to a common frequency, despite the inevitable differences in the
natural frequencies of the individual oscillators [10-13]. Biological examples include networks of pacemaker cells in
the heart[14,15]; circadian pacemaker cells in the suprachiasmatic nucleus of the brain (where the individual cellular
frequencies have recently been measured for the first time [16]); metabolic synchrony in yeast cell suspensions
[17,18]; congregations of synchronously flashing fireflies [19,20]; and crickets that chirp in unison [21]. There are
also many examples in physics and engineering, from arrays of lasers [22,23] and microwave oscillators [24] to
superconducting Josephson junctions [25,26].

Collective synchronization was first studied mathematically by Wiener [27,28], who recognized its ubiquity in the
natural world, and who speculated that it was involved in the generation of alpha rhythms in the brain. Unfortunately
Wiener's mathematical approach based on Fourier integrals [27] has turned out to be a dead end.

A more fruitful approach was pioneered by Winfree [10] in his first paper, just before he entered graduate
school. He formulated the problem in terms of a huge population of interacting limit-cycle oscillators. As stated,
the problem would be intractable, but Winfree intuitively recognized that simplifications would occur if the cou-
pling were weak and the oscillators nearly identical. Then one can exploit a separation of timescales: on a fast
timescale, the oscillators relax to their limit cycles, and so can be characterized solely by their phases; on a
long timescale, these phases evolve because of the interplay of weak coupling and slight frequency differences
among the oscillators. In a further simplification, Winfree supposed that each oscillator was coupled to the collec-
tive rhythm generated by the whole population, analogous to a mean-field approximation in physics. His model
is

N
éi:a)i+ ZX(QJ) 2(91), i:l,...,N,
j=1

wheref; denotes the phase of oscillaicaindw; its natural frequency. Each oscillatoexerts a phase-dependent
influenceX(6 ;) on all the others; the corresponding response of oscilladepends on its phagg, through the
sensitivity functionz(6;).

Using numerical simulations and analytical approximations, Winfree discovered that such oscillator populations
could exhibit the temporal analog of a phase transition. When the spread of natural frequencies is large compared to
the coupling, the system behaves incoherently, with each oscillator running at its natural frequency. As the spread is
decreased, the incoherence persists until a certain threshold is crossed — then a small cluster of oscillators suddenly
freezes into synchrony.

This cooperative phenomenon apparently made a deep impression on Kuramoto. As he wrote in a paper with his
student Nishikawa ([8], p. 570):

“...Prigogine’s concept of time order [29], which refers to the spontaneous emergence of rhythms in nonequi-
librium open systems, found its finest example in this transition phenomentinseems that much of fresh
significance beyond physiological relevance could be derived from Winfree’'s important finding (in 1967) after
our experience of the great advances in nonlinear dynamics over the last two decades.”

Kuramoto himself began working on collective synchronization in 1975. His first paper on the topic [4] was a
brief note announcing some exact results about what would come to be called the Kuramoto model. In later years, he
would keep wrestling with that analysis, refining and clarifying the presentation each time, but also raising thorny
new questions too [5-9].
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3. Kuramoto model
3.1. Governing equations

Kuramoto [5] put Winfree's intuition about phase models on a firmer foundation. He used the perturbative method
of averaging to show that for any system of weakly coupled, nearly identical limit-cycle oscillators, the long-term
dynamics are given by phase equations of the following universal form:

N
éi:wi'i‘zrij(ej_ei)’ i=1,...,N.
j=1

The interaction function§’;; can be calculated as integrals involving certain terms from the original limit-cycle
model (see Section 5.2 of [5] for details).

Even though the reduction to a phase model represents a tremendous simplification, these equations are still far
too difficult to analyze in general, since the interaction functions could have arbitrarily many Fourier harmonics
and the connection topology is unspecified — the oscillators could be connected in a chain, a ring, a cubic lattice,
a random graph, or any other topology.

Like Winfree, Kuramoto recognized that the mean-field case should be the most tractatferdimeto model
corresponds to the simplest possible case of equally weighted, all-to-all, purely sinusoidal coupling:

K .
[ij(0; = 0) = 5sin(©; — 60,

whereK > 0 is the coupling strength and the factoN¥nsures that the model is well behavedNas co.

The frequencies; are distributed according to some probability dengfty). For simplicity, Kuramoto assumed
thatg(w) is unimodal and symmetric about its mean frequeRgcie.,g(22 + w) = 9(2 — w) for all w, like a Gaussian
distribution. Actually, thanks to the rotational symmetry in the model, we can set the mean frequéne\Otby
redefiningd; — 6; 4+ Qt for all i, which corresponds to going into a rotating frame at frequencyhis leaves the
governing equations

N
Oizwidl_ﬁ.g 1S|n(9j—9i), i=1...,N (3.1)
j=

invariant, but effectively subtract from all thew; and therefore shifts the meangtf») to zero. So from now on,
g(w) = g(—w)

for all w, and thew; denote deviations from the mean frequefyWe also suppose thgfw) is nowhere increasing
on [0,00), in the sense thaj(w) > g(v) whenevemw < v; this formalizes what we mean by “unimodal”.

3.2. Order parameter

To visualize the dynamics of the phases, it is convenient to imagine a swarm of points running around the unit
circle in the complex plane. The complex order parameter [5]

. 1M
reV = NZe'ef' (3.2)
=1
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Fig. 1. Geometric interpretation of the order parameter (3.2). The phiasge plotted on the unit circle. Their centroid is given by the complex
number €V, shown as an arrow.

is a macroscopic quantity that can be interpreted as the collective rhythm produced by the whole population. It
corresponds to the centroid of the phases. The ragiuseasures the phase coherence, @)l is the average
phase (Fig. 1).

For instance, if all the oscillators move in a single tight clump, we mavé and the population acts like a giant
oscillator. On the other hand, if the oscillators are scattered around the circle At@rihe individual oscillations
add incoherently and no macroscopic rhythm is produced.

