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EFFECTIVE PLASMA HEAT CONDUCTIVITY 
IN "BRAIDED" MAGNETIC FIELD-11. 

PERCOLATION LIMIT 

M. B. ISICHENKO* 
lnstilutc for Fusion Studics, The University of Texas at Austin 

Austin, TX 78712-1060, U.S.A. 

(Receiucdb Morch 1990; und in reuisrdJ"mi 23 Nmember 1990) 

Abstract-This paper is devotcd to the problem of anomalous transport across ii magnetic ficld that 
includcs a small stochastic component 68. The pertwhation is assumcd to bc so strongly strclchcd along 
the background magnctic field U, that the parameter R is large: R h,L,/a >> I (here h, =do,/& << I ,  
and L,, is thc longitudinal and S the tran~ver~e  correlation length of the magnetic perturbation). This 
strong turbulence limit, which is opposite to the quasi-linear one ( R  << I ) ,  has certain notable features. The 
principal result is that the main transport is conccntrated in very thin regions, being fractal sets with the 
dimension 4, which can range in value from 2 to 2.75, depending on the spectrum of the magnetic 
pcrturbation. These regions consist of  a small fraction of magnetic lines that pcrcolatc, that is, walk from 
lhc non-perturbed magnetic flux surfaces to a distance barge compared to the transvcrse correlation length 
6. Due to such a strong inhomogeneity of the transport distribution, as well as the long correlations, thc 
standard transport averaging techniques fdil. and one should make use af the  percolation theory methods. 
Thus the strong turbulcncc regime is referred 10 here as the percolorion limir. In compilrisoii with the quasi- 
linear limit, the percolation limit has seveial additional intermediate regimes and the cxpressions f i r  the 
efkcectivc hear conductivity xCli include thc critical exponents of 2-D percolation theory. The estimates of 
zcaarc obtained both in thecollisional andcollisionless limits, includingthccasc ofnon-stationary magnetic 
perturbations. 

I .  INTRODUCTION 
THE PURPOSE of the present paper is to extend earlier works on quasi-linear cross- 
field stochastic transport (RECHESTER and ROSENBLUTH, 1978; KADOMTSEV and 

of strong magnetic perturbations : 
POGUTSE, 1979; KROMMES, 1978; KROMMES et d., 1983; ISICHENKO, 1991) to the Case 

R hoL,/S >> I ,  0 )  

where h, = 65,/B0 c< 1 is the relative magnitude of  the magnetic field perturbation, 
and Lo is the longitudinal and 6 the transverse correlation length. In this paper, we 
adopt the notation introduced in Part I (ISICHENKO, 1991). The present part of our 
study has been written as a separate paper because the treatment ofthe problem in limit 
/ I \  ~--l .-:  _- ?...--I *.. tl-.. ---+: -....- ---- . . l , ,+:~- ..-r\htnm (P.n.~-n~a., -I I,, uric> 1,SW rcc,,r,lquca 1SldlGU L U  L l l c i  C U l l L l l l " U l l l  pc1c"1"""" p " " 1 C 1 L 1  , Y R " L " Y " Y  r, 

U [ . ,  1990). For this reason, we shall refer to limit ( I )  as thepercolution limit. 
Let us consider a stationary "braided" magnetic field 

B = 5 , 2 + G B ( . ~ , y , ~ , t ) .  (2) 

* Pcrmanent addrcss: I.V. Kurchatov Institute of Atomic Encrgy, 123182 Moscow, U.S.S.R 
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810 M. E. ISICRENKO 

In the present paper for simplicity we neglect shear effects. With equation ( 2 ) ,  the 
equation of a field line takes the form 

dr,/dz = b(rl,z), ( 3 )  

where b 6B,/B,,, rI (.Y, y ) .  Equation (3) describes nearly two-dimensional motion 
of a magnetic line, since inequality ( I )  suggests that thc dcpcndcncc of the RHS of 
equation ( 3 )  on z is very slow. Besides, in this approximation one can consider the 
transvcrse magnetic perturbation b to he incompressible. According to div 6B = 0 
and ( I ) ,  we have 

div b = i%Jc3x+ab,,/ay = -ah:/az c hilLo c< IV x bl c h,,/6. (4) 

Equation (4) implies that the compressibility of b is insignificant. The criterion for 
the neglect of compressibility is discussed in more detail in Appendix A. Thus we can 
express b in terms of the longitudinal vector potential $(x,y ,  i) which also depends 
on z very slowly : 

b = V$ x i .  ( 5 )  

Thus, to a first approximation, due t o  the large parameter R, every field line produces 
cylindrical screw-type revolutions around a surface of constant (I. The transverse 
walk of a line is hence restricted to the size of the corresponding contour of $(x, y, z), 
a t  a given coordinate i = zo.  For  a turbulent state of a magnetized plasma one may 
assume a random distribution of I/!. For simplicity, wc take the perturbation as 
statistically isotropic. Among the contours of a random function, most are closed on 
the correlation scale 6. However, there is a small portion of level lines that are much 
longer. For example, the Earth’s relief exhibits not only lakes and islands, but also 
continental coastlines. In the limit R + m (exact 2-D case), the integral of motion 
$(x, y ) ,  even though a random function, prevents stochastic spreading of magnetic 
lines. Yet, a t  large hut finitc R thc magnetic transport should develop, beginning in 
the first turn from very large contours of $(x, y,  z o )  which provide “long-correlated 
jumps” of field lines. The importance of these large contours for plasma transport is 
due to their coherent contribution to the diffusion of magnetic lines. 

So, under condition ( I ) ,  the effective transport must he long-correlated, due to the 
important role of the transverse walk of magnetic lines to distances large compared 
to 6. For the treatment of the problem one must study the distribution of isolines of 
a random function of two variables over their sizes. This problem is closely connected 
with the percolation problem (cf. STAUFFER, 1979; SHKLOVSKII and EFKOS, 1984). 
KADOMTSEV and POGLJTSE (1979) were the first to point out the relevance of the 
percolation theory to the limit R >> I ,  but the cursory application of that theory in 
their work lead to an incorrect expression for the magnetic diffusion coefficient. 

