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EFFECTIVE PLASMA HEAT CONDUCTIVITY
IN “BRAIDED” MAGNETIC FIELD—II.
PERCOLATION LIMIT

M. B. IsicHEnkO*
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Austin, TX 78712-1060, U.S.A.

(Received 6 March 1990; and in revised form 23 November 1990)

Abstract—This paper is devoled 1o the problem of anomalous transport across a magnetic ficld that
includes a small stochastic component §B. The perturbation is assumed to be so strongly streiched aiong
the background magnetic ficld B, that the parameter R is large: R = boLo/d » | (here by = 6B, /B, «< 1,
and L, is the lengitudinal and § the transverse correlation length of the magnetic pertusbation). This
strong turbulence limit, which is opposite to the quasi-linear one (R <« 1}, has certain notable features. The
principal result is that the main transport is concentrated in very thin regions, being fractal sets with the
dimension d, which can range in value from 2 to 2.75, depending on the spectrum of the magnetic
perturbation. These regions consist of a small fraction of magnetic lines that percolate, that is, walk from
the non-perturbed magnetic flux surfaces to a distance large compared to the transverse correlation length
&. Due to such a strong inhomogeneity of the transport distribution, as well as the long correlations, the
standard transport averaging techniques fail, and cne should make use of the percotation theory methods.
Thus the strong turbulence regime is referred to here as the percolation limit, In comparison with the quasi-
linear limit, the percolation limit has several additional intermediate regimes and the expressions for the
effective heat conductivity y.. include the critical exponents of 2-D percolation theory. The estimates of
7o are obtained both in the collisional and collisionless limits, including the case of non-stationary magnetic
perturbalions.

1. INTRODUCTION
THE PURPOSE of the present paper is to extend earlier works on quasi-linear cross-
field stochastic transport (RECHESTER and RoOSENBLUTH, 1978; KADOMTSEV and
PoGUTSE, 1979 ; KrROMMES, 1978 ; KROMMES ¢f al., 1983 ; [SICHENKO, 1991) to the case
of strong magnetic perturbations:

RE}J()L()/&)) l, (])

where b, = éB, /By « | is the relative magnitude of the magnetic field perturbation,
and L, is the longitudinal and & the transverse correlation length. In this paper, we
adopt the notation introduced in Part [ (IsicHENKO, 1991). The present part of our
study has been written as a separate paper because the treatment of the problem in limit
FIN sioemn s fonhuniaiias salotad 4 tha ametinenim narnalatinm meahlas (CIDTr7rmany o8
UL} UDCS HOW LELHTHY UGS Telaltd LU LG LOTTILIHUULLL PUlculd UVLD PEVURAUT BORULLNUY ©f
al., 1990). For this reason, we shall refer to limit (1) as the percolation limit.
Let us consider a stationary “braided” magnetic field

B = BO£+5B(-r=y; Z, f). (2)

* Permanent address: 1.V, Kurchatov Institute of Atomic Energy, 123182 Moscow, U.S.8.R.
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810 M. B. ISICHENKO

In the present paper for simplicity we neglect shear effects. With equation (2), the
equation of a field line takes the form

dr, jdz = b(r,,z), (3)

whereb = 6B, /By, r, = (x, y). Equation (3) describes nearly two-dimensional motion
of a magnetic line, since inequality (1) suggests that the dependence of the RHS of
equation (3) on z is very slow. Besides, in this approximation one can consider the
transverse magnetic perturbation b to be incompressible. According to divéB =0
and (1), we have

divb = b, /dx+0b,/3y = —8b,/6z % b,jLy « |V xb| & by/d. @)

Equation (4) implies that the compressibility of b is insignificant. The criterion for
the neglect of compressibility is discussed in more detail in Appendix A. Thus we can
express b in terms of the longitudinal vector potential ¢(x, y, z) which also depends
on z very slowly:

b = Vi x 5. (5)

Thus, to a first approximation, due to the large parameter R, every ficld line produces
cylindrical screw-type revolutions around a surface of constant . The transverse
walk of a ling is hence restricted to the size of the corresponding contour of ¥ (x, y, z),
at a given coordinate z = z,. For a turbulent state of a magnetized plasma one may
assume a random distribution of . For simplicity, we take the perturbation as
statistically isotropic. Among the contours of a random function, most are closed on
the correlation scale 6. However, there is a small portion of level lines that are much
longer. For example, the Earth’s relief exhibits not only lakes and islands, but also
continental coastlines. In the limit R — oo (exact 2-D case), the integral of motion
w(x, v}, even though a random function, prevents stochastic spreading of magnetic
lines. Yet, at large but finitec R the magnetic transport should develop, beginning in
the first turn from very large contours of y{x, y, z;) which provide “long-correlated
jumps” of field lines. The importance of these large contours for plasma transport is
due to their coherent contribution to the diffusion of magnetic lines.

So, under condition (1), the effective transport must be long-correlated, due to the
important role of the transverse walk of magnetic lines to distances large compared
1o 6. For the treatment of the problem one must study the distribution of isolines of
a random function of two variables over their sizes. This problem is closely connected
with the percolation problem (cf. STAUFFER, 1979 ; SHKLOVSKTI and Erros, 1984).
Kapomtsev and PoGutse (1979) were the first to point out the relevance of the
percolation theory to the limit R » 1, but the cursory application of that theory in
their work lead to an incorrect expression for the magnetic diffusion coefficient.

