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Abstract

ELECTRON HEAT CONDUCTIVITY OF THE PLASMA ACROSS A ‘BRAIDED’ MAGNETIC

FIELD.

Small perturbations of magnetic fields in toroidal magnetic traps can lead to a very
complicated behaviour of magnetic field lines. These fields are considered to be random,
and both magnetic line diffusion and electron heat conductivity produced by the diffusion
of magnetic field lines are studied.

1. INTRODUCTION

Small perturbations of magnetic fields in toroidal magnetic traps can result
in appreciable changes in the magnetic field line topology. ‘Magnetic islands’ [1]
or even regions with destroyed magnetic surfaces [2—4] may appear in a plasma.
Particularly, such a destruction occurs near separatrix surfaces [5,6]. A slight
destruction of magnetic surfaces (‘magnetic flutter’ [7]) can be produced by
microinstabilities.

Spontaneous or outside-induced appearance of regions with a stochastic
field followed by the destruction of magnetic surfaces can affect the transport
processes in the plasma. The electron thermal conductivity appears to be
especially sensitive to this effect [8,9]. Here, we shall consider the effect in
MHD-approximation in detail.

2.  MAGNETIC-FIELD DIFFUSION

We start by considering the buthlour of a magnetic field line in the simplest
case where a small transverse random field B' is superimposed on a strong
homogeneous magnetic field B0 We assume that b = B'/B, < 1 is a space-
homogeneous random functlon and (b? = b3. Let the z-axis of the orthogonal
co-ordinates be directed along Bo Then, starting from the origin of the co-
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ordinates (0,0) along the field line, we have for a transverse excursion of the field
. -
liner;:

Z

rj——/B‘(z,?l)dz (1
0

where b = 1_3)’/B0. The Fi—vcctor in the integrand of expression (1) can be
replaced by zero for b € 1. It is natural to call this approximation quasi-linear.
On averaging we obtain for large z:

Z Z
ap = / f & (z',0)b(z",0)) dz'dz" = 4Dgz )
0 0
where
Ppes f ® (z,0)B(0,0)) dz 3)
4

Dg is the diffusion coefficient of the field lines [8]. Expression (3) may be
written in dimensional form:

1
Dp = b3 Ly )

where L, is the longitudinal correlation length determined by relations (3) and
(4). As is easy to see, we have in the quasi-linear approximation, at z > Lo

@} = b3 Loz (5)

Let & be the transverse correlation length of the magnetic fields. From
expression (1), we see that the assumption ?I = 0 in the integrand is valid only
when the field line is slightly displaced from its initial position over a length of
Lo, ie. when a}),—; = b3L3 <62 Introducing the parameter R = b,L/8, we
write the condition for the quasi-linear approximation to be valid in the following
form:

R=DbyLy/6 <1 (6)
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To understand what happens in the opposite case when R > 1 we first
consider the limiting case R = oo, i.c. a random field homogeneous in z. Since
B, = const, div b=0 and, hence, we can introduce the flux function ¢ :

b =—[c, ] (7)

where E; is the unit vector along z. Now, the equations of the field line walk are
reduced to Hamiltonian-type equations:

o

0
L o2 ®)
0z 0dy 0z 0x

When ¢ is independent of z, expression (8) can be considered an “equation of
motion” for particles with a random stationary Hamiltonian y/, z playing the
role of time.

As is seen from expression (8), the field lines go along the lines Y = const
which can be considered to be the constant-level lines of “a topographical map”,
where V is the altitude above “water” level. If (¢) = 0, (y'?) = ¢2, the map
appears to be composed of “hills” and “lakes”, the averaged depth of lakes and
height of hills being given by the y svalue.

Let  be equal to a = const. If a > y, then only the highest separate hills
will be found at this level and the corresponding lines will be singly closed loops.
As the a-value decreases, the number of hills starts increasing, their dimensions
increase, too, and then they start to coalesce, and at the instant of coalescence
the Y = a plane passes through “the passes”, i.e. through hyperbolic points.

The length of field lines will increase in such a process.

A similar situation prevails when the level = a is chosen from the side
of “the lakes”, i.e. for a < 0.