GKUZINOV e /  U/ .  (1 990) considered the problem of low-frequency turbulent diffusion 
in two dimensions [being exactly equivalent to the problem of diffusing magnetic 
lines dcscrihed by equation ( I )  with R >> I ] .  Using recent analytical results in 2-D 
percolation theory (SALEUR and DUPLANTIER, 1987), they derived the following scaling 
of the turbulent diffusion coefficient: 
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D, 5 boGR-'''O. (6)  

Equation (6) is written as the diffusivity of magnetic lines. The assessment (6) suggests 
that in the two-dimensional (integrable) case R = m the magnetic diffusion D, 
vanishes, which differs from the previously reported estimate of D, boa 
(KADOMTSEV and POCUTSE, 1979 ; GALEEV and ZELENYI, 1981 ; KROMMES PI al., 1983). 

In the  limit R >> I the exponentiation ofadjacent lines is different from in  the quasi- 
linear limit. In the percolation limit the role of Kolmogorov entropy in average 
transport is more complicated than in the quasi-linear limit, and requires a more 
subtle consideration. Specifically, in this paper i t  is shown that an appropriate test- 
particle decorrelation length is expressed through the length [, of the convolution of 
a magnetic flux tube (defined in Appendix B), rather than that of the exponentiation 
of field lines. Nevertheless, these two processes still remain closely connected. 

Perhaps the most striking feature of stochastic transport in the percolation limit is 
that the major part of the heat and particle lluxes is concentrated in very thin regions 
occupying an infinitesimally-small fraction of the plasma volume, and, due to their 
self-similarity, the regions can be described in terms of rractal geometry. At the same 
time, due to the previously-discussed role of large contours of $, the cross-field flux 
correlation function decays relatively slowly, up to an anomalously-large correlation, 
or mixing, length U," >> b .  These ieatures, on the one hand, leave no hope ior appiying 
standard averaging techniques and/or convergence of the perturbation series, and, 
simultaneously, make it extremely difficult to analyze the problem numerically. To 
study the geometry of a stochastic magnetic field in the limit R >> I, one is forced to 
employ a direct x-space non-perturbative formalism, like the percolation theory. 

In other respects the solution of the efective heat conductivity problem in the 

In what follows, we will use test-particle motion analysis in  order to obtain scaling 
laws for cross-field plasma transport, with particular emphasis on distinguishing 
physically-different transport regimes. 

The remaindcr of the article is organized as follows. In Section 2, we discuss 
the diffusion and the exponentiation of magnetic lines. In Section 3, the effective 

decorrelation time fd both for the hydrodynamic (vetd > I )  and the kinetic (v,td < 1) 
limits, which is intended to generalize the "double diffusion" theory of KROMMES et 
a/. (1983). The very decorrelation time is evaluated in Sections 4 and 5 ,  for stationary 
and non-stationary magnetic perturbations, respectively. In Section 6, we demonstrate 
the transition between various anomalous cross-field transport regimes and summarize 
the results obtained. Lengthy auxiliary arguments are outlined i n  the Appendices. In 
Appendix A we take into account the compressibility of the transverse component b 
of the magnetic perturbation in order to establish the limits of applicability of the 
incompressible approximation. In Appendix B we discuss the stochasticity of magnetic 
lines and its relation to the decorrelation of a test particle from a specified field line. 
Appendix C is devoted to the effective heat conductivity in a 2-D random magnetic 
field ( R  = 03). For this case the application of the DYKHNE (1971) technique is 
discussed. 

In the present paper we make use of the notation and approaches from Part I, 
thereby reducing the nccd for lengthy explanations. 

percoiaiion l imit  is based upon tiie tei-;iiiiques as yuasi-lineai appiofimaiioii, 

. . A A . l . , -  lIPr+rnn hp.,t ,-nnAa,.-+;xr;+xr is n,nrerrrA thm,,nh the t r ~ t - n ~ ~ t i r l ~  p'C,p'C.,",CU,LL, L,lL..L,"l, l l L Y L  L".."Y'L'.1., ne,, '"Y.'.x'" I.. I .-I. I,.....-~- 
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2 .  PERCOLATION GEOhlETRY OF STOCHASTIC MAGNETIC FIELDS 
In this section we relate stochastic magnetic field lines to contours of a random 

function and discuss the application of the continuum percolation problem to the 
study of magnetic field line geometry. The results of GRUZINOV cr al. (1990), which 
are given a short rcview, are applied. 

As stated in Section I, at R >> I the (x, y)-projection of a magnetic line nearly 
follows the contours of the vector potcntial I/& J', z ) ,  with z considered as a slowly- 
varying paramcter. Bearing in mind that in the limit involved large contours are of 
primary importance, one must preface the magnetic ditfusion problem with the study 
of the statistics of random isolines. 

The statistical topography of a random rclier$(x, JJ) is described by the continuum 
percolation problem (SHKLOVSKII and EFRUS, 1984). Since this problem can be con- 
sidered as a limiting case of a lattice percolation problem (see, for instance, the review 
by STAUFFER, 1979), and due to the universality of percolation-critical exponents 
(SYKES and ESSAM, 1964), the scaling of the contours' distribution runction in the 
limit of  large contour size can be determined analytically (GRUZINOV ef al., 1990). 
Let us briefly siimmarize the results of the paper that are relevant for our discussion: 

(a) Suppose onecan ascribe to the random and statistically-isotropic function $(x, y )  
a single characteristic oscillatory amplitude $, = h,,& and a single spatial (cor- 
relation) scale 6. Then the distribution function of the contours of $ over their 
diameters U has thc rollowing long-range scaling: 

F(a) ala, a >> 6. (7) 

Here F(a)  implies the fraction of area occupied by contours with diameters 
(understood as maximum linear size) from U to 2a. According to (7), most of  
the contours have sizes o % S. The space-average o r a  quantity A which depends 
on the diameter of a contour can be calculated with the help of equation (7) as 