GRUZINOV ¢f al. (1990) considered the problem of low-frequency turbulent diffusion
in two dimensions [being exactly equivalent to the problem of diffusing magnetic
lines described by equation (1) with R > I]. Using recent analytical results in 2-D
percolation theory (SALEUR and DUPLANTIER, 1987), they derived the following scaling
of the turbulent diffusion coefficient :



Heat conductivity in “braided” magnetic field—F 81l
m R BRI, (6)

Equation (6} is written as the diffusivity of magnetic lines. The assessment {6} suggests
that in the two-dimensional (integrable) case R = oo the magnetic diffusion D,
vanishes, which differs from the previously reported estimate of D, = byd
(K ApOMTSEV and PoGUTSE, 1979 ; GALEEV and ZELENYI, 1981 ; KROMMES ef al., 1983).

In the limit R > | the exponentiation of adjacent lines is different from in the quasi-
linear limit. In the percolation limit the role of Kolmogorov entropy in average
transport is more complicated than in the quasi-linear limii, and requires a more
subtle consideration. Specifically, in this paper it is shown that an appropriate test-
particle decorrelation length is expressed through the length £, of the convolution of
a magnetic flux tube (defined in Appendix B), rather than that of the exponentiation
of field lines. Nevertheless, these two processes still remain closely connected.

Perhaps the most striking feature of stochastic transport in the percolation limit is
that the major part of the heat and particle fluxes is concentrated in very thin regions
occupying an infinitesimally-small fraction of the plasma volume, and, due to their
self-similarity, the regions can be described in terms of fractal geometry. At the same
time, due to the previously-discussed role of large contours of i, the cross-field flux
correlation function decays relatively slowly, up to an anomalously-large correlation,
or mixing, length a,, > 4. These features, on the one hand, leave no hope tor applying
standard averaging techniques and/or convergence of the perturbation series, and,
simultancouslty, make it extremely difficult to analyze the problem numerically. To
study the geometry of a stochastic magnetic field in the limit R » 1, one is forced to
employ a direct Xx-space non-perturbative formalism, like the percolation theary.

In other rcspects the solution of the effective heat conductivity problem in the
percmauon limit is based upon the same techniques as the quasi-linear apprmimatlon
In what follows, we will use test-particle motion analysis in order to obtain scaling
laws for cross-field plasma transport, with particular emphasis on distinguishing
physically-different transport regimes.

The remainder of the article is organized as follows, In Section 2, we discuss
the diffusion and the exponentiation of magnetic lines. In Section 3, the effective

pei p\.,udn.«u}cu JBCI. Con heat Conducu‘”t}' Kot lo prre‘“”‘ ﬂ'\rnnnh the test- h’"'“(‘lp

decorrelation time ¢4 both for the hydrodynamic (v,z4 > 1} and the kinetic (vcrd <)
limits, which is intended to generalize the “double diffusion” theory of KROMMES ef
al. (1983). The very decorrelation time is evaluated in Sections 4 and 3, for stationary
and non-stationary magnetic perturbations, respectively. In Section 6, we demonstrate
the transition between various anomatous cross-field transport regimes and summarize
the results obtained. Lengthy auxiliary arguments are outlined in the Appendices. In
Appendix A we take into account the compressibility of the transverse component b
of the magnetic perturbation in order to establish the limits of applicability of the
incompressible approximation. In Appendix B we discuss the stochasticity of magnetic
lines and its relation to the decorrelation of a test particle from a specified field line.
Appendix C is devoted to the effective heat conductivity in a 2-D random magnetic
field (R = o0). For this case the application of the DYKHNE (1971) technique is
discussed.

In the present paper we make use of the notation and approaches from Part 1,
thereby reducing the need for lengthy explanations.



812 M. B. ISICHENKO

2. PERCOLATION GEOMETRY OF STOCHASTIC MAGNETIC FIELDS

In this section we relate stochastic magnetic field lines to contours of a random
function and discuss the application of the continuum percolation problem to the
study of magnetic field line geometry. The results of GruziNnov et af. (1990), which
are given a short review, are applied.

As stated in Section 1, at R » | the (x, y)-projection of a magnetic line nearly
follows the cantours of the vector potential ¥(x, v, ), with z considered as a slowly-
varying paramcter. Bearing in mind that in the limit involved large contours are of
primary importance, one must preface the magnetic diffusion problem with the study
of the statistics of random isolines.

The statistical topography of a random relief f(x, ) is described by the continuum
percolation problem (Sukrovsku and EFros, 1984). Since this problem can be con-
sidered as a limiting case of a lattice percolation problem (see, for instance, the review
by STAUFFER, 1979), and due to the universality of percolation-critical exponents
(SykEes and Essam, 1964), the scaling of the contours’ distribution function in the
limitl of large contour size can be determined analytically (GruziNnov et al., 1990).
Let us bricfty summarize the results of the paper that are relevant for our discussion :

(a) Suppose one can ascribe to the random and statistically-isotropic function y(x, )
a single characteristic oscillatory amplitude 4, = byd, and a single spatial (cor-
relation} scale . Then the distribution function of the contours of i over their
diameters ¢ has the following long-range scaling :

Flay ~ dja, a» 0. Q)
Here F(a) implies the fraction of area occupied by contours with diameters
{understood as maximum linear size) from a to 2a. According to (7), most of

the contours have sizes a = 6. The space-average of a quantity 4 which depends
on the diameter of a contour can be calculated with the help of equation (7) as