Kuramoto noticed that the governing equation

K N
0; = w; + N;sin(ej —6;)

can be rewritten neatly in terms of the order parameter, as follows. Multiply both sides of the order parameter
equation by &'% to obtain

1 N
iW—6) _ — i0;—6;)
re = NZE Y .
j=1
Equating imaginary parts yields
1 N
rsin(y — 6;) = ﬁZsin(ej — ).
j=1

Thus (3.1) becomes
0; = w; +Krsiny —6;), i=1,...,N. (3-3)

In this form, the mean-field character of the model becomes obvious. Each oscillator appears to be uncoupled
from all the others, although of course they are interacting, but only through the mean-field quarstitobg .
Specifically, the phagg is pulled toward the mean phagerather than toward the phase of any individual oscillator.
Moreover, the effective strength of the coupling is proportional to the cohereridgs proportionality sets up a
positive feedback loop between coupling and coherence: as the population becomes more c@revengnd so

the effective couplindr increases, which tends to recruit even more oscillators into the synchronized pack. If the
coherence is further increased by the new recruits, the process will continue; otherwise, it becomes self-limiting.
Winfree [10] was the first to discover this mechanism underlying spontaneous synchronization, but it stands out
especially clearly in the Kuramoto model.
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Fig. 2. Schematic illustration of the typical evolutionrgf) seen in numerical simulations of the Kuramoto model (3.1).

3.3. Simulations

If we integrate the model numerically, how dogs) evolve? For concreteness, suppose wejfix) to be a
Gaussian or some other density with infinite tails, and vary the couplirgmulations show that for aK less
than a certain threshold., the oscillators act as if they were uncoupled: the phases become uniformly distributed
around the circle, starting from any initial condition. Thet) decays to a tiny jitter of size G 1/2), as expected
for any random scatter & points on a circle (Fig. 2).

But whenK exceedsKc, this incoherent statdboecomes unstable an¢t) grows exponentially, reflecting the
nucleation of a small cluster of oscillators that are mutually synchronized, thereby generating a collective oscillation.
Eventuallyr(t) saturates at some level, < 1, though still with ON~/2) fluctuations.

At the level of the individual oscillators, one finds that the population splits into two groups: the oscillators
near the center of the frequency distribution lock together at the mean freq{2esmg co-rotate with the average
phasey (t), while those in the tails run near their natural frequencies and drift relative to the synchronized cluster.
This mixed state is often callgzhrtially synchronizedWith further increases ik, more and more oscillators are
recruited into the synchronized cluster, aggdgrows as shown in Fig. 3.

The numerics further suggest thiat depends only oK, and not on the initial condition. In other words, it seems
there is a globally attracting state for each valu&of

3.4. Puzzles

These numerical results cry out for explanation. A good theory should provide formulas for the critical coupling
Kc and for the coherenag, (K) on the bifurcating branch. The theory should also explain the apparent stability of
the zero branch below threshold and the bifurcating branch above threshold. Ideally, one would like to formulate
and provaylobal stability results, since the numerical simulations give no hint of any other attractors beyond those
seen here. Even more ambitiously, can one formulate and prove some convergence rislsultsas

As we will see below, the first few of these problems have been solved, while the rest remain open. Specifically,
Kuramoto derived exact results & andr..(K), Mirollo and | solved the linear stability problem for the zero

K

Fig. 3. Dependence of the steady-state coheregoen the coupling strengt.
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branch, and Crawford extended those results to the weakly nonlinear case. But we still do not know how to show
that the bifurcating branch is linearly stable along its entire length (if it truly is), and nobody has even touched the
problems of global stability and convergence.

4. Kuramoto’s analysis

In his earliest work, Kuramoto analyzed his model without the benefit of simulations — he guessed the correct
long-term behavior of the solutions in the lint— oo, using symmetry considerations and marvelous intuition.
Specifically, he sought steady solutions, whetpis constant and (t) rotates uniformly at frequencg. By going
into the rotating frame with frequen&y and choosing the origin of this frame correctly, one can/set0 without
loss of generality.

Then the governing equation (3.3) becomes

6 =w; —Krsing;,, i=1...,N. (4.1)

Sincer is assumed constant in (4.1), all the oscillators are effectively independent — that is the beauty of steady
solutions. The strategy now is to solve for the resulting motions of all the oscillators (which will depenaison
a parameter). These motions in turn imply valuesrfandyr which must be consistent with the values originally
assumed. Thiself-consistencgondition is the key to the analysis.

The solutions of (4.1) exhibit two types of long-term behavior, depending on the sizg oélative toKr. The
oscillators with ;| < Kr approach a stable fixed point defined implicitly by

w; = Krsing;, (4-2)

where|6;| < %n. These oscillators will be called “locked” because they are phase-locked at freq@eéndye

original frame. In contrast, the oscillators with | >Kr are “drifting” — they run around the circle in a nonuniform
manner, accelerating near some phases and hesitating at others, with the inherently fastest oscillators continually
lapping the locked oscillators, and the slowest ones being lapped by them. The locked oscillators correspond to the
center ofg(w) and the drifting oscillators correspond to the tails, as expected.

At this stage, Kuramoto has neatly explained why the population splits into two groups. But before we get too
complacent, notice that the existence of the drifting oscillators would seem to contradict the original assumption
thatr andy, are constant. How can the centroid of the population remain constant with all those drifting oscillators
buzzing around the circle?

Kuramoto deftly avoided this problem by demanding that the drifting oscillators form a stationary distribution on
the circle. Then the centroid stays fixed even though individual oscillators continue to moy&€6 Lej do denote
the fraction of oscillators with natural frequeneythat lie betwee® andd + df. Stationarity requires that(d, )
be inversely proportional to the speedabscillators pile up at slow places and thin out at fast places on the circle.
Hence

C

0,0) = ———.
P, ) |w — Krsing|

(4.3)
The normalization constaftis determined bﬂnp(e, w) dd = 1 for eachw, which yields

c= L 2o (Kn)2.

