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Diffusion in shear flows made easy: 
the Taylor limit 
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Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 QEW, UK 
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G. I. Taylor (1953) gave a simple recipe for the calculation of contaminant dispersion 
in bounded shear flows at large times after discharge. He decomposed the concen- 
tration profile across the flow into a resolved (uniform) part, with an equilibrium 
(large-time) estimate for the unresolved part. Here an extended recipe is given to 
include greater resolution and earlier validity. At the two-equation level there is a 
close similarity to the slow-zone model posed by Chikwendu & Ojiakor (1985). 
Application is given to Poiseuille pipe flow and to a contraflowing parallel-plate heat 
exchanger. 

1. Introduction 
In a paper communicated to the Royal Society by G. I. Taylor, Townsend (1951) 

revealed the mechanism whereby velocity shear begins to pull out a heat or dye spot 
and leads to a rapidly increasing rate of dilution (see figure 1). These early stages of 
contaminant dispersion have led to much complicated mathematics. Taylor (1953) 
recognized that for bounded shear flows this shear dispersion mechanism continues 
to operate, even when the concentration has become nearly uniform across the flow. 
As long as there is some concentration variation across the flow, the different 
velocities in different parts of the flow provide an efficient mechanism for longitudinal 
dispersion. 

The key to Taylor’s analysis was the calculation of the residual concentration 
variation across the flow. He envisaged an eventual equilibrium between the 
tendency for shear to generate lateral concentration gradients by the rotation of 
longitudinal gradients, and the smoothing-out by lateral diffusion. The simplicity of 
Taylor’s equilibrium analysis is illustrated in the next section, with a minor 
generalization to incorporate the effects of loss through the boundaries. The resulting 
expression for the effective longitudinal diffusivity , or shear dispersion coefficient, is 
not new; but, the calculation provides a framework for the more substantial 
generalization given in the remainder of the paper. 

The time restrictions upon the applicability of the Taylor limit are quite stringent. 
At moderate times, the effective rate of longitudinal dilution is increasing towards 
the Taylor asymptote. Also, the longitudinal concentration profiles can develop 
marked and slowly decaying skewness (Chatwin 1970). The origins of these departures 
from the Taylor limit lie in the concentration variations across the flow : the rapidly 
changing longitudinal concentration gradient disturbs the cross-stream balance 
between shear and diffusion. Two-zone models allow directly for such departures from 
equilibrium through the use of two concentrations. 

Mathematically, the pair of diffusion equations posed by Chikwendu k Ojiakor 
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FIGURE 1. The severe distortion of a dye spot in the early stages of contaminant dispersion 
(Smith 1981 b, fig. 8). 

(1985) seem to be a natural generalization of Taylor’s single diffusion equation. 
However, the arguments used by Chikwendu & Ojiakor to select where to split the 
flow field into zones have no counterpart in Taylor’s analysis. The purpose of the 
present paper is to give a derivation based upon Taylor’s ideas. In  the process, minor 
deficiencies of the Chikwendu & Ojiakor model are rectified (see Appendix A), and 
a generalization is given to N +  1 diffusion equations. 

An important class of problems which are only accessible to analysis at the 
two-equation level is transient behaviour in heat exchangers. A minimal description 
requires two temperatures and velocities to describe the coupled system. Accordingly, 
this paper includes a detailed application to parallel-plate heat exchangers. 

2. Effect of boundary absorption upon longitudinal dispersion 

diffusion equation takes the form 
For a high-PQclet-number flow, with absorption a t  the boundary, the advection- 

with 

(2.1a) 

(2.1 b )  

Here c (x ,  y, z, t )  is the concentration, u(y, z )  the longitudinal velocity, ~ ( y ,  z)  the 
diffusivity, V the transverse gradient operator (0, a,, az), q(x,  y, z ,  t )  the source 
strength, aA the boundary, n the outwards normal, and P(y,z) a wall absorption 
coefficient. The high-PQclet-number assumption (Taylor’s condition A) permits us to 
neglect a direct longitudinal diffusion term K c ,  which is dominated by the effects 
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of longitudinal shear dispersion. Aris (1956) showed that, if required, this term can 
simply be added to the shear dispersion coefficient. The initial-value problem starting 
at t = 0 can be simulated by an appropriate delta-function source strength. 