The behaviour of the y = const-lines for a randum ¢ function has been
analysed in the problem of current percolation in random inhomogeneous solids
[10,11].

It has been shown that ¢ = a-lines are closed for all Y = a # 0, but the
mean length Q\l/ of such line in the (x,y) plane tends to infinity as Qw ~ Y7
when Y goes to zero. (Here, v = const = 2.4) [12]. Thus, the mean line length
is (Q‘p) = wiP(ll/)d\[/ = oo (P(y) is the  distribution function ). In other words,
the field lines can walk any large distance on the average. The lines with small ¢
which make the major contribution to the line “transport” over a large distance,
wander at random, passing the hyperbolic points. Since the average “velocity”
of the field line is b, and the average distance between the hyperbolic points is
proportional to §, the diffusion coefficient in the R >> 1 region can be estimated
to be of the order of magnitude of Dy ~ b, 6.
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To determine Dg more precisely (but still approximately) in the whole
region of variation of R we shall use the following simplified picture. Let N be
constant along the field lines:

N B uN=0 9)
oz
This value can be considered to be some “density” of labelled field lines. We
split N into two components: a slowly varying Ny and a fluctuating N': N, + N'.
Now, we average expression (9) over the stochastic field B’, assuming (N)’' = 0.
We would like to derive a diffusion-type equation for Ny ; hence we assume that
averaging Eq.(9) would yield:

= —div(BN') = DpA| N, (10)

where A} = 8?/0x? + 3%/dy2. It is natural to expect an equation of this form
because of the diffusional character of the walk of lines. From Eqgs (9) and (10),
we obtain for N':

LAY - 3
0z

—

VN'=®"VN)=-b"- VN, (11)

The equation for N’ is of the same form as for N, but there is a right-hand
side. On ascale > 8, the homogeneous expression (11) for N’ would again be
of the form of expression (10), with the only difference that the right-hand side
of expression (11) “feeds” perturbations of the §-scale and “the diffusion
coefficient” on such a scale can differ from Dg. If we neglect this difference and
write approximately expression (11) in the form

oN’
0z

—DpAIN'=-B- VN, (12)

then Eqs (10) and (12) will form a closed set of equations to determine Dg.
Equation (12) is easily solved by using a Fourier transformation. Substituting
this solution into Eq.(10), we find

1
DF=5fb%(ikZ+Dka)"d?
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where the factor 1/2 is the result of averaging over the angles, and bl—z(» is deter-
mined from the following expression:

b} = (2m)" / ®(©0) BEye KT (4

For small b?, Dpk? in the denominator of Eq.(13) is small and we obtain from (13):

DF=g /5(kz)b]2(. d& (15)

This is just a quasi-linear expression coinciding with Eq.(3). On the contrary,
when Dgk? is large, k, in the denominator of Eq.(13) can be neglected and then

we have
f Y2 dk (16)

where "DR’ is the Fourier component of the correlation function for V:

vt =en” [ won@re e am

According to expression (16), Dg ~ byd. So, for small values of R = boLy/6

the value of Dy increases as b3 with b, and when boLo/8 > 1, the increase is
only linear.

3. ELECTRON THERMAL CONDUCTIVITY IN MHD-APPROXIMATION

3.1. We now consider the behaviour of the electron thermal conductivity
for the same case of a random stationary magnetic field. We assume that the
longitudinal thermal conductivity X | substantially exceeds the transverse one,

X, ie. Q7= VX[1/X] > 1 (at some stages we shall use the small parameter
v = 1/Q7). The heat flux q is equal to

c_f="><|1l_1*(h_)V)—>qT (18)

- =
where i = B/B, = E; +b. We see from this expression that for by Q27 > 1
the contribution of longitudinal thermal conductivity to effective heat transport
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across an averaged magnetic field can be substantially larger than that of transverse
thermal conductivity.