2



S.H. Strogatz/ Physica D 143 (2000) 1-20 7

Next, we invoke the self-consistency condition: the constant value of the order parameter must be consistent with
that implied by (3.2). Using angular brackets to denote population averages, we have

(€%) = (€")1ock + (&) aritt-
Sincey =0 by assumption(e?) =r €V =r. Thus,
r = (€)iock + (€%) aritt-

We evaluate the locked contribution first. In the locked stateq’sia w/Kr for all |w| < Kr. As N — oo, the distri-
bution of locked phases is symmetric abéut 0 becausg(w) = g(—w); there are just as many oscillatorgatas
at —6*. Hence(sinf)|ock =0 and

Kr

(€%} 00k = (COSH) ook = / O (@) (@) o,
r

wherefd (w) is defined implicitly by (4.2). Changing variables franto 6 yields

) /2 /2
(€Y 1ock = / /Zcoseg(Krsine)Kr cosp do = Kr/ /Zcosz 0g(Krsing) do.
- -7

Now, consider the drifting oscillators. They contribute
. s X
(€ arift = / / €900, w)g(w) dw d.
—J|w|>Kr

It turns out that this integral vanishes. This follows frgfw) = g(—w) and the symmetry(6 + 7, —w) = p(6, ®)
implied by (4.3).
Therefore, the self-consistency condition reduces to

/2
r= Krf co< 0g(Kr sing) d. (4.4)
—/2

Eq. (4.4) always has a triviakero solution =0, for any value oK. This corresponds to a completely incoherent
state withp(0, w) = 1/27 for all 6, w. A second branch of solutions, corresponding to partially synchronized states,
satisfies

/2
1= K/ co g (Kr sing) do. (4.5)
—/2
This branch bifurcates continuously fram= 0 at a valueK = K. obtained by letting — 0% in (4.5). Thus,
2
7g(0)’

which is Kuramoto’s exact formula for the critical coupling at the onset of collective synchronization. By expanding
the integrand in (4.5) in powers of we find that the bifurcation is supercriticalgf (0) < 0 (the generic case for
smooth, unimodal, even densitig(®)) and it is subcritical ify’(0) > 0. Near onset, the amplitude of the bifurcating
branch obeys the square-root scaling law:

16 "
~ [ [ 4.6
' TK3\ —g"(0) (4.6)
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is the normalized distance above threshold. For the special case of a Lorentzian or Cauchy density

, (4.7)

for all K> K¢. This formula was later shown to match the results of numerical simulations [6,7].

5. Two unsolved problems
5.1. Finite-N fluctuations

Inthe last of her three Bowen lectures at Berkeley in 1986, Kopell pointed out that Kuramoto’s argument contained
a few intuitive leaps that were far from obvious — in fact, they began to seem paradoxical the more one thought
about them — and she wondered whether one could prove some theorems that would put the analysis on firmer
footing. In particular, she wanted to redo the analysis rigorously for large butfinged then prove a convergence
result adN — oo.

But it would not be easy. Whereas Kuramoto’s approach had relied on the assumptiomdbkatrictly constant,
Kopell emphasized that nothing like that could be strictly true for any fidit€hink about the simple cag€= 0.
Thend; = w; and every trajectory is dense on tReorus, at least for the generic case where the frequencies are
rationally independent. But thett) eventually passes through every possible value between 0 and 1, completely
unlike the constant value= 0 implied by Kuramoto’s argument! AdmittedIg(t) would spend nearly all its time
very close to zero, at= O(N~1/2) « 1, and only blip up extremely rarely — in that semse0 is practically correct.
But how can this rough idea be made precise? WKerD, the situation would become still more difficult, because
now there would b¢hreesubpopulations of oscillators — locked and drifting ones as in Kuramoto’s analysis, but
also some fuzzy oscillators between them, determined by the ever-fluctuating bowndaly (t).

Kopell's suggestion was to try to prove something like this: For Ia¥géor most initial conditions, and for
most realizations of the;, the coherence(t) approaches the Kuramoto valug (K) and stays within Q¢~/2)
of it for a large fraction of the time. Around the same time, Daido [30—-33], and Kuramoto and Nishikawa [8,9]
began exploring the finitét fluctuations using computer simulations and physical arguments. It appears that the
fluctuations are indeed ®(1/2) except very close t&¢, where they may be amplified [30-33].

Still, the issue of fluctuations remains wide open mathematically. As of March 2000, there are no rigorous
convergence results about the finNésehavior of the Kuramoto model.

5.2. Stability

The other major issue left unresolved by Kuramoto’s analysis concerns the stability of the steady solutions. It
was in this arena that Crawford ultimately contributed so much, and so we will focus on it for the rest of this paper.
Kuramoto was well aware of the stability problem; he writes [5] (p. 74):

“One may expect that negatiye(i.e., weaker coupling) makes the zero solution stable, and pogifive., stronger
coupling) unstable. Surprisingly enough, this seemingly obvious fact seems difficult to prove. The difficulty here
comes from the fact that an infinitely large number of phase configurafipns = 1, ..., N} belong to an
identical “macroscopic” state specified by a given value.'bf
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He also remarks that it “appears to be difficult to prove” that the branch of partially synchronized states is stable
when the bifurcation is supercritical, and unstable when it is subcritical.

6. Stability theories of Kuramoto and Nishikawa

Kuramoto and Nishikawa [8,9] were the first to tackle the stability problem. They proposed two different theories,
both based on plausible physical reasoning, but neither of which ultimately turned out to be correct. Nevertheless,
it is interesting to look back at their pioneering ideas, partly because they came tantalizingly close to the truth, and
partly to remind us how subtle the stability problem appeared at the time.

6.1. Firsttheory

In their first approach, Kuramoto and Nishikawa [8] tried to derive an evolution equatio(t)for closed form,

a dynamical extension of the earlier self-consistency equation (4.5). The hope was that this might be possible close
to the bifurcation, where(t) would be expected to evolve extremely slowly compared to the relaxation time of the
individual oscillators. Then each oscillator would follow the order parameter almost adiabatically, allowing these
rapid variables to be eliminated and causing a great reduction in the dynamics.