At large times after discharge the contaminant cloud will have become greatly 
elongated, and the a,c-term in ( 2 . 1 2 ~ )  will be small. Thus, the concentration profile 
across the flow will equilibrate to the shape $o(y, z )  of the lowest (single-signed) mode 
for the decay of concentration variations across the flow : 

V.(KV$O)+AO$jTO = 0, ( 2 . 2 ~ )  

with Kn*V$o+B$o = 0 on aA, (2.2b) 
- 

and $; = 1. (2.2c) 

In the approach to this asymptotic profile, appropriate representations for the 
concentration and source strength are 

(2.3a, b) 

(2.3c, d) 

The basis of Taylor's (1953) work is to seek an evolution equation for the resolved 
part co(z, t )  of the concentration distribution, making equilibrium estimates of the 
unresolved residual c'. As shown in detail below, this leads to a gradient formula 

(2.4) 

If we multiply ( 2 . 1 ~ )  by $o(z,y) and take the weighted average across the flow, 

- 
c = c0(q t )  $,(y, z )  + c' 
Q = Qo(", 0 $o(Y, 2) +Qf 

with c'$~ = 0, 

with Po = &. 

cf = -f(y, z )  a, c. 

then we obtain the evolution equation 

a, co + uoo a, c, +A, co + u$o a, c' = qo. (2.5) 

(The transverse diffusion term in (2 . la)  gives rise to the hoco contribution.) - Thus, 
the contaminant is carried along at the weighted average velocity uoo = u$& and 
decays at the rate A, appropriate to the lowest mode. Any longitudinal spreading is 
associated with the unresolved concentration variation cf. In the Taylor limit (2.4), 
this spreading is diffusive in character 

a, C, + uo0 a, c0 +Ao c0 - D 3; c0 = QO. ( 2 . 6 ~ )  

The effective longitudinal diffusivity D, or shear-dispersion coefficient, is given by 

D = f. (2.6b) the formula 

The exact equation for cf is 

with 

a, c/ + uoo a, cf- v-  (KvCf) = Qf + (uoo - u) $o a, co + u$o a, cf$o + (uoo - u) a, c', 
( 2 . 7 ~ )  

Kn*Vc' +@cf = 0 on aA. (2.7b) 

The equilibrium estimate for c' is based upon the assumptions that qf has become 
negligible, a, cf is much less than a, co, and that the rate of change of a, co is slow 
relative to the adjustment time for concentretion variations across the flow (Taylor's 
condition B). Equivalently, enough time has elapsed that the concentration distri- 
bution is dominated by the lowest mode and is evolving slowly. 

The advection and exponential decay of (lower case) co interfere with this 
equilibrium requirement. Thus, as (t temporary expedient we define (capitals) 

(2.8) CO(", y ,z,t)  = Co("-u,,t, y,z , t )  exp(--h,t), 
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with corresponding definitions for C' and Q', so that the advection and exponential 
decay are explicitly accounted for. The temporary (capitals) version of ( 2 . 7 ~ )  is 

a, c' - A, c' - v* ( K v c ' )  = Q' + (uoo -u) $, a, c, + u$, a, c'+o + (uoo -u) a, c'. (2.9) 

The approximate solution for c', based upon the quasi-steadiness of a,C, and the 

(2.10a) neglect of Q', a, c', is 
c' = --f(y, 2 )  a, c, 
c/ = -fa, c, (2. lob) 

where the auxiliary function f describes the balance between shear and diffusion 

with 

and 

(2.1 1 a)  

(2.114 

(2.11b) 

The normalization ( 2 . 1 1 ~ )  restates that c' does not contribute to the lowest modal 
component of the concentration (equation (2.5)). 