{A) = Jiw Fla)A(a) dafa. {(8)

{b) Any sufficiently long contour with a > &, considered on the scale 4, d « 4 « a, is
a fractal (i.e. statistically sekf-similar) curve with the fractal dimension

dy = (v+ 1)fy = 7/4, e

where v = 4/3 is the correlation exponent of the 2-D percolation problem. In
particular, the length L of a contour 1s much greater than its diameter 4 and
scales as

L(a) = 8(a/H M a» b, (10)

{c) From (a) and (b) it follows that the sel of contours with diameters of the order
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of a (say, a to 2a) consists of densely-packed fractal cells (let us calt them “a-type
cells”—see Fig. 1), each of which looks like a web with the thread width

ha) = a* Fla)/L{a) = 8(5/a)"", a> §. (11)

In what follows, we will call the quantity (a) the width of the a-type cell. Below
we will also refer to cells composed of the contours of the magnetic vector
potential ¥ as “the magnetic cells”.

(d) Let the function ¥ include a smooth dependence on a third parameter z, ¢ (x, y, z)
being a random function of (x, y) at every fixed z. If the characteristic inhomo-
geneity (correlation) scale over z 18 L, then a-type cells are unrecognizably
changed upon the displacement along z,

ST

) = Loi{a)fé, a4, (i

(2]

S

)

which implies a perturbation corresponding to the thickness of the web.

The above results relate to a “single-scale” random function. Perhaps a more
interesting case would deal with multiple scales characterized by, say, the power
Fourier spectrum of y(r). The problem of multiple-scale random topography has
recently been solved by IsicHENKo and Karnpa (1991) using an cxtended percolation
approach, One of the peculiarities of that model is the fractal dimension & of long
level lines which can take any value between 1 and 7/4, depending on the spectrum
of ¥. For the sake of simplicity, the present paper is restricted to the widely-used
single-scale model.

The geometric properties of random contours (a)-(d) are sufficient to calculate the
magnetic diffusivity D and the Kolmogorov entropy in the percolation imit R » 1,
The mixing length a,, i.e. the size of a contour performing the most effective con-
tribution to D,,, can be assessed as the maximum transverse correlated waik of a
magnetic line. This corresponds to the case where the ficld-line projection performs a

compiete revolution around the contour, by the longitudinal displacement (12} resull-

FiG, 1—Percolation magnetic cell. The dashed area is occupied by contours of  with
diameters [a, 2a], ¢ » 8.
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ing in the destruction of the magnetic cell via the reconnection of contours. So, we
write

dz(an)bo = Liay). (13)
From equations (10)—(13) one readily obtains
Gy = SRH+D (14)
which corresponds to the longitudinal displacement
Z = 0z(ty) = LyR™VOHE, (15
and the magnetic cell width
B = h(ay) = 6R™V0T2, (16)
Now the diffusivity of the magnetic lines can be heuristically calculated as

™ - o2y i I ST PN 2
Um = F(am)amfzm = Dﬂnm = DGOK (l ")

With the numerical value of the percolation exponent v = 4/3, equation (17) yields
expression (6).

Rigorously speaking, to calculate D,,, one should average the magnetic diffusion
over all possible scales with the help of (8), namely

D, — f " Du(@)F(a) dafa, (18)

with the “partial” diffusivity

ai (@)

dz{a) (19)

Dln (a) =

Here a, (a) denotes the transverse displacement of a magnetic line corresponding to
the longitudinal walk éz(a). At a < a, a magnetic line performs many revolutions
around its contour, thus giving

ala)=a, a<day (20)

In the opposite case, @ > day, the line passes only a small part of the contour resulting
in the displacement found from equation (10):

() yf(r+ 1)
92(4) ”) . a>a,. 2n

aL(a):é( 5
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Combining equations (18)-(21} we simply calculate D, to obtain the above result
(17). This supports the conclusion that the major contribution to magnetic diffusion
(i.e. of the order of 50%) is made by a small share of magnetic lines occupying the
volume fraction

Fla,) = R™70T 0 « |, (22)

Another feature of magnetic transport in the percolation limit is its self-similar
behavior in the inertial range of transverse scales [§, a,]. This is connected with the
fractal geometry of random contours (MaNDELBROT, 1982). Let us introduce the
concept of the effective transport region, denoting the region of minimum volume
responsible for, say, 50% of the transport, Then in the inertial range [3, a,] of scales
the effective transport region is a fractal, whose fractal dimension &; can be calculated
by adding unity to the fractal dimension of its plane cross-section (MANDELBROT,
1982), this being in our case the a,-type magnetic cell. Hence, in the single-scale
approximation, using (%) we have

di = dy+1 =275 (23)

In a more general case of multiple-scale magnetic turbulence 1 < ), < 1.75 (ISICHENKO
and Karpa, 1991), hence

2<d. <275 (24)

Analogously to the quasi-linear limit, magnetic lines described by equation {1} in
the percolation limit also exhibit stochastic exponentiation. However, this behavior
is now strongly intermittent. A given couple of infinitesimally-close field lines diverge
for a very long distance very slowly (namely, linearly with z}, but then the distance
between the lines increases abruptly up to a finite value of the order of §. This effect
is governed by the distribution of saddle (elliptic) points of ¢(x, y, zo) and it is more
convenient to describe it in terms of the elongation of a curve being projected along
the magnetic lines. In this representation the irregularities of the scatiering of the
magnetic lines are smeared out, and the curve undergoes an exponential anfractuous
elongation with the growth rate estimated by Gruzmov ef al. (1990). For the length
of the curve we have

L

P2~ PO exp (z/D), T~ —"—.
(z) { / JRlog R

(25)

The inverse quantity of [ could be regarded as the Kolmogorov, or topological
entropy, of the casc under consideration,
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3. CONNECTION BETWEEN THE EFFECTIVE HEAT CONDUCTIVITY AND
THE TIME OF DECORRELATION

In this section expressions for y.(74). both for the collisional (v.t, > 1) and col-
lisionless (v.#y < 1) cases, are derived. The evaluation of the decorrelation time #, is
addressed in the next sections.