To push this strategy through, Kuramoto and Nishikawa [8] made several approximations whose validity was
uncertain. As in the steady-state theory, they separated the population into locked and drifting groups; such a sharp
division should be possible i{t) varies slowly enough. The characteristic timescale of the locked oscillators was
argued to be of orde&f)~1, which is very slow since(t) « 1 near the bifurcation. The theory also suggested that
the drifting oscillators make a negligible contribution to the dynamiagtpf

In the end, they were led to the following unconventional equation (see Eg. (3.36) in [8]):

S g(urz — pr, (6.1)

whereg; is an O(1) constant that arises in their thearys: (K — K¢)/K¢ as before, ang = _1—16” Kc3g”(0). Note
the peculiar extra factor ofon the right-hand side as compared to the usual normal form near a pitchfork bifurcation.
Eq. (6.1) predicts that the zero solution is stable below thresfold@), but with anomalously slow algebraic decay

r(r) =0@"h

ast — oo. Above threshold, the zero solution is unstable, though weakly(§dnitially grows only linearly int,
then eventually relaxes exponentially fasttg = /iu/B.

6.2. Second theory

Kuramoto and Nishikawa soon realized that something was wrong. Two years later, they revisited the problem [9]
and stated with admirable candor, “In the past, we seem to have held an erroneous view about the onset of collective
oscillation ..”. They now believed that the drifting oscillators aretnegligible throughout the whole evolution of
r(t) — rather, these oscillators play a decisive dynamical role in the earliest stages, thanks to their rapid response to
fluctuations irr(t), though in the long run they still do not affect the steady value of

Kuramoto and Nishikawa [9] also proposed a new strategy for deriving an evolution equatidt).fém the
governing equation

0; = w; — Kr(r) siné;,
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they pretend that(t) is an external force, say(t), and then derive the responses of the individual oscillators to
h(t), restricting attention to the linear regime whén(¢) « 1. These individual responses (which depend on the
whole history ofh(t)) can then be combined to yield the responsg®)f On general grounds, and without giving a
derivation, Kuramoto and Nishikawa [9] guessed tt{gtshould be a linear functional ¢it) of the form

r(t) = / M(t)h(t — 7)dr,
0

whereM is a memory function to be determined. But sitds reallyr in disguise, the equation must be

o0
r(t) = / M(t)r(t — 1) dr. (6.2)
0
To calculate the kernd\l, they consider the response to a step function
_fho, =0,
h(’)_{o, t>0,

and find that, for exampl®/(t) = e when the distribution is the Lorentzig(w) = [ (w? + 1)]~L. (The calculation

of M is straightforward. The oscillators are initially distributed according to the stationary dexf8ityy) found

in Section 4, wherdny plays the role of in the earlier formulas. The densigyis smooth ing for the drifting
oscillators and a delta function # for the locked oscillators. Then, sintgt) =0 for t>0, all the oscillators

and their corresponding densities rotate rigidly and independently at their natural frequencies. The corresponding
evolution ofr(t) can be found by integratind’ewith respect to these rotating densities, weighted(ay), and then

M(t) can be extracted from the result.)

Within this revised framework, Kuramoto and Nishikawa [9] now found ttfgtgrows exponentially above
threshold, and decays exponentially below threshold. In other words, the zero solution was now predicted to change
stability in the most standard way — it goes from linearly stable to linearly unstatdaéraseases througKc.

But, should one really believe this prediction? Remember, the integral equation (6.2) was not derived in any
systematic way from the governing equation (3.1). On the other hand, the intuitive argument for (6.2) looked
plausible, and maybe even convincing.

7. Continuum limit of the Kuramoto model

It was against this confusing backdrop that Mirollo and | began thinking about the stability problem. At the time,
it was unclear how to formulate the problem mathematically. We did not even know how to write down an Mfinite-
version of the Kuramoto model, let alone analyze the stability of its steady solutions.

We eventually realized that the continuum limit should be phrased in termisrdties just as in traffic flow,
kinetic theory, or fluid mechanics [34]. For each natural frequendgnagine a continuum of oscillators distributed
on the circle. Lefp (0,1, w) dd denote the fraction of these oscillators that lie betw@endd + do at timet. Then
p is nonnegative, 2-periodic ind, and satisfies the normalization

2
/0 06,1, w)do =1 (7.1)

for all t andw. The evolution ofp is governed by the continuity equation

ap _ _i
o = gV (7-2)
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which expresses conservation of oscillators of frequendyere the velocity(6, t, w) is interpreted in an Eulerian
sense as the instantaneous velocity of an oscillator at positigiven that it has natural frequenay From (3.3),
that velocity is

v(0,1, w) = w+ Krsin(y —0), (7.3)

wherer(t) and (t) are now given by

. 2 poo
re? =/0 / €950, 1, w)g(w) dw db, (7.4)

which follows from the law of large numbers applied to (3.2). Equivalently, these equations can be combined to
yield a single equation fos in closed form:

ap a [ ( 27[ o H !/ / / / / /
—=——1p a)+K/ / sin(@’ —0)p (@', t, w")g(w') do’ do . (7.5)
ar 90 o oo

The expression in parenthese®(8, t, w), written as the infiniteN version of (3.1).

Eq. (7.5) is the continuum limit of the Kuramoto model [34]. It is a nonlinear partial integro-differential equation
for p. The virtue of (7.5) is that all questions about existence, stability, and bifurcation of various kinds of solutions
can now be addressed systematically.

For instance, the stationary states of (7.5) are precisely the steady solutions that Kuramoto [4,5] wrote down
intuitively. To see this, note thatp/ot = 0 impliespv = C(w), whereC(w) is constant with respect tb If C(w) #0,
we recover the stationary density (4.3) for the drifting oscillator§(if) = 0, we find thatp is a delta function in
0, based at the locked phase found earlier.