( A )  = F(u)A(a) dula. (8) 

(b) Any suficiently long contour with U >> S, considered on the scale i., 6 << 1. << a, is 
a fractal (i.e. statistically self-similar) curve with the fractal dimension 

d,, = ( v +  I ) / v  = 714, (9) 

where v = 413 is the correlation exponent of the 2-D percolation problem. I n  
particular, the length L of a contour i s  much greater than its diameter U and 
scales as  

L(a)  5 6(U/6)" '+  I)'\', U >> 6. (10) 

(c) From (a) and (b) i t  follows that the set or contours with diameters of the order 
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of a (say, U to 2u) consists ofdensely-packed fractal cells (let us call them "a-type 
cells"-see Fig. I ) ,  each ofwhich looks like a web with the thread width 

h(u) % a'F(a)/L(u) x 6(6/u) '",  a >> 6. (11) 

In what follows, we will call the quantity h(a) the width of the a-type cell. Below 
we will also refer to cells composed of the contours of the magnetic vector 
potentiai ri, as "<he magnetic celis". 

(d) Let the function $ include a smooth dependence on a third parameter z, $(.r, y ,  z )  
being a random function of (x, JJ) at every fixed z .  If the characteristic inhomo- 
geneity (correlation) scale over z is Lo,  then u-type cells are unrecognizably 
changed upon the displacement along z ,  

i n h ' d  ) io ,  ' r U >> 6 ,  j i l )  

which implies a perturbation corresponding t o  the thickness of the web. 
The above results relate to a "single-scale" random function. Perhaps a more 

interesting case would deal with multiple scales characterized by, say, the power 
Fourier spectrum of $(I). The problem of multiple-scale random topography has 

approach. One of the peculiarities of that model is the fractal dimension di, of long 
level lines which can take any value between 1 and 7/4, depending on the spectrum 
of $. For the sake of simplicity, the present paper is restricted to the widely-used 
single-scale model. 

The geometric properties of random contours (a)-(d) are sufficient to calculate the 
magnetic diffcsi.!sl.ity D, 2nd the Kolmogorov entropy in the percohtion !iEi! -? s I .  
The mixing length a,,,, i.e. the sire of a contour performing the most effective con- 
tribution 10 D,, can be assessed as the maximum transverse correlated walk or a 
magnetic line. This corresponds to the case where the field-line projection performs a 
complete revolution around the contour, by the longitudinal displacement ( I  2) result- 

.----.,..L--.. "..,..->1-.. T".".....,.,,~ ,.-A TJ ..... ,Inn,\ .._:..- "....."A"A -e-n,.,,..:.... ,cLr;rruy UCGII 3"IYrZ" "I L ? , l b " L , * h V  'U," 1.flLUA < , 7 7 , ,  U " L 1 6  'Ill C n l r L L " L "  p 1 L U L m L L u L L  

F ~ G ,  l.-Percoliltion magtietic cell. The dashed area is occupied by contours of $ with 
diamcters [a, 2 4 .  (I z 6. 
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ing in the dcstruction of the magnetic cell via the reconnection of contours. So, we 
write 

Gz(a,n)ho = L(u,). (13) 

From equations (10)-(13) one readily obtains 

(14) = 8R""'+ 21 
1" 

which corresponds to the longitudinal displacement 

7 ,  E &(U,) = LoR-'/('+2) (15) 

and i k  magneiic ceii width 

h,, = h(u,) = c ~ R - ' " ' + ~ ' .  (16) 

Now the diffusivity of the magnetic lines can be heuristically CakubatCd as 

( i i j  

With the numerical value of the percolation exponent v = 4/3, equation (17) yields 
expression (6). 

Rigorously speaking, t o  calculate D,, one should average the magnetic diffusion 
over all possible scales with the help of (8), namely 

- .., I , I ,  I c n - , J , ~ L , >  
U,, = r(umju;/rn, = D ~ ~ N , ,  = noox .,'. ' -. 

with the "partial" diffusivity 

Here a,(u) denotes the transverse displacement of a magnetic line corresponding to 
the longitudinal walk &(U). At a < U, a magnetic line performs many revolutions 
around its contour, thus giving 

al(u)  = a ,  U < a,,,. (20) 

In thc opposite case, U z U,, the line passes only a small part of the contour resulting 
in the displacement found from equation (lo) : 
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Combining equations (18)-(21) we simply calculate D, to obtain the above result 
(17). This supports the conclusion that the major contribution to magnetic diffusion 
(i.e. of the order of 50%) is made by a small share of magnetic lines occupying the 
volume fraction 

Another feature of magnetic transport in the percolation limit is its self-similar 
behavior in the inertial range of transverse scales [A ,  a,]. This is connected with the 
fractal geometry of random contours (MANDELBROT, 1982). Let us introduce the 
concept of the effective transport region, denoting the region of minimum volume 
responsible for_ say, 50% of the transport. Then in the inertial range [a, a,] of scales 
the effective transport region is a fractal, whose fractal dimension dican be calculated 
by adding unity to the fractal dimension of its plane cross-section (MANDELBROT, 
1982), this being in our case the rr,-type magnetic cell. Hence, in the single-scale 
approximation, using (9) we have 

di = dh + I = 2.75. (23) 

In a moregeneralcaseofmultiple-scale magnetic turbulencc 1 < d, d 1.75 (ISICHENKO 
and KAI.I)A, 1991), hence 

2 < di < 2.75. (24) 

Analogously to the quasi-linear limit, magnetic lines described by equation ( I )  in 
the percolation limit also exhibit stochastic exponentiation. However, this behavior 
is now strongly intermittent. A given couple of infinitesimally-close field lines diverge 
for a very long distance very slowly (namely, linearly with z), but then the distance 
between the lines increases abruptly up to a finite value of the order of 6. This effect 
is governed by the distribution of saddle (elliptic) points of ~ ( x ,  y ,  zo )  and i t  is more 
convenient to describe it in terms of the elongation of a curve being projected along 
the magnetic lines. In this representation the irregularities of the scattering of the 
magnetic lines are smeared out, and the curve undergoes an exponential anfractuous 
elongation with the growth rate estimated by GRUZINOV e /  al. (1990). For the length 
of the curve we have 

L,, 
f i  log R 

9 ( z )  z 9 ( 0 )  exp (i/& / z 

The inverse quantity of I could be regarded as the Kolmogorov, or topological 
entropy, of the case under consideration. 
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3 .  C O N N E C T I O N  B E T W E E N  T H E  E F F E C T I V E  H E A T  C O N D U C T I V I T Y  A N D  
T H E  T I M E  O F  D E C O R R E L A T I O N  

In this section expressions for xCn(fd), both for the collisional (11.f~ > I )  and col- 
lisionless (v.td < I )  cases, are derived. The evaluation of the decorrelation time fd is 
addressed in the next sections. 