The effective diffusivity of a test particle, being the same to an order of magnitude
as the effective heat conduction g4, is defined through the square-average transverse
displacement r_ of an electron at the decorrelation time:

Yo & CrL(14) >/ tg, (26)

where the averaging is taken over the space of the initial conditions or, similarly, over
the magnetic lings.

While moving along a magnetic line, which nearly traces out a spiral, the (x, y)-
projection of the point passes the distance

L(2) ~ byz. Q7

If this path does not exceed the transverse correlation length 8, the transverse dis-
placement is equal to L(z), regardless of the magnetic line. For the percolating
magnetic ines, and L{z) » J, the displacement » (2} is defined by equation (10}, but
cannot exceed the diameter of the given magnetic line spiral a:

Fi(z) = min {(L(z)/0)" Y, a}, (28)
If we use equations (7) and (8), then for this case we obtain
{ri(n)y = 82 (L{2)/d)y D, 29
Expression (29} is valid until r, exceeds the mixing length (14), ic. while
L(z) < Ly = &+ RUTDIUFTD and after that the transverse walk of the magnetic line is
a diffusion-like one with diffusivity (6): (ri(z)> = Dulzi.

Summarizing what has been said above we derive the following expression for the
effective transverse heat conduction:

bizélty, zy < 3/bg, (QD) (30a)
(h = (SY0+D821: Jlh ez ez (IR) {INkY
Yo = ) VW0Ld/C) U fed, UfOn ™ &g = dmy AN (A
D,y z4/te, Zm < 24 (MD) (30¢)

Here z, denotes the path the test particle takes along the magnetic field in the
decorrelation time t4. Depending on the collision frequency v,, it is expressed as
foliows

(XIl‘rl.i) ”1’ Voly > l’ (313)
26Ua) = e, vty < 1, (31b)



Heat conductivity in “braided™ magnetic field—i1 817

which means hydrodynamic (collisienal) and kinetic (collisionless) limits, respectively.
The abbreviations used in (30) distinguish the quick decorrelation regime (QD).
intermediate regime (IR), and the regime of magnetic line diffusion (MD). Equation
(30) is similar to equation (18) of Part I derived for the quasi-linear limit, except for
the appearance of a new intermediate regime lying between the QD and MD regimes.

When (31a) is substituted into equations (30a) and (30c¢), two expressions for Yo
are obtained corresponding to the “ftuid” (). = %b3) and the “double diffusion”
[%er = Dal3ty/ta)?] regimes. In the kinetic limit (31b), equations (30a) and (30c)
yield the “double-streaming” (y.r = d§v2iy) and “collisionless” (3. = D, v.) regimes,
respectively. These four regimes also exist in the quasi-linear limit R « 1 (KROMMES
et al., 1983 ; IsicHENKO, 1991). Thus, we infer that in the percolation limit R » 1, in
addition to all the regimes pertinent to the quasi-linear limit, there exists a new
intermediate regime (IR) given by expression {30b), both in the hydrodynamic and
kinetic approximations.

4. DECORRELATION IN A STATIONARY STOCHASTIC MAGNETIC FIELD

In this section we assess the time of test-particle decorrelation #; in a stationary
“braided” magnetic field: Among the causes of the decorrelation are either a finite
transverse diffusivity ¥, (in the collisional case) or a finite gyroradius r, {in the
collisionless limit).

While in the quasi-linear limit the decorrelation time has been defined as the time
it would take the test particle to leave a magnetic flux tube with initial diameter
8, in the percolation limit the decorrelation occurs when the particle leaves the effective
transport region responsible for the anomalous transport. Let us now evaluate the
width /i of the magnetic cell in various regimes,

En the regime of quick decorrelation, zy < 8/b,,, where the transport loses its long-
correlated features, one concludes that 4 = §. Otherwise, # is defined by cquation
(11}, where one must substitute for the diameter « either the transverse displacement
8(1(z4)/8)"0* " in the decorrelation time (in the intermediate regime) or the mixing

F1G. 2—Two types of strciching maps: the quasi-linear limit {a) and the percolation limit
(b}, where the fractality and the multi-connectedness of the cell are ignoted for the sake of
simplicity.
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scale (14) (in the regime of magnetic diffusion). This resuits in the following width of
the magnetic cell, which depends on the decorrelation time ¢, :

3, (QD) (32a)
hitg) = 00/boz) ", (IR) (32b)
8+ RO+ (MD) (32¢)

where the inequalities are corresponding identical to those of equation (30).