For flows with no z-dependence, ( 2 . 1 1 ~ )  is an ordinary differential equation and 
can be integrated explicitly (Smith 1986, appendix B). The resulting formula for the 
shear-dispersion coefficient is 

(2.12) 

where h is the width (or depth) in the y-direction. The concentration profile $, 
modifies the weighting given to different parts of the flow. However, the features 
emphasized by Taylor (1953) remain apparent, i.e. inverse dependence upon K ,  and 
quadratic dependence upon the velocity shear. 

An alternative expression for D can be derived if we introduce the higher transverse 
diffusion modes : 

( 2 . 1 3 ~ )  

K?l'V$, +p$, = 0 on aA, (2.13b) 

( 2 . 1 3 ~ )  

K = I ,  $ ' m $ / n = O  f o r m + n .  (2 .134  

0 < A, < A, < A, < ...) 

Also, we define the velocity coefficients 

Umn = U$m $ n .  

The solution for f can be written 

(2.13e) 

and the resulting summation for D is 

(2.14) 

(2.15) 

As remarked in the Introduction, the above results are not new. A variety of 
derivations have been given by Sankarasubramanian & Gill (1973), Lungu & Moffatt 
(1982), Smith (1983), Barton (1984). The present derivation is faithful to the work 
of Taylor (1953), and prepares the way for the subsequent generalization. A forceful 
argument for the need for an improved model has been given by Fischer et al. (1979, 



Diffsusion in shear flows made easy 205 

$5.5): when there is loss of contaminant there may be a negligible amount of 
contaminant left in the flow by the time that the Taylor limit is applicable ! 

3. Two-mode approximation 
The Taylor limit (2.10a, b) can be inadequate if either a,C' is not small relative 

to a, C,, or a, C, changes too rapidly. Both these facets can be improved if we extend 
the representation (2.3) to encompass another mode: 

c = C,(Z,t)$'o(Y,~)+C,(Z,t)$l(Y,~)+C6+C;, ( 3 . 1 ~ )  

c;$, = c;$l = 0; (3.lb) with 

q = qo@, 4 $o(Y, 4 + al(., 4 $l(Y, 4 + q'? ( 3 . 1 ~ )  

with qo=&, q1=*. (3.1d) 

The linearity of ( 2 . 1 ~ )  makes it natural to split c' into contributions associated with 
c, and c,. The reasons why we expect improvement are that the unresolved part of 
the concentration has been made smaller, and the relevant timescale for equilibrium 
has been shifted from the first mode l / A ,  to the second mode l/A2. In  view of the 
previous calculation, we can anticipate that the equilibrium estimates for c; again 
have a gradient form 

(3.2a, b) 

- -  

c6 = -fo(Y, 4 a, co, c; = -f,(Y , 4 a, c,. 

The $, and $, weighted averages of (2.1 a) yield the coupled pair of equations 

a, c, + uoo a, co+ A, c, = qo-uol a, c1 - u+, a, C;-u$, a, c;, (3 .34  

a, c1 +Ul1 a, c1 + A, cl0 = q1 -uol a, co- U e ,  a, c;-u*l a, c;. (3.3b) 

The modes have their own advection velocities u,, and decay rates A,, with coupling 
via the cross-terms ulrk a, ck. The non-equilibrium Telegraph-equation model proposed 
by Smith (1981 a) corresponds to neglecting the c; terms. 