Thc effectivc diffusivity of a test particle, being the same to  an  order of magnitude 
as the effective heat conduction xCn, i s  defined through the squareaverage transverse 
displacement rl of an electron at the decorrelation time: 

X d l  (r:(fd))/fd, (26) 

where the averaging is taken over the space of the initial conditions or, similarly, over 
the magnetic lines. 

While moving along a magnetic line, which nearly traces out a spiral, the (x, U)- 
projection of the point passes the distance 

.... .. 

L(z)  z hoz. (27) 

If this path does not exceed the transverse correlation length 6, the transverse dis- 
placement is equal to  L(z) ,  regardless of the magnetic line. For the percolating 
magnetic lines, and L(z) >> 6, the displacement rL (z )  is defined by equation (IO),  but 
cannot exceed the diameter of the given magnetic line spiral a :  

rL(z) % min {a(L[z)/6)"("+'), U } .  (28 )  

If we use equlitions (7) and (8), then for this case we obtain 

( r :  ( z ) )  % 6*(L(z) /h)" Iv+ I). (29) 

Expression (29) is valid until rL exceeds the mixing length (14), i.e. while 
L(2) < L, = 6.R('+'"'''f2', and after that the transverse walk of the magnetic line is 
a diffusion-like one with diffusivity (6): (r:(z)) % D,,lz/. 

Summarizing what has been said above we derive the following expression for the 
effective transvcrse heat conduction : 

zd < 6 /h , ,  (QD) (30a) 
:h , ,Z , /6:" '~~+l) iS2/ !d)  &/bo c Zd c z,, (!!?) (3%) 

2," < Zd. (MD) (30c) 

Here zd denotes the path the test particle takes along the magnetic field in the 
decorrelation time f d .  Depending on the collision frequency L'~, it is expressed as  
follows: 

I hmtd3 
X.S. = 

1 D m z d / f d ,  
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which means hydrodynamic (collisional) and kinetic (collisionless) limits, respectively. 
The abbreviations used in (30) distinguish the quick decorrelation regime (QD)- 
intermediate regime (IR), and the regime of magnetic line diffusion (MD). Equation 
(30) is similar to equation (18) of Part I derived for the quasi-linear limit, except for 
the appearancc o f a  new intermediate regime lying between the QD and MD regimes. 

When (31a) is substituted into equations (30a) and (30c), two expressions for xcn 
are obtained corresponding to the “fluid” (xen = xllbi) and the “double diffusion” 
[xCa = Dm,(xli/r,)t!2] regimes. In the kinetic limit (31b), equations (30a) and (30c) 
yield the ”double-streaming” ( x , ,~  = h&:/,,) and “collisionless” (xcr = O,,u,) regimes, 
respectively. These four regimes also exist in the quasi-linear limit R << 1 (KROMMES 
e/  al., 1983; ISICHENKO, 1991). Thus, we infer that  in the percolation limit R >> I ,  in 
addition to all the regimes pertinent to the quasi-linear limit, there exists a new 
intermediate regime (IR) given by expression (30h), both in the hydrodynamic and 
kinetic approximations. 

4 .  DECORRELATION I N  A STATIONARY STOCHASTIC MAGNETIC F I E L D  
In this section we assess the time of test-particle decorrelation I, in a stationary 

“braided” magnetic field. Among the causes of the decorrelation are either a finite 
transverse diffusivity xI (in the collisional case) or a finite gyroradius r, (in the 
collisionless limit). 

While in the quasi-linear limit the decorrelation time has been defincd as  the time 
it would take the test particle to leave a magnetic flux tube with initial diameter 
6, in the percolation limit the decorrelation occurs when the particle leaves the effective 
transport region responsible for the anomalous transport. Let us now evaluate the 
width h of the magnetic cell in various reb’ Times. 

In the regime of quick decorrelation, zd < 6/b,,, where the transport loses its long- 
correlated features, one concludes that h = 6. Otherwise, h is defined by equation 
(1 I ) ,  where one must substitute Tor the diameter a either the transverse displacement 
d(L(z,)/6)’”” ’ )  in the decorrelation time (in the intermediate regime) or  the mixing 

a b 

FE. 2.-Two typcs of slrclching maps: thc quasi-lincar l imit  (a) and tliu pcrcolation limil 
(b), whcre the fractality and Ihc multi-connectedness o i  the cell are ignored for the sake of 

simplicity. 
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scale (14) (in the regime of magnetic diffusion). This results in the following width of 
the magnetic cell, which depends on the decorrelation time rd : 

(QD) ( 3 2 4  
6(6/h0zd)'"'+'), (IR) (32b) 