One must now define the quantity £, as the time it takes the particle to Jeave a
magnetic flux tube whose cross-section z = 0 is a magnetic cell whose width given by
equation (32). {(Imagine Fig. 1 of Part [ when in the cross-section z = 0 lies not a
circle, but the fractal shown in Fig. | of this paper.} In a stationary magnetic field
and in the collisional case the decorrelation might occur due to the direct cross-field
background diffusion with the characteristic time #%(f,)/y, . However, at very small
%, the electron can decorrelate faster, by first going some distance along the magnetic
ling, and then diffusing across the smaller width of the magnetic tube /(z) due to the
convolution of the magnetic flux tube constructed from the magnetic cell (see Fig. 2).
[This effect of stochasticity-driven decorrelation has been pointed out by RECHESTER
and ROSENBLUTH (1978) for the quasi-linear imit.] The convolution means the thin-
ning of the tube walls due to the area-preserving stochastic siretching of the field-
lines-projected magnetic cell. This effect causes a decrease of the flux-tube thickness
h(z), which can be described by the model equation

h(zy =~ hexp (—|z|/1),  tn &= BLy/S. (33)
The interconnection of this effect with the stochastic instability, as well as the
evaluation of the convolution length £, for the percolation limit, are discussed in
more detail in Appendix B.

Now one ¢an propose an equation for ¢, accounting for both the direct transverse
decorrelation and the stochasticity of the magnetic lines:

h(ty) exp [—z4(1)8/ (M) L)) = (a2 7. (34)

Together with (31a) this may be readily solved to obtain

8y A1/ > (QD) (35a)
by (52/X¢)(11/D\|)]m+ 4 1 >quD) > R™* (IR) (35b)
(z2/x) In? (D R?), R *>y./Dy (MD) (35¢)

Here for brevity we have introduced the notation D) = %05, which means the longi-
tudinal test-particle diffusivity projected on the (x, y) plane.

Letus now turn to the kinetic imit vty < 1. 11, for simplicity, we take the uncertainty
in the transverse electron position to be of the order of its gyroradius ., as in Part [,
then the collisionless decorrelation time ¢4 should be given by

h(ty) exp (—zql{ty)/ln) = 7o (36)
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together with equations (31b) and (32). At sufficiently small gyroradius,
ro < by = 6R7YUHD this vields

tg = (Zm/vc) in (hm/rc)- (37)

The kinetic evaluation (37) smoothly matches the hydrodynamic one in (33¢) at
W Te = Zpfle-

5. NON-STATIONARY DECORRELATION

Now, let us take 3, = 0, r. = 0 and consider the decorrelation to be the result of
only the non-stationarity of the magnetic perturbations éB(x, y, z, 1) varying with
characteristic frequency .

First of all, one can sec that the dependence of the perturbations on time sim-
ultaneously results in two distinct kinds of decorrelation, which can be referred to as
kinematic and dynamic,

On the one hand, percolating magnetic lines evolve in such a way that they reconnect
with a preferred shortening of their transverse spread, since smaller contours are
more probable. The problem is similar to the one discussed above, concerning the
reconnection of contours of ¥(x, v, z) as z is changed. The only difference is that now
yr also depends on time, and the magnetic cells composed of contours of ¥ (x, v, z, 1)
are destroyed (through reconnection} at a fixed z upon the passing of time:

4 = h(4;)/(wd). (38)

Equation (36) is quite analogous to equation (12) when one makes the substitutions
dz = t,, Ly — w™". The only difference is that now the magnetic cell width /4 itself
depends on the decorrelation time f,. Thus equation (38) should be solved for the
kinematic decorrelation time 1.

On the other hand, non-stationarity leads to a test particle moving not exactly along
the magnetic line, even if the latter does not reconnect. This dynamic decorrelation
can be described by equation (3), while accounting for the dependence of b on time:

dr /dz =b(r.,z,0), (39)

together with closure condition (31a) or (31b). Let us consider the time-dependence
in equation (39) as a small perturbation. Similar to the calculation of Part I, we have:
dr.!./dz = b(r.'nzs 0) + t(z)b\ (rj_a Z) y
bi(ry,z) = dbiry,z, 0)/0t], .o = why,

gy, Vela > L
iz) = {z/vc, Vota < 1. (40)

The second term on the right-hand side of equation (40) represents a non-correlated
(with respect to the first term) slow drift with correlation length z = /b, which is
also the fall-out tength of the b, corrclation function. So the perturbation theory
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yields the foliowing estimate for the square-average additional displacement r,, due
to the non-stationarity :

0@@>=£ﬁdf@”wMﬂ0MﬂM@”
21(2), z < 3/by
M%MMM?MM2>%- )
0

The dynamic decorrelation time ¢, may now be estimated from an equation similar
to (34):

h(t,u) exp ["Z(tp)a/(h(tﬁ)[‘(])] = <r12_w(z(fp))> ”2' (42)

Resolving equations (38) and {42) in each limit [collisional (3]1a) and collisionless
(31b)], we find expressions for ¢, and ¢,, which are not given here. The true decor-
relation time is their minimum: ¢, = min (£, 1,).

