Chapter 7
Chaos in Hamiltonian systems

Hamiltonian systems are a class of dynamical systems that occur in a wide
variety of circumstances.' The special properties of Hamilton’s equations
endow these systems with attributes that differ qualitatively and funda-
mentally from other sytems. (For example, Hamilton’s equations do not
POSSESS attractors.)

Examples of Hamiltonian dynamics include not only the well-known
case of mechanical systems in the absence of friction, but also a variety of
other problems such as the paths followed by magnetic field lines in a
plasma, the mixing of fluids, and the ray equations describing the
trajectories of propagating waves. In all of these situations chaos can be an
important issue. Furthermore, chaos in Hamiltonian systems is at the heart
of such fundamental questions as the foundations of statistical mechanics
and the stability of the solar system. In addition, Hamiltonian mechanics
and its structure are reflected in quantum mechanics. Thus, in Chapter 11
we shall treat the connection between chaos in Hamiltonian systems and
related quantum phenomena. The present chapter will be devoted to a
discussion of Hamiltonian dynamics and the role that chaos plays in these
systems. We begin by presenting a summary of some basic concepts in

. . . 23
Hamiltonian mechanics.~

7.1 Hamiltonian systems

The dynamics of a Hamiltonian system is completely specified by a single
function, the Hamiltonian, H(p, q, 7). The state of the system is specified
by its ‘momentum’ p and ‘position’ q. Here the vectors p and q have the

same dimensionality which we denote N. We call N the number of
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degrees of freedom of the system. For example, Hamilton’s equations for
the motion of K point masses interacting in three-dimensional space via
gravitational attraction has N = 3K degrees of freedom, corresponding to
the three spacial coordinates needed to specify the location of each mass.

Hamilton’s equations determine the trajectory (p(1), q(7)) that the system

|

follows in the 2 N-dimensional phase space, and are given by lr[
dp/dt = —0H(p, q. 1)/0q, (7.1a) | |

dq/dt = 9H(p, q, 1)/0p. 7.1b) il |

{1

In the special case that the Hamiltonian has no explicit time depen- il

dence, H = H(p, q), we can use Hamilton’s equations to show that. as p f, 8

and q vary with time, the value of H(p(?), q(7)) remains a constant: [;

dH dq 0H dp OH _OH OH OH OH
dt —dr dq ' dr dp  Op dq Oq ap ];
I

Thus, identifying the valuc of the Hamiltonian with the energy E of the i

system, we see that the energy is conserved for time-independent systems, ‘ i
de E = H(p, q) = (constant).
ns |
la- &
10t "

7.1.1  Symplectic structure i
vn We can write Egs. (7. 1) in the form | ‘
of dx/dt = F(, 1), (7.2) ’j

a I
he by taking X to be the 2 N-dimensional vector }
n #=1PY. ,é
it q i
cs _ < i
s and by taking F(X) to be -
e {
1 F(X, 1) =Sy - 0H /0%, (7.3) ‘
d _ |8
with Wb
a l 'z
se i Oy —ly . f i1
t Sy = {l“ O"J (7.4) i
in N N [ :‘
i
where |y is the N-dimensional identity matrix, Oy is the N X N matrix j i |
(1
of zeros, and ;{ :
OH IH /dp |
o= | 28R | 7.5) I
Ox 0H /dq b i
e {4 i
d From this we see how restricted the class of Hamiltonian systems is. In ’I
e particular, a general system of the form (7.2) requires the specification of 1
if all the components of the vector function F(X, 7), while by (7.3), if the J
1
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system is Hamiltonian, it is specified by a single scalar function of p, q
and ¢ (the Hamiltonian).

One of the basic properties of Hamiltons equations is that they
preserve 2N-dimensional volumes in the phase space. This follows by

taking the divergence of F(X) in Eq. (7.2), which gives

@ s ‘ﬂ) s [2EY it (7.6)
ox dp aq dq \ Op

Thus, if we consider an initial closed surface Sy in the 2 N-dimensional
phase space and evolve each point on the surface forward with time, we
obtain at each instant of time ¢ a new closed surface S, which contains
within it precisely the same 2N-dimensional volume as does Sy. This
follows from

gJ Vg = + Lo T |> F.dS = ] 9 FdiMg=o,

5, Js, Js, OX

where _[j\} -+« denotes integration over the volume enclosed by S, $o -
denotes a surface integral over the closed surface §;, and the third equality
is from the divergence theorem (cf. Eq. (1.12)). As a consequence of this
result, Hamiltonian systems do not have attractors in the usual sense. This
incompressibility of phase space volumes for Hamiltonian systems is
called Liouville’s theorem.

Perhaps the most basic structural property of Hamilton’s equations is
that they are symplectic. That is, if we consider three orbits that are
infinitesimally displaced from each other, (p(7), q(7)), (p(#)-+ op(1),
q(?) + 0q(1)) and (p(2) + Op’'(2), q(¢) + Oq'(2)), where dp, dq, dp’ and
6q’ are infinitesimal N vectors, then the quantity,

op-o0q’ — dq - dp’,
which we call the differential symplectic area, is independent of time,

d .
—(0p-0q' —dq-op’) = 0. (7.7)
dz

The differential symplectic area can also be written as

~J
o0
~—~

Op-0q’ —0q-0p = 0x' - Sy - Ox’ (

where { denotes transpose.
To derive (7.7) we differentiate (7.8) with respect to time and use Egs.
(7.2)-(7.5):
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d . ., dox! . dox’
—o0xf .Sy 0%’ =—— Sy - OX' +0X" - Sy - ——
dr ds ds
G ) - 9
= (f;f . r)i’) Sy O0x +0x"-Sy - ’—I:‘ - Ox’
ox Jx
OF
= 6% - == | - O’
ox
, ’ o1 |
_—)i'l )SFS‘ S Sy )“l
ox A Vo oxox| "
o VREY 4 &PH
—§i (T,) 'S,-'S'-“*S S — (5\’
‘ xox) N N TONTON Gyox
=0,
where we have used Sy-Sy = —by (where Ly is the 2N-dimensional
identity matrix), S, = —Sy and noted that O*H /00X is a symmetric

matrix. (In terms of the notation of Chapter 4, OF /0% = DF.) For the case
of one-degree-of-freedom systems (N = 1), Eq. (7.7) says that infinitesi-
mal areas are preserved following the flow. (Figure 7.1 shows two
infinitesimal vectors defining an infinitesimal parallelogram. The parall-
elogram area is 0 p'0g — d¢'0p.) Since infinitesimal areas are preserved
by a Hamiltonian flow with N = 1, so are noninfinitesimal areas. Thus for
N — 1 Liouville’s theorem and the symplectic condition are the same
condition. For N > 1 the symplectic condition is not implied by
Liouville’s theorem. It can be shown.? however, that the symplectic
condition implies volume conservation; so the symplectic condition is the
more fundamental requirement for Hamiltonian mechanics. We interpret
(7.7) as saying that the algebraic sum of the parallelogram areas formed

(%)
4
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Figure 7.1 Infinitesimal area
defined by the two
infinitesimal vectors (6 p, 6g)
and (0p', d¢") for N = 1.




