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Intermittency in random media

Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmalikin, and D. D. Sokolov
M. V. Keldysh Institute of Applied Mathematics, Academy of Sciences of the USSR

Usp. Fiz. Nauk 152, 3-32 (May 1987)

Some specific structures in which a growing quantity reaches record high values typically arise
for instabilities in random media. Despite the rarity of these concentrations, they dominate the
integral characteristics of the growing quantity (the mean value, the mean square value, etc.).
The appearance of such structures is called “intermittency.” The geometric properties of
intermittent structures depend strongly on whether the growing quantity is a scalar or a
vector. The scalar case is illustrated here by the example of an instability which arises in
problems of chemical kinetics. The vector case is illustrated by the problem of the self-
excitation of a magnetic field in a random flow of a conducting fluid.
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1. INTRODUCTION

Thermodynamics exerted a great influence in the 19th
century and the beginning of the 20th. The development of
thermodynamics and its application to an extremely wide
range of phenomena (heat engines, chemistry, and much
more) played a huge role in the development of science and
technology. The construction of a basis for thermodynam-
ics, as a consequence of a statistical mechanics based on clas-
sical mechanics, was a formidable achievement.

Thermodynamics deals with average quantities. The
averaging idea has penetrated deeply into other fields also.
This is the approach which has been taken to describe turbu-
lent flows in hydrodynamics since the time of Reynolds,
down to the present. This simple and convenient approach to
complicated phenomena has led to many practical results.

However, thermodynamics and the average approach
have their limits. A clear example of the illegitimate applica-
tion of thermodyamics is the sadly famous ‘““theory of the
thermal death of the universe.” Today we understand quite
well that in the presence of long-range gravitational forces a
dismal homogeneous distribution of gas in an infinite space
is by no means either the state with the maximum entropy at
the given energy or the final state of evolution.

The study of fluctuations was added to thermodynam-
ics at the beginning of the century. In a single-phase medium
with given mean values, the probability density of a fluctu-
ation obeys a Gaussian law P(4) ~exp([ — a(4 —A4)?],
where A is the quantity under consideration (e.g., the num-
ber of particles in a given volume), Aisits “thermodynamic”
mean value, and the coefficient @ can also be expressed in
terms of thermodynamic functions and their derivatives.
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The first steps taken in statistical mechanics led to a
velocity distribution of molecules which also obeyed a Gaus-
sian law P(v) ~exp[ — (v — 7)?/2kT]. Even earlier, prob-
ability theory had derived a Gaussian distribution for the
sum of many random quantities. These developments creat-
ed an atmosphere which allowed the deification of the Gaus-
sian distribution. Actually, some very non-Gaussian distri-
butions are quite common in nature. Classical statistical
physics incorporates phase transitions, some of which are
associated with a spontaneous symmetry breaking.

The spontaneous appearance of ordered structures in
nature—the frost patterns on glass in the winter and the
regular arrays of convection cells in a liquid or of layers in
the gems jasper and agate—is surprising and unexplainable
only from a thermodynamic standpoint. Any sort of living
matter would seem to violate thermodynamics. The question
of the decrease in entropy in these processes has a simple
answer: The increase in the entropy of the system as a whole,
when heat transfer is taken into account in the condensation
of hoarfrost or when the combustion of food is taken into
account in a living organism, is many times greater than the
entropy decrease accompanying the formation of the struc-
tures. However, an understanding and a description of the
processes by which structures form requires going beyond
the average description in a fundamental way. In a sense we
need to go back to the vast number of possible realizations
over which thermodynamics triumphed and to seek those
realizations which form an order against the background of
an overall disorder.

One might attempt to link ordering effects with the sub-
tle properties of molecules, atoms, and elementary particles,
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e.g., to relate the reflection asymmetry of a living creature
with the violation of Pinvariance among the elementary par-
ticles. A fundamentally different approach is to explain
spontaneous order as a game of chance in an ensemble of a
large number of particles." There is something similar in

“synergetics. Synergetics, however, rests primarily on a study
of nonlinear processes*® which are described by nonlinear
equations, and chance is relegated to the role of simply a
small seed.

Our purpose in the present paper is to demonstrate the
appearance of structure in a random medium in transport
phenomena which are described in a certain stage by linear
differential equations. Here randomness is the primary
mechanism for the appearance of the structure, and the non-
linearity, which comes into play later, prevents an unbound-
ed growth of the resulting formations. The structures which
arise in a random medium are peculiar: They take the form
of peaks which appear at random places and at random
times. The intervals between them are characterized by alow
intensity and a large size.

The general term for such a picture is “intermittency.”
This term arose in research on the velocity field and tem-
perature spots in a turbulent medium.” Intermittency has
also been studied for hydrodynamic turbulence in connec-
tion with that refinement of the Kolmogorov-Obukhov hy-
pothesis which was stimulated by L. D. Landau (see, for
example, the monograph by Monin and Yaglom®) and in the
theory of wave propagation in random media.” Another ex-
ample is the localization effect in the quantum theory of dis-
ordered media, which has been studied comprehensively by
1. M. Lifshitz and his students.®

Intermittency has been seen in numerical simulations in
magnetohydrodynamics’** and in the theory of the forma-
tion of galaxies, which has been supported by astronomical
observations of the structure of the universe.®

From the physical standpoint, intermittency arises as a
result of a phasing effect of a random medium on a quantity
being transported in it. For example, in the flow of a con-
ducting fluid with a random velocity field and an embedded
initial magnetic field one finds places where the flow is most
effective in amplifying the magnetic field as a result of a
stretching of magnetic field lines by the flow.” The appear-
ance of such regions is of course a rare and improbable event.
However, nearly all the energy of the field which is generated
is concentrated at these maxima, so they cannot be ignored.
They dominate the mean values and mean square values.
The first two moments, however, are not enough to com-
pletely characterize a distribution. The principal character-
istic of intermittency is specifically the relation between
successive statistical moments—a relation which is anoma-
lous in comparison with the Gaussian relation. In terms of
Fourier analysis, intermittency is characterized by not only
a slow decrease in the Fourier harmonics with increasing
wave number but also a definite phase relation among them.
A sum of higher harmonics with random phases would con-
tribute something similar to a Weierstrass function, in other
words, a fractal curve instead of individual peaks.'’ On the
other hand, a sum of specially phased plane waves will give
us a 8-function or several 5-functions. By way of comparison
we might cite the example of an intermittency generated by a
nonlinearity. The amplitude of electromagnetic oscillations
in a resonator with a bleaching (nonlinear) element is defini-
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tely not Gaussian, as was shown in Ref. 11. An interesting
suggestion was made in that paper: to utilize the multipho-
ton photoelectric effect to measure the higher moments of
the distribution of a field amplitude.

In a medium which is spatially homogeneous in the sta-
tistical sense, intermittency is a phenomenon which is mani-
fested extremely rarely: When an instability occurs, e.g.,
during the self-excitation of a magnetic field, the ratio of the
mean square values of a field which is and is not concentrat-
ed at peaks increases exponentially with time.%2¢ In the case
of a spatially bounded medium it turns out that at a certain
time the typical distance between high peaks begins to ex-
ceed the dimensions of the system. After this time, averages
taken over space and over the ensemble no longer agree;
averages over space increase more slowly than averages over
the ensemble. Thus intermittency in a bounded problem is
less sharply expressed.'? "

A question of major interest is the structure of an inter-
mittent distribution. The formation of high, isolated peaks
typically occurs asymptotically in time. In space, these
peaks usually correspond to field spots which are separated
by vast regions of lower intensity. However, the formation of
a cellular or reticular structure is possible, and may even be
typical, as an intermediate asymptotic situation. Such a
structure would have thin channels of elevated intensity (the
“rich phase”) separated from each other by isolated islands
of the *““poor phase.” The structure of the universe is an ex-
ample of such an intermediate intermittency.® In the paper
below we will be discussing only the remote asymptotic be-
havior as 7— o0. In this limit the cellular structure of the
universe is disrupted, and after the matter crowds together a
new intermittent structure appears. In optics the problem of
the appearance of structures is frequently examined in the
case in which light passes through a plate with a random
profile. This situation corresponds to the evolution of a ran-
dom initial condition in a determinate medium. At a short
distance from the surface of the plate, the structure of caus-
tics reappears; with increasing distance, this structure be-
comes washed out, and the effect of the randomness is gradu-
ally erased. Intermittency effects of the nature of intensity
peaks are also observed in the simpler problem of the propa-
gation of waves in a medium with a random absorption coef-
ficient.>'? In particular, it turns out that the mean value of
the light flux which has traversed a large thickness of a ran-
dom medium is determined not by the typical value of the
flux which has traversed the medium near some point chosen
at random but by distinct and very rare bright points (this
idea was expressed in Ref. 6).

Intermittency is seen both in observations (Fig. 1) and
in numerical simulations (Fig. 2).

The problem of the onset of intermittency is in a sense
the inverse of the well-known problem of the onset of chaos
from an ordered motion in a dynamic system which is de-
scribed by a small number of ordinary differential equations
(see Ref. 14, for example, regarding this problem).

At the outset we will be focusing on elementary ques-
tions discussion of which will help bring out the nature of
intermittency and introduce some necessary concepts. We
will then examine the intermittency phenomenon using the
example of the transport of a passive scalar and a divergence-
free” vector in a short-correlated random medium, which is
a topic which can be treated analytically.
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An intermittency generated by a randomness is dis-
cussed in application to two physical problems. In the first
(and simpler) problem, we examine the behavior of a parti-
cle in a given random potential. The second problem in-
volves the generation and transport of a vector (a magnetic
field or a vorticity) in a turbulent flow which is sustained by
an external source. These different physical problems have a
profound mathematical similarity in terms of the nature of
the solutions which arise, which are inhomogeneous in space
and time, and also in terms of the method by which these
solutions are found. The particular features of a vector field
are discussed in §11.