(324 { :: R- I / ( \ '+  2) > (MD) 
h ( t d  

where the inequalities are corresponding identical to those of equation (30). 
One must now define the quantity Id as the time it takes the particle to leave a 

magnetic flux tube whose cross-section i = 0 is a magnetic cell whose width given by 
equation (32). (Imagine Fig. 1 of Part I when in the cross-section z = 0 lies not a 
circle, but the fractal shown in Fig. I of this paper.) In a stationary magnetic field 
and in the collisional case the decorrelation might occur due to the direct cross-field 
background diffusion with the characteristic time h 2 ( f d ) / x I .  However, at very small 
xI the electron can decorrelate faster, by first going some distance along the magnetic 
line, and then diffusing across the smaller width of the magnetic tube L(z) due to the 
convolution of the magnetic flux tube constructed from the magnetic cell (see Fig. 2) .  
[This effect of stochasticity-driven decorrelation has been pointed out by RECHESTER 
and ROSENRLUTH (1978) for the quasi-linear limit.] The convolution means the thin- 
ning of the tube walls due to the area-preserving stochastic stretching of the field- 
lines-projected magnetic cell. This effect causes a decrease of the flux-tube thickness 
&), which can he described by the model equation 

L(z) zz h exp (-Izl//& 1, z hL,/S. (33) 

The interconnection of this effect with the stochastic instability, as well as the 
evaluation of the convolution length /,,, for the percolation limit, are discussed in 
more detail in Appendix B. 

Now one can propose an equation for t,,, accounting for both the direct transverse 
decorrelation and the stochasticity of the magnetic lines: 

h(tJ exp [ -zd(fd)W(fd)Ld1 = (x l fd i i2 .  (34) 

Together with (31a) this may he readily solved to obtain 

6 2 1 X I .  XIID11 > 1 (QD) (354 
(35b) 
(354 

l I ( V +  2) 
1, (~*/XI) (XLIDI~)  , 1 > XL/DII > R - 2  (1R) '[ ( z , k l l )  In2 (DI , /X~R' ) ,  R-' > x d 4 .  (MD) 

Here for brevity we have introduced the notation Dll xllhi, which means the longi- 
tudinal test-particle diffusivity projected on the (x. y )  plane. 

Letusnowturn to thekineticlimitb',td < I. If, forsimplicity, wetaketheuncertainty 
in the transverse electron position to be of the order of its gyroradius rc ,  as in Part I ,  
then the collisionless decorrelation time Id should be given by 

h( td )  exp (-zd(fd)Pm) = re,  (36) 
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together with equations (31h) and (32). At sufficiently small gyroradius, 
rc < h,, G 6R- ' '~v+21 ,  this yields 

The kinetic evaluation (37) smoothly matches the hydrodynamic one in (35c) at 
w8,rC = Z,/r,. 

5 .  NON-STATIONARY DECORRELATION 
Now, let us take xL = 0, r, = 0 and consider the decorrelation to be the result of 

only the non-stationarity of the magnetic perturbations 6B(x, y,  z, t )  varying with 
chardeteristic frequency W .  

First of all, one can see that the dependence of the perturbations on time sim- 
ultaneously results in two distinct kinds of decorrelation, which can be referred to as 
kinematic and dynamic. 

On the one hand, percolating magnetic lines evolve in such a way that they reconnect 
with a preferred shortening of their transverse spread, since smaller contours are 
more probable. The problem is similar to the one discussed  above, concerning the 
reconnection of  contours of $(x, y,  z )  as z is changed. The only ditference is that now 
$ also depends on time, and the magnetic cells composed of contours of $(s, y,  z, t )  
are destroyed (through reconnection) a t  a fixed i upon the passing of time: 

t h  = h ( t M w 6 ) .  (38) 

Equation (36) is quite analogous to equation (12) when one makes the substitutions 
6. + f,,, Lo --t U - ' .  The only difference is that now the magnetic cell width h itself 
depends on the decorrelation time f h .  Thus equation (38) should be solved for the 
kinematic decorrelation time t g .  

On the other hand, non-stationarity leads to a test particle moving not exactly along 
the magnetic line, even if  the latter does not reconnect. This dynamic decorrelation 
can be described by equation (3), while accounting for the dependence of b on time: 

drL/dz = b(r,,z, t ) ,  (39) 

together with closure condition (3la) or  (31b). Let us consider the time-dependence 
in equation (39) as a small perturbation. Similar to the calculation of Part I, we have: 

drL/dz = b(rl,z,O)+ t(z)b,(r,, 4, 
b,(rl ,z)  = db(r1,z,t)/W,=" -who, 

The second term on the right-hand side of equation (40) represents a non-correkdted 
(with respect to the first term) slow drift with correlation length z = 6/b,,, which is 
also the fall-out length of the b, correlation function. So the perturbation theory 
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yields the following estimate for the square-average additional displacement rlm due 
to the non-stationarity : 

(rt,,(z)) = s; i’; dz’dz” t(s’)l(z”)(b,(z’)b,(z”)) 
0 ,, 

yz’l‘(z), z i Slh, 

The dynamic dccorrelation time tP may now be estimated from an equation similar 
to (34) : 

N r , , )  exp [-i(t,,)Sl(h(r,,)L,)l = ( r L , ( ~ ( ~ J ) > ” 2 .  (42) 

Resolving equations (38) and (42) in each limit [collisional (?la) and  collisionless 
(31h)], we find expressions for ti, and f,, which are not given here. The true decor- 
relation time is their minimum: f t i  = min (ti,, r,,). 

Comparing the two times ri, and f,, in every interval orparamcters, we finallydcrive 
the non-stationary dccorrelation time. In the hydrodynamic limit v,td > 1 the result is 

10-’,  (QD) (43a) 

I .  (MD) (43c) 

(In) (43b) 4(,-+ i ) K i r + i )  
fd  x (6’/~,1)% 

(zi/xll) I n 2  [Q;, I R-(S’+ 7!/(21+41 i 
The corresponding inequalities a re :  
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have been introduced for the collisional and collisionless cases, respectively. In 
addition, ull u,ho denotes the projection of the longitudinal electron velocity to the 
(x ,  ),)-plane. 

Note that regardless of the collisionality, in the QD regimes the kinematic 
decorrelation f h  dominates, while in the other regimes ( IR  and MD), the dynamic 
decorrelation time tD is shorter. 