The simplest state is the uniforimcoherent state

0, 0) = !
po 16()_27-[7

or what we earlier called the zero solution. As we will see in Section 8, its linear stability properties turn out to be
stranger than anyone had expected.

Egs. (7.2)—(7.5) had been studied previously by Sakaguchi [35], who extended the Kuramoto model to allow
rapid stochastic fluctuations in the natural frequencies. The governing equations are

N
Oi:w,‘+§,~+ﬁé lSIﬂ(Gj—Q,'), i=1...,N, (7.6)
j=

where the variables; (t) are independent white noise processes that satisfy
(&) =0, (5i(5)&;(1)) = 2D3;jd(s —1).

HereD > 0 is the noise strength and the angular brackets denote an average over realizations of the noise. Sakaguchi
argued intuitively that since (7.6) is a system of Langevin equations with mean-field coupg; @s the density
0(0,1, w) should satisfy the Fokker—Planck equation

ap 2p 9

T _p_ L ___ 7.7

o 292~ 39 P (7.7)
wherev(6,t, ), r(t), andy (t) are given by (7.3) and (7.4). Thus Sakaguchi's Fokker—Planck equation reduces to
the continuum limit of the Kuramoto model whén= 0.
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However, Sakaguchi [35] did not present a stability analysis of his model. Instead he solved for the station-
ary densities, and then extended Kuramoto’s self-consistency argument to determine where a branch of partially
synchronized states bifurcates from the incoherent state. In this way he showed that the critical coupling is

00 D -1

which reduces to Kuramoto’s formuké. = 2/7g(0) asD — 0™.

8. Stability of the incoherent state

The linear stability problem for the incoherent state of Sakaguchi’s model was solved in [34]. Here is an outline
of the approach and the results (for consistency with the rest of this paper, we will restrict attention to the Kuramoto
model, whereD = 0). Let

1
97 ts = = 97 t9 5 8.1
pO.1,0) = o +en@®.1, ) (8.1)
wheres « 1 and we write the perturbatiopas a Fourier series
N0, 1, 0) = c(t, w) € +c.cHntO, 1, w). (8.2)

Here c.c. denotes complex conjugate, aficcontains the second and higher harmonics.¢Note that; automat-
ically has zero mean, because of (7.1).) We write the perturbation in this way because it turns out that the linearized
amplitude equation for the first harmonit, w), is the only one with nontrivial dynamics; that's essentially because
of the pure sinusoidal coupling in the Kuramoto model. Substituting fioto (7.5) yields
ac

— i +K/°o (1, o)g(0) do (8.3)
8t_ wcC 2 7006 , W ga) @ . .

The right-hand side of (8.3) defines a linear operaiagiven by
K o
Ac= —iwc + E/ c(t, w)g(@) do'. (8.4)
—00

The spectrum of\ has both continuous and discrete parts, as shown in [34]. Its continuous spectrum is pure imag-
inary, {iw: wesupport@)}, corresponding to a continuous familyrgutralmodes. These modes can be understood
intuitively by imagining an initial perturbation(@, »,t=0) supported on a sliver of exactly one frequency, say
o = wo. In other words, we disturb the slice of the oscillator population with intrinsic frequepeynd leave the rest
alone in their perfectly incoherent state. The corresponding ampli{@e) would then take the forra(0,w) =0
for all w #£ wo (oscillators at those frequencies are not disturbed). Asferwg, we can choose(0, wg) = 1 with-
out loss of generality, since (8.4) is linear. The key point is that the integral in (8.4) vanishes for this strange sliver
perturbation, and so (8.4) reducesAo=iwgc. Hencec(0,w) is (morally speaking) an eigenfunction with pure
imaginary eigenvaluedp, and that explains the form of the continuous spectrum. Of course, this argument is not
strictly correct, because this sliver perturbation is equivalemfito the zero perturbation, and so is not a valid
eigenmode. But the intuition is right, and it agrees with the rigorous calculations given in [34].

To find the discrete spectrum Af let

c(t, w) = b(w) €.
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Then
K o
Ab = —iwb + —/ b(w)g(@) dw'. (8.5)
2 )0
The integral is just a constant to be determined self-consistently. Thus, let
K o
B = —/ b(w)g(@) do'. (8.6)
2 )

Solving (8.5) forb yields

blw) = Atio

Substituting this back into (8.5) gives the characteristic equation

_5 ® g(w) dw
1= 2/,00)»+ia)' ®.7)

Now suppose thag(w) is even and nowhere increasing ond6), in the sense thaj(w) > g(v) wheneverw < v;
this is the case originally considered by Kuramoto. Then one can prove that (8.7) has at most one solution for
and if it exists, it is real [36]. Hence (8.7) becomes

K

o0 A

Eq. (8.8) shows that any eigenvalue must satisfy0, since otherwise the right-hand side of (8.8) is negative.
Hence there can never be any negative eigenvalues!

So our analysis has yielded a surprise: the incoherent state of the Kuramoto model can never be linearly stable
— it is either unstable or neutrally stable.

To find the borderline couplinkc between these two cases, consider the lirsit 01 in (8.8). Theri/(A2 + w?)
becomes more and more sharply peaked aboeuD, yet its integral over-co < w < oo remains equal ta. Hence
M2 + w?) — 78(w), and so (8.8) tends to

1= 1Kcrg(0),

which gives a new derivation of th€&; found by Kuramoto [4,5].
Eq. (8.8) also provides explicit formulas for the growth riaté g(w) is a sufficiently simple density. For instance,
the uniform density(w) = 1/2y with —y <w <y gives

2
A= ycot(%) (8.9)

and the Lorentzian density (4.7) gives
A=3K —y. (8.10)

These eigenvalues match the growth rates seen in numerical simulatiéts Koy [34].