2. DISORDER AND ORDER

The simplest representation of disorder involves the as-
sumption that all possible elementary events are equally
probable. This assumption is frequently used in appraising
situations that one runs into—by flipping a coin—or in ex-
amples in courses on probability theory. Even at this level of
the theory, some nontrivial features arise. For example, if
two people playing pitch-and-toss toss a coin N times intu-
ition would suggest that the number of times neither of the
players ‘“‘takes the winner’s seat” would be proportional to
N. Actually, the number of draw situations is proportional
not to N but to N !/2, since the number of draws increases by
a random-walk law.'® The relative number of draws or,
in other words, changes in leader thus decreases as
N 2N~ N ~'2 as the game proceeds. This case serves as a
mathematical proof of a piece of folk wisdom: Go ahead and
play, but do not play to recoup your losses once you fall
behind.

The assumption of equiprobability frequently turns out
to be overly crude in a real situation. For example, these
arguments would naturally lead us to expect that a person
who goes down into the subway station at a random time
would have equal chances to ride off in either of two direc-
tions if he takes a seat on the first train which comes by.

FIG. 1. Magnetogram recorded at the Kitt Peak Observatory in 1982
(from Ref. 49). The typical size of the cells of this network is 30 000 km.
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FIG. 2. Concentrations of magnetic fields (the hatched regions) accord-
ing to a numerical simulation.’

Actually, the probability for going in one direction may be
significantly higher than 1/2. (This effect was apparently
first pointed out by A. M. Budker.) The reason is a correla-
tion in the motion of the trains. Let us assume that the trains
move in both directions at equal time intervals Az, but the
train going to the left arrives at a time 52 € At earlier than the
train going to the right.” The probability for riding off to the
right is then small, of the order of ¢ /At.

As a rule, a probability, as a measure on some set of
elementary events, is unknown. The meaningful conclusions
of the theory arise because we are usually interested in cer-
tain functions which are given on this set and whose proper-
ties depend only slightly on a probability distribution which
is not known exactly. This more realistic representation of
disorder is associated with a Gaussian or normal distribu-
tion. A Gaussian disorder is usually caused by the sum of the
actions of many random factors which are roughly identical
and which are only weakly dependent, as follows from the
central-limit theorem.'® This distribution is determined en-
tirely by two nonrandom parameters: the mean value and the
variance (or the dispersion around the mean).

In addition to one-dimensional Gaussian quantities one
frequently deals with Gaussian vectors and infinite-dimen-
sional Gaussian quantities: Gaussian fields. A Gaussian
field is a set of Gaussian quantities at each spatial point. At
two points which are spatially far apart, these quantities are
essentially independent, while at two close points there is a
strong dependence. The distance over which the correlations
weaken substantially is called the “correlation length.” To
describe a scalar, uniform Gaussian field ¢ (x,w), where o is
a random parameter, it is sufficient to specify the two-point
correlation function B(x — y) = (¢ (x,0) X@( y,w)); here
the angle brackets specify the mean over the ensemble of
realizations, i.e., over the parameter w. This function com-
pletely determines the Gaussian field. All of the necessary
characteristics of the field can in principle be expressed in
terms of this function. Vector and tensor Gaussian fields can
be constructed in a corresponding way.

We are now in a position to sketch out an answer to the
question of just how a disorder can in principle generate an
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order. It turns out that a Gaussian field already contains
elements of order. The general background of a Gaussian
field is produced by random, disordered variations in a
quantity @ with an amplitude of the order of B '/*(0). Rare,
high peaks stand out against the background of these varia-
tions. In general, the isosurfaces near a peak are similar to
triaxial ellipsoids. With increasing height of a peak (with
increasing ratio of the height of the peak to the mean square
deviation) however, an approximate equality of the three
axes becomes more probable, and the surface becomes more
nearly spherical. Near the crest these peaks are therefore not
sharp and instead have the regular shapes of surfaces of revo-
lution, whose meridians are similar in the isotropic case to a
plot of the function B(r), where r = |x — y| (Ref. 16). One
can estimate the height of the highest peak in a sphere of a
given radius, the distance between peaks, and so forth.'*!?
However, the situation with regard to the individual peaks is
not at all unique. The peaks arise simultaneously with a
Gaussian probability distribution during the summation of
many uncorrelated random functions, i.e., under conditions
corresponding to the central-limit theorem. The isosurfaces
are smooth, and the function B(r) does not have a singular-
ity at the origin if the Fourier coefficients of the expansion
fall off sufficiently rapidly at large values of the wave vector
(k)—otherwise, a fractal situation may arise.'

In cases which are more complicated (nonadditive)
there is the nontrivial question of the geometric structure of
the regions of the maximum value of the unknown quantity.
These regions may be surfaces which are isolated from each
other or which form a cellular structure. They may also be
thin filaments which are connected by nodes (a network
structure) or which consist of separate closed lines (and so
forth). These extremely important tendencies are seen to an
even greater extent in the case of vector fields. The field lines
of a magnetic field do not begin anywhere and do not end
anywhere, so that in magnetohydrodynamics we might ex-
pect to see the appearance of thin tubes in which the field is
concentrated. Isolated field peaks are evidently forbidden.
However, let us go back to the Gaussian case.

Peaks of this sort can of course be seen by observing
many realizations of a single Gaussian random quantity.
The existence of peaks is common knowledge, but they do
not play a significant role in ordinary operations with a
Gaussian random quantity, e.g., in analyzing experimental
data by the method of least squares. Ignoring peaks of arbi-
trary height, we could use the rough assumption that a
Gaussian quantity has a maximum amplitude three times
the standard deviation (Gauss’s rule). In many problems,
however, that approach can lead to some serious errors. As
an example we consider an extremely long pipeline whose
strength is very nearly constant but which is afflicted by a
small, Gaussian random error. If the standard deviation of
the error is many times smaller than the reserve strength of
the pipeline, then a naive observer might suggest that the
pipeline would be highly reliable, i.e., that there was only a
very small probability for its rupture. This is precisely the
logic which is used in designing pipelines. However, this
concluson is correct only for a short pipeline. The break-
down of an extremely long pipeline by no means requires
that the pipeline be damaged in many places: One damaged
region is quite sufficient. The damage may be caused by a
very rare deviation which has nothing in common with the

356 Sov. Phys. Usp. 30 (5), May 1987

standard deviation. The actual length of a pipeline over
which we would expect, say, ten standard deviations is
10 000 km if the correlation length along the pipe is of the
order of a meter. If the distribution is not Gaussian, e.g., if it
is log-normal [i.e., if the logarithm of a random (nonnega-
tive) quantity has a Gaussian distribution], the situation
may be greatly aggravated.

When the probability distribution of a random quantity
falls off at infinity more slowly than a Gaussian distribution,
there will naturally be a greater number of high peaks, and
they will be closer together, i.e., the element of structure
associated with the peaks is expressed more vividly in such a
field. A similar enhancement of the role of peaks might be
caused by a variety of factors, but the most obvious one is
that now the error begins to be formed not by the effects of
many independent factors, comparable in intensity, but pri-
marily by the effect of one dominant factor. Going back to
our pipeline, we easily see that a situation of this sort arises
when the pipeline passes through a region in which the prop-
erties vary quite rapidly and to a large extent. Permafrost, in
which thawed regions alternate with frozen regions, is an
example of such a medium. We know that this circumstance
has a very negative effect on assessments of the reliability of a
pipeline based on a comparison of the variance with the re-
serve strength. In this case it becomes necessary to appeal to
some fundamentally different considerations, of the same
type as in a study of the conductivity of disordered metallic
media.

When the random error which afflicts the measure-
ments has a non-Gaussian tail on its distribution, the use of
the method of least squares to analyze the results may lead to
serious errors. In particular, the experimentalist must first
look over the results and pick out any really wild errors.
These errors have nothing in common with a Gaussian ran-
dom error which arises in normal operation, and it would
therefore be pointless to average these wild errors along with
a Gaussian error. Picking out the wild errors is not a particu-
larly difficult task when one is processing a comparatively
small amount of data, in which case the experimentalist is
continuously monitoring the results. However, in cases in
which it becomes necessary to trust the entire data process-
ing to a computer the situation becomes more complicated.
It becomes necessary to develop special methods which are
protected from the effects of wild errors. Such methods are
called “robust methods™ (Ref. 18, for example).

1t is not difficult to give examples of probability distri-
butions which give rise to peaks of less contrast than those
provided by a Gaussian distribution. One example is the dis-
tribution of the random quantity ¢ = ¢ /(0> + ¢ ), where
the quantity ¢ is a Gaussian quantity. Obviously, { may be
totally devoid of peaks which are substantially greater than
the standard deviations.

Random quantities with slowly decaying probability
distributions are not all that rare in physics. The first exam-
ple of such a quantity was dreamed up by Cauchy. We con-
sider a light beam which is reflected from a mirror which is
rotated through some random, uniformly distributed angle.
We wish to find the point at which the beam reaches a screen.
The coordinate of this point is a random quantity with a
distribution which falls off so slowly that no mean value
exists for it.'> Furthermore, the arithmetic mean of many
random quantities with a Cauchy distribution has the same
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distribution as one quantity by itself. Ambartsumyan'® has
shown that the intensity of the radiation from a source which
is passing through a medium in which there is a random
distribution of clouds which absorb a random fraction of the
intensity will have a distribution which falls off very slowly
and to which the Gaussian averaging concept cannot be ap-
plied.

3. INTERMITTENCY OF A RANDOM QUANTITY

In essentially any experiment a physicist is dealing with
a random quantity £. Such a quantity is usually assumed to
be distributed in accordance with a normal Gaussian law,
which is determined completely by the mean value (£ ) and
the variance o°. Most of the values of a random quantity lie
near the mean, within a region with a dimension of the order
of the mean square deviation, which is equal to o, i.e., the
square root of the variance. The quantity £ can take on val-
ues which are greatly different from the mean value (£ ), but
the probability for such large deviations is extremely small.
This circumstance is the basis for the success of the method
of least squares, which is widely used in analyzing experi-
mental data. A Gaussian quantity usually arises as the sum
of a large number of small random quantities which are dis-
tributed approximately identically and which are indepen-
dent or only weakly dependent. This circumstance is based
on the central-limit theorem.