We again start with a quasi-linear approximation. Let us suppose that
T=Ty+ T and T' € T,. Under stationary conditions, div Cf = 0. The linear
part of this equation in the Fourier transformation when the gradient VT, is
directed along the X-axis takes the following form:

) , dT,
(k2 + Y¥*kDT = ik,by — (19)
dx

We include, in the expression for the averaged heat flux, only the terms with the
transverse conductivity:

dTy dT’
@y = x| b p X 1{by ix ) (20)

Substituting the expression for T’ from Eq.(19) we obtain the value for the
proportionality coefficient between (q,) and dTo/dx:

1 72k2b2
S = R d S v 21)
pew | =
- k2 +y*ki

The factor 1/2 again appears, owing to an averaging over angles since

b? = b} + b}. As was shown before, the validity condition for the quasi-linear
approximation for a magnetic field is an inequality, boLo/8 ~ bok/k, < 1.
On the other hand, it is sufficient to consider the region b7 > 1. Hence, in
this region, vk <k, and Eq.(21) may be written as follows:

m o ey
XF =3 VXIXL fkl‘s(kz)blz(d? (22)

Comparing with expression (15), we see that xp = /XX, ¢ D, where
(k) is the averaged transverse wavenumber. By order of magnitude,

XF ~/XIXL b3 Lo87". Let us recall that the Bohm diffusion coefficient is equal
to Dg = (1/16)4/X|X| , so that the dependence of xg on the plasma parameters
is a Bohm-type one. For by ~ §/L,, we have xgp ~ 16 boDy.

Note that the expression for xg can be written in the form: xg =V Dg,
where V = x| /L, L ~ 6Q7. The quantity v plays the role of velocity of heat
transport over a characteristic length L, i.e. the longitudinal correlation length
for T'.
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3.2. According to expression (22), X tends to zero as X| = 0, but this
result does not seem to be reliable because we neglect the terms of higher order
in b in Eq.(19). Let us consider, instead of Eq.(19), a more accurate equation
with a “point” source with respect to Z:

2 - -
(ai+5>"7> Tyt g T = dlgdele (23)
Z

Neglecting the term with b -V we could obtain an equation for the function of

the point source. It is this function which was used in Eq.(19). The presence

of the term b -V implies that the point source function, while remaining a

comparatively slow-varying function of the variable £ along the field line,

oscillates strongly in FI, owing to “braiding” of the field lines. The result of this

is the increase of the term ViT (see, e.g. Ref.[9]). We should include this effect.
Note that Eq.(23) can be derived from the variation principle §S = 0, where

s=/ Kg_g): +72(V1T)2] dr 24)

Here, 8/02 = 8/3z + b -V. We average expression (24) over b and approximate
this by the following equation:

3
S = (S) =f1 (a—ZT>2 + I'?(2)T? } Tl (25)

where I'(z) remains to be found. To do this, we should find (( VLT)Z) as a
function of z. Let us write oT/ox = (T(xz)—T(xl)/(xz—xl)Xz —x,~>0- Here T(x,2)
is a slowly varying function of £ (since the longitudinal conductivity is high), so
that the expression for 3T/dx can approximately be written as follows:

aT/0x = (3T/0x)o * (x3—x9)/(x,~ x,), where x{’ are co-ordinates of trajectories

at Z = 0. When the difference X2~X, along the trajectory is small,

) by
o (Xa—xp) = by (x2,2)—b(x;,2) = (x2—x;) (26)
ox X

Z

From this, we find

z

o fabxd
X2~ X; = (x7—x}) exp S <

0

R e W

i
;
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=
Assuming a Gaussian distribution for b we find, for large values of z, for the

. . . . Re =P o
T function, which is proportional to exp(ik - r) at z = 0, the tollowing expression:

/(3T 2 g
\ & =k T exp(2 kz)

where
+ oo
k‘lf 3by(0) by(@)
=2 ax. oax 27]

By order of magnitude, k ~ b2Ly5672. In the region z <0, we have to substitute
exp(2k|z). But since this exponent is essential only for large values of z we

shall cover both positive and negative z-values by approximating the two exponents
by the function ch2kz. Thus,