Figure 7.2 Trajectory tube
through I'y.
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by projecting the vectors dp, dq, dp’, 6q’ to the N coordinate planes
(pi, g;) 1s conserved,

Oop-0q’' —dq-op' = Z((‘)/).,-Oq,'- — 0¢,0 p}).

i=1

The quantity op-0q" — dq-Op’ is the differential form of Poincaré’s
integral invariant,?

N

+ p-dq = Z(f pi dgi, (7.9a)

i=1vY

where the integral is taken around a closed path y in (p, q)-space. We also
refer to the quantity | p-dq as the symplectic area. Poincaré’s integral
invariant is indcpcndcn't of time if the closed path y is taken following the
flow in phase space.” That is, y(¢) is the path obtained from y(0) by
evolving all the points on y(0) forward in time by the amount ¢ via
Hamilton’s equations.

A useful generalization of the above statement of the invariance of
$p - dq following the flow is the Poincaré—Cartan integral theorem.?
Consider the (2N + 1)-dimensional extended phase space (p, q, 7). Let T
be a closed curve in this space and consider the tube of trajectories
through points on I'y as shown in Figure 7.2 for N = 1. The Poincare—
Cartan integral theorem states that the ‘action integral’ around the path
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[, ¢ (p-dq— Hdi), is the same value for any other path I'; encircling

the same tube of trajectories,

¢ (p-dq— Hdt)y=¢ (p-dq— Hdr), (7.9b)
Jry Jn
where I} and I are illustrated in Figure 7.2. If I'y and I'; are taken at two
different (but constant) times, then d¢ = 0 in the above, and we recover
the invariant (7.9a). Another important case is where /{ has no explicit ¢
dependence, H = H(p, q). In this case the Hamiltonian is a constant of
the motion, and, if we restrict the points on I'} to all have the same value
of H (i.e., Iy lies on the 2 N-dimensional surface H(p, q) = (constant)),
then f:Hdl =0 for any closed path on the 2 N-dimensional constant //

surface in (p, q, ¢) space. In this case we obtain
l p-dq= J p - dq. (7.9¢)
Jr, I

Note that, in contrast to (7.9a), the closed paths I'; and I'; in (7.9¢) are in
(p. q. ?) space and thus need not be taken at constant time.

7.1.2 Canonical changes of variables

If we introduce some arbitrary change of variables, X' = g(X), the Hamil-
tonian form of the equations may not be preserved. Changes of variables
which preserve the Hamiltonian form of the equations are said to be
canonical, and the momentum and position vectors in terms of which one
has a system in the Hamiltonian form (7.1) are said to be canonically
conjugate. Specifically, if p and q satisfy (7.1), then a canonical change of
variables to a new set of canonically conjugate variables p and q

P =2gi(p. q, 1),
q=g(p, q, 1),
leads to evolution equations for p and q of the form,
dp/dt = —0H({P. q. /59,
dq/dt = 9H(p, q, 1)/Ip,
where H is a new transformed Hamiltonian for the system. One way to
specify a canonical change of variables is to introduce a generating
function,” S(P, q, ) which is a function of the ‘old” position coordinates q
and the ‘new’ momentum coordinates p. In terms of S(p, q, 7), the change
of variables is specified by
aS(p. q. 1) as(p, q, 1)
- —— P -= -~

- . - 7.10
ap ’ dq | )
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Thus the change of variables is given implicitly: to obtain p in terms of p
and q solve p = dS/dq for p; to obtain § in terms of p and q substitute
the solution for p into @ = dS/dp. Note that the change of variables
specified by Eq. (7.10) is guaranteed to be symplectic. That is

op-0q' —dq-0p' = dp-0q’ — 6q - Op.

This can be checked by differentiating Eq. (7.10),

5 ?s 9 ;
q=——"0p+———- oq,
1= 5pap P " opaq 4
7S 528
_ G fe O B,

P —_—f'()pT —l

dqop dqdq
and substituting into the symplectic condition given above. In terms of the
generating function the new Hamiltonian is given by?

H(p,q, 1) = H(p, q, 1) + 0S5 /t. (7.11)

7.1.3 Hamiltonian maps
Say we consider a Hamiltonian system and define the ‘time 7 map’ .74
for the system as

Ar(X(1), 1) =X(1+ T). (7.12)
(The explicit dependence on ¢ in the second argument of .Z47 is absent if

the Hamiltonian is time-independent.)
Taking a differential variation of Eq. (7.12) with respect to X, we have

VA
i 48 OX(t) = OX(1 + 7).
ox

The symplectic condition for a Hamiltonian flow
OXN(t+T)- Sy - OX'(t+ T) = 0%(£) - Sy - OX'(2)

yields

; : DAy J DMy
Oxi(1)- Sy - OX'(1) = (‘ m’ -a&i(z,)) Sy <(—-,_K—"r)x’(/_))
\ - ( "

which (since OX(f) and OX'(7) are arbitrary) implies that the matrix

0.4+ ] OX satisfies
) //,,> ! (0./4,)
Sy =S Sy 222,
: ( ox A Ox

The matrix .67 /0X is said to be a symplectic matrix, and we define a
general 2N X 2N matrix A to be symplectic if it satisfies
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Sy =A"-Sy-A (7.13)

The product of symplectic matrices is also symplectic. To see this,

suppose that A and B are symplectic. Then
(AB)' - Sy(AB)=B'-(A"-Sy-A)-B=B'"-Sy-B=Sy.

