
M4A33: Taylor Dispersion – Shear augmented diffusion.

Neither simple diffusion, nor advection by a constant velocity is a particularly effective
method of mixing. The former is only rapid when there are sharp concentration gradients,
while the latter merely carries material downstream without changing its distribution. A
non-constant advecting velocity is quite different, however. Then parts of the material
are carried faster than others, so that the distribution gets stretched and distorted. This
results in sharp gradients perpendicular to the flow, which diffusion can then iron out. The
combination of a shearing advection velocity with weak diffusion can lead to quite effective
mixing. This is important for gas exchange in the lungs and also in the blood circulation.

We consider steady flow in a straight pipe, driven by a constant pressure gradient
(“Poiseuille flow.”) In terms of cylindrical polar coordinates (r, θ, z), the down-pipe veloc-
ity is (0, 0, V (r)), where

V (r) = 2V

(

1−
r2

a2

)

where V =
1

πa2

∫ 2π

0

dθ

∫ a

0

rV dr =
2

a2

∫ a

0

rV dr (1)

is the average velocity over the pipe cross-section. In general, we shall denote the average
of a quantity X over the pipe by X. Note that Xy 6= Xy.

Suppose now that an axisymmetric distribution of material, c(r, z, t), is released into
this flow at t = 0. Then its evolution is described by

ct + V (r)cz = D∇2c = D(czz + 1
r
(rcr)r) . (2)

If no material can enter or leave through the boundary, we must have ∂c/∂r = 0 on r = a.
We separate c into its cross-sectional average and r-dependent parts, writing

c(r, z, t) = c(z, t) + c′(r, z, t) where c =
2

a2

∫ a

0

rc dr

and c′ has zero average, c′ = 0. Then

ct + c′t + V cz + V c′z = D(czz + c′zz + 1
r
(rc′r)r) . (3)

Taking the cross-sectional average of (3), gives

ct + V cz + V c′z = Dczz , (4)

where we have used ∂c′/∂r = 0 on r = a. The transport of the mean concentration c thus
depends on the average advection of the r-varying part of c, which we calculate below.
Subtracting (4) from (3) yields the r-varying component of (3),

c′t + (V (r)− V )cz + V c′z − V c′z = D∇2c′ . (5)

So far this is exact. We now approximate by observing that after a time of order a2/D we
expect cross-pipe diffusion to have almost smoothed out variation in the r-direction. Thus
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for t ∼ O(a2/D), we expect c � c′. Furthermore, we expect gradients in the r-direction
to be greater than those in the z-direction, so that the primary balance is

(V (r)− V )cz '
D

r
(rc′r)r . (6)

Substituting (1) into (6), we have

(rc′r)r =
V cz

D

(

r −
2r3

a2

)

. (7)

Now c does not depend on r, so that we may integrate (7) twice to find

c′ =
V cz(z, t)

D

(
1
4r

2 −
r4

8a2
+A+B ln r

)

.

Since c′ must be regular at r = 0, we have B = 0. Furthermore, c′ has zero average, so∫ a
0
ru′ dr = 0. This fixes A = − 1

12a
2, so that

c′(r, z, t) =
V a2

24D
cz(z, t)(6R

2 − 3R4 − 2) where R =
r

a
.

Equation (4) requires the term V (r)c′z, which is

V (r)c′z =
a2V

2

24D
czz(z, t)

∫ 1

0

2(1−R2)(6R2 − 3R4 − 2)2RdR

=
a2V

2

12D
czz
(
3− 2− 1 + 3

4 − 2 + 1
)

= −
a2V

2

48D
czz .

(8)

Substituting this result into (4), we obtain an advection/diffusion equation for the mean
concentration c(z, t),

ct + V cz =

(

D +
a2V

2

48D

)

czz = Deff czz , (9)

where Deff is an effective downstream diffusion coefficient,

Deff =

(

D +
a2V

2

48D

)

= D
(
1 + 1

48Pe
2
)

where Pe =
aV

D
. (10)

To summarise these results, after a time of order a2/D, the concentration will be fairly
uniform across the pipe, the material will have moved a distance V t down the pipe, and
will have spread out in the z-direction a distance O(

√
Defft).

The effective diffusion coefficient Deff is slightly paradoxical. It has a minimum value
as D varies of Dmin = aV /

√
12 when the Peclet number Pe =

√
48. It increases as

D decreases from the minimising value. This is because when the cross-pipe diffusion is
weak, the shear has a long time to stretch the initial distribution before it is smeared out
across the pipe. The length of the mixed region is thus greater.
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