2
S=f{<a—T> +72le20h(2kZ) dz (28)
0z

Varying this functional we obtain a modified Mathieu equation. An approximate
value of T can, however, be found directly from expression (28). For small k,

it naturally yields the former quasi-linear expression. For very small v, we find

the solution for T in the form 1-aZ at Z<oat, T=0atZ> o« ! (o is the variable
parameter). This is due to the exponentially strong “switching-on” of the transverse
damping in expression (28). The variation of expression (28) with such a test

function gives:
o= k(In k/vk)™ (29)

By magnitude, @ ~ k ~bj Loy872. As we see, k; ~ ke™! > 1 only when the
logarithm in expression (29) is large, i.e. when

Qb > (boLo/8)7! (30)
If we approximate the Green function for Eq.(23) (1/2a)(1—«lz|) by a simpler
expression (1/2a) exp(—adlzl), then after substitution of the corresponding solution

for T' into Eq.(20) we obtain an expression of the form (21) but with a term
o? instead of y?k}. In the quasi-linear region boL, < & we can again assume



IAEA-CN-37/0-1 657

o? < k% (k, is the characteristic wave number), so that, instead of expression (22);
we obtain

Xg = XjoDp ~ x| bL5 8™ (31)
This expression is valid in the region boLo/8 <1, Q7by > (bg Lo/6)7.

3.3. Let us now consider the region boLy/6 > 1, where a quasi-linear
approximation is not valid. We again start with a simpler case where Ly, = o,

i.e. a case of a random field homogeneous in Z.

The problem in question is similar to that of current percolation in a two-
dimensional solid with random inhomogenous conductivity [11]. So, it seems
reasonable to use a well-known method by Dykhne [14], which allowed him to
obtain,in a rather simple way, an expression for the effective electrical conductivity
of an inhomogeneous substance. Let us write Eq.(18) in the following form:

oT
Ao = ™ Xap _aX—B (32)

where X5 = babﬁx" + SQﬁxl, and the sum is taken over subscript f. When the
averaged gradient is directed along the x-axis, Eq.(32), on averaging, takes the form:

@) =~xr 3 (33)

where X is the value of the effective temperature conductivity to be found. Now,
we rotate the whole picture of gradient and heat fluxes through an angle of 90°
and introduce the following quantities:

3 = Ale, X VT]; VT' =Ble, Xq] (34)

where A and B are constants. Since div a) =0, rot VT = 0, we have diva)' = (,
rot VT' = 0, i.e. theq ' and VT’ values can be considered as heat flux and
temperature gradient in the turned plane. Now we try to choose values of A and B
such that the turned picture is as close to the initial one as possible.

The linear relation betweena and VT gives:

dg ="Xhp L5 (35)
aX‘3
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and an averaged heat flux is equal to

dr,
Gl ==xp ——

dx (36)

Now we choose A and B such that, on the average, the heat transports in the
initial and turned planes coincide or at least, are as close to one another as
possible. For this purpose, the following requirements should be met:

XF=Xps  Xap = Xap 37)

Averaging expressions (34) and making use of Eqs (33), (36) and the first
equation (37), we find

Xp =v/A/B (38)

On the other hand, A/B can be found from the second equation (37). Taking
into account that, according to Eqs (34) and (35), xgg = A/B xgf (where Xap
is the inverse matrix) we can find from the second equation (37):

Xxx ~i 1 2 b)z( -1 8
A/B = (xyy) —*‘X AL = xyx by vy i X1 X3 (39)
XXAYY Xy

Here, the explicit expression for the Xqp tensor is included, and we have restricted
ourselves to the case by 27> 1. Thus, according to expressions (38) and (39),
we have

XF =V X[XL bo (40)

in the region byLy/86 > 1.