So AB is symplectic.

One consequence of the conservation of phase space volumes for
Hamiltonian systems is the Poincaré recurrence theorem. Say we consider
a time-independent Hamiltonian H = H(p, q) for the case where all
orbits are bounded. (This occurs if the energy surface is bounded; i.e.,
there are no solutions of £ = H(p, q) with |p| — oo or |q| — oc0.) Now
pick any initial point in phase space, and surround it with a ball Ry of
small radius & > 0. Poincaré’s recurrence theorem states that, if there are
points which leave the initial ball, there are always some of these which
will return to it if we wait long enough, and this is true no matter how
small we choose ¢ to be. In order to see that this is so consider the time T
map, Eq. (7.12), which evolves points forward in time by an amount 7.
Say that under the time 7" map the initial ball R is mapped to a region R,
outside the initial ball (R; N Ry is empty). Continue mapping so as to
obtain regions R;, Rj, ... By Liouville’s thecorem all these regions have
the same volume, equal to the volume of the initial ball Ry. Since the
orbits are bounded, they are confined to a finite volume region of phase
space. Thus, as we repeatedly apply the time 7' map, we must eventually
find that we produce a region R, which overlaps a previously produced
region Ry, r > s. (If this is not so, then we would eventually come to the
impossible situation where the sum of the volumes of the nonoverlapping
R, would eventually be larger than the volume of the bounded region that
they are confined to.) Now apply the inverse of the time 7 map to R, and
R;. This inverse must produce intersecting regions (namely R,_; and
Rs_1). Applying the inverse map s times we conclude that R,_; (recall that
r — s > 0) intersects the original ball R,. Thus, as originally claimed,
there are points in R which return to R after some time (r — £)7.

As in the case of general non-Hamiltonian systems, the surface of
section technique also provides an extremely useful tool for analysis in
Hamiltonian systems. There are two cases that are of interest.

(a) The Hamiltonian depends periodically on time: H = H(p, q, 1) =
H(p, q, t + 1), where 7 is the period.
(b) The Hamiltonian has no explicit dependence on time: H = H(p, q).

First, we consider the case of a time periodic Hamiltonian. In that case, we
can consider the phase space as having dimension 2N + 1 by replacing

the argument / in H by a dependent variable &, taking the phase space
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Figure 7.3 The kicked rotor.
There is no gravity and no
friction at the pivot.

T
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7 Chaos in Hamiltonian systems

variables to be (p, q. &), and supplementing Hamilton’s equations by the
addition of the equation dé/ds = 1. Since the Hamiltonian is periodic in &
with period 7, we can consider & as an angle variable and replace its value
in the Hamiltonian by

& = & modulo 7.

We then use for our surface of section the surface, & = 1, where 7y is a
constant between zero and 7. (This is the same construction we used for
the periodically driven damped pendulum equation in Chapter 1.) Since
the Hamiltonian is time periodic, the time 7 map defined by (7.12)
satisfies

AA(X, ty) = A(X, g + nT).

where » is an integer and we have taken 7' = 7. Hence the surface of
section map, which we denotc M(X), is

M(x) =. //r(\ to),

and M is endowed with the same symplectic propertics as .77, (i.c.. the

matrix dM /JX satisfies (7.13)).

Example: Consider the ‘kicked rotor” illustrated in Figure 7.3. There is
a bar of moment of intertia / and length /, which is fastened at one end to
a frictionless pivot. The other end is subjected to a vertical periodic
impulsive force of impulse strength K /7 applied at times 7 = 0. 7, 27, ...
(There is no gravity.) Using canonically conjugate variables py (represent-
ing the angular momentum) and @ (the angular position of the rotor), we
have that the Hamiltonian for this system and the corresponding equations

of motion obtained from (7.1) are given by

H(pg, 0, 1) = /7;.1',;'(2/) + K cosf \ﬂ ot — n1).

n
dpe ;o A -
— = Ksin0 » (¢ — n1). (7.14a)
dr ot
dé y
— /1, (7.14b)
dr P

where O(...) denotes the Dirac delta function. From Egs. (7.14) we see
that py is constant between the kicks but changes discontinuously at each
kick. The position variable @ varies linearly with ¢ between kicks (because
pp 1s constant) and is continuous at each kick. For our surface of section
we examine the values of pg and 6 just after each kick. Let p, and 6,
denote the values of py and 0 at times ¢ = nt + 0", where 07 denotes a
positive infinitesimal. By integrating (7.14a) through the delta function at

t = (n -+ 1)r. we then obtain
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Pl — Pn = KsinOpq),

and from (7.14b), 0, — 0, = p,t/I. Without loss of generality we can
take 7/ = 1 to obtain the map

6,1 = (6, + p,) modulo 27, (7.15a)
Pnil = Pp+ Ksinf,4, (7.15b)

where we have added a modulo 27 to Eq. (7.15a) since 0 is an angle, and
we wish to restrict its value to be between zero and 2st. The map given by
Egs. (7.15) is often called the ‘standard map’ and has proven to be a very
convenient model for the study of the typical chaotic behavior of Hamil-
tonian systems that yield a two-dimensional map. It is a simple matter to
check that Egs. (7.15) preserve area in (p, 6)-space. To do this we
calculate the determinant of the Jacobian of the map and verify that it is 1:

det

apn+1/89n ap11+l/0[)n KcosO,y1 1+ Kcos Ot

Since N = 1 this also implies that the map is symplectic, as required.