However, let us consider a random quantity of a multi-
plicative type, i.e., one which is the product of a large num-
ber of identically distributed independent random quanti-
ties. Let us assume, say, that §;, /=1, ..., N, takes on the
values 0 and 2 with identical probabilities of 1/2. The ran-
dom quantity which is equal to the product

t=ly=ttk ... 8 ...

e
k]

therefore takes on a zero value for essentially all possible
realizations £, . The only exceptional case is the one realiza-
tion in which all of the &; take on the value of 2. The prob-
ability for this unique realization is extremely low; at large
values of N, it is equal to 2 ~ ~. On the other hand, £ is very
large in this realization: 2".

The random quantity £ turns out to be distributed in a
surprising way. It is not at all similar to a Gaussian quantity.
Essentially all the values of § are zero, except for the one very
large value. It is this one value, however, which determines
the mean:

(& —sum of all realizations _ 040+ .0 2¥
number of realizations 2t
The mean square value
(E2y — —Sum of all realizations
i number of realizations
DD 02y ox
= — =

increases exponentially with increasing N. The subsequent
moments increase even more rapidly: (£3), (£%), ..,
(&7 ) = 2%~ DN The growth rate of the moments is

_ log, (5P
yp=—N—-=p—1. (1)
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We thus see that the rate of growth of a moment also in-
creases with increasing p. In the limit p— « we havey, —p.

We call a random quantity of this very simple type an
intermittent random quantity. We wish to emphasize that
this concept is tied to the supposition of a large value of N,
i.e., a large number of cofactors. Just as a Gaussian quantity
is a typical characteristic of the sum of a large number of
random quantities, an intermittent random quantity appar-
ently serves as a characteristic of the product of a large num-
ber of cofactors.

This simple example may appear to be pathological be-
cause of the presence of zeros. However, the appearance of
an intermittency is totally unrelated to the zeros. Let us as-
sume, for example, that the §; are distributed near unity. The
logarithm of the product

Ing=Ing 4+Ink + ... +1Inky

is then the sum of a large number of random quantities which
are concentrated near zero. In the limit of large values of ¥
we thus have In £~N /%, where 7 is a Gaussian random
quantity with a zero mean and a unit variance. Consequent-
ly, the quantity

£ () ~ exp (Ni/2n)

is distributed log-normally. The quantity 7 takes on values
in the interval ( — uo, uo), p~1, for the most part. At
7 <0, £ is close to zero; at 7> 0, £ is large, of the order of
exp(N '?¢). The mean value of a log-normal quantity is*

&= S EM) P(M)dy ~ S exp (N1/2n) exp ( o ) in

202

Na?
5

~ exXp

In contrast with an individual realization, this mean value
increases monotonically and exponentially. Other statistical
moments also increase exponentially:

Np2o?

5.

(") ~exp-

The rate of increase of the pth moment,

In (EP) :pzo_’“'

5 - (2)

Vp= lim
N=>oo
increases without bound with increasing p.

This more realistic example thus preserves all the fea-
tures of intermittency. The contrast between an individual
realization here and the mean characteristics is not as stark
as it was in the first example.

Strictly speaking, it is not entirely correct to calculate
moments from an asymptotically log-normal distribu-
tion.*>*' A more correct procedure would be initially to cal-
culate (£7) for any &V and then take the limit N — c0. Since
the integral (£” ) is dominated by values 7 ~p?c?N '/?, and
the actual distribution corresponds well to a Gaussian distri-
butionin the region |57| < CN '/?, where Cis a constant which
depends on the nature of the distribution, we must require
that the condition p?0® < C hold, i.e., that p?o? be sufficiently
small, if (2) is to be valid. If the individual cofactors £, can-
not take on large values with a nonvanishing probability, the
rate of increase at large values of p*o® must be similar to the
quantity in (1). We wish to emphasize that this difficulty

Zel'dovich et al. 357



does not arise in a calculation of moments of an additive
quantity. A log-normal distribution for a multiplicative
quantity is thus not as universal as a normal distribution for
an additive quantity. In this sense, an analysis of a multipli-
cative random quantity does not reduce simply to taking its
logarithm.

4. EVOLUTION OF A RANDOM QUANTITY

Multiplicative random quantities arise in a natural way
in evolutionary problems, just as additive random quantities
arise in analyses of experimental data. In an evolutionary
problem the time plays the role of N. Random quantities of
an additive nature may of course also arise in evolutionary
problems. Let us consider the simple example

dy:

Wz,

where £(2) is arandom process, say a Gaussian process with
a variance o with a rapid decay of temporal correlations.
We assume for simplicity that £ is renewed after a time 7, i.e.,
that its values on the time intervals [0,7), [7,27), ... are inde-
pendent and identically distributed. An integral which gives
the solution of the equation thus reduces to the sum of inde-
pendent random quantities, to which the central-limit
theorem applies at t>7 %

ty\1/2
P (t) ol (&) t = to7 (?) *),

where 7 is a Gaussian quantity with a zero mean and a unit
variance.

In the case (£ )70, the solution approaches its mean
values (1) with increasing ; i.e., a self-averaging occurs. In
the case {£ ) = 0, we obviously have () = 0, and a solution
normalized to ¢ "/? reduces to a limiting distribution, in this
case, Gaussian. Relative fluctuations do not grow; in fact
they are damped in the former case. The formal expression of
this fact is that the higher moments reduce to the produce of
lower moments:

Qo PP~ < P ([0

In other words, at large ¢ a description of 3 requires no more
than its mean value and mean square value.

These means are clearly insufficient to describe an evo-
lutionary equation of the unstable type

dyp ) 3
= E(t) ), (3)
whose solution is of the multiplicative form
)fa t/t (n+1)r
PO =oexp | E)ds ~ [ exp | E()ds,
0 ot n--0 nt
1.e.,
. NEALE
oy ~ @ ¢+ wom (<) )

The solution is therefore an intermittent random quan-
tity. Fluctuations of ¢(¢) grow as exp{ray (¢ /7)'/?}. More
precisely, this is the growth behavior of the ratio of two real-
izations of ¥ corresponding to two realizations of 7. The
mean value of £ and its mean square value can now be char-
acterized by simply the logarithm of # after a long time.

We repeat that, strictly speaking, expression (4) is legi-
timate for use in calculating the mean values {1/ ” ) only at
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small values of 7g. Actually, the second term on the right
side of (4) does not tend to zero or infinity only if o ~ 7~ 1/2
in the so-called “approximation of short temporal correla-
tions.” In this case, the quantity £(¢) — (£ ) is proportional
to the Brownian (Wiener) random process w, , for which we
have (w,) =0 and (w?) = . We will be appealing to this
approximation frequently; later on (in §6) we will refine the
method for taking the limit 7—0.

5. RANDOM MEDIUM

The phenomenon of intermittency, which consists of
the appearance of rare but high peaks in the behavior of a
random quantity, would appear to be extremely degenerate
and hardly of interest from the standpoint of a normal book-
keeper. However, an improbable event may sometimes be so
catastrophic that it has a dramatic influence on our life.

A random medium (or random field) consisting of a
continuum of random quantities is far richer in terms of rare
events.

For example, let us consider a medium'? characterized
by a random potential U(x,w). The parameter » specifies
the realization of the potential, so that at a fixed & the poten-
tial is an ordinary determinate function of the coordinates.
Let us assume for definiteness that U has a Gaussian distri-
bution with a zero mean and a variance o°. The potential is a
random field of an additive type and can be represented as
the sum of unphased Fourier harmonics which are of such a
nature that in the limit £ -0 the amplitude falls off quite
rapidly, ensuring the convergence of the Fourier integrals.

The equilibrium concentration of matter in such a me-
dium,”

n=noexp(——%) (5)

is no longer Gaussian, because of the nonlinear dependence
of U. This fact is obvious in the case g/kT 2 1, but it would
seem natural that under the condition o/kT <1 the depen-
dence would be linear:

U
nan, (1—-TT—) , (N = ng.

Pursuing this point, we seek the value of the potential which
corresponds to the most likely amount of matter. Since we
have

o= (~ by %)

the maximum of the exponential function corresponds to
U,ax/0 = —o/kT, where P, =exp(0°/2k*T*). In an
exact analysis of the successive statistical moments,
0-2
(1) =ny eXp SRETE
2

) P po
(n)'* =noexpggrr ooy (WP =g CXp Sz

however, we find that they become larger as their index p
increases: (n%)> (n)?, (n*}> (n?)?, ... . In other words, the
successive mean values are by no means determined by the
most probable value of the potential o/kT’; they are instead
determined by p'/?0/kT. It is thus incorrect, generally
speaking, to use the linear approximation even at small val-
ues of o/kT. The only way to explain the progressive in-
crease in the moments is on the basis that there are rare and
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high peaks in the concentration distribution. In principle, as
was mentioned back in §2, there can also be high peaks in a
Gaussian potential, where (U?)"? increases as p'/> with
increasing p. This growth, however, is incomparably weaker
than the exponential growth of the moments of the concen-
tration. The important point is something else: A weak inter-
mittency of a potential, which itself might be ignored, turns
out to be sharply expressed in the concentration distribution
(5), which depends on U in a nonlinear way.

From the concentration properties of U we can also
(and easily) find the correlation properties of n, which has
the log-normal distribution (5). This problem was recently
analyzed by Mandel’brot and Salai (private communica-
tion) in connection with the problem of the formation of the
large-scale structure of the universe. The given correlation
function of the density of matter, p, was used to find the
correlation function of the number density of galaxies, A,
under the assumption A = exp(const-p). For the spectrum
p« ~k 77, which is customarily assumed, it was found that
the correlation function A is a power-law function of the
relative distance, in agreement with the observed correlation
function, which was first constructed by Totsuji and Ki-
hara® and analyzed by Peebles.>®

The concentration is the solution of a linear equation
with a random coefficient v:

div ®Var — nv) = 0,

where, in the mobility approximation, we have v = (x/
kT)VU, where x is a diffusion coefficient. This result is a
fundamental distinction between intermittency and the
structures which have already been studied in synergetics,
which underlies the processes described by nonlinear equa-
tions.