In the extended Taylor limit (3.2a, b), we have a pair of diffusion equations: 

3, c, + uoo a, c, + uol a, c1 +Ao c, = Do, a t  c, + Do, a: c1 +Po, (3 .44  

(3.4b) a, c, + uol a, co + ull a, c1 +A, c1 = D,, c, + D,, 3: cl +ql, 
where 

Do, = u+o fo, Do, = u$o fl, Dl0 = 4 1  fo, Dll = U$l fl. (3.4c-f 1 
The exact equation for c; is 

a, c; + u,, a, c; - v = b j o  $0 + 4 1  $1- u$,l a, 4 + u$o a, c; $0 

with 

The occurrence of u,, on the left-hand side of ( 3 . 5 ~ )  anticipates the fact that u,, is 
the natural velocity associated with the $, mode. 

The removal of advection and decay proceeds as in the previous section. Thus, we 
again use capital-letter quantities C,, C;, Q, : 

The temporary (capitals) version of ( 3 . 5 ~ )  is 

c; = C ; ( z - u , , t , y , z , t ) e x p ( - A , t ) .  (3.6) 

a,! c;-A,C;-V.(KvC;) = ~ u ~ O $ O ~ u ~ l $ l ~ U ~ ~ ~ a ~ c , ~ u $ O a ~ c ~ $ O  

+ u$l a, c; $l + (u,, - u) a, c; + Q;. (3.7) 
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We now make the equilibrium assumption : that  a, C, can be treated as being steady, 
and that Qj, a,Ci can be neglected (i.e. enough time, say 6 /Az ,  has elapsed that the 
concentration distribution is dominated by the $o and $, modes). Hence we make 

( 3 . 8 ~ )  the approximations c; = - f j  a, c,, 
i.e. c; = -jj a, cj 
where the auxiliary functions f , ( y ,  z )  satisfy the equations 

(3.8b) 

with 

and 

v-  (KVfj) + A j f j  = ujo $0 + uj11C.1- U$j, ( 3 . 9 ~ )  

Kn.Vfj+Pfj = 0 on aA, (3.9b) 
- 
f j $ j  = 0. (3.9c) 

The normalization (3.9d) only ensures that Ci does not contribute to the $o 
component of the concentration (with a complementary property for C; with respect 
to ~ l ) .  For compatibility with (3.1 b )  we need the stronger result that G'; has no $, 
component. This property of equations ( 3 . 9 4  confirms the appropriateness of the 
split representation (3.6). 

I n  terms of the eigenmodes $m the functions f o ,  f, can be written 

This enables us to  demonstrate the positivity of the diagonal shear-dispersion 
coefficients Do,, D,, and the inequality of the off-diagonal terms Do,, Dlo:  

(3.11a, b )  

U?n (3.11c, d )  

We remark that for the initial-value problem, the qo, q1 forcing terms in equations 

m 00 

7 D , , =  E -. D,,=  E ~ 

n-z A n - &  n-2 A n - h ,  
U l n  Uon 

(3.4a, b )  imply that the correct initial data are the co(z, 0) ,  cl(z, 0) profiles. 

4. N i -  1 diffusion equations 

tation for the concentration is 
The extension to an ( N +  1)-mode approximation is now obvious. The represen- 

N 

The auxiliary functions f j (  y ,  z )  satisfy the equations 
N 

k-0 
v * ( K V f i ) + A j f j  = Ujk$h--U$j;., 

with 

and 

The coupled diffusion equations are 
N N 

( 4 . 2 ~ )  

(4.2b) 

( 4 . 2 ~ )  

(4.3a) 
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where 
(4.3b) 

As the number of modes is increased, the smaller the value of the dispersion 
coefficients Djk becomes. This is because the unresolved concentration is less and less 
important. 

The self-consistency of the different levels of truncation can be seen if we cease to 
resolve the $N mode. We split the equation for cN into component parts c; associated 
with forcing by the lower c k  modes: 

at c; + U k k  a, c; + h N  c; 

= - U N K a , c k +  ( U k k - U “ ) a , c k + D N k a i t C k + D ” a 2 c ; + q ; .  (4 .4)  

In  the now familiar way, we change to the capital C variables in which decay and 
advection have been accounted for : 

at c; + ( h N - h k )  c; 
= - U N K a , c k +  ( u k k - u N N ) a x c ~ + D N , a 2 c k + D ” a ~ c ~ + Q ~ .  (4 .5)  

On the premise that a, C;, 3; C i  are small relative to a, Ck, c k  and that the time 
variations are slow relative to l / ( A N - A k ) ,  we make the equilibrium approximation 

i.e. 