In summary, the linearization about the incoherent state of the Kuramoto model has a purely imaginary continuous
spectrum forK < K¢, and the discrete spectrum is empty. lAsncreases, a real eigenvalieemerges from the
continuous spectrum and moves into the right half plan&feK. (Fig. 4).

These results confirm Kuramoto’s conjecture [5] that the incoherent state becomes unstablexheBut
the shocker is that incoherence is linearly neutrally stable fdf allKc.
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ImA ImA

continuous .
discrete

spectrum — / spectrum

Re A Re A

(a) K>K, (b) K<K,

Fig. 4. Spectrum of the linear operator (8.4) that governs the linear stability of the incohereppstatér . (a) Fork > K, the incoherent state
is unstable, thanks to the discrete eigenvaled. This eigenvalue pops out of the continuous spectrukn=ak.. (b) ForK < K¢, the discrete
spectrum is empty and the incoherent state is neutrally stable.

9. Landau damping

Mirollo and | were novices at continuous spectra, and we were bewildered by its effects on the discrete spectrum.
We expected that a6 decreases throudfy, the eigenvalu@ should move toward the continuous spectrum, collide
with it, then pop out the back. But it did not — it just disappeared. Where did it go? Another weird thing was that
explicit formulas fora like (8.9) and (8.10) look perfectly innocuous #< K¢. They give no hint that is doomed,;
they simply predict, incorrectly, thatgoes negative.

Matthews, then an applied math instructor at MIT, became interested in this issue and we all began working on it
together. The mystery deepened when Matthews ran some simulatidtsfig that seemed to show exponential
decay of the coherenc&) — and the decay rate was exactly the negatipeedicted by the formulas, in the regime
where they were not supposed to hold. Spooky!

9.1. The long-sought integral equation

But mayber(t) could decay exponentially evenijfo, t, ) does not? We needed to find an equation governing
the evolution of (t). Recall that this is what Kuramoto and Nishikawa [8,9] had been searching for too, as discussed
in Section 6. Fortunately it was now possible to derive such an equation systematically, as follows [37]. Egs. (8.1),

(8.2) and (7.4) yield

r(t) =2ne

/Ooc(t, w)g(w) dow| . (9.1)

—0o0

Notice that the integral in (9.1) also appears in the linearized amplitude equation (8.4). Since (9.1) reveals an intimate
relationship between that integral ar(t), let us introduce the notation

R() = /ooc(t, w)g(w) dw. (9.2

Eq. (8.3) is a first-order linear ordinary differential equationdfre), and hence is easily solved in termsRif)
and the initial conditiorty(w) = ¢(0, w). Inserting the result foe(t, ) into (9.2) gives the linear integral equation

K t
R(t) = (cog)(®) + E/o R(t — 1)g(r) dr, (9-3)
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where the hat denotes Fourier transform:

s = / g(w) €7 do.

—o0
The structure of (9.3) is reminiscent of (6.2), the equation guessed by Kuramoto and Nishikawa [@hlaytimg the
role of their memory functioM. In particularg(r) = e~* when the density is the Lorentzigtw) = [ (o? + 1)] 1,
in agreement with their finding thad(t) = e~* in this case. The main differences are that (9.3) is an equatidg) for
notr, and (9.3) includes a variable upper limit of integration andcjggterm.
To solve (9.3), use Laplace transforms and then apply the inversion formula to obtain the integral representation
*
1 (c08)™(s) o ds

R(t) = —

- 9.4
271 Jr 1 — 1Kgr(s) (9.4)

Here the contour is a vertical line to the right of any singularities of the integrand, and the asterisk denotes an
operation related to the Hilbert transform:
* f(w) do

oo St

) =

From (8.7), we see that the denominator in (9.4) vanishes precisely sib@mthe discrete spectrum &f Hence
for K < K¢, the denominatonevervanishes.

Some explicit solutions of (9.4) are possible. For the extremely special initial condif{an= 1, the exact
solution is

R(t) = exp[(%K - 7/) t], t>0,

wheng(r) = e 17!l corresponding to a Lorentziajfw). So exponential decay &(t), and hence(t), is possible
for K < Kc =2y, even though the incoherent statgis neutrally stable! On the other hand, for the uniform density
o(w) =1/2y on [—y,y], asymptotic analysis of the inversion integral (9.4) gives the much slower decay

—16y \ sinyt
R(t)~< )— ast — oo
K2 ] tln%

for K < Ke.

More generally, Matthews, Mirollo, and | found that 1< K, the asymptotic behavior &(t) depends crucially
on whetherg(w) is supported on a finite intervaly, ] or the whole real line (these are the only possibilities,
by our hypotheses thatis even and nowhere increasing tor 0). For the case of compact support, we proved
thatR(t) — 0 ast — oo, but the decay is always slower than exponential at long times, in agreement with numerics
[37]. If g(w) is supported on the whole line, the asymptotic behavioR@f can be much wilder: ank(t) € L2
can be contrived by an appropriate choice&g L2. But in the best-behaved case whg(e) andcy(w) are entire
functions,R(t) is merely a sum of decaying exponentials.

Finally, the integral representation (9.4) allowed us to understand the exponential decay that Matthews had seen
at intermediate times in his simulations. The decay is caused by a pole in the left halfplanpole not of the
integrand but of itenalytic continuatior{as required for the validity of the usual contour manipulations). This pole
coincides with the eigenvaluein the right half plane, but not in the left!

9.2. Alesson from Rowlands

In February 1991, Matthews gave a lecture at Warwick where he described the various bizarre features of our
stability problem: the continuous spectrum on the imaginary axis; the disappearance of the unstable eigenvalue
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into the continuous spectrum at threshold; the need for tricky analytic continuation arguments; the fact that the
macroscopic variablecan decay exponentially even though the density perturbatdoes not.

Rowlands was in the audience, and he told Matthews that something just like this had been seen before in plasma
physics, where it is called “Landau damping”. For the next several months, we devoured whatever we could find on
the subject, and soon realized that Landau damping was a fascinating, confusing story in its own right, starting with
brilliant but not entirely rigorous work by Landau in 1946, followed by two decades worth of controversy [38—46].