6 .  EFFECTIVE H E A T  CONDUCTIVITY-DISCUSSION O F  RESULTS 
Formulae (30) and one of the expressions (31a), ( 3 9 ,  (43) (in the hydrodynamic 

limit) or (31b), (37), (44) (in the kinetic limit) solve the problem stated. Among the 
times of stationary [(35), (37)] and non-stationary [(43), (44)] decorrelation, one 
should choose the shorter one. 

If one knows the main magnetic perturbation parameters bo, L,, 6, w ,  and the 
plasma parameters xll, xl, t i e ,  re,  the effective cross-field heat conductivity can be 
evaluated with the help of the algorithm shown in Fig. 3 .  

Let us write down here the expressions for the effective heat conduction in the most 
obvious limits. Firstly, consider the stationary limit (w = 0) at r, < h,. Under such 
conditions we have 

X l l ~ l l ,  (QD) (464 
( Q x ~ " ~ ,  1 z xl/Dll > R-' (1 R) (46b) 

(rC/hlnd2 > xL/Dil. (MD) (464 
xaf l  e (DII/R)In-' [DIIIX~R'I, R-* > xl/Dll ( r e / h o 4 *  (MD) (4W i-' D,&, 

The first three regimes ( 4 6 ~ 3 )  are hydrodynamic while the last one (46d) is kinetic. 

FIG. 3.-Flow chart of effective heat conductimcc evaluation. The formula numhers lo be 
used are givcn in parenthcscs. 
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In  the case of strictly two-dimensional magnetic perturbations ( R  = CO), the result 
is given by expression (46h). The same estimate has been obtained by KADOMTSEV 
and PoGUTSE (1979) in two ditferent ways-one of them by using the DYKHNE (1971) 
method incorrectly. The essence of this misunderstanding and the application of the 
Dykhne technique are discussed in Appendix C .  

It is interesting that expressions (46b) and (46c), related to the percolation limit, 
do not includc thc pcrcolation exponent v, and hence could be obtained using a 
c;-, .~;~d ;.,,I-..-.,A-,.+ .,----"- L. ..I ~~...~"*+-~+d Y ..._.l_l -., .~..A D - , . . . - ~ ~  t i a m \  

[The only difference between (46c) and their result lies in the logarithmic de- 
nominator.] However, the mixing length U, does include v (see Appendix C). 

Similar to the quasi-linear limit, non-trivial quick decorrelation regimes, i.e. Q D  
regimes with xCn >> xL, such as  "fluid" (xcr = DlI) and "double-streaming" regimes, 
become possible only in a non-stationary stochastic magnetic field. Taking xl = 0, 
. = n " anr l  rrrcnimting ~ only fer the finite frequency ofthe pertE&tions, obtains 
from equations (30), (43) and (44) : 

a""p""1c" "'"cp'c""c"L a&,pl"aL,r, L1a Y~'II", 'aL'alc" ' \ ( I V " I " I 1 ~ L "  '72," 1 VV"li)l) ,I,",. 

(QD) (474 
(IR) (47b) D Q 2 ( " + 2 ) / ( 1 1 + 7 )  

Xcn % I1 hi r ( D ~ , / R )  ' i n - l  [ f i - I , - (Sv+7) / (21+4)  I,) I ,  (MD) (47c) 

for the collisional limit >letd > 1 ; and 

in the collisionless case v,fd < I ,  where the inequalities for (47) and (48) are the same 
as those in expressions (43) and (44), respectively. 

One can follow the transition hetwecn different regimes when the characteristic 
frequency w varies. Figure 4 demonstrates this transition for the case djb,, < i., < z,,, 
where IC = uJvC is the mean-free-path of electrons. 

In conclusion, we restate the key points of the analysis: 
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(i) The theory of anomalous transport in a "braided" magnetic field in the strong 
turbulence limit R >> I ,  which is opposite to the quasi-linear limit, must use the 
percolation-theory methods. 

(ii) In the percolation limit R >> I ,  excluding quick decorrelation regimes, the main 
transport is concentrated on fractals, consisting of a small fraction of percolating 
magnetic lines. 

(iii) In addition to all the quasi-linear regimes or their direct analogs, in the percolation 
limit there arise a number of new intermediate regimes of anomalous electron 
heat conductivity. 
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A P P E N D I X  A :  E F F E C T  O F  C O M P R E S S I B I L I T Y  O F  T R A N S V E R S E  
M A G N E T I C  P E R T U R B A T I O N  

The comprcsribility of b takes place only in the case of a non-zero longitudinal componcnt of thc 
magnetic perturbation: hz(x, p, z )  = aBJ8,  # 0. Then thc transverse magnetic component cm he written 
i n  rhc fann 

b = V , ~ ( x , y , z ) x i + V , L p ( x , L . , z ) .  (AI)  

Taking the divergence of cquiition (AI), we obtain the relalion for ~ p :  

V : q  = -ab,/& (A21 

The ficld line motion due 10 the magnetic pcrturbiition (AI) consists of two parts: the incompressible 
motion Vl$ x i (approximatcly along the isolines of $), plus a small drift on B C C O U O ~  of the potential 
~ ~ r r e ~ t i o n .  The drift part of thc displacement can bc calculated as 

c&) = [ VLLp(rI(z'),z')di', (AV 

where ~ ( 2 ' )  is the solution of thc  non-perturbed equation (3) (i.e. a t  w = 0). Since the quantity 'p changes 
its sign randomly along the isdims of *, thc drift (A3) can bc dcscrihed in terms of diffusion: 
rL,#(i)  z (Dv:)112, where the diffusion cocfficicnt is thc pmducl of characteristic spccd and the correlation 
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length: D, --- ( d 6 ) ( 8 / / > o ) .  Using the estiiniite 'p x h,P/L,, which follows from (AZ), we obtain the 
additional displaccmrnt caused by the compressibility corrcctioii : 

I,,* z (ihJ/R)"'. (A4) 

Comparing this quantity with the minimum width of the imrgnetic ccll h, ( 3 2 ~ ) .  at I. corrcsponding to the 
maximum longitudinal !mixing length zn, ( IS ) ,  v~c arrive at the iallowing condition, undcr which one may 
neglect comprcssibility elfccts: 

(AS) 

Inequality (AS) is the criterion for the neglect of the comprcssibility of h i n  MD rcgimes of anomalous 
transport. In IR rcgimrs condition [AS) is sullicienl. huwevcr not necesiilry, since in that case the effective 
transport a'idth Jr given by equation (32b) is grealer than I],,,, while the 1ongitudin;d mixing length :*, is less 
than zm. In QD regimes the compressibility of b is irrelevml and doer not affcct the transport. 