(4.6a) 

(4.6b) 

If we make the stronger assumption that a,C, could be regarded as constant with 
respect to both x and t ,  then the Ck terms would be absent in (4.6b). 

Substituting for cN into (4.3a) we have 

To recover the N-mode version of (4.3a, b) it suffices that we neglect the a: ck: terms. 
As time goes by the contaminant cloud gets elongated, and the higher (third) 
x-derivatives decay faster than the lower (second) derivatives. Thus, the neglect of 
the $N mode is justified if sufficient time (of order l / A N )  has elapsed. The more modes, 
the earlier the time that the equations are applicable. 

For a given application the appropriate number of modes needed depends upon 
how soon after discharge the results are required. For t in the range 

6/AN+i< t <  AN, (4.8) 

it  would be appropriate to explicitly represent the modes $o, .  . . , $ N ,  i.e. to use N +  1 
diffusion equations. With more than six e-folding times, the higher modes 

. . can be regarded as being in equilibrium. 
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FI‘I~~RE 2. Numerical test of the three-equation (---) aa compared with the two-equation (. . . . . .) 
solution and the full numerical solution (-) for Poiseuille pipe flow. The stars show Chikwendu’s 
(1986) results for the slow-zone model. 

5. Poiseuille pipe flow 
As a numerical illustration of the coupled-diffusion-equation model, it is appro- 

priate that we should follow Taylor (1953) and investigate Poiseuille pipe flow with 
impermeable boundaries. The velocity profile, eigenmodes and velocity coefficients 
are 

(5.la,  b)  

(5.lc, d )  Y& K J&,) = 0, A, = - a2 ’ 
- 

uoo = u, ufflm = 9, (5.1e,f 1 
8 -  8(Yk + Y2n) 
Y& (Ym ~ n )  

2 -  2 2 ’  U,, = -- u, u f f l , = -  

Performing the summations (3.11a-d) we find that the numerical values of the 
coefficients in (3.4a, b )  are 

- 
uo0 = U ,  uO1 = -0.5449E, ull = 5 (5.2a, b, c) 

14.68k 
a2 

A, = o ,  A1 =- 

?Pa2 3 a 2  
Do, = 0.0006112-, Do, = 0.002144-, 

K K 

u2aZ 3 a a  D,, = O.O01526-, Dll = 0.005508-. 
K K 

(5.2d, e) 

(5.2h, i) 
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I 
y = d  

FIGURE 3. The velocity profile for a contraflowing parallel-plate heat exchanger. 

Figure 2 compares the solution at t = 0 . 1 a 2 / ~  for a uniform discharge of length 
0.012aF/~ with the numerical solution computed by Gill & Ananthakrishnan (1967). 
Longitudinal diffusion was allowed for by the addition of 4 x 1 0 - 6 3 a 2 / ~  to the 
diagonal diffusion coefficients D,,. The NAG routine DO3 PGF was used to solve the 
coupled diffusion equations. At this early time after discharge the profile for c,, is 
markedly non-Gaussian. However, the coupled-diffusion-equation model does 
manage to reproduce the qualitative features, and is more accurate than single- 
equation models (Smith 1981a, figure 4). The criterion (4.8) would suggest that three 
diffusion equations would be more appropriate, and accordingly figure 2 includes 
results for the three-equation model. 

After this paper had been submitted, I learned that Chikwendu (1986) had applied 
the slow-zone method to Poiseuille pipe flow. Numerical results from his figure 8 are 
shown as the stars in the present figure 2. The shape of the profile is qualitatively 
similar to, but less accurate than, the present two-equation model. 