Comparing the two times 1, and 7, in every interval of parameters, we finally derive
the non-stationary decorrelation time. In the hydrodynamic limit v.z; > 1 the result is

@', (QD) (43a)
1y~ 3 (O DPQRIT D, (IR) (43b)
(22/y) In? [Q; ' R™S7 P+ 4] (MD) (43c)

The corresponding inequalities are:

Q, > 1, QD) (432)
I > @, > RO (IR) (43b)
\R—(SH— N2+ )~ Qh}‘, (MD) (43c)

In the kinetic limit v.7y < | we obtain, in a similar way:

I 1 N (QD) (443)

g~ g (8@ 2 DS, (IR) (44b)
(zm/oy) In [Q ' ROHIAB+8] - (MD) (4dc)
Q> 1, (QD) (44a)

1> Q> R-HHED (IR (44b)
R d) o, Qk:" (M D) (44(:)

In equations {43)-(44), the dimensionless frequencies

Q, = wd Dy, Qi = wdfvy, (45)
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have been introduced for the collistonal and collisionless cases, respectively. In
addition, v; = ., denotes the projection of the longitudinal electron velocity to the
(xc, p)-plane.

Note that regardless of the collisionality, in the QD regimes the kinematic
decorrelation ¢, dominates, while in the other regimes (IR and MD), the dynamic
decorrelation time ¢, is shorter.

6. EFFECTIVE HEAT CONDUCTIVITY—DISCUSSION OF RESULTS

Formulae (30) and one of the expressions (31a}), {35), (43) (in the hydrodynamic
limit) or (31b), {37), (44) (in the kinetic limit) solve the problem stated. Among the
times of stationary [(35), (37)] and non-stationary [(43), (44)] decorrelation, one
should choose the shorter one.

1f one knows the main magnetic perturbation parameters bg, L, &, ®, and the
plasma parameters ¥, %1, V.. L. 7., the effective cross-field heat conductivity can be
evaluated with the help of the algorithm shown in Fig. 3.

Let us write down here the expressions for the effective heat conduction in the most
obvious limits. Firstly, consider the stationary limit (w = 0} at », < A,. Under such
conditions we have

Ais %1/Dys (QD} (46a)
(D), 1>y./D > R? (IR) (46b)
Kt X | (DY RY I~ [Dyfu R, R™F > 30 [Dy > (refbozn)’ (MD) (46¢)
Dl (refbozm)? > X0/ Dy (MD) (46d)

The first three regimes (46a—c) are hydrodynamic while the last one (46d) is kinetic.

(35% 1% (@3): "

=31b| N = 3lh

4
(37t ;‘ () o3
I I

no

(N), 30): %, |

FI1G. 3.—Flow chart of cffective heat conductance evaluation. The formula numbers to be
used are given in parentheses.
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In the case of strictly two-dimensional magnetic perturbations {R = o), the result
is given by expression (46b). The same estimate has been obtained by KADOMTSEV
and PoGUTSE (1979) in two different ways—one of them by using the DykuNE (1971)
method incorrectly. The essence of this misunderstanding and the application of the
Dykhne technique are discussed in Appendix C.

It is interesting that expressions (46b) and (46¢), related to the percolation limit,
do not include the percolation exponent v, and hence could be obtained using a

Lified tndenendas ~hy Ao ad K anmvnnvereny and Dacrrreen (10700
.)uupuuuu lllubpbllublll a}JPl Uabi[, (_ID UL«IIIU“DLI au.u J\AUUW.IIDDV ﬂUu FRLPLE S ) s \JJJ’/}

[The only difference between (46¢) and their result lies in the logarithmic de-
nominator.} However, the mixing length a,, does include v (see Appendix C).
Similar to the quasi-linear limit, non-trivial quick decorrelation regimes, i.e. QD
regimes with er » ., such as “fluid” (3.r = D)) and “double-streaming™ regimes,
become possible only in a non-stationary stochastic magnetic field. Taking ¥, = 0,
r, =1}, and Ar‘r‘mmtlnn only for the finite frequency @ of the perturbations, one obtaing

My i QLSRN P aaab Radai T 2% [EEIR S RS e s DRAAe, DRV

from equations (30), (43) and (44):

Dy, {QD) (47a)
Ko R DyQii+ 2D, (IR) (47b)
(Dy/R) In™" [, R=Gr M2+ 0] 0 (MD) (47¢)

for the collisional limit v, ¢y > 1; and

zzﬂz lw, (QD) (48a)
Yo X 5qu§{(3’+5), (IR) (48b)
Dties (MD) (48c)

in the collisionless case v.t; < |, where the inequalitics for (47) and (48) are the same
as those in expressions (43) and (44), respectively.

One can follow the transition between different regimes when the characteristic
frequency o varies. Figure 4 demonstrates this transition for the case §/b, < 4, < z,,,
where A, = n,/v, is the mean-free-path of electrons.

In conclusion, we restate the key points of the analysis:

X
eff (45b)
| \ ()
(Hb) ; ;
[} i
1 1
(43c) | |
1 1
I 1 i
1 t 1
1 R 1
A D
Pl me 210 [
2
S 5 bo,le &

FiG, 4 —The dependence of yronwat R » 1, 8/by « A « 2.
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(1) The theory of anomalous transport in a “braided’” magnetic field in the strong
turbulence limit R >» 1, which is opposite to the quasi-linear limit, must use the
percolation-theory methods.

(ii) In the percolation limit R » 1, excluding quick decorrelation regimes, the main
transport is concentrated on fractals, consisting of a smail fraction of percolating
magnetic lines.