Rowlands was right. There definitely was a link between Landau damping and the relaxation phenomena we were
seeing. It was awe-inspiring: the same mathematics describes the violent world of plasmas and the silent, hypnotic
pulsing of fireflies perched along a riverbank.

We spent a few months trying to get the mathematical story straight, and gradually we began writing a paper on
what we had found. But before it was done, | took a few days off to attend Dynamics Days in Austin, in January
1992,

10. A lunch with Crawford

As usual at Dynamics Days, there was a big table in the hall where people had left piles of reprints. A paper
caught my eye: “Amplitude equations on unstable manifolds: singular behavior from neutral modes”, by Crawford
[47].

Whoa — neutral modes! Heart beating fast, | skimmed the abstract and there it was: “The Vlasov equation for a
collisionless plasma is the second model; in this case there are an infinite number of neutral modes corresponding
to the van Kampen continuous spectrum”. Yep, that confirms it. He's thinking about the same kind of things that
we are. | had heard of Crawford and | knew that he was supposed to be a brilliant young guy and a great applied
mathematician. Apparently he knows a lot about plasmas and continuous spectra — maybe he can clarify some
things about Landau damping and tell me if our ideas about the Kuramoto model seem right.

So | asked around, and it seemed everybody but me knew who Crawford was. Mary Silber, Emily Stone, and
Kurt Wiesenfeld all tried to describe him to me, but we could not find him anywhere.

Eventually our paths crossed. | was struck by his combination of seriousness and pleasantness. He seemed
different from the rest of the gang, maybe more reserved, maybe just better manners? Anyway, | told him what |
had hoped to discuss, and he seemed to like the idea, so we wandered off to have lunch together and ended up at a
hamburger joint somewhere, a dark woody place, perfect for thinking about math.

I told him about the crazy behavior of the unstable eigenvalue and how it got absorbed by the continuous spectrum
on the imaginary axis, but before | could get very far, he gave me a reassuring nod. He seemed to know the whole
story without me telling him. Yes, all these things were familiar and standard in the context of collisionless plasmas
[38—-48]. Not only that, he explained, but similar phenomena occur in many other parts of science, in connection
with instabilities of ideal shear flows [49-51], solitary waves [52,53], bubbly fluids [54], and resonance poles in
atomic systems [55]. We — | wastalking to the right guy.

He went on to explain some of his own work. He was trying to write amplitude equations for a weakly unstable
mode in a Vlasov plasma, but the difficulty was that the coefficients in those equations k&nguiaras the un-
stable eigenvalue approaches the neutral continuous spectrum, reflecting unusually strong nonlinear effects [47,48].
Whereas normally the saturated amplitude of the bifurcating mode grows/bkévheres = Rea is the linear
growth rate), in these situations the nonlinear interactions lead to a much smaller amplitude {©the Vlasov
case).

Hold on, | said. In the Kuramoto model, we can find the amplitude of the bifurcating mode exactly, and we do
see the usual square-root scaling; that follows from (4.6) and the fact thd€ — K; near threshold. That got
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Crawford’s attention. | showed him Kuramoto’s classic analysis (Section 4) and yes, he agreed, something different
seemed to be going on here. For some reason, the Kuramoto model was not showing signs of the singularities
that afflicted the Vlasov problem. Crawford realized that this could be an instructive case. If he could derive the
amplitude equations for the Kuramoto model, they should not turn out to be singular — and maybe that would shed
some light on the plasma problem, as well as giving more general insight into the effects of the neutral continuum
on the scaling of unstable modes.

That is how Crawford got started on the Kuramoto model.

11. Crawford’s work on coupled oscillators

Crawford’s first paper on coupled oscillators [1] contains the decisive step. He showed how to approach the
local stability analysis of the Kuramoto model in a systematic way, using the tools of center manifold theory and
equivariant bifurcation theory.

At the time, Crawford developed this approach almost in passing. What really grabbed his attention was a paper
by Bonilla et al. [56] that had just appeared. Those authors were the first to attempt a nonlinear stability analysis
of the Kuramoto model, and they noticed that Hopf bifurcations became possible if the frequency distguition
were allowed to be bimodal. But when Crawford saw their analysis, he instantly felt that something was amiss. It
seemed to him that Bonilla et al. had unfortunately omitted half of the unstable eigenvectors that would generically
be forced by the O(2) symmetry of the system. He wondered whether some nonlinear traveling and standing wave
solutions had been overlooked. That turned out to be the case. So part of Crawford’s paper [1] is devoted to a careful
re-analysis of the dynamics for bimodg{l).

More significantly, Crawford presented the first derivation and analysis of the amplitude equations for both
steady-state and Hopf bifurcations from the incoherent stgte, ») = 1/2r. He worked with Sakaguchi's gener-
alization of the Kuramoto model:

% _pde 3 +K/2n/msin(9’—9) 0,1, 0)g() do' d6’ (11.1)
ar a2 a0 | P\ o Pl w)slw) tw ’ '

where the densitg(w) is assumed to be even, as before, but is no longer restricted to be unimodal.

With noise strengtid > 0, the continuous spectrum lies safely in the left half plane, so center manifold reduction
can be applied. Crawford exploits the system’s O(2) symmetry to constrain the form of the center manifold and the
vector field on it, yet the calculation is still daunting. Eventually he arrives at an equation ([1], Eq. (108)), that, in
our notation, is equivalent to

F=ar+ard +03).

Recall from Section 6 that Kuramoto and Nishikawa [8] had been looking for an amplitude equation like this.
Crawford finally found it. In Eq. (138) of [1], he works out the value of the coefficeemind confirms that as
D — 0™, it agrees with the value found by Kuramoto’s self-consistency approach. The amplitude equation also
strongly suggests that the bifurcating branch is locally stable, at least at onset. Still, it is not a proof, as Crawford
notes: “However, whem =0, center manifold theory no longer justifies our reduction to two dimensions; the
gualitative agreement & = 0 between numerical simulations [6] and our amplitude equation may be fortuitous”.