6. Parallel-plate heat exchanger 
As an example to which a two-zone model seems particularly natural, we consider 

transient heat exchange between contraflowing plane Poiseuille flows (see figure 3) : 

u = 6 Z [ ( 9 - ( $ ]  for 0 < y < d ,  

u = - 6 Z [ 3 @ - ( $ y - 2 ]  ford < y < 2d, 

(6 . la)  

(6.1 b )  

We take the outer boundaries to be perfectly insulated: 

K a , c  = 0 on y = 0.2d, (6.2a) 

and across the thin boundary between the flows we assume there is no thermal 

(6.2b) resistance : 
c and K a, c continuous across y = d. 

Nunge & Gill (1965) have investigated the steady state, including the additional 
complication of differing bulk velocities in the two flows. 
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FIGURE 4. The longitudinal temperature distributions in the two halves of a contraflowing heat 
exchanger for an initial hot spot in just the forward-moving zone: (a) forward-moving zone; (b)  
backward-moving zone. 
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The lowest mode for the composite system is 

$bo= 1 ,  ho=O,  (6.3a, b )  

and corresponds to equalization of temperature between the two flows. For constant 
K (laminar flows) the next mode is 

( 6 . 4 ~ )  

(6.4b) 

and describes the equilibration of the temperature between the flows. 
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The symmetry/anti-symmetry of the velocity profile and the modes implies that 
the diagonal velocity coefficients uoo, uI1 are identically zero. Thus, from (5.2a, b) we 
infer that the effective velocities for the two zones are f u , , ,  where 

a 2 4 4 2  [4 - A] 

x3 
= 0.9396E. uo1 = 

Despite the absence of thermal resistance between the two flows, the effective 
velocities are remarkably close to the respective bulk velocities fa. 

Symmetry considerations also permit us to deduce that the off-diagonal dispersion 
coefficients Do,, D,, are zero. To calculate the diagonal terms, we first calculate the 
shape functions fo,fl for the unresolved part of the concentration profile : 

( 6 . 6 ~ )  

Across y = d the extension of fo is anti-symmetric andf, is symmetric. Evaluating 
the integrals ( 3 . 4 ~ - f )  we arrive at the results 

( 6 . 7 ~ )  
U2d2 

[4-xI2} = 0.01358-, 
Do, = U2d2 -{--- 13 4608 

K 35 Xa K 

(6.7b) 
U2d2 

= 0.01647 -. 
2 

- 

D,, = yr!. 
Figure 4 (a) shows the advance and dispersion of a unit temperature pulse in the 

forward-moving zone. Figure 4 (b) shows the corresponding response in the initially 
unheated backward-moving zone. The solutions were obtained using the NAG routine 
DO3 PGF. 

In view of the relationship (2.15), ( 3 . 1 1 ~ )  between the one- and two-diffusion- 
equation dispersion coefficients, we can infer from (6.5) and ( 6 . 7 ~ )  that 

G d 2  
- 0.3714-. 

13Z2d2 D = - -  
35K K 

Thus, the ‘Taylor ’ shear-dispersion coefficient for the entire contraflowing system is 
an order of magnitude larger than the coefficients for the subsystems. This can be 
seen in figure 4 (a), where the rate of spreading increases markedly once there has been 
significant exchange between the two zones. 

7. Concluding remarks 
The title of this paper makes the contention that in the Taylor limit the 

investigation of contaminant dispersion becomes easy. This claim rests on three 
points. First, that the decomposition of the concentration field into resolved and 
equilibrium parts makes the timescale limitations quite explicit. Second, the integrals 
(3 .4~ - f )  or the series (3.1la-d) for the shear-dispersion coefficients are straight- 
forward to evaluate. Finally, constant-coefficient diffusion equations are much more 
familiar than some of the equations that have been advocated for the modelling of 
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contaminant dispersion. Indeed, as befits the Taylor centenary year in which this 
paper was completed, the extension is in the spirit of G. I. Taylor’s (1953) research. 