(iii) In addition to all the quasi-lincar regimes or their direct analogs, in the percolation
limit there arise a number of new intermediate regimes of anomalous electron
heat conductivity.
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APPENDIX A: EFFECT OF COMPRESSIBILITY OF TRANSVERSE
MAGNETIC PERTURBATION
The compressibility of b takes place only in the case of & non-zero longttudinal component of the
magnelic perturbation; b,(x, v, ) = 8./ 8, # 0. Then the transverse magnetic component can be written
in the form

b=V, (x, », 2} xE+V (x5, 2). (A

Taking the divergence of cquation {Al), we obtain the relation for ¢
Vip = —3ab,[oz. (A2)
The field line motion due to the magnetic perturbation (A1) consists of two parts: the incompressible

motion Vi x # (approximately along the isolines of ), plus a small drift on account of the potential
correction. The drift part of the displacement can be calculated as

{2} = L V,0(0(z),7) 87, %))

where r(z') is the solution of the non-perturbed equation (3) (i.e. at ¢ = 0). Since the quantity ¢ changes
its sign randomly along the isolines of . the drift (A3) can be described in terms of diffusion:
71,45) = (D,2)'2, where the diffusion cocfficient is the product of characteristic speed and the correlation
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length: D, = (¢/8)(5/by). Using the estimate ¢ = b,6%/L,, which follows from (A2), we obtain the
additional displacement caused by the compressibility correction :

Fip X (2h,8/R)', (Ad)

Comparing this quantity with the minimum width of the magnetic cell f, (32¢). at z, corresponding to the
maximum longitudinal mixing length z,, (15), we arrive at the following condition, under which one may
neglect compressibility effects:

bolhy < RTHETD, (A3)

Inequality (A5) is the critcrion for the neglect of the compressibility of b in MD regimes of anomalous
transport. In [R regimes condition (A3) is sufficient, however not necessary, since in that case the effective
transport width & given by equation {32b) is greater than A, while the longitudinal mixing length z, is less
than z,. In QD regimes the compressibility of b is irrelevant and does not affect the transport.

Note thai in a strong magnetic field the lengitudinal perturbation of B is energetically much more
expensive than the transverse one and hence must be much smaller. This makes condition (A3) not too
restrictive.

APPENDIX B: CONVOLUTION OF MAGNETIC FLUX TUBE
The map

r0) - (2), (BI)

given by the inilial-value problem solution of equation (3), may be thought of as an incompressible, and
consequently, a Hamiltonian one. The corresponding Hamiltoniun ¢ (x, p, 2}, depending on “time” z,
admits stochastic behavior ; moreover, such a behavior is typical {or a generic Hamiltonian (c.f. ArNoLD,
1978). Tt meuns that every curve in the phase space (x, v), consisting of points evolving according 1o the
equation of motion {3), elongates in time* exponentially, as every two close points exponentiate from each
other. The mean growth rate of this stochastic instability (the Kolmogorov entropy) has been calculated
in the quasi-linear limit R = u/(dw) « 1 by KroMmMEs (1978), RECHESTER ¢! al. (1979) and KROMMES ¢t af.
(1983} for the case of 4 strong shear, For the opposite limit without shear the Kolmogoroev entropy at
R <« 1 has been estimated by Kapomtsey and PoGuTsE (1979)

voxwR!, Rl (BZ)
1 the percolation limit R > | v, has been calculated by GruziNov ef af. (1990} :
1, xwR"InR, R» L (B3)

Rigorously speaking, result (B3) is not the Kelmogorov entropy, being the mean growth rate of the
exponentiation, but rather the topological entropy, or maximum growth rate, defining the ¢longation of a
fiquid curve.

The decorrelation of test particles in the magnetic field is not directly related to the rate of stretching of
a curve, but rather 1o the convolution of a flux lube constructed from a magnetic cell. This effect is
connected with the evolution of the characteristic width £(#) of the Lagrangian convection cell, which in
hydrodynamic terms corresponds to the magnetic cell. This width can be defined as the shortest distance
between a point, situated at ¢ = 0 somewhere in the middle of the cell {i.e. #{0) = A]. and the cell’'s boundary.
The *Lagrangian convection cell” represents the flow-driven image of the convection cell (effective transport
region).

There is a definite connection between stochastic instability of orbits and the Lagrangian stretching of
the convection cell, However, this connection is quite different in the quasi-linear and percolation limits.
The difference begins with the appearance of the cells: while in the quasi-linear limit a circle with diameter
& can be considered as a magnetic cell (if there is any sense in this notion at ail}, but in the percolation
limit this is a fractal g,-type cell of the contours of vector potential i (see Fig. 1). Furthermore, even for
similar 2-D domains one can imagine two kinds of area-preserving maps with exponentially-elongated

* In this Appendix, for the sake of clarity, we take z = £, b — v, £, - w ™', thus transfering the magnetic-
line problem to the passive scalar problem in the random 2-D incompressible, weakly non-stationary
flow v(x, ¥, &) = Vir(x, v, ) x 2, varying in time with a small characteristic frequency «r « u/é. In this
representation the magnetic line diffusion cortesponds to the “turbulent diffusion” in the flow.
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curves. The type-I map stretches all the region at once (sce Fig. 2a). The map of the second type affects
for some time only those parts of the domain which are very closs to its initial boundary {see Fig, 2b). One
can easily understund that neither of the two contradicts a global stochastic instability. At the same time
in the first cage the characteristic width /i(r) decreases at a rate inversely proportional 1o the perimeter, and
in the second case it decreases much slower.