Note that in a strong magnetic field the loiigiludinal perturbation o i  B is energetically much mort 
cxpensive than the t r i i n ~ v ~ r ~ e  one and hrncc must be much smiillcr. This makes condition (A5) not loo 
rest TiCtiVC. 

b,,h, < R- !,(,'+a 

A P P E N D I X  B :  C O N V O L U T I O N  O F  M A G N E T I C  FLUX T U B E  
The map 

rLiQ - rl(4. @ I )  

given by the inilia-value prohlem solution of equation (31, may be thought of as an incompressible, and 
conscquently. a Hamiltonian one. The corresponding Hamiltonian $[x, y, z), depending on "time" 1, 

admit; stochastic behavior; morcover, such a behavior is typical for 8 generic Hamiltonian (c.f. AKNOLII, 
1978). I t  mciins that cvery curve in the phase spacc (x.).). consisting of points cvolving according to the 
equation of motion (3). elongatcs in time' cxponentially, as cvery two close points exponentiatc from each 
other. The m a n  growrh rate of this stochastic instahility (lhc Kolmogorov cntropy) has been ~ a l ~ u l a t e d  
in the quxsi-linear limit R = u / ( h )  << I by KROMMES [1978), RECHESTER PI 01. (1979) and KKOMMLS el al. 
(1983) for the ciisc of a strong shear. For the opposite limlt without shear Ihc Kalmogorov entropy at 
R << I has hem cstimated by K n o o ~ ~ s t v  and P o u u r s ~  (1979): 

yr = o>Ri,  R << I .  ( 6 2 )  

I,I the percolation limit R >> I y, has been calculated hy GKUZINOV el 01. (1990): 

? , = w R " * I n R .  R x l .  (93) 

Rigorously speaking, result (83)  is n o t  lhc Kolmogorov entropy, being the mean growth rate of thc 
enponcntiation. but rather the topological entropy, or maximum growth rate, defining the clongation o i a  
liquid curvc. 

The drcorrclatian of test particles in the magnctic field is not directly related l o  the rate oistrctching of 
a curvc, hut rather to thc ~ o n v ~ l u t i o n  of a Rux tube cyutructcd from a magnetic cell. This effect i s  
conncctcd with the evolution of the characteristic width h ( t )  of the Lagrangian ConVCclion cell, which in 
hydrodynamic terms corresponds to the magnetic cell. This width can bc defined as lhe shortest distance 
hetwcen apoint,situated zit I = Osomewhercin themiddleofthecell [i.e. K(O) % h].and thecell's boundary. 
The "Lagrangian conv~ction cell'' rcpresents thc Row-drivcn imiigc oithe coiivcction cell (cfeeclivc Iransporl 
rcgion) 

Thcre is a delinitc c o n n ~ c t i ~ n  between stochaslic instability 01 orbits and the Lagrangian stretching of 
the c~nvect ion ccII. However, this connection is quite diffcrcnt in the quasi-linear and pcrcolation limits. 
Thc dilferencc bcgins with the appearance of thu cells: while in the quasi-linear limit a circlc with diameter 
6 can he cunsidcred as a lnagnetic cell (if thcre i s  any Sense i n  this notion a t  all), but  in the pcrcolalion 
limit this is a fr;!ctal a,-typu cc l l  of the   on tours of vector potential $ (see Fig. I ) .  Furthermore, even faor 
similar 2-D domains one cm iinagine two kinds oC area-preserving maps with exponentially-elungatcd 

*In this Apnmdir. for !he nakc ofclarity, uc  takc L - I. b + v. Lil - w - ' .  thus lransfcring the magnetic- 
line prahlcm to the passivc scalar problcm in the random 2-D incompressible, weakly non-stationary 
flow v(.r, j ,  I )  = V$(r, y ,  I )  x i, varying in time with a sm811 characteristic frcquency << !>/a. I n  this 
represcnvation thc magnctic line dilfusion corrcspands to the "turbulent dirusion" in the flow. 
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curves. Thc type-l map stretches all the region at once (see Fig. 2a). Thc map of the second type affects 
for some time only those parts a l  the domain which are very close to its initial boundary (see Fig. Zb). One 
can easily understand that neithcr of th: two contradicts a global stochastic instability. At the same time 
in the first case the characteristic width /( I)  decreases at  a ratc inversely proportional to the perimeter, and 
in the second case i t  decreases much slower. 

Typc-I stretching takes place in the quasi-linear limit due to the k t  variation of the vclocity field, which 
gives rise to the destruction 01 thc flow "memory". Type-II strctching is characteristic of the percolation 
limit. In thc low-frequency limit R >> 1. thc elongation o f a  Lagrangian curve results from its hooking the 
saddle points of the flow and its dragging in thc channels between thc separatrices. (A separatrir means 
an "eight-like" Elredm linc coming through a saddlc.) The cxponentiation with rate (83) occurs as it mul l  
o l  the reconnection vf adjdccnt SepdWlriCeS. moving with a velocity of thc order 01 w6, due to thc flow 
non-stationarily. The inverse growth rate (83) corresponds to the time it takcs a scparatrix of the length 
L l o  pass thc distance d'/L 10 the ncarcst scparatrix. under an optimum choicc of L (GKUZINIIY 01.. 
1990). Ye1,duringthissmall time I. = 6/(wL)thevelocityfieldremainsiilmost unchangcd,astheconvccfion 
cell conlains l!/(S'/L) % u/S >> I separatrices. The lifetime 01 the convection cell, corresponding to [he 
intersection of thc inlost remote separatrices, is much longer: 

Ii = h/(oii) >> (84) 

(Compare with equation (12).) This rneans that during time r, the Lagrangian coiivr~tion U-ll is nearly 
unchangcd except for narrow channcls of width 6' /L  in the vicinity of its boundaries. As the separatrices 
of the convection ccll keep on  reconnecting, the Lagrangian convection cell grows ncw rxponentiiiting 
"whiskers" (see Fig. 2b). Finally, near the end ofthe life-time (84) all thc domain is subject to thc intcnsivc 
stretching with the riltc given by equation (83). 