I wish to thank the Royal Society for financial support. 

Appendix A. Modes and zones 
Although we have succeeded in deriving a pair of diffusion equations (3 .4~4  b) to 

describe shear dispersion, they do not have the form of the two-zone equations posed 
by Chikwendu & Ojiakor (1985). An obvious source of difference is that modes are 
associated with a decay rate A,7 whereas zones are associated with a velocity u(+), d-). 

The eigenvelocities of the ut, symmetric matrix are 

u(+), u(-) = 1 2(UOO+%)f [Gl + a ~ ~ 1 1 - ~ 0 0 ~ 2 1 3 .  

(A 2a) = [u~1+~(u11+u00)2]3’ 

i.e. u(+) = uoo + (5 f 1 ) [ 4 1  +a(%, - u00)213. (A 2 b )  

(A 1) 

The relative thickness of the two zones are t(l -E),t(l+E) where the asymmetry 
coefficient 5 is defined by 

t(u11- uoo) 

In terms of the model concentrations co, c1 we define the zone concentrations 

c(+) = co+cl s g n ( u o l ) [ k T 7  1 - 5  

c(-) = co-c1 sgn (uol) [&g. 
The appropriate linear combinations of equations (3.4a, b) yield the two-zone 

equations 

a, c(+) + u(+) a, c(+) +A, c(+) + (A, -A,) t(i + 5) (c(+) - c(-)) = D++a; c(+) + ~ + - a ;  c(-), 

(A 4a) 

(A 4b) 

D++ = ~ ~ ~ - 5 ~ ~ o o + t ~ ~ + 5 ~ ~ l l + ~ ~ ~ - ~ 2 1 ~ ~ g ~ ~ ~ , , ~ ~ ~ , , + ~ , , ~ ,  (A 5 4  

D-- = t (1  + E )  Do0 +t(l -0 D,, +t[l -g214 sgn (uo1) (Do1 +D,,), (A 5b) 

a, c(-) + u(-) a, c(-) + A, c(-) - ( A  - A ) 1( 1 - 5) (c(+) = ~ - + a 2  c(+) - 0 - 3 2  
1 0 2  X 

The new diffusion coefficients are given by the somewhat awkward formulae 

D+- = Hl + E )  ( ~ o o - ~ l l )  +;[Fg sgn &ol){(l + 5) 4 0 -  (1 -5) Do,), (A 5c) 

D-+ = i(1-5) ( D o o - ~ l l )  +2[Fg sgn (uo1){U + 5) Do, - (1 -5) DIJ. (A 5 4  
1 1 -  

In  their model, Chikwendu & Ojiakor (1985) overlooked the possibility of off- 
diagonal dispersion coefficients, i.e. that a concentration gradient in one of the 
coupled pair of shear flows induces a flux in the other flow. The way that this arises 
is that the residual concentration variation across the flow is non-local (i.e. extends 
into both parts) : 

c‘ = -f(+) 1 2( 1 - 6 )  a, c(+) +-) t( 1 + 5) a, c(-)7 (A 6) 
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where 

The associated flux involves a weighted average : 

(A 8a)  

(A 8 b )  
where @+), y?(-) are defined as in (A 7 a ,  b )  and the diffusivities are given by (A 5a-d).  

It happens that for parallel-plate heat exchangers, as studied in $6, the asymmetry 
implies that the diagonal diffusivities are equal : 

= - D++ a, c(+) - D+- a c(-) 

= - D-+ ax c(+) - D-- a c(-) 
x ,  

X )  

and the off-diagonal diffusivities are zero : 

D+- = D-+ = 0. (A 9b) 

Hence in this case the two approaches are equivalent. Indeed, figures 4(a, b) could 
have been computed from the explicit solution given by Chikwendu & Ojiakor (1985, 
$9) instead of from the NAG computer program DO3 PGF. 
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