3.4. Formula (40) again gives xg — 0 as x| ~> 0 which may be invalid when
Ly # 0. So the region by 27> 1 should be considered in more detail for large,
but finite values of the parameter R = boLy/8. To consider this more general
case we first try to obtain expression (40) by using a simpler approach of the
quasi-linear type. To do this, we write the expression for the heat flux (18) for
a purely two-dimensional case in the following form:

aT
q=-xib b= =X VT (41)
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-
where b(d/ds) = b - V, i.e. s is the co-ordinate along the field line projection on
the (x,y)-plane. If we again suppose T = T,(x) + T'(x,y) and average expression
(41), we obtain, neglecting the second term:

dT T’
Q) = “X||<b)2() d: = <bbx —8—5—> (42)

The_yalue of T' can be found from the linearized equation div—c_l) = 0. Since
div b = O this equation will read:

92T 9 dT, '
b2 S + 24T =—b— (b > 43
as? AL s X dx (43)

When x| > x;, the major contribution to the thermal conductivity comes from
those field lines that wander through long distances (small “islands” and “lakes”
practically do not contribute to the thermal conductivity). Along those lines

that correspond to small ¢ and can be considered unclosed, the value of s virtually
varies from —ec to +o0. Thus, T’ can be expanded over s in a Fourier integral. As
for A, this can be assumed to be equal to —kj for a perturbation of the typical
form exp(il—gl ~71). Thus, from Eqgs (42) and (43), we obtain an expression similar
to (21), with the only difference that here we have the term b?k? instead of k3 :

1 B, B e

where kg is the wave number along s. For small y in expression (44) we again
see the occurrence of a 6-function; thus, the expression will read:

™ <
XF = VXX [klé(bks)b{f dk (45)

Since b2 differs from zero in the region kg ~ k; ~ 87, expression (45) yields the
same estimate as (40), i.e. xp ~ /XX bo-

For Ly # oo, the heat can flow along the field lines, and this should contribute
to {q,). In the region byL,y/6 > 1, the expression for the averaged flux can be
taken in the form (42), the small gradient along z being neglected. Thus, it is
sufficient to take into account additional damping due to 8/8z only in Eq.(43).

To do this, we again make use of the functional (24) and first average it over b

aT"\ ? aT' \ 2 2 % i :
S'=(= f<bg (a_s.) + <67> + 77(VLT')‘> dr (46)
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We have again introduced here the s-co-ordinate along the field line projection

onto the (x,y)-plane and have “split” approximately the average squares of the

functions in the first term in the integrand. Expression (48) can be considered

to be a functional whose variation gives the point source function in the s-variable.
In expression (46), the second and third terms in the integrand are small

and so T in these terms can be considered almost constant in s, i.e. approximately

T = T'(Y). In this case, the average value of the second and third terms will be

expressed in terms of correlation properties of ¥, i.e. expression (46) can be

written as follows:

AT ,
s' :f{b% <Bs—>2 + <% + 42 %) T?ld‘r* (47)
0

where a,, a, are numerical coefficients of the order of unity. When Q7 > L,/8,
the term with y? can be neglected and the damping is determined by the value
of a,/L,. If we now take a quasi-linear-type equation (44) and replace 72ki by
a;/L3 we approximately obtain:

Xp = )(||b05L5l (48)

This expression is valid for the region boLe/6 > 1, bo Q7 >bol,/6.

3.5. Figure |1 summarizes the results of our considerations. In this figure
four regions are presented for Xg as a function of the parameters b7 and
boLo/8. boS2r lies in the b7 > 1 region and the value of byLy/8 may be arbitrary.
In all four regions, xgp =V Dg, where D is the field diffusion coefficient and
v = x| /L, where L is the characteristic length over which the temperature
perturbation is transported. In regions 1 and 4, the value of L ~ 8§27 < L,, in
region 3 L~ Ly, in region 2 L ~ Lo(boLo/8)™? > L,. On the boundaries of the
regions different dependences match.

The expression xg = VDg for v = x|/L is valid only at v < vy, where vre
is the thermal electron velocity, i.e. in a hydrodynamic collisional regime, Ae <L.
For A, > L, as has been shown by Stix [8] and Rechester and Rosenbluth [91,

XF = VTeDF'
4. OHKAWA FORMULA

In a high-temperature, high-electric-conductivity plasma, it is natural to
expect a longitudinal field component By to arise because of plasma displace-
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FIG.1. Four regions displaying various dependences of heat conductivity in a “braided”
magnetic field.

ments. It is also natural to assume that the displacement is of the order of the
longitudinal correlation length, so that B’ ~ B,8/L,. In other words, the most
natural value of the parameter byL,/8 is unity. According to Fig.1, at boLy/6 ~ 1,
X is virtually independent of 7 and equal to xg ~ x| (§2L3) in a collisional
regime, and to xg ~ vT662L'1 in a collisionless regime. In tokamak-type systems,
it is reasonable to assume that Ly = qR, where R is the major torus radius, and
q the safety factor. Hence, in the plateau (and banana) regimes, A, > gR, and
we should use the expression xp ~ vy.62/qR.