We now consider the second class of surface of sections that we have
mentioned, namely the case where the Hamiltonian has no explicit time
dependence. In this case, since the energy is conserved, the motion of the
system is restricted to the (2N — l)-dimensional surface given by
E = H(p, q). Taking a surface of section we would then obtain a
(2N — 2)-dimensional map. Say we choose for our surface of section the
plane ¢, = K, (where K is a constant), and say we give the values of the

2N — 2 quantities, p2, p3, ... PNs> G2, G35 -+ -5 4N, on this plane. Let X
denote the vector specifying these coordinate values on the surface of
section X = (P2, P3s s PN> G2 @35 ---» Gn). Is there a map, X, =

M(%,), evolving points forward on the surface of section; i.e., does a
knowledge of %, uniquely determine the location of the next point on the
surface of section? Given X on the surface of section, the only unknown is
p1 (g1 is known since we are on the surface of section g1 = Ko). If we can
determine p; then the phase space position X is known, and this uniquely
determines the system’s future evolution, and hence X at the next piercing
of the surface of section. To find p; we attempt to solve the equation
E = H(p, q) for the single unknown p;. The problem is that this equation
will in general have multiple solutions for p;. For example, for the
commonly encountered case where the Hamiltonian is in the form of a
kinetic energy p?/2m, plus a potential energy,

H(p, q) = pz/"2m + V(q),
for given X there are two roots for py,

pi=={2mE - V(@] — (B3 +p5 + - + Y. (7.16)

00,,41/060, 00,4 /('7}7,,} _ det{ 1 1 i
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fo make our determination of p; unique we adopt the following proce-
dure. We specify Xx,, to be the coordinates (ps, ..., py, ¢3. .... gv) at the
nth time at which ¢,(¢) = Ky and p; > 0. That is, we only count surface
of section piercings which cross ¢; = Ky from ¢, < K, to ¢; > K, and
not vice versa (for the Hamiltonian under consideration dg,/dr = py).
Hence, we define the surface of section so that we always take the positive
root in (7.16) for p; (we could cqually well have chosen p; < 0, rather
than p; > 0, in our definition). With this definition. specification of X,
uniquely determines a point in phase space. This point can be advanced by
Hamilton’s equations to the next time that ¢,(¢) = K, with p; > 0 thus

determining X, 1. In this way we determine a map.
Xjpg] = M(x,).

This (2N — 2)-dimensional map is symplectic in the remaining canon-
ical variables p = (pa, ..., py) and q = (g2, ..., gv). (This also implies
that the map conserves (2N — 2)-dimensional volumes.) To show that the

map is symplectic, we need to demonstrate that the symplectic area,

¢ p-dq,
Ji

is invariant when the closed path ' around which the integral is taken is
acted on by the map M. This follows immediately from the Poincaré-—
Cartan theorem in the form of Eq. (7.9¢). Writing p - dq = p; d¢; + p - dq
and noting that ¢; = K; on the surface of section, we have dg; = 0, and
the desired result follows. (Note that use of the Poincaré—Cartan theorem
(rather than the integral invariant (7.9a)) is necessary here because two
different initial conditions starting in the surface of section take different
amounts of time to return to it.)

Thus, we see that, in the cases of both a time-periodic Hamiltonian
and a time-independent Hamiltonian, the resulting maps are symplectic.
For this reason symplectic maps have played an important role, especially
with respect to numerical experiments, in elucidating possible types of
chaotic behavior in Hamiltonian systems.

One consequence of the symplectic nature of these maps is that the
Lyapunov exponents occur in pairs +hy, £hy, £hs, .. .. Thus for each
positive exponent there is a negative exponent of equal magnitude, and the
number of zero exponents is even. To see why this is so we recall that the
Lyapunov exponents are obtained from the product of the matrices
DM(X, )DM(X,-;) ... DM(Xg); see Section 4.4. In the Hamiltonian case
the matrices DM(X;) are symplectic. Since the product of symplectic
matrices is also symplectic, the overall matrix, DM(X,,) ... DM(Xy), is

symplectic. Now let us examine what the symplectic condition implies for
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the eigenvalues of a matrix. The eigenvalues 4 of a symplectic matrix A
are the roots of its characteristic polynomial

D(4) = det[A

Multiplying Eq. (7.13) on the left by S_,,.;(A:) ' we have
A =Sy (AN 'sy.
The characteristic polynomial then becomes
D(%) = det{Sy' (A "'Sy — AI]
= det[(A")~' — AI]
= det[A~" — All.

Thus, the eigenvalues of A and A~! are the same. Since the eigenvalues of
A~! and A are also inverses of each other, we see that the eigenvalues
must occur in pairs, (1, A7'). Because the Lyapunov exponents are
obtained from the logarithms of the magnitudes of the eigenvalues,
(4 = In|A[) we conclude that they occur in pairs 4.

As an example, we consider the stability of a periodic orbit of a
symplectic two-dimensional map. If the period of the orbit is », then the
problem reduces to considering the stability of the fixed points of M”(X)
which is also area preserving. Hence, it suffices to examine the stability of
the fixed points of symplectic two-dimensional maps. Let | = DM " denote
the Jacobian matrix of the map at such a fixed point. Since the map is
symplectic, we have det) = 1. The eigenvalues of ] are given by

Llcmw”j"’l Jiz | o2 141 =0,

L Ja Jn — 4|

where T = J;; + J, is the trace of J, and the last term in the quadratic is
one by virtue of det | = 1. The solutions of the quadratic are

A=[T+(T*-4)7)2.

Since {[T + (7% —4)'/2)2}{T — (T? — 4)"/2]/2} =1, the roots are
reciprocals of each other as required for the symplectic map. There are
three cases:

(a) T > 2; the roots are real and positive (1, 1/2 > 0);
(b)2>T> —2; the roots are complex and of magnitude one
(A, 1/2 = exp(zi0));

(¢) T < —2; the roots are real and negative (4, 1/4 < 0).

In case (@) we say that the periodic orbit is Zyperbolic; in case (b) we say
the periodic orbit is elliptic; and in case (c) we say that the periodic orbit
is hyperbolic with reflection. Note that, in the linear approximation, cases

§
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i
13
i

i 5 R DR A S R




258

7 Chaos in Hamiltonian systems

(a) and (¢) lead typical nearby orbits to diverge exponentially from the
periodic orbit (linear instability); while in case (b), in the linear approx-
imation a nearby orbit remains nearby forever (linear stability). In the
latter case, the nearby linearized orbit remains on an ellipse encircling the
periodic orbit and circles around it at a rate 0/2mx per iterate of M.
(Because the product of the two roots is one, in no case can the periodic
orbit be an attractor, since that requires that the magnitude of both roots

be less than one.)