Scalar linear equations with a random breeding and a
diffusion are characteristic of several problems in biology
and in the kinetics of chemical and nuclear reactions.?**!
Certain nonlinear problems were also studied in Ref. 21. Let
us examine the phenomenon of intermittency in the example
of the simple equation

1,[7(.2:, 0)=¢0 (1) (6)

The potential U has a Gaussian distribution with some
lengthscale!/ for the decay of spatial correlations. A solution
of Eq. (6) can be written®>*

—6% = %Ay +U(x, 0) 1,

in a form similar to that of the
solution of the simple diffusion-free equation (3):
¢
(2, )=, (exp | UE)ds) 4o, 7
[
where M, means an average over all the trajectories of the
Brownian motion £, (x) = (2x)"'/%w, (x) which begins at
the point £ at the time s = O and which arrives at the point x
at the times = ¢.

For any bounded, nonnegative initial function #,(x)
and for any x > 0, solution (7) increases as exp[¢:60® In(xt /
72)"?] with a unit probability in the asymptotic region
t— . More precisely, there exists a limit!'?

. In 2

}lfg ¢ (In m/‘zlz)‘/2= (B02)*2. (8)

This time dependence is explained on the basis that a

trajectory which quickly reaches a high maximum of the
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potential makes a definite contribution to solution (7).
What is the height of this maximum? In a region of size
R( - ) thereare ~ (R /I)* correlation cells. The probabil-
ity for reaching a certain U, in one cell is
P~exp( — U2/20%) in order of magnitude. From the con-
dition P(R /I)* ~1 we find the estimate

max U ~ (Go‘zlni;-)uz

For a typical trajectory we would have R /I~ (xt /1%)'/2, so
that the growth would be faster than exponential:
Y~exp[t(30? Int)"/?]. Actually, an even greater contribu-
tion comes from the atypical and less probable “optimal tra-
jJectory” (after I. M. Lifshitz). This is the trajectory which,
in a time ¢, moves off to a large distance R /I~ xt, canceling
its small statistical weight by the large factor max U
(Ref. 12).

Although the limit (8) does not depend on molecular
diffusion, in the case » = O the solution increases only ex-
ponentially, as is clear from (6) (with growth rates which
differ at different points). The reason is that x influences the
time (/?/x) at which the superexponential regime is
reached. Consequently, we find different results, depending
on the order in which we take the limits (#- o, ¥—0) or
(-0, t— o). Result (8) should not be understood as
meaning that a diffusion x increases the growth rate of . A
more detailed study”’ shows that the growth rate of ¢ de-
creases with increasing x when following terms in the expan-
sion are taken into account.

The successive statistical moments of a field behave in a
superexponential way even in the case x = 0. Specifically,
we have

(PP (z, 1)) = (exp (pUt)} = exp (p*c*?).

This is also the growth pattern in the case x50 in the limit
t— oo (Ref. 12). The moments ()" thus increase far
more rapidly than the function itself, and they dosoinsucha
way that the growth rate increases with the index of the mo-
ment. Such a progressive growth of the moments can be ex-
plained in terms of the presence of sharp peaks in the solu-
tion ¥(x,?), ie, in terms of an intermittency of the
distribution of ¢. The peaks are present in any realization of
the solution which corresponds to a definite realization of
the potential. They lie at rare, high maxima of the potential
U. By way of comparison we note that peaks are present in
only certain rare realizations in the evolution of a random
quantity.

We have been dealing with an unbounded volume. In a
bounded volume we would have 3 ~exp(max U-t), where
maxUisarandom (e.g., Gaussian) quantity. For a Gaussian
potential, the moments again increase as exp ( p20%t 2/2). If
the potential has an upper limit® U, then we have
U~ *” ) exp( Ut );i.e., there is no intermittency in the
lowest order. The phenomenon of intermittency in a steady-
state potential is thus associated with the presence of non-
physical infinite tails on the potential distribution.

More physical is the appearance of an intermittency in a
potential (or medium) which varies with the time and which
is in a steady state only on the average. In this case we can
expect a slower (exponential) growth of the solution, since
the potential maxima will be present for only a finite time.
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6. SHORT-CORRELATION RANDOM MEDIUM; WIENER
PROCESSES

We turn now to intermittency in a medium whichisina
steady state only on the average. Our first task is to specify
the properties of such a medium. This specification is usually
made in terms of mean and mean square characteristics; e.g.,
one specifies the dielectric permittivity of a medium or—in
magnetohydrodynamics—the mean helicity. In more-de-
tailed approaches, a random medium would be character-
ized by a correlation tensor or even by certain characteristics
of this tensor. For example, discussions of a Kolmogorov
turbulence frequently utilize the exponent of an energy spec-
trum in an inertial interval. Such a description would be
inadequate for our purposes. Since we are interested in im-
probable states of a field which is evolving in a random medi-
um, we need to find somehow a description of the corre-
sponding improbable states of the medium. Such a
description can be constructed most simply in the case of a
medium with an extreme time variation. We call such media
“short-correlation” media.

For definiteness we describe a short-correlation poten-
tial U. Itis conveniently represented as the limit of potentials
U* (t,x) which are constant in ¢ over intervals of length At:
(0,At), (At,2At), ... . These potentials are independent on
different intervals of this series. In the limit Az—0 we have

(U@ 2) — U (U (¢, y) — U
=20t —1¢)V (z, ¥). (9)

Thus, at small values of At the deviation of the potential
from its mean value is of the order of (At) ~!/2 “Steady-
state on the average’ means that the function ¥V (x,y) is inde-
pendent of the time.

Relation (9) is a characteristic of our potential in terms
of a correlation tensor. It does not, however, completely de-
termine this potential. Specifically, we can use (9) to calcu-
late correlation functions of the type (U(z,,x)U(tyx) ...
U(t,,x)), given at one spatial point, since a short-correla-
tion potential is Gaussian in time, under natural limitations.
However, the higher-order correlations of the potential at
different spatial points generally do not split up into binary
correlations, and their calculation does not reduce to expres-
sion (9). In more-complicated situations involving a medi-
um which is not a short-correlation medium® we cannot use
the Gaussian approximation, even for temporal correla-
tions.

The representation of a short-correlation potential and
of other characteristics of a short-correlation medium,
which is convenient for our purposes, is related to the con-
cepts of white noise and a Wiener process.

A Wiener process w, is well known in physics as a de-
scription of the Brownian motion of a particle. More precise-
ly, this is a mathematical abstraction of Brownian motion in
the limit in which the mass of a particle and the time between
collisions approach zero. The quantity w, represents the co-
ordinate at time ¢ of a Brownian particle which starts at point
zero at time ¢ = 0. A Wiener process is not a steady-state
process: Over a time ¢, a Brownian particle moves a distance
proportional to ¢ /> away from its original position. In a one-
dimensional space, a Brownian particle returns to the start-
ing point from time to time, despite its departure from its
starting point in a mean-square sense. In two dimensions,
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such returns also occur, but they are very rare; a three-di-
mensional Wiener process involves no such returns. The sit-
uation can be understood easily by recalling how the funda-
mental solutions of the heat-conduction equation are
constructed in spaces of different dimensionalities:
Six,t) = (2mt) /2 exp( — x*/2Dt) on a straight line,
Lailpt) = (1/2mt)exp( —p?/2Dt) in a plane, and
f3(rt) = (2mt) =32 exp( — r*/2Dt) in a three-dimensional
space. The probability for a return to a small neighborhood
of the origin after a time t = ¢, is

ED]‘(O, t) dt,

H

This integral diverges in a power-law fashion on a straight
line and in a logarithmic fashion in a plane; in three-dimen-
sional space, it converges. The latter circumstance means
that for sufficiently large ¢, returns do not occur in a three-
dimensional space.

Since any small fixed time interval is much longer than
the time between collisions, which approaches zero, the law
W, , ar — W, =w,, ~(At)"? also holds at small values of
At. Accordingly, a trajectory of a Wiener process is not dif-
ferentiable in the classical sense. In today’s terms we would
say that such a trajectory is “fractal.” The exponent of 1/2 in
the expression for w,, is called the “order of a Hélder deriva-
tive. We recall that an increment in w,, is a random quanti-
ty. From the standpoint of an expansion of dw, /dt in a Four-
ier integral, this quantity is white noise and has a flat
spectrum. White noise—a generalized derivative of a Wiener
process—is a short-correlation process which, in contrast
with a Wiener process, is a steady-state process.

We again recall that a Wiener process describes a real
Brownian motion only in a certain approximation, as an in-
termediate asymptotic behavior. Let us consider a Brownian
particle, a sphere of mass M, which is moving under the
influence of collisions with spherical molecules of mass m.
At the times of collisions with the molecules the Brownian
particle undergoes an abrupt change in momentum,; i.e., the
trajectory of the Brownian particle has one Holder deriva-
tive at the times of collisions (but it does not have a genuine
derivative). Its velocity is a -function, while the accelera-
tion and the force are 8-functtons. In this approximation the
velocity spectrum is not flat, and it is not white noise. We
now make use of the small value of the mass of the molecules,
m, and we assume that the transit time between collisions of
a Brownian particle, 7, is short. Letting m and 7 approach
zero in such a way that in the limit the particle is acted upon
by a random force which is a steady-state force on the aver-
age over time, we find the familiar Langevin problem of the
motion of a particle of mass M under the influence of a short-
correlation force—white noise. This force is the sum of a
large number of uncorrelated §-functions of low intensity.
The trajectory of such a particle evidently has 1.5 Holder
derivatives, while its velocity has half of a Holder derivative
and is not white noise. Finally, we let the mass of the Brow-
nian particle, M, go to zero. Only in this limit do we obtain a
Wiener process, which has half of a Holder derivative at all
points and a white-noise velocity.

The concept of a Wiener (Brownian) process is natu-
rally associated with diffusion. However, we also intend to
use a Wiener process to construct a potential describing ran-
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dom interactions. The non-standard nature of the situation
isin fact stressed by the terminology: The mathematical con-
cept at which we have arrived in our analysis of the trajec-
tory of a moving particle begins to figure as a coefficient in a
transport equation! The characteristics (e.g., the velocity)
of a random medium which is the scene of a transport, a
diffusion, and the self-excitation of a scalar (an impurity) or
avector (a vorticity or a magnetic field) appear in the trans-
port equations as coefficients which are similar to the poten-
tial in Schrodinger’s equation. In this sense the formulation
of the problem differs from that of the Langevin problem, in
which a given random force figures in the equation of mo-
tion. In this case the potential serves as a “drive belt”” which
links the energy source (through the characteristics of the
medium) to the self-exciting impurity.