To describe the anomalous electron thermal conductivity, Ohkawa has
proposed the formula:

2

C VT
Xo =— — (49)

“’;zﬂ qR

which correspond to the assumption § = c/wp, (wp] is the Langmuir frequency).
This formula is in good agreement with the experimental data.

Evidently, the Ohkawa formula corresponds to the assumption that magnetic
surfaces are destroyed on the § ~ c/cop, scale. This assumption may, to some
extent, correspond to the hypothesis of a magnetic flutter [7]. In fact, if we take
into account the fact that in drift oscillations the magnetic surfaces are frozen
into the electrons, then the destruction of surfaces and reconnection of field lines
in a tenuous plasma can be expected only on the scale of a collisionless skin layer,
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& ~ clwp) That is why formula (49) seems to be quite reasonable in explaining
the anomalous electron heat conductivity under the conditions of magnetic
surface “flutter” in tokamaks.
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DISCUSSION

S. INOUE: If diffusion is governed by the parallel motion of electrons,
then the confinement of runaway electrons must be worse than that of ordinary
electrons. Is this consistent with experimental findings?

B.B. KADOMTSEV: The behaviour of runaway electrons has been discussed
by M. Rosenbluth. The magnetic drift of such electrons helps to prevent leakage
along the field lines.

J.D. CALLEN: Could you please discuss in somewhat more detail why you
have chosen c/wpe as the transverse correlation length? In particular, could you
indicate why you have not taken a larger scale length such as might arise from
drift waves which can also, presumably, cause fluttering of the magnetic field
lines?

B.B. KADOMTSEV: If electron collisions are very rare, the drift-type waves
will conserve magnetic surfaces, so that for a real reconnection of magnetic field
lines a smaller scale may be important — for instance c/cope, the collisionless
skin-length.

B. COPPI: The numerical simulation of discharges obtained in Alcator
and other devices has indicated that a combination of two diffusion coefficients
is needed to reproduce the observed temperature profiles. One of these two
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coefficients controls the electron energy transport near the centre of the plasma
column and has a form similar to the one you discussed, except that the exponent
of the electron temperature has the opposite sign. The other gives an enhanced
diffusion at the edge of the plasma column and has different dependences on n,

q and T. These conclusions have been confirmed recently by three other groups
who have carried out analyses similar to ours.

T. OHKAWA: The same model can be applied to calculations of particle
transport as well as heat transport, the resultant flow of particles being parallel
to the magnetic field lines. Perhaps this might explain the lack of experimental
observation of the bootstrap effect despite the fact that the transport rate is much
greater than the neoclassical rate. Would you care to comment?

B.B. KADOMTSEV: The problem of particle transport is more complicated
than heat transport, owing to electric field perturbations. We have not considered
this problem as yet.

M. DUBOIS: Do you explain this turbulence by fluttering of the lines of
force? I would not have thought that this was likely, strictly speaking, to be a
mechanism for turbulence.

B.B. KADOMTSEV: Yes; it may not be true turbulence but simply small
distortions of the magnetic surfaces.

M. DUBOIS: In the case of strong turbulence in the presence of a current
gradient, it seems to me that the plasma would tend to shield itself, thus reducing
the stochasticity. What do you think of this possibility?

B.B. KADOMTSEV: There may be some effect of self-curing or self-
restoring of the magnetic surfaces.

F.R. SCHWIRZKE: If the thermal electron conductivity is determined
by stochastic magnetic field “flutter’ and related temperature fluctuations,
do these processes also influence the electrical conductivity?

B.B. KADOMTSEV: No, electrical conductivity is virtually unaffected
by magnetic-field fluctuations.
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