Type-1 stretching takes place in the quasi-lincar limit due to the fast variation of the velocity field, which
gives rise to the destruction of the flow “memory". Type-1l streiching is characteristic of the percolation
limit, In the low-frequency iimit R > 1, the elongation of a Lagrangian curve results from its hooking the
saddle points of the low and its dragging in the channels between the separutrices. (A separatrix means
an “eight-like” stream linc coming through a saddle.) The exponentiation with rate (B3) occurs as u result
of the reconneciion of adjucent separatrices, moving with a velocity of the order of wd, due to the fow
non-stationarity. The inverse growth rate (B3) corresponds to the time it takes a separatrix of the length
L to pass the distance 8%/L to the ncarest separatrix. under an optimum choice of L (GruziNov ef al.,
1990). Yet, during this small time ¢, = d/{ewL.) the velocity field remains almost unchanged, as the convection
cell contains i/{8°/L) ~ afd » 1 separatrices. The life-time of the convection cell, corresponding to the
intersection of the most remote separatrices, is much longer :

iy & hf(wd) > 1. (B4)

(Compare with equation (12).) This means that during time r, the Lagrangian convection cell is nearly
unchanged except for narrow channeis of width 8%/L in the vicinity of its boundaries. As the separatrices
of the convection cell keep on reconnecting, the Lagrangian convection cell grows ncw exponentiating
“whiskers" (see Fig. 2b). Finally, near the end of the life-time (B4) all the domain is subject to the intensive
stretching with the rate given by equation (B3).

Hence, the life-time (B4) of the convection cell is also the characteristic time of the Lagrangian convection
cell stretching. In terms of three-dimensional stationary magnetic fields the time (B4) corresponds to the
following length [ of the convolution of a flnx tuhe canstructed from a magnetic cell:

l, = Lohfd, (BS)

where i means the width of the magnetic cell. However, as it is seen from above, this process is rather
complicated and has its own stages. Consequently, formula (33) is a model one, and the results (35c),
{43c), {44c), (46¢c) following from it are valid to a logarithmic accuracy only.

APPENDIX C: EFFECTIVE TRANSPORT IN TWO-DIMENSIONAL
ANISOTROPIC RANDOM MEDIA
Let us constder a two-dimensional anisotropic medium in which the direction of the anisotropy n(x, 3)
is a function of the coordinates, |n| = 1. Let us suggest that along this dircction the electric conductivity
(or heat conductivity, diffusivity, ¢tc.) equals o, while in the perpendicular direction it is equal to a5. So,
the local Ohm’s law takes the form

j:‘TlEn+0'2Em (Cl)
E" = n{En), El = E_EH' (Cz)
(Vjj=0, VxE=0. (3

Suppose further that the medium is a self~averaged one, and the mean conductivity is isotropic: i.e. from
(CH-(C3) it follows that

> = ooy, 025003, 2)KED. (C4)

Here the angular brackets mean space-averaging over a domain large compared to some mixing length a,,.
Using the ansatz | = C 2x E, E' = C,jx £ and comparing (C4} with the resulting “Ohm’s law™ for ',
E’, DYKHNE (1971} has shown that the effective conductivity satisfies the relation

Oan(0), 02 (X, D)0 (65 00X, )) = 0,0, (C5}

where n'(x, ) = Zxn(x, 3) is the perpendicular direction field. From equation {C3) it follows that the
effective conductivity of a two-dimensional polycrystal with random directions of the main axes of
crystaliites {nx, ) is uniform inside every erysialiiic and discontinuous on boundasies beiween them] s
equal to {(5,0,) . In that case the twe ficlds nand o’ are statistically equivalent, und o, is an even function
of o, and g,, which proves the DykHNE ([971) result.
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In a 2-D magretic field (2) (with 3/8z = 0) the-préblem of heat conductivity is equivalent to (C1)—(C3),
the ficld of anisotropy direction being given by a smooth function

i oc bix, ) = Vi % 2. (C6)

Further, one should put

oy = (b +1)/(1+b%), 0=y, (Cn

In such a problem the fields n and o oc Vi are not statistically equivalent, as one of them is proportional
to o solenoidal field and the other to a potential one. At first glance, this makes it impossible to apply the
Dykhne methed to this problem in the way that has been done by KapoMTsev and PoGuTse (1979),
Nevertheless, their result

Yo = (@0 bo(XnX_L)”z =(Dyx Bis (C8)

turned out to be correet, which is due to the following simple observation: the two media (5, ,; n) and
(4, 650} are in fact identical. Consequently, regardless of the statisticul equivalence of the two fields n
and n’ the two factors in the left-hand side of equation (C5) are equal.

Thus, when the effective conductivity of a two-dimensional locally-anisotropic self-averaging medium is
isotropic, then it equals cxactly

Oar = (0,03) 2, (CH

[t is vather instructive to obtain an assessment of the exact result (C9) in another way together with the
evalualion of the mixing length a,,,. Here it is more convenient to argue in terms of diffusivity. Let o, be
much greater than o, The characteristic b lines with length L responsible for the effective trangport are
defined by that in the mixing time 1, = L2/o, needed for the longitudinal particle diffusion, the particle
leaves the percolation cell width /i on account of the transverse diffusivity o, :

T, & Lo, = R a,. (C10)
Taking {10) and (11} into account, this yields the mixing length

4y = 0{a, jo By, {C11}
The effective diffusion is defined according to o.¢ = Fla, a2 /tm, where F(a,) = Lhfa? is the share of the
percolating b lines. When taking (C10) into consideration, this resulis in formula (C9).

Note that the feature of the large mixing lengths (a, » 8) is typical for percolation-like transport
problems and at shorter scales the transport processes ure non-diffusive,