We will also use the method of obtaining a short-corre-
lation process from a Wiener process to describe random
media. We assume that at each spatial point a distinct Wie-
ner process is given, so that the entire set of Wiener processes
must be characterized as a function of ¢ and x: w, (x). A
random short-correlation potential is then specified in the
form
dwy ()

U, z, )= o

The Wiener processes at different points x and y are
generally not independent. In order to specify completely
the random medium we would need to specify this depen-
dence in one way or another. Fortunately, the only impor-
tant consideration for many of the problems in which we are
interested is that the dependence is strong for nearby points,
while it approaches zero for remote points. We can therefore
resort to the approach of introducing a discrete space, under
the assumptions that the properties of the random medium
are constant in the spatial cells of some correlation size and
are independent in different cells. In this case a Wiener pro-
cess can be replaced by a finite-dimensional approximation:
a random walk on a lattice. There are cases in which one also
resorts to the approach of adopting a discrete time.

The discussionsin the literature usually refer to random
media in which property (9) holds as being ““8-correlated.”
We will speak here in terms of “‘short-correlation media,”
bearing in mind the more-detailed description of such a me-
dium which we have just been through.

In certain cases we will also use a standard Wiener pro-
cess to describe diffusion processes.

7. INTERMITTENCY IN A TIME-VARYING MEDIUM

We consider the simple case of a time-varying potential,
represented as a white noise in time with independent values
in different spatial cells of some correlation size:

dwi (x)

de

where w is a Wiener process. Using this generalized poten-
tial, we understand Eq. (6) as a time-difference equation. In
other words, we first take the limit of a zero correlation time
of the potential, and we then take the limit Ar—0in Eq. (6).
Taking the limits in this order corresponds to Ito’s ap-
proach.?* An alternative approach is that of Stratonovich,?*
which corresponds in the case at hand to taking these limits
in the opposite order. The conclusion regarding the presence

Ult, x, 0)=
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of an intermittency does not depend on the approach taken.
Without diffusion, i.e., with » =0, Eq. (6) can be
solved explicitly:

(s 7, 0) =1 (@) exp (0,5 ) . (10)

The addition factor e ~ °/? appears in the exponential func-
tion because in differentiating a Wiener process which has
only half of a derivative we need to consider the square of its
differential and to use the equality (dw,)* = o dr (Ref. 23,
for example).

A typical value of a process w, at large ¢ is of the order of
; i.e., with a unit probability, solution (10) would decay
as exp( — ot /2) at any point. However, there is a small
probability that the Wiener process will take on values
which are larger than ¢ '/? by an arbitrary amount. Conse-
quently against the background of the general decrease there
are undoubtedly rare and high peaks in the solution.

That this is true can be seen by calculating successive
statistical moments of the solution. Let us assume that the
initial y(x) is distributed in a manner independent of U or is
a determinate function. Applying the formula

t1/2

ot
2

(exp (pwy) =exp (p* )
we find

) = ypyexp| HE Dt 4

i.e., the rates of the exponential growth, y, /p, increase with
increasing index of the moment, in proportiontoa( p — 1)/
2. A typical realization of ¢(z,x) thus falls off with increas-
ingrasexp( — ot /2); the mean value ( p = 1) isthe same as
(1o ; the mean square value increases as exp(o?); the fourth
moment increases as exp(60t); etc.

The increase in the moments is explained by the nontri-
vial contribution of rate events. In other words, among the
complete set of realizations of ¢/(#,x,w ) there are some which
grow in time at certain spatial points. As is clear from the
properties of solutions (10) and from the properties of a
Wiener process, these rare functions are functions of a tem-
poral growth,

In a large but finite volume or in the case of a localized
initial distribution #,(x) we are dealing with a sort of devi-
ation from the standard representation of ergodicity, under-
stood as the equality of the mean values over a statistical
ensemble and of spatial (sample) mean values.

In contrast with the statistical moments, the sample
moments in a finite volume V' decay with a unit probability:

= | W@ exp( e (@)1 )

X ¢I3.1'~exp(—p%t).

{-roc

The sample moments themselves (in contrast with the statis-
tical moments) are random quantities. Their decay rate,
¥, = — po/2, however, is a determinate quantity. The cor-
rection to 7¢ is of order 5z /2, where € is a normally distribut-
ed random quantity with a unit variance.

The difference between the sample moments and the
statistical moments can be understood in the following way.
If there is a localized initial distribution, or if we are dealing
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with a bounded volume, high peaks exist for only a finite
time in most realizations. After a certain time the distance
between these peaks becomes greater than the size of the
region occupied by the field, and the peaks are preserved in
only an exponentially small number of realizations. This low
probability is high enough that the peaks contribute to the
statistical mean determined by all realizations. However, the
spatial mean over a given realization i, will of course cease
to sense the peaks as time elapses. The time over which peaks
die out is of the order of 7, In(¥r; ), where 7, =2/
o( p — 1) is a time scale of the growth of the moment of the
given order, and r, is the correlation size of the potential. At
t>71, In( Vri~?), peaks which substantially influence the
pth sample moment no longer fit in the given volume.

As was shown in Ref. 22, an intermittency is also pre-
served when there is diffusion, at least in the limit of small
values of ». The growth rate will of course now depend on .
In the limit % -0 the quantities ¥, (x) are continuous, so
that the curves of ¥, () do not coincide at small values of x.
With increasing » they vanish at certain values x,, %5, ... . It
turns out that we have y, (%) =0, ¥(x) <0, and this quantity
vanishes at a certain »,<x,. The dependence ¥, (x) for in-
teger values of p can be found explicitly from the moment
equations. However, already from the fact that forp = 1 we
have {¥) = const, and the typical value of ¢ falls off expon-
entially at 5 < g, it follows that all the (1 # ) withp > 1 grow
exponentially, at least at x < x,. Consequently, at »x <, the
intermittency is expressed just as strongly as at » = 0. At
% > %, the intermittency is observed only in the higher-order
statistical moments.

Constructing a solid theoretical basis for the general
picture of the behavior of the growth rates as functions of the
diffusion coefficient » which we have outlined here and in
the preceding sections is a fairly complicated technical prob-
lem,?? some important aspects of which have not yet been
resolved. The problem does simplify dramatically if we re-
place the term xA in this equation by some integral operator
xA which is close to the original term. To construct this
operator we recall that the diffusion term xA describes a
Brownian motion which moves off a distance (x2)'/%/1 (I is
the quantization step) over a time ¢. There is a small prob-
ability, however, that the Brownian particle can move g_ff to
any arbitrarily large distance. The integral operator xA de-
scribes a random motion of a particle of such a nature that at
time ¢ the particle is distributed uniformly over a sphere of
radius (x¢)'//I and cannot escape from this sphere. In sta-
tistical physics, operators of this sort are well known and are
used, for example, to study the well-known Curie-Weiss
model.* We restrict the present analysis to a discrete space
in which the operator xA acts in accordance with

WD (t, D)= 2 @t )= D),
XEV(H)
where V(¢) is a sphere of radius (xz)'/2/I centered at point
x, and N(¢) is the number of points of the discrete space in
this sphere. (The Laplacian in a discrete space is defined by

#A@ (2) =~ 2 [ (+') — @ (@),

where the summation is over the points of the space which
are nearest the point x, and V is the number of such points.)
We can demonstrate the technique of carrying out cal-
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culations with the operator xA using the example of finding
the eigenvalues of the operator

*A + U (z, )

with a random, steady-state, Gaussian potential U which is
given in some fixed region G (these results were derived by
one of the present authors—S. A. M.—in collaboration with
L. N. Bogachev).

We consider the problem

®Ag;, (2) + U (2, 0) ¢ (2) = Ay, (2). (11)

Since the eigenfunction ¢; does not depend on the time, the
left side of this equation can be put in the form

Kr— %, () + U (2), (12)
where
— ] ,
(PKZT 2 o (7).
X'EG

Substituting (12) into (11), we find the dispersion relation
1 .

1 1
7-—T€2m—_mE-F(}v, (J)). (13)
x€G

With a unit probability, the random function F(A,w)
has N first-order poles on the real axis [since, with a prob-
ability of the order of unity, all the values of U(x,w) at differ-
ent spatial points of the discrete space are also different].
Consequently, the dispersion relation has, with a unit prob-
ability, exactly N real roots. These roots give us the eigenval-
ues of problem (11), which are of course random numbers.
The growth rate in the evolutionary problem is determined
by the maximum value of the potential U in region G; from
dispersion relation (13) we can find corrections for small
values of x, by which the growth rate differs from U, , .

Analogous calculations show that in an infinite space
the solution of the evolutionary equation

%:U(z, o) ¢ + A

increases in accordance with

Inq’#)::(?)crzln ;;21 )1/2—%-4,-0((111 %)71/2)- (14)

We wish to call attention to the fact that the first term in the
asymptotic expression (14) is smaller than that in the prob-
lem with the actual Laplacian, (8). It corresponds to the
naive result which would be derived without considering the
“optimal trajectory” (in the sense in which this term was
used by I. M. Lifshitz), which moves off to distance ¢ /.
This effect of course cannot be described by means of the
operator xA. Furthermore, in certain cases in the theory of
random media we are dealing with only approximate equa-
tions. For example, in the one-electron approximation in the
theory of metals the potential is by no means the actual very
deep potential of the atomic nuclei but the part of this poten-
tial which effectively remains after we allow for the circum-
stances that the low-lying electronic levels are filled and
that, by virtue of the Pauli principle, the last electron cannot
descend very deeply into the potential well. In a detailed
description, of course, the Pauli principle is not equivalent to
the introduction of some potential. This statement means
that in such cases we have no reason to trust the subtle effects
which stem from the possibility that a random trajectory will
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move off to an extremely large distance. For this reason,
result (14) gives us not the exact value of the growth rate but
only a lower estimate on it in these cases; this lower estimate
does not depend on the unreliable details of the construction
of the equation.

With regard to calculations on the behavior of the sta-
tistical moments in a steady-state medium in this approxi-
mation or calculations on the behavior of the actual solution,
the sample moments, and the statistical moments in a time-
varying medium, we note that they are unrelated to anoma-
lously remote excursions of the trajectory. The operator xA
reproduces all of the properties of diffusion which are known
in this case. Figure 3 shows the growth rates as functions of
the viscosity in this approximation.