7.1.4 Integrable systems

In the case where the Hamiltonian has no explicit time dependence,
H = H(p, q), we have scen that Hamilton’s equations imply that
dH /dt = 0, and the energy £ = H(p, q) is a conserved quantity. Thus,
orbits with a given energy E are restricted to lic on the (2N — 1)-
dimensional energy surface £ = H(p, q). A function f(p, q) is said to be
a constant of the motion for a system with Hamiltonian H, if, as p(¢) and
q(¢) evolve with time in accordance with Hamilton’s equations, the value
of the function f* does not change, /(p, q) = (constant). For example, for
time-independent Hamiltonians, /A is a constant of the motion. More
generally, differentiating f(p(7), q(#)) with respect to time, and assuming
that there is no explicit time dependence of the Hamiltonian, we have

4 _dp of  dg Of _OH Of 0H 0f

dr dt 0p " dr &q Op 9q oq Op
We call the expression appearing on the right-hand side of the second
equality the Poisson bracket of f and H, and we abbreviate it as [/, H],

where
0gy dga dg 02 ;
7, D] = = - = == 7.17
&1; &] oq op Op dq {7l
Note that [g;, g2] = —[g2, g1]. Thus the condition that /" be a constant of

the motion for a time-independent Hamiltonian is that its Poisson bracket
with H be zero,

L/, H]=0. (7.18)
(The Hamiltonian is a constant of the motion since [H, H] = 0.)

A time-independent Hamiltonian system is said to be integrable if it
has N independent global constants of the motion fi(p, q), i =1,

7. N (one of these is the Hamiltonian itself; we choose this to be the
i = 1 constant, f1(p, q) = H(p. q)), and, furthermore, if
[fis £;1=0, (7.19)

for all 7 and /.
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We already know that the Poisson bracket of f; with f; is zero for all
i=1,2,..., N, since the f; are constants of the motion (see Eq. (7.18)).
If the condition (7.19) holds for all i and j, then we say that the N
constants of the motion f; are in involution. The constants of the motion
f; are ‘independent’ if no one of them can be expressed as a function of
the (N — 1) other constants. The requirement that an integrable system
has N independent constants of the motion implies that the trajectory of
the system in the phase space is restricted to lie on the N-dimensional
surface

fi(p. @) = ki, (7.20)

i=1,2,.... N, where k; are N constants. The requirement that the N
independent constants f; be in involution (Eq. (7.19)) restricts the top-
ology of the surface, Eq. (7.20), to be of a certain type: it must be an
N-dimensional torus (as defined in Section 6.3). This is demonstrated in
standard texts? and will not be shown here. For the case N = 2, an orbit
on the torus is as shown in Figure 7.4(a).

Given an integrable system it is possible to introduce a canonical
change of variables (p, q) — (P, §) such that the new Hamiltonian H
depends only on p and not on g. One possibility is to choose the constants

(a)

(b)
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Figure 7.4 (a) Orbiton a
2-torus. (b) Two irreducible
paths on a 2-torus.
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of the motion themselves as the N components of p, p; = fi(p, q). Since

Jq = 0 and hence H = H(p). In fact,

the f; are constants, dp/dt = 9H/
we can construct many equivalent sets of constants of the motion by
noting that any N independent functions of the N constants f; could
be used for the components of p with the same result (namely,
dp/di = 0H/0q = 0). Of all these choices, one particular choice is
especially convenient. This choice is the action-angle variable which we

denote

P @ =(80),

where I is defined by

L
1,——&#) p - dq, (7.21)

2z ),
i=1,2,..., N.(In (7.21) the y; denote N irreducible paths on the N-

torus, each of which wrap around the torus in N angle directions that can
be used to parameterize points on the torus (see Figure 7.4(b)). Note that
y; on the torus do not change the values of the

Y

deformations of the paths
integrals in (7.21) by virtue of the Poincaré—Cartan theorem, Eq. (7.9¢).
The position coordinate @, canonically conjugate to the momentum
coordinate I, is angle-like because, on one circuit following one of the
irreducible paths y; around the torus, the variable 6; increases by 2z, while
the other variables 6; with j # i return to their original values. In order to
see how this result is obtained, we first write the change of variables

(p. @) — (L, 8) in terms of the generating function (Eq. (7.10)).
0 =081, q)/01, (7.22a)
p = 9S(1, q)/dq. (7.22b)

Let A;0 denote the change of € on one circuit around the irreducible path

vi, and A;S denote the corresponding change of the generating function

on one circuit. From (7.22b)
AiS = + p-dq =2nl;.

From (7.22a)

d d
[ — ,_' — 2', PR
A0 31 AiS 7011,
or
L\,‘(), = 2.70,:, (723)

which is the desired result (here 05 = 1 if i = jand d; = 0if i # ).
The new Hamiltonian in action-angle coordinates is, by construction,

independent of @, and hence Hamilton’s equations reduce to
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dl/dr =0,
de/dt = 9H(1)/01 = o(1).

The solution of these equations is I(¢) = I(0) and
(1) = 0(0) + (D)t (7.24)

Thus we can interpret @(I) = OH(I)/01 as an angular velocity vector
specifying trajectories on the N-torus. As in our discussion in Chapter 6,
trajectories on a torus are N frequency quasiperiodic if there is no vector

of integers m = (m, ma, ..., my) such that

m-w=0, (7.25)

except when m is the trivial vector all of whose components are zero.
Assuming a typical smooth variation of A with I the condition m - @ = 0
with nonzero m is only satisfied for a countable set of 1. Thus, if one picks
a point randomly with uniform probability in phase space, the probability
is 1 that the point chosen will be on a torus for which the orbits are N
frequency quasiperiodic and fill up the torus. Thus, for integrable systems,
we can view the phase space as being completely occupied by N-tori
almost all of which are in turn filled by N frequency quasiperiodic orbits.
In contrast with the case of N frequency quasiperiodicity is the case of
periodic motion, where orbits on the N-torus close on themselves (Figure
6.5). In this case

® = mayg, (7.26)

where m is again a vector of integers and @y is a scalar. The orbit in this
case closes on itself after m; circuits in 6,, my circuits in 6, ....
(Alternatively to (7.26), the condition for a periodic orbit can also be
stated as requiring that (N — 1)-independent relations of the form (7.25)
hold.*) Again assuming typical smooth variation of A with I, we have that
for integrable systems the set of tori which satisfy (7.26) and hence have
periodic orbits, while having zero Lebesgue measure (i.e., zero phase
space volume), is dense in the phase space. Thus, arbitrarily near any
torus on which there is N frequency quasiperiodicity there are tori on
which the orbits are periodic.