There is one other important result in that first paper. Just as Crawford had suspected at our lunch in Austin,
the coefficients in the amplitude equation do indeed remain finife as0*, in striking contrast to the singular
behavior that occurs in the corresponding expansions for the Vlasov plasma problem. In both problems, the unstable
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modes correspond to an eigenvalue emerging from a neutral continuous spectrum at onset. So why are the amplitude
equations singular in one case and not in the other?

Anintriguing clue was provided by the work of Daido [57—60]. He investigated what happens when the sinusoidal
coupling in the Kuramoto model is replaced by a general periodic function

(o.¢]
f@) =Y f.é".
n=—0oo
As before, the system exhibits incoherence for sufficiently small coupling, then bifurcates to a partially synchronized
state as the coupling is increased past a critical value. So at first glance the generalized model seems to show nothing
qualitatively new.

But upon closer inspection, it turns out that one aspect of the model — its scaling behavior near threshold — is
altered in an essential way. Following Kuramoto’s original calculation, Daido sought steady solutions and studied
their bifurcations by imposing a self-consistency condition. He generalized Kuramoto’s order parameter (which is
tailored to sinusoidal coupling) by extending it to an “order functibin’'Using a suitable norm dfl to measure the
amplitude of the bifurcating solution, Daido showed that

IH| ~ (K — K¢o)P,

where the scaling exponegt=1 generically. That was a big surprise — the obvious guess Wasﬂthat%,
the square-root scaling familiar from pitchfork and Hopf bifurcations and most mean-field models, including the
original Kuramoto model.

Crawford loved this result, because it meant that something singular must be happening in the amplitude equations.
Time for another monstrous center manifold reduction! That is the topic of Crawford’s next two papers [2,3].
Replacing the sine function in (11.1) with a gendrgklds

—=D— - — K 0 —0)p@,t, o "y dw' d6’ .
R [p (w+ fo [wf( 10, 1, 0)g() doo

This evolution equation always has SO(2) symmetryidfodd andy is even, as in the original Kuramoto model,
the symmetry is O(2).

In [2], Crawford computed the amplitude equations through third order and verified that they could become
singular, depending on the harmonic conterft bfis main result is that the saturated amplitude of an unstable mode
€' with mode numbet typically scales like

oo ~ Vo (0 +12D), (11.2)

whereo is the linear growth rate arid the noise strength. The unusual faciot 12D arises from a singularity in
the amplitude equation; it is generic in the sense that it occurs for any coupling furf¢g#mvith

Sfa #0.

To clarify this result, let us see why the original Kuramoto model gives no hint of the generic scaling (11.2). As
discussed in Section 8, tthe- 1 harmonic of the perturbatiof(d, t, ») is the only one that can go unstable; that is
why it was sufficient to concentrate on the dynamics of its amplitfje) and ignore the evolution of the higher
harmonics iry. However, we see now that the square-root scaling (4.6) found in that case is hongeneric, because
f(¢) = sing and hencé, = 0; the Kuramoto model has no second harmonic in the coupling.

For D=0, (11.2) generically yields the scaling expongnt 1 found earlier by Daido [59], but Crawford’s
analysis goes further by including stability information and the effects of noise. For instanceDa@n(11.2)
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shows that the scaling{,| ~ o crosses over to the traditional regdlt,| ~ /o sufficiently close to onset(— 0*),

or when the noise becomes sufficiently strong.

The recent paper by Crawford and Davies [3] is an even deeper exploration of these issues. Now the singularity
structure of the amplitude equations is calculatedltarders, but all the earlier conclusions still hold. This paper
also contains a rigorous derivation of Sakaguchi’'s equation (7.7), starting from a Fokker—Planck equation for the
coupled Langevin equation (7.6) on tNetorus and taking the limiN — co.

In summary, Crawford made several important contributions to the analysis of the Kuramoto model, including:

1. The first systematic formulation of the weakly nonlinear stability problem for the incoherent state, using center
manifold theory and equivariant bifurcation theory [1].

2. The first derivation of an evolution equation f@t), in the neighborhood of the incoherent state [1].

3. The first proof that the bifurcating branch of partially synchronized states is locally stable, near the synchroniza-
tion threshold and in the presence of weak noise [1].

4. The first exploration of the effects of the neutral continuous spectrum on the scaling of unstable modes [1], using
ideas that he had developed earlier in his work on the Vlasov model of collisionless plasmas [47,48], thereby
forging a link between these two previously separate fields.

5. The discovery that the amplitude equations for the Kuramoto model are nonsingular, in contrast to those for the
Vlasov model, and the explanation of this difference: the Kuramoto model has nongeneric singularity structure
due to the lack of a second harmonic in the coupling function [2,3].

6. The first study of the singularity structure of the amplitude equations for a generalized Kuramoto model in which
all harmonics are included [2,3].

Contributions 1-3 cracked some problems that had resisted solution for about two decades. Contributions 4—6
opened up a completely new line of inquiry, with implications not only for oscillator synchronization, but also for
plasma physics, fluid mechanics, kinetic theory, and other fields where instabilities are created by unstable modes
emerging from a continuous spectrum.

12. Epilog

The lasttime | saw Crawford was in spring 1998, at the Pattern Formation meeting at the Institute for Mathematics
and its Applications. It was his first conference after many bouts of chemotherapy, and although he was a little weak,
he was all smiles and his manner was as gracious as ever. We enjoyed some fun times together that week, especially
during a dinner with Mirollo. Over pizza and a few beers, the three of us discussed the linear stability problem for the
entire branch of partially synchronized states in the Kuramoto model. It is still unsolved, 25 years after Kuramoto
first posed it, but we thought we had some ideas about how to proceed, and we hoped to collaborate on it after the
conference. With Crawford on our team, | bet we could have done it.
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