These properties of the growth rates are also character-
istic of the problem of the transport of vectors in a random
medium, e.g., of a magnetic field in the turbulent flow of a
conducting fluid (a turbulent hydromagnetic dynamo).®
The primary distinction is that when the diffusion coeffi-
cients are sufficiently small a typical realization of the vector
field may also grow exponentially. In the vector case, the
peaks in the solution correspond to structural formations of
the nature of plaits or layers of magnetic lines. The vector
case is the topic of the following sections of this paper.

8. FAST DYNAMO

The following theorem holds for a random renewing
flow of a conducting fluid with good ergodic properties®>:
An initially weak magnetic field grows exponentially in the
limit of large magnetic Reynolds numbers. In this limit the
growth rate does not depend on the magnetic Reynolds num-
ber (afast dynamo). The growth rates of the successive sta-
tistical moments increase progressively with the index of the
moment, in such a way that the fourth moment increases
more rapidly than the square of the second, and so forth.
This behavior is evidence of an intermittency in space and
time of the distribution of the field which is generated.

Let us calculate explicit expressions for the growth
rates of a typical realization of the magnetic field and all its
moments for a flow with short, §-function temporal correla-
tions in the limit of large magnetic Reynolds numbers. A
theorem for the existence of a field in such a flow and certain
estimates of the growth rates of the moments were derived
previously by Rozovskii.>” We will also derive closed evolu-
tionary equations for the even moments of the magnetic

FIG. 3. Growth rate of a scalar field as a function of the diffusion coeffi-
cient. The dashed lines are schematic plots of the growth rate as a function
of the diffusion coefficient for noninteger moments with 1 <p <2.
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field. These equations are reminiscent of a Schrodinger
equation with a matrix potential; the problem of finding
growth rates for them in the limit of large magnetic Reyn-
olds numbers is analogous to the problem of finding a spec-
tral edge in the semiclassical approximation.

The asymptotic-analysis method which we use here is
based on the circumstance that the growth rates of the mag-
netic field and of its moments in a three-dimensional random
flow are equal in the limit of large magnetic Reynolds
numbers to the growth rates calculated in the total absence
of magnetic diffusions.”’® We can thus take a Lagrangian ap-
proach. In doing so, we reduce the problem to one of study-
ing the evolution of a magnetic field H(z,x) along a
Lagrangian trajectory

t

g =x+ ‘\'V(s, §,) ds,

[

which is determined exclusively by a given, divergence-free
velocity field V(z,x). According to the law of induction, the
magnetic field changes over a small time Az in the following
way:

H; (t+AL, &pa)= (61']‘ + LLAUR) At) H;(t, &)

alj

(i, j=1, 2, 3). (15)

Let us assume that the average flow velocity is zero. The
short-correlation velocity field can thus be represented con-
veniently as the limit of velocities v* ~ (At) ~'/2, which do
not depend on the time on intervals of length Az and which
are independent on different time intervals. In the limit
At—0 such a velocity field becomes a white noise with a
correlation function

Wi (8, Dot Y =2 6(t—t) Vi (s, y).

where / and v are length and velocity scales, and the angle
brackets mean an average over the distribution of the veloc-
ity field.

The assumption of a -correlation of the velocity field is
equivalent to the situation that each element of the matrix
W, = (dv; /dx;) At is a Wiener process with a zero mean and
some variance. We also assume that the velocity field is sta-
tistically uniform over space and has an isotropic probability
distribution. The matrix W can then be written as

Wi = awd;; + ow;;, (16)
where « and o are constants, and w and each of the elements
w; are independent Wiener processes with a unit variance.
That the first term is isotropic is obvious. Each realization of
the second matrix is, generally speaking, anisotropic. How-
ever, the distribution of w; is isotropic, because it is con-
served under an orthogonal transformation. Since the ma-
trix w; is Gaussian, we can prove this fact by simply
transforming it with the help of an orthogonal matrix:
w; = U,w, U,;. We see that the correlation (&;®,,,,)
agrees with {w;w,,, ). A divergence-free velocity field also
means that the trace of the matrix W, vanishes; hence

v
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i
W;=0 (wif_T l”lz5i/) )

‘17 9v; i (At)2= (W ;W ;) = 80%At,

oz; dzj
T A= W W
=a? (6ik6jl ~% 5if5hl) At (I7)

where wy, is the trace of the matrix w,;, the angle brackets
mean an average over the Wiener process, and the superior
bar means an average over the distribution of the velocity
field.

It might seem that we have to add to expression (16) a
term of the form e, w, , where ey is the unit antisymmetric
tensor. Since a Wiener process does not change its distribu-
tion under spatial reflection, an expression of this sort has an
isotropic probability distribution, but it is, in contrast with
W, not a tensor but a pseudotensor. The helicity property of
the flow (Refs. 33 and 35, for example), which is important
for the generation of magnetic fields, is related to the pseudo-
scalar part of the correlation function of the velocity field. In
terms of the matrix W in which we are speaking here, the
helicity is expressed in terms of correlation functions of the
type (VVU Ui )

We wish to derive an equation for the square of the
magnetic field on a Lagrangian tajectory. From (15) and
(16) we find
HH;

gzt WiWi

) B

H? (t4+At) =B (1) + (2W

The quantity 2W, H, H;/H ?, as a linear combination of Wie-
ner processes, is also a Wiener process with a zero mean and
a variance 802/3, calculated with the help of (17). Replac-
ing the second term in parentheses by 86°A¢ /3 (by virtue of
the central-limit theorem and the instantaneous nature of
the correlations of the Wiener process in comparison with
Ar), and then letting At go to zero, we find the equation
which we have been seeking:

dH?

() 82
HE T (?) det+ 30 dt.

A solution of this equation is
w2 ()= ) exp [ (5) “owi+ 5 o). (18)

After a long time, o?> 1, we can ignore the first random
term, since w, increases in proportion to ¢ '/2. The rate of
increase of the magnetic field is therefore

i InH 4,
vy=lim =5 0%

trx

Letws find the rates of growth of the second moments of
the modulus of the magnetic field. Raising solution (18) to
the pth power, averaging over the velocity field, and using
the expression (exp( pw,)) = exp( p’t /2), we find

2p
Yop = lim M = _8. PUZ + i Pzﬁz,
r 3 3

t-+oo

V2p 40® | 20°

= — — P

2p- 3 3

(19)

where p is arbitrary. For the second moment ( p = 1) the
growth rate agrees with the value y,/2 = (3/4)v/l, calculat-
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ed previously?®**® by other methods, in a homogeneous and
isotropic flow with a longitudinal correlation function

Bo=op [~ 2(5)7].

for which we have

dvy  dvg v
'a?;? 6—1; (At)*=6 - At,
where v and / are a typical velocity amplitude and a length
scale of the velocity field.

We have derived the rate of increase of the field and its
moments along a Lagangian trajectory. It is clear from ho-
mogeneity that the growth rates at a given point x will be the
same.

It is now a simple matter to see how the magnetic field
evolves in a short-correlation medium which is time-varying
on the average. In this case the quantity o is a function of the
time, so that in (18) we need to replace o°¢ by

t

5 02 (s) ds.

0
If o falls off sufficiently rapidly with increasing ¢, the field
increase may become a power-law increase, and the inter-
mittency may disappear.

The spatial structure of the moments at v, = 0 is de-
scribed by the eigenvectors of some operator 4,, but the cor-
responding random magnetic field is, of course, generalized.
To find the structure of the moments at small but nonzero
v, we need to analyze the problem in the next approxima-
tion. Finding the growth rates and eigenfunctions in two
successive approximations is a typical procedure for the se-
miclassical approximation.*®

9. CORRELATION PROPERTIES OF SELF-EXCITING
MAGNETIC FIELDS

The ability of hydrodynamic motions of a conducting
fluid to amplify a magnetic field underlies the magnetism of
celestial objects and is pertinent to research on the dynamics
of liquid-metal masses in breeder reactors and metallurgical
installations. The motions are generally random, turbulent
in nature. The magnetic field which is generated is therefore
random.

A process which has been studied quite thoroughly is
the self-excitation of a mean field—a process with which the
magnetic fields of the planets, the large-scale fields of the sun
and similar stars, and the fields of spiral galaxies are
linked.?'~** The random component of the magnetic field has
recently attracted increased interest in connection with the
problem of the fine-structure solar magnetic fields (Ref. 36,
for example) and fluctuations of the galactic magnetic
ﬁeld_37,38

The rate of increase of a fluctuating magnetic field was
found in the preceding section in the example of a short-
correlation flow. The spatial structure of the field is inter-
mittent. Finding the quantitative characteristics of this dis-
tribution is important for applications. The simplest
characteristic is the correlation function (H; (t,x)H, (t,y)),
which is equal to g(r)exp(2y,¢), where r = |x — y| for the
homogeneous and isotropic case.

For a given correlation tensor of a homogeneous and
isotropic, reflection-symmetric, incompressible flow with
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short temporal correlations, the problem of finding the cor-
relation function reduces to one of solving a Schridinger
equation with a variable mass, but without the square root of
minus one in front of the time derivative.>® This equation
was studied numerically in Refs. 38 and 40 and by asympto-
tic methods®® at R, = lv/v,, » 1 in Refs. 29 and 41. Here is
the spectrum derived by the asymptotic method:

W= 4= 2 [ )+ (k) )3

(k=0,1,2,...). (20)

Figure 4 is a sketch of the correlation function corre-
sponding to the first mode. The length scale r,~R 7 '/%/
corresponds to the skin thickness, g(7,) = 0.82; the correla-
tion function vanishes at r,, and it reaches a minimum at 7.
These positions 7, and 7, depend on the structural details of
B(r),justaswe haveg(r,) ~ — R  **andr, = [—the point
at which the exponential asymptotic behavior sets in.

We suggest interpreting these characteristic points in
the following way. We consider the process of folding a loop
into a figure-eight with a subsequent doubling by means of
the elementary field-generation process (Refs. 34 and 35, for
example). The region (r,r,) corresponds to the scatter in
the lengths of the loops which are stretched out. The mode
index corresponds to the number of turns in the figure-eight.
The point r, corresponds to the length of the inverted part of
the figure-eight. The anticorrelation tail is related to the di-
vergence-free condition (the closure of the loops):

S grédr=0.