We now give an example of the procedure used for the reduction of an
integrable system to action-angle variables. This procedure is based on the
Hamilton—Jacobi equation obtained by combining (7.10) and (7.11),

H(f)sf—'i D q) = H(®). (7.27)
aq

/

This equation may be regarded as a first-order partial differential equation

for the generating function S(I, q).
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Figure 7.5 Particle of energy £
in a potential well 7(g).

7 Chaos in Hamiltonian systems

Example: We consider a one-degree-of-freedom Hamiltonian,
H(p. ) = p*/@2m) + V(q),
where V(g) is of the form shown in Figure 7.5. From Eq. (7.21) we have
1 [# ,7
fi= —[ {2m[E — V(g)]}'/? dg. (7.28)
Tlg

In the case of a harmonic oscillator, ¥(g) = 1mQ%¢?, we have ¢, =
—q1 = [2E/(mQ?)]'/%, and the integral for / yields / = E/Q. Thus we

have
B =Qr
For this case w(/) = dH /dI = Q is independent of 7, and (7.24) becomes
0(t) = 6(0) + Qt.
From (7.27) we have for the harmonic oscillator
dS/0q = 2m(QI — %szqz)]’ £

which on integration and application of (7.22) gives

q = (21/mQ)"/? cos 6,

p=—2mIQ)'?sinb.

The trajectory in p, g phase space is an ellipse on which the orbit
circulates one time every period of oscillation 27/Q (Figure 7.6(a)).
(Since N =1 we have a ‘one-dimensional torus’, namely a closed curve.
For N > 1 we typically have N frequencies and quasiperiodic motion.)
The harmonic oscillator is exceptional in that w(7) is independent of 7. As

Vq)

9 92
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/7 i
(2miQ)?
q
( 21 12
'”Q.
(a)
1
p Ay N2 — T/
2mE)* = I/(49)
A o]
q
-0 \
(b)

an example of the more typical situation where w(/) depends on /
consider the case of a hard-wall potential: V(gq) =0 for |g| <6 and
V(g) = +oo for |g| > 6. In this case the trajectory in phase space is as
shown in Figure 7.6(b). The integral for /, Eq. (7.28), is just (277) ! times
the phase space area in the rectangle; / = 4(27) '(2mEd?)'/?. Thus
H() = (21)*/8md?> and w(I) = x*I/4md> which increases linearly

with 7.

7.2 Perturbation of integrable systems

7.2.1 The KAM theorem

We next address a very fundamental question concerning Hamiltonian
systems; namely, how prevalent is integrability? One extreme conjecture
is that integrability generally applies, and whatever difficulty we might
encounter in obtaining the solution to any given probem only arises
because we are not clever enough to determine the N independent
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Figure 7.6 Phase space paths
followed by (@) the harmonic
oscillator and (b) a particle
bouncing between hard walls
at g = +0.
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constants of the motion which must surely exist. Another conjecture,
which is essentially the opposite of this, given any integrable Hamiltonian

Hy(p, q), if we alter it slightly by the addition of a perturbation
H(p., q) = Hy(p. q) +eH, (p, q). (7.29)

then we should expect that for a typical form of the perturbation,
Hy(p. q). all the constants of the motion for the integrable system,
[Ty(p. q), except for the energy constant, £ = H(p, q), are immediately
destroyed as soon as ¢ # (. Presumably. if this second conjecture were to
hold, then, for small ¢, orbits would initially approximate the orbits of the
integrable system, staying close to the unperturbed N-tori that exist for
€ = 0 for some time. Eventually, however, the orbit, if followed for a long
enough time, could ergodically wander anywhere on the energy surface.
These two opposing views both have some support in experimental
observation. On the one hand, the solar system appears to have been fairly
stable. In particular, ever since its formation the Earth has been in a
position relative to the position of the Sun such that its climate has been
conducive to life. Thus, in spite of the perturbation caused by the
gravitational pull of other planets (particularly that of Jupiter), the Earth’s
orbit has behaved as we would have expected had we neglected all the
other planets. (In that case the system is integrable, and we obtain the
clliptical Kepler orbit of the Earth around the Sun.) On the other hand, in
support of the second conjecture, we have the amazing success of the
predictions of statistical mechanics. In statistical mechanics one considers
a Hamiltonian system with a large number of degrees of freedom
(N

the system is cqually likely to be located at any point on the energy

I), and then makes the fundamental ansatz that at any given time

surface (the motion is ergodic on the energy surface). This would not be
possible if there were additional constants of the motion constraining the
orbit of the system. The success of statistical mechanics in virtually every
case to which it may reasonably be applied can be interpreted as evidence
supporting the validity of its fundamental ansatz in a wide variety of
systems with N > 1.

Given the discussion above, it should not be too surprising to find out
that the irue situation lies somewhere between the two extremes that we
have discussed. The resolution of the basic question of how prevalent
integrability is has come only with the rigorous mathematical work of
Kolmogorov, Arnold and Moser (KAM) and with the subsequent extensive
computer studies of chaos and integrability in Hamilitonian systems. The
basic question considered by Kolmogorov. Arnold and Moser was what
happens when an integrable Hamiltonian is perturbed, Eq. (7.29). The
research was initiated by Kolmogorov (1954) who conjectured what would

happen with the addition of the perturbation. He also outlined an inge-
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nious method which he felt could be used to prove his conjecture. The
actual carrying out of this program, accomplished by Arnold and Moser
(see Arnold (1963) and Moser (1973)), was quite difficult. The result they
obtained is called the KAM theorem. We shall only briefly indicate some
of the sources of the difficulty, and then state the main result.

We express (7.29) in the action-angle variables (I, §) of the unper-

turbed Hamiltonian Hy,

0)

(93]

H(I, 6) = Ho(X) + e H\ (1, 0). (7.