Hcnce,thrlifc-time (84) oftheconvectionccllisalso thecharacteristictimcafthe Lagrangianconvectian 
ccll stretching. In terms of three-dimcnsional stiitionary magnetic fields the timc (84) corresponds to the 
following !rng!h !m o? thc convdction o?z 8w.t:be co!irtr~tcd korc E !uag. 

I, = L,h/6. (85) 

where Ir means the width of the magnetic cell. Howevcr, as i t  is seen from above, this praccss is rather 
complicated and has its own stagcs. Consequently, formula (33) is a madcl one, and the results (35c), 
(4%). (44c), (46c) following from it a r e  valid tu a logarithmic iiccuraiy only. 

A P P E N D I X  C :  EFFECTIVE T R A N S P O R T  IN T W O - D I M E N S I O N A L  
A N I S O T R O P I C  R A N D O M  M E D I A  

Lct us considcr il two-dimensional anisotropic mcdium in which the direction of lhe anisotropy "(I. y) 
is a function of the coordinatcs, In1 = I .  Let us suggest that along this dircction the electric conductivity 
(or hcat conductivity, dithsivity. ctc.) uquids 0 ,  while in the pcrpcndicular direction i t  is equal l o  r2. So, 
the local Ohm's law takes the form 

j =  o , E l l + 0 2 E 1 ,  

E,, = "(En), 

(Vi) = 0, 

E, = E-Ell, 
V x E = 0. 

Suppose further that the medium is a self-avcragcd unc. and the mean conductivity is isotropic: i.e. lrum 
(CI)-(C3) i t  f"ll0WS tha t  

<i> = ~ c r T ( ~ , , u ~ ;  n ( W ) ) < E > .  (C4) 

Here the aiigular brackets m c m  space-averaging over a domain large compared to some mixing length om. 
Using thc iiiisatzj '= C , i x  E. K = C , j x i  m d  comparing (C4) with the mulling "Ohm's liiw" for j', 

E ,  DYKHNE (197 I )  has shown thal the cflective conductivity satislies the relation 

oc,,(u, ,u2: n(.v,y))ocm(02.c, : n'is,.v)) = o,02. (CS) 

where d(.r J) = ix n( i ,  j) is thc perpendicular dircction lield. From equation (C5) i t  follows that the 
eflcctivc conductivity uf il two-dimcnsional polycrystal with random directions or Ihc milin axcs of 
crysuiiiicr [nix, y) is unirwm inside every crysialiiie ;mi disconiinuous on boundaries bciwecn iiemj is 
cqualto ( o , 0 2 ) ' ~ 2 .  Inthatcascthctwoficldsnand n';~resfiitisf~ciillyequivalcnt,ando,,isanevenfunction 
d o ,  and oI, which p r o w  the DYKHNI: (1971) m u l l .  
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In a 2-D magnetic field (2) (with alaz = ti) the problem of heat conductivity is equivalent to (CI)-(C3), 
thc ficld of anisotropy direction being givcn by a smooth function 

n a b(s. y) = V$ x 2. (C6) 

Furthcr, one should put 

01 = (x,,h2+x1)/l I  +b'), 01 =XI. IC71 

In  such ii problem thc fields n and n' a V$ are not statistically equivalcnt, as onc ofthem is proportional 
to :I solenoidal field and the other to a potential one. At first glance, this makes it impossihlc to apply thc 
Dykhnc method to  this problem in the way that has been done by KAI~OMTSEV and Pocurs~ (1979). 
Ncvcrthclcss, thcir rcsult 

X ~ R  = (.>.$'* = h d x n x J "  = (Duxd'" IC8) 

turned out to hc corrcct, which is due to the following simple observation: rhe IAU media (o,, 0 2 ;  n) and 
( c ~ ,  o, ; n') c m  in/oci idcnticoi. Consequently, regaidless of the statisticid equivalence of the two fields n 
and n' the two k t o r s  in thc Icft-hand sidc ofcquation (CS) arc equal. 

Thus, whcii the clkcclivc conductivity of B two-dimensional locally-anisotropic self-avcraging medium is 
isotropic, then i t  cquals exactly 

on, = [r,uJ'Z. (C9) 

I t  is rathcr instructive to obtain an assessment ofthe exact result (C9) in another way together with the 
evaluation af thc mixing length an,. Here it is more convenient l o  argue in t e i m  of diffusivity. Let ~ i ,  he 
much grei!cr !hi; ci. The charzcteristic b I i ~ c s  with !e~g!h L reupon.;ih!i fr,r !!x ilTcctive !r;lnyort are 
dcfincd by that in thc mixing time T. = L' /c ,  needed for the lungitudiniil particic dill'wion, thc particle 
lciivcs thc pcrcolation cell width h on account of the transverse dilluusivity c 2 :  

T., zz Li /o ,  zz hilo,. (CIti) 

Taking (IO) and ( I  I )  into B C C O U ~ ~ ,  this yields the miring length 

(1. = a(v,/O>)'"'""'. (CII) 

Thc efkctive diffusion is dcfincd according to os,, x F ( a , , , ) d / ~ ~ ,  where F ( 4  = L b / u ~  is the share of the 
percolating h lines. When taking (Clti) into consideration, this r e s ~ l l s  in formula (C9). 

Note that the feature of the large mixing lengths (om >> 6) is typical for percolation-like transport 
problems and at shorter scalcs the transport procrsscs itre non-dillusive. 