0
There exist a certain number of field lines which emerge
from the correlation cell and go off to infinity. The relative
number of these lines can be estimated from the ratio

it 1 r

A
a
b c

FIG. 4. a—First mode of the correlation function of the magnetic fields
excited in a mirror-symmetric short-correlation flow; b, c—sketches of
concentrations of a field which is being excited (b) during the stretching
of the plaits and (c) during the folding of the plaits into a figure-eight.
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5 ngdr/S gridra (1—}— ln2rg )_t.

r4 0

The fluctuating field which is excited is a set of thin, random-
ly oriented plaits which form loops which are stretched out
to a great extent. The typical thickness of a plait can be taken
to be equal in order of magnitude to IR /2. Over length
scales from /R - "% to IR 7 '/* the ficld varies by a factor of
In R, /7R ;% which would be about 10~ for the sun, for
example, with R, =~ 10®.

At sufficiently high magnetic Reynolds numbers, sever-
al modes are excited. It is a simple matter to show that the
critical value for mode & is

4ng
Rr: = -,
x expV5
ie.,
Ry~ 26, R ~6.6.102, R} ~1.7-10%

Experience in numerical calculations shows that these
asymptotic estimates are slightly on the low side; we would
actually have R } ~ 102

At an even larger value of R, the growth rates of the
first and second modes are essentially equal. At R = 10° we
have (¥, — 7,)/7,=0.1. In this case we would naturally ex-
pect that the correlation function would be the sum of two
modes with comparable coefficients.

The second mode is shown
r,=18R 7', r,=Il-0.1R ;7 '4, ri/I=0.6R '
8(r))=0.82, g(r)) =(—1/8)R ;' and g(r,)~R 7 ¥*.
We interpret the second mode as a combination of figure-
eights which have been twisted twice and stretched out, as
sketched in Fig. 5.

Let us take a brief look at applications of these results.
In our galaxy we have R, =~ 10° (ambipolar diffusion was
taken into account in the determination of this value?®), so
that we have (¥, — #,)/¥,=0.2. The second harmonic must
therefore be represented more weakly. This is the nature of
the correlation function which was constructed by Dagkesa-
manskii and Shutenkov?® from observational data. At the
sun we would have R, =10°-10°, and the two modes would
be excited equally easily. In adddition to the fundamental
length scale of the turbulence we would expect two other
special length scales: /R  '/? and /R 7 '*. The first is not

in Fig. 5; here

173
1 "
| P’/@Qﬁ@/@a\
l A
{ (B "2*"4]-\ %
N — —3

FIG. 5. a—Second mode of the correlation function of the magnetic fields
excited in a mirror-symmetric short-correlation flow; b—sketch of con-
centrations of the field which is being excited.
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observable from the earth or from earth’s orbit; if we take
1~10* km as an estimate (this is the length scale of super-
granulation), we find /R ;?=1km. The length scale
IR '"* corresponds to a dimension ~ 100 km and is well
known from observations.*® We wish to stress that both in
observations and in the theory this length scale is of the order
of the dimensions of a region of one polarity. The structure of
these fine-structure elements and the field in them are not
related to the mean field; i.e., they should not be correlated
with the phase of the solar cycle. Again, this conclusion is in
accordance with observations.

10. VORTICITY AND STRAIN IN THE FLOW
OF AN INCOMPRESSIBLE FLUID

We have discussed at length the characteristics of inter-
mittency in the language of higher moments. That language,
however, is not very common in physics. We accordingly
would like to borrow a simple example from hydrodynamics
to show what type of physical information can be extracted
from a knowledge of higher moments. In this specially se-
lected example, the lower moments (the first and second)
are not very informative.

We note that the integral of the square of the vorticity is
identically equal to the integral of the square of the strain
over a region at whose boundary the velocity of the incom-
pressible fluid vanishes [this is a theorem of D. K. Bobylioff
(Bobylev)****]. For the integrals of the higher orders of the
vorticity and strain however, there are no such identities.
Using these integrals one can show just what is it that forms
concentrated structures—a vortex or a strain—in the flow
and just what is distributed over the entire volume of the
fluid. In other words, integrals of higher powers of the vorti-
city and the strain can be used to characterize the intermit-
tency of a flow.

Our purpose in the present section of the paper is to
establish the relationship between intermittency and inte-
grals of the vorticity and the strain. We wish to stress that we
are talking about properties which are possessed by any so-
lenoidal vector field. We will use hydrodynamic terminol-
ogy only to keep the discussion specific and to indicate possi-
ble applications; we will not make use of either the equations
of motion of the fluid or the Kelvin-Helmholtz theorem
(and so forth). The results remain valid in the case of mag-
netic fields (divergence-free pseudovectors). In this case we
need to consider the relationship between the integrals of
powers of the current density and of the tensor (J0H,/
Ox; + dH;/3x;)/2.

We recall that vorticity is a characteristic of the rota-
tion of any particle of a fluid. In the case of rigid-body rota-
tion at an angular velocity w, the velocity would be
u = o Xr, and the vorticity would be identical at all spatial
points: curlu = 2. In the hydrodynamics of an ideal fluid,
the vorticity is frozen in the fluid in the same sense that a
magnetic field would be. In two dimensions, this statement
implies that the material derivative of the vorticity is simply
equal to zero. In the presence of viscosity, the strain tensor
D, = (0u;/dx; + du;/dx;)/2 determines the enery dissipa-
tion rate, which is (1/2)v|D, |, where v is the viscosity of
the fluid.

In analyzing the motion of an incompressible fluid it is
natural to determine the degree of vorticity of the motion. At
first glance it would seem to be sufficient to compare the
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mean square values of the vorticity and the strain tensor for
this purpose (their mean values in the isotropic case are of
course zero). However, the Bobylioff theorem tells us that
these quantities are equal to each other, i.e., that all the flows
of an incompressible fluid are identically vortical in a mean
square sense, for a given mean square value of the strain. For
the flows of a compressible fluid, the integral of the square of
the vorticity is always smaller than the integral of the square
of the strain tensor.

Before we examine the integrals of higher powers of the
vorticity and the strain, we will prove the Bobylioff theorem
for the case of a differential rotation around the origin of
coordinates with an angular velocity @ = w(/?). This mo-
tion is two-dimensional; the integration must be carried out
over the x, y plane. Assuming

Q =rot u, 82=D;;D A(2)=;_Qz_(5z’

ij

we find

§ A2 a8 20 [ 4248 dre— 272 (00).
0

This integral thus vanishes if there is no motion at infinity
(or at aboundary). To obtain an identity in the general case
it is sufficient to show that 4 ®is a divergence. Let us do this.
On the one hand we have

where we have used
€ini€imn = ‘Shmézn — Opndim.

On the other we have

62:1 (M+éuk)(0ui+8uh)

G dxy ox; ary, o1;
4 ( Gu; u; | du; duy )
2 \ gzy 0xy ' dxy Oxy

By virtue of the incompressibility we have

du;  duy 0 ( duy

Oz odx;  Oxp t 6_11) !

i.e., the difference 1Q0*> — 87 is a divergence. For a compress-
ible fluid we easily find

SA‘Q’ d¥r= — S (dive)2dir= — j (%)Zd‘*r.
The mean square vorticity is thus at a maximum for an in-
compressible fluid.

It is now a simple matter to verify that the integrals of
higher powers of the vorticity and the strain are no longer
related in an identical way. For the difference of the fourth
powers we have

r 1 k du; du; dup Jdup
3. _ 35— S TR IR 3
S AW d¥r = .\ (-4—94 64) der=2 S drj dr; dzy Oy dr.
This integral is generally not equal to zero. We can write
expressions for the integrals of the difference between the

2p-th powers without any difficulty: f 4% d3 = (4).
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The meaning of the quantity (4%} is easy to see. If
this quantity is positive at large p, it will be primarily the
vorticity which concentrates in regions of a rapid change of
velocity; in the opposite case, the strain will concentrate
there. For example, for a differential rotation with an angu-
lar velocity @ = w,exp| — (#/7,)°] we would have
(4 = (3/16)w}r; . Consequently, when the flow of an in-
compressible fluid is a system of distinct vortices, the quanti-
ty (4®) and the other quantities (4" ) must be positive.
If, on the other hand, large volumes of the fluid are displaced
in a moving fluid, in such a way that comparatively few vor-
tices are formed at their boundary, then it will be primarily
the strain which is concentrated in regions of a rapid change
in velocity. At the bouadaries of these regions the velocity
field will be of the form u; = c;x;, and we will have ¢; =0
by virtue of incompressibility. At those points where a mov-
ing volume pushes back a fluid which is at rest, and where
the fluid closes behind a moving volume, the matrix ¢; is
approximately diagonal, and the strain is much larger than
the vorticity, as is easily verified. At the lateral surfaces of
moving volume the flow is approximately a Couette flow
u=u, (y), in which the squares of the vorticity and the
strain are the same at each point. Accordingly, in the motion
of large volumes the condition (4"’ ) <0 will hold. Such a
motion is unstable since the tangential discontinuity at the
boundary of the moving volume decays, forming a system of
vortices in the form of double helices,*” so that the vorticity
remains concentrated in regions of a rapid change in the
velocity field, while the strain becomes distributed over the
entire volume occupied by the flow.

In general, the quantity {(4?”’ ) is proportional to w3’ ¥,
where w, is the amplitude of the velocity gradient, and V is
the size of the region occupied by the drop in the velocity
field. Consequently, averages of different powers of the vor-
ticity and the strain may yield either a positive or a negative
difference. This statement means that the flow contains a
hierarchy of formations of various scales, so that the forma-
tions of one scale are primarily vortices, while those of an-
other scale move without a rotation of the volume. The sign
of (4? ) can of course change in time and depend on the
Reynolds number.

The characteristics of the vorticity distribution which
we have been discussing are also interesting in the particular
case of turbulence. We are thinking primarily of a uniform
turbulence in an infinite space (all the integrals are normal-
ized to a unit volume) in which the ergodic condition holds,
so that the mean values over space and over the ensemble are
the same. In a finite volume this agreement of mean values
may be disrupted, but even in this case an analysis of spatial
mean values, which the quantities (4‘®’ ) are, is of interest.