We are interested in determining whether this perturbed Hamiltonian has
N-dimensional tori to which its orbits are restricted. If there are tori, there
is a new set of action-angle variables (I', ") such that

H(L, 0)= H'(I'),
where, in terms of the generating function S, we have using (7.10)

as’, 0) as’, 0)

I=—F1——,0'-= -, (7.31
a0 ar a2
The Hamilton—Jacobi equation for S is
as
H ——.(I)z 7'(I'). 7:32)
(00 , H'(I') (7.32)

One approach to solving (7.32) for S might be to look for a solution in the

form of a power series in &,
> =
S=Sy+&S+&8+---. (7.33)

For Sy we use Sg = I’ - @ which when substituted in (7.31) gives I = ) (A
0 = 0', corresponding to the original action-angle variables applicable for
& = 0. Substituting the series (7.33) for S in (7.32) gives,

Ho(l' + €98,/00 + £208,/00 + - )+ eH (I +-€0S,/90 + ---, 0)
=H'(1"). (7.34)

Expanding (7.34) for small ¢ and only retaining first-order terms, we have

OHy 08 2
Hy(1) + e—— -—+eH\|(I', ) = H'(T'). 7.35
1o(I') + & 3 90 Hy(I', 0) I (7.35)
We next express H (I, 8) and S,(I', 0) as Fourier series in the angle

vector 6,

H, = Z Hy (I exp(im - 6),

m

S| = X Sim(I) exp(im - 0),

m

265




266

7 Chaos in Hamiltonian systems

where m is an N-component vector of integers. Substituting these Fourier

serics in (7.35), we obtain

, x— Hyiwm(I) _
§ iy -exp(im - 0) (7.36)

—m- oyl
m

where @q(1) = dHy(I)/01 is the unperturbed N-dimensional frequency
vector for the torus corresponding to action I. One question is that of
whether the infinite sum (7.36) converges. This same question also arises
in taking (7.34) to higher order in ¢ to determine successively the other
terms, S5, Ss. etc., appearing in the serics (7.33).

I'his problem is precisely the ‘problem of small denominators’ en-
countered in Section 6.2 where we treated (requency locking of quasi-
periodic orbits for dissipative systems. In particular, clearly (7.36) does
not work for values of 1 for which m - @y(I) = 0 for some value of m.
These I define resonant tori of the unperturbed system. (These resonant
tori are typically destroyed by the perturbation for any small & > 0.) We
emphasize that the resonant tori are dense in the phase space of the
unperturbed Hamiltonian. On the other hand. there is still a large set of

‘very nonresonant’ tori. These are tori for which @ satisfies the condition
m- o > K(o)m/ ", (7.37)

for all intcger vectors m (except the zero vector). Here |m|=
my| + |mz| + -+ + |myl, and K(®) > 0 is a number independent of m.
The set of N-dimensional vectors @ which do not satisfy (7.37) has zero

Lebesgue measure in @-space, and thus the ‘very nonresonant” tori are, in

this sense, very common. For @ satisfying (7.37), the series (7.36), and
others of similar form giving S5, S5, .... converges. This follows if we

assume that A, is analytic in @ which implies that /), decreases
exponentially with m; i.e., |Hy | < (constant) exp(—«|m|) for some con-
stant ¢ > 0. (Refer to the discussion in Section 6.2.)

LEven given that all the terms S, S5, ... exist and can be found, we
would still be faced with the problem of whether there is convergence of
the successive approximations to S obtained by taking more and more
terms in the series (7.33). Actually, the scheme we have outlined (wherein

S is expanded in a straightforward series in &, Eq. (7.33)) is too crude, and
the proof of the KAM theorem relies on a more sophisticated method of
successive approximations which has much faster convergence properties.
We shall not pursue this discussion further. Suffice it to say that the KAM
theorem essentially states that under very general conditions for small ¢
‘most” (in the sense of the Lebesgue measure of the phasc space) of the
tori of the unperturbed integrable Hamiltonian survive. We say that a torus
of the unperturbed system with frequency vector @, ‘survives’ perturba-

tion if there exists a torus of the perturbed (¢ # 0) system which has a
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frequency vector @(e) = k(e)wy, where k(g) goes continuously to 1 as
¢ — 0, and such that the perturbed toroidal surface with frequency (¢)
goes continuously to the unperturbed torus as & — 0. Thus, writing
® = (W), wa, ..., ®y), the unperturbed and perturbed frequency vectors
@, and (¢) have the same frequency ratios of their components,
wo;/woy = wi(€)/wi(e) for j=2,3,..., N. According to the KAM
theorem, for small ¢, the perturbed system’s phase space volume (Lebes-
gue measure) not occupied by surviving tori is small and approaches zero
as ¢ approaches zero.

Note. however, that, since the resonant tori on which m - @y(I) = 0 are
dense, we expect that, arbitrarily near surviving tori of the perturbed
system, there are regions of phase space where the orbits are not on
surviving tori. We shall, in fact, see that these regions are occupied by
chaotic orbits as well as new tori and elliptic and hyperbolic periodic
orbits all created by the perturbation. In the language of Section 3.10, the
set in the phase space occupied by surviving perturbed tori is a fat fractal.
That is, it is the same kind of set on which values of the parameter r
yielding chaos for the logistic map (2.10) exist and on which values of the
parameter w in the circle map (6.11) yield two frequency quasiperiodic
orbits (for k& < 1). The Poincaré—Birkhoff theorem discussed in the next
subsection sheds light on the exceedingly complex and intricate situation
which arises in the vicinity of resonant tori when an integrable system is
perturbed.

7.2.2 The fate of resonant tori

We have seen that most tori survive small perturbation. The resonant tori,
however, do not. What happens to them? To simplify the discussion of this
question we consider the case of a Hamiltonian system described by a
two-dimensional area preserving map. We can view this map as arising
from a surface of section for a time-independent Hamiltonian with N = 2,
as illustrated for the integrable case in Figure 7.7. The tori of the
integrable system intersect the surface of section in a family of nested
closed curves. Without ioss of generality we can take these curves to be
concentric circles represented by polar coordinates (r, ¢). In this case we
obtain a map (7p+1, Putr1) = Mo(#n, @),

Ynglt = Ty

Gni1 = [P+ 27R(r,)] modulo 2. } (7:39)
Here R(r) is the ratio of the frequencies w)/w, where @ =
(w1, wy) = (OH,y/dI,, 0Hy/dI,) for the torus which intersects the sur-
face of section in a circle of radius », and we have taken the surface of
section to be 6, = (const.), where 6 = (6, 6,) are the angle variables
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Figure 7.7 Surface of section
for an integrable system.
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/

Surface of
section €, = (const.)

conjugate to the actions I = (/;, I3). The quantity ¢, is the value of &, at
the nth piercing of the surface of section by the orbit. On a resonant torus
the rotation number R(7) is rational:

R=w/w; = p/q; gw; — pwr =0,

where p and ¢ are integers which do not have a common factor. At the
radius » = F(p/§) corresponding to R(#) = p/q we have that application
of the map (7.38) ¢ times returns every point on the circle to its original

position,
M{(r, ¢) = [r, (¢ + 27 p) modulo 27| = (7, ).