In turbulence, the moments (4>’ ) characterize the
deviation of the turbulence from a Gaussian turbulence, for
which the higher moments of the velocity field can be ex-
pressed in terms of the second moments, so that all the
(4 ) are zero. Since in turbulence the mean values of the
powers of the vorticity and the strain are determined by the
viscosity, the quantities (4%’ ) characterize the intermit-
tency at the smallest scale, The reader is referred to Ref. 4
regarding other characteristics of intermittency, which de-
scribe it (in particular) in an inertial interval; the character-
istics of the intermittency of random magnetic fields excited
in a turbulence are examined in §8 of the present paper.
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Yet another characteristic of intermittency is the corre-
lation, which shows whether the vortices are concentrated in
filaments or layers. The strain apparently tends to concen-
trate in spots. In order to construct correlations of this sort
we need to consider different-point moments, for which one
can in principle derive evolutionary equations by the meth-
ods described in §6.

For a magnetic field, the current density plays the role
of a vortex. Accordingly, if a quantity of the type (947 ) is
positive the implication is that the currents which create the
magnetic field have a tendency to group into a system of line
or surface currents. Currents which produce a magnetic
field with a negative (4" ) do not form such structures.

On the other hand, a magnetic field is the curl of the
vector potential, which in this sense is analogous to a veloc-
ity. The sign of the higher moments which we are consider-
ing here will thus help us decide whether the field itself is
concentrated.

11. STRUCTURE OF AN INTERMITTENT FIELD

An extreme expression of the idea of an intermittency is
that the vorticity (or a magnetic field) is concentrated in
narrow tubes, so that it can be written in the form

here £(/,t) is a function which specifies the position of the
filament in space by means of a parameter / (which might be,
for example, distance along the filament), and ¢ is the time.
The quantity 8, is a two-dimensional Dirac §-function in the
plane perpendicular to the filament at each point, whilenis a
unit vector which runs tangent to the line §. The plane in
which 8, is specified, like the vector n, evidently rotates from
point to point and as time elapses.

In several cases, individual vortices are introduced in
solving hydrodynamic problems, as a quantization method
for solving partial differential equations, e.g., in the Chorin-
Oppenheim method. The hydrodynamics of discrete vorti-
ces is studied in detail in a comprehensive monograph by
Gledzer et al.*®

Agishtein and Migdal*’ have suggested to use the con-
cept of a set of discrete vortex filaments as a basis for describ-
ing a well-developed hydrodynamic flow. We wish to em-
phasize that only in the presence of an intermittency do the
individual vortex (or magnetic) lines become real entities.
The value of ¢ for them is determined by the actual length of
the process, not by the particular mesh which is allowed by
the computer available to some investigator.

It follows from the solenoidal nature of vorticity
(divQ) = 0) that the factor @, which is a measure of the inte-
gral intensity in the given plane (f QdS = ®), should be
constant along an entire filament. Furthermore, the value of
® for each given line should also be independent of the time!

The stretching of a vortex is a well-known phenome-
non: For a given “Lagrangian” particle of a liquid, if the
viscosity is ignored, the vortex is transformed in proportion
to the distance of infinitely close points on a line directed
along the vortex:

Q (f, &) = QV.E& (r, 1),

where § = §(7,¢) is the equation of motion of a particle with
the Lagrangian coordinate &, §(0,7) = r. It is this stretching
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with amplification of a vortex which opposes the damping
effect of viscosity in a three-dimensional motion, so that it is
of fundamental importance for turbulence theory. A three-
dimensional nature of the motion is necessary; {1, is ex-
pressed in terms of v, and v,, but the growth of {}, depends
on du, /dz. Consequently, the two-dimensional approxima-
tion is atypical. In the approximation of intermittency, how-
ever, the constant ® does not change, even if £ and n are
directed along z and dv, /dz is nonzero.

The apparent contradiction can be resolved in a very
trivial way: In a region in which there are many approxi-
mately parallel lines with an identical vorticity direction the
mean value is

Q = dny,

where ¥ is the mean number of lines per unit area of the cross
section. An extension along z of an incompressible fluid is
accompanied by its contraction in the x,y plane: If du,/
0z >0, then

vy dvy _ v,
oz + oy oz <0

This effect is what causes an increase in the density of lines.

We might also note that the approximation of separate
S-function vortex lines is suitable for calculating the general
motion of lines and of a fluid, but it is not suitable for calcu-
lating the viscous dissipation of energy. Viscosity determines
the actual thickness of the lines.

In the magnetic case, the entire discussion is very simi-
lar to the original ideas of Faraday. If a magnetic field is
represented by a system of lines, the magnitude of the field is
characterized specifically by the density with which these
lines are packed; this situation corresponds precisely to an
identical, constant flux along each line. A magnetic force
tube will, on the average, be stretched and become thinner in
a turbulent flow; a magnetic viscosity will thicken it. It is
thus possible that a certain characteristic thickness will be
established for a given flow and a given magnetic Reynolds
number.

If there are many vortex or magnetic tubes, curved and
tangled, the viscosity will cause them to interact; there is the
possibility that oppositely directed tubes and closed field
tubes will reclose and annihilate.

Today, a hundred years later, individual vortex lines are
actually being observed in rotating superfluid liquid helium.
The intensity of each line is specified by a quantum condi-
tion; it is proportional to Planck’s constant. We thus see
immediately that this intensity does not depend on the time
during any motion of a fluid.

How does viscosity affect vortex lines? It is obvious that
an isolated line (a straight line stretching from — o« to
+ &) will acquire a finite thickness, although its integral
inensity will be conserved.

Finally, one could ask just why it is the vorticity, rather
than the velocity itself which is concentrated in tubes {in
one-dimensional filaments in the approximation described
above). (We immediately note that a streamline is not Gali-
lean-invariant.) A property common to both £ and u is the
condition: divQ) = 0 and divu = 0. However, a thin sub-
merged jet of a fluid with a given flow is unstable, while an
isolated straight vortex filament has a certain elasticity and
is stable.
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The same can be said of magnetohydrodynamics: It is a
field (the current is flowing in the azimuthal direction), not
acurrent, which is concentrated in a tube. However, it would
be interesting to see whether there are exceptional condi-
tions under which fluid jets and channels along which a cur-
rent flows would arise.

The concept of a turbulent flow consisting of distinct
vortex filaments is obviously only a very crude approxima-
tion of reality. It follows immediately from this concept that
we need to develop a convenient method for calculations on
the dynamics of a system of vortices in the typical three-
dimensional (3D) time-varying case.

However, this would not exhaust the problem. The frac-
tional exponents in the Kolmogorov laws indicates a fractal
nature of the vortex filaments. An individual filament may
be (must be!) fractal when we follow its bends and attempt
to determine its length. However, the hierarchical pattern of
the combination of small vortices into isolated, larger, “in-
termittent” vortices may also be fractal.

In developing this picture we should recall that parallel
vortices repel each other. That this is true can be seen easily
by looking at superfluid helium. For a given angular momen-
tum, the minimum energy corresponds to a rigid-body rota-
tion. The best approximation of rigid-body rotation is a uni-
form (constant-density) distribution of quantum vortices.
Such a distribution has a certain elasticity. The dependence
of the rotation energy on the moment of inertia can be easily
converted into a dependence of the pressure of the lattice of
vortices on the density. One can then also find an effective
transverse sound velocity. Another characteristic feature is
that a quantum vortex with a doubled angular momentum is
unstable and decays into two unit vortices.

Accordingly, there is no determinate process of a co-
alescence of several vortices into a single vortex. Parallel
vortices (in addition to turning each other) also repel each
other. There is no analogy.between parallel currents (which
attract each other) and parallel vortices. Curiously, magnet-
ic plaits (concentrations of magnetic field lines) lie halfway
between electric current and hydrodynamic vortices in
terms of the characteristic of the interaction: Magnetic plaits
do not produce external fields and thus do not interact.

Returning to vortices, we wish to stress that their mov-
ing toward each other (like their conservation, despite the
viscosity) involves a stretching along a vortex (see the dis-
cussion above). As expected, the appearance of a turbulent
structure is associated with a pumping of energy from a
large-scale motion and with the work performed by pressure
forces. A turbulent motion is a typical example of a dissipa-
tive structure which is far from equilibrium. Finally, we re-
call that turbulent motion at the scale with the maximum
energy can be quite varied. Consider the following: 1) a uni-
form turbulence behind a lattice; 2) turbulence in a straight
tube; 3) a fluid between two cylinders (the behavior differs
markedly, depending on whether the inner or outer cylinder
is rotating); 4) a convection driven by the heating of a fluid;
and 5) the same convection, under conditions such that a
general rotation of the fluid plays an important role, as it
does, for example, in large-scale atmospheric phenomena.
Under these extremely varied conditions, the structure of
the velocity field can also differ, and different approximate
approaches can be taken toward the actual picture.

The basic hypotheses of turbulence theory are (1) that
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there is a cascade of scales and (2) that the properties of the
turbulence are always identical at a scale smaller than the
scale which carries the energy (the maximum scale). These
hypotheses are very plausible, but they must be supplement-
ed with a quantitative or at least a semiquantitative estimate
of that ratio of scales over which the specific features of the
energy-carrying motion are ‘“‘forgotten,” and a universal
pattern of motion arises.

Finally, we note the difference between the hydrody-
namic and magnetohydrodynamic problems. The hydrody-
namic problem is closed and nonlinear. An instantaneous
vorticity field completely determines the velocity field of an
incompressible fluid, regardless of whether the vorticity is
given as a smooth function of the coordinates or as a system
of 6-function lines.

In the linear magnetic problem, the behavior of the field
B can be sought against the background of an independently
given velocity field. It can thus be seen, in particular, that a
hybrid problem arises: the behavior of a magnetic field
against the background of a velocity given by a set of vortex
lines (@ = Z;P;5,,). Do magnetic force plaits arise in this
situation? Will these plaits coincide spatially with vortex
lines?

We wish to thank A. M. Yaglom for useful comments.
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