Now we consider a perturbation of the integrable Hamiltonian Hj, Eq.
(7.30). This will perturb the map My to a new area preserving map M,
which differs slightly from My,

Y+l =+ fg(f‘m (pn)-
Puer = [@Pn + 27R(r,) + €h(ry, ¢,)] modulo 2. !

We have seen that, on the intersection » = #(p/q) of the resonant torus
with the surface of section, every point is a fixed point of Mg. We now
inquire, what happens to this circle when we add the terms proportional to
€ in (7.39)? Assume that R(r) is a smoothly increasing function of » in the
vicinity of » = # = (p/§). (Equation (7.38) is called a ‘twist map’ if R(r)
increases with ».) Then for the unperturbed map we can choose a circle at
¥ = ry > F(p/§) which is rotated by Mg in the direction of increasing ¢
(i.e., counterclockwise) and a circle at » = »_ < 7(p/q) which is rotated
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by M in the direction of decreasing ¢ (i.e., clockwise). The circle
r = #(p/§) is not rotated at all. See Figure 7.8(a). If & is sufficiently
small, then M still maps all the points initially on the circle » = r_ to
new positions whose ¢ coordinate is clockwise displaced from its initial
position (the radial coordinate, after application of the perturbed map, will
in general differ from »_). Similarly, for small enough & all points on r,

(a)

Fe()
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Figure 7.8 (a) Three invariant
circles of the unperturbed &
map. (b) The curve r = r.(¢).
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Figure 7.9 Points on the curve
(@) map under M? purely
radially to the curve r/(9).
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will be counterclockwise displaced. Given this situation, we have that for
any given fixed value of ¢, as r increases from r_ to ., the value of the
angle that the point (7, ¢») maps to increases from below ¢ to above ¢.
Hence, there is a value of » between r, and »_ for which the angle is not
changed. We conclude that, for the perturbed map, there is a closed curve,
¥ = re(@), lying between . = r = r_ and close to r = 7(p, ¢), on which
points are mapped by M{ purely in the radial direction. This is illustrated
in Figure 7.8(5). We now apply the map M{ to this curve obtaining a new
curve » = 7i(¢). The result is shown schematically in Figure 7.9. Since
M, is area preserving the areas enclosed by the curve 7.(¢) and by the
curve #:(@) are equal. Hence, these curves must intersect. Generically
these curves intersect at an even number of distinct points. (Here by use of
the word generic we mean to rule out cases where the two curves are
tangent or elsc (as in the integrable case) coincide. These nongeneric cases
can be destroyed by small changes in ¢ or in the form of the perturbing
functions g and /% in Eq. (7.39).) The intersections of 7 and 7 correspond
to fixed points of MY. Thus, the circle of fixed points » = #(p/q) for the
unperturbed map M| is replaced by a finite number of fixed points when
the map is perturbed.

What is the character of these fixed points of M?? Recall that for
r > F, points are rotated counterclockwise by MY. Also recall that M9
maps 7, to 7;. Thus, we have the picture shown in Figure 7.10, where the
arrows indicate the displacements experienced by points as a result of

applying the map M¢. We see that elliptic and hyperbolic fixed points of
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Hyperbolic

Elliptic Hyperbolic

.\"If alternate. Hence, perturbation of the resonant torus with rational
rotation number /g results in an equal number of elliptic and hyperbolic
fixed points of MY, This result is known as the Poincaré-Birkhoff theorem
(Birkhoff, 1927). Since fixed points of MY necessarily are on period ¢
orbits of M, we see that there are § (or a multiple of g) elliptic fixed
points of Mf and the same number of hyperbolic fixed points. Thus, for
example, the two elliptic fixed points of MY shown in Figure 7.10 might
be a single periodic orbit of M, of period two (and similarly for the two
hyperbolic fixed points in the figure). Thus, in this case, we have ¢ = 2.
Near each resonant torus of the unperturbed map we can expect a structure
of elliptic and hyperbolic orbits to appear as illustrated schematically in
Figures 7.11(a) and (b) where we only include the ¢ = 3 and the § =4
resonances.

Points near the elliptic fixed points rotate around them as shown by the
lmnear theory (cf. Section 7.1.3). Very near an elliptic fixed point the linear
approximation is quite good, and in such a small neighborhood the map
can again be put in the form of Eq. (7.39). Thus, if we examine the small
region around one of the elliptic points of a periodic orbit, such as the area
indicated by the dashed box in Figure 7.11(b), then what we will see is
qualitatively similar to what we see in Figure 7.11(b) itself. Thus, sur-
rounding an elliptic point there are encircling KAM curves between which
are destroyed resonant KAM curves that have been replaced by elliptic
and hyperbolic periodic orbits. Furthermore, this repeats ad infinitum,
since any elliptic point has surrounding elliptic points of destroyed
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Figure 7.10 lllustration of the -
Poincaré-Birkhoff theorem. 2
Recall that, in the case of an

elliptic fixed point of M{ the

eigenvalues of the linearized

map are of the form exp(i6)

and nearby points remain near

the elliptic fixed point, lying

on an approximate ellipse

around it, and rotating around

the fixed point on average ¢

radians per iterate of MZ.
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Figure 7.11 Perturbation of
G =3 and g = 4 resonant tori.

Unperturbed

(a)

Perturbed

(b)

resonances which themselves have elliptic points of destroyed resonances,
and so on.

What influence do the hyperbolic orbits created from the destroyed
resonant tori have on the dynamics? If we follow the stable and unstable

manifolds emanating from the hyperbolic points, they typically result in
heteroclinic intersections, as shown in Figure 7.12. As we have seen in
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Chapter 4 (see Figure 4.10(d)), one such heteroclinic intersection between
the stable and unstable manifolds of two hyperbolic points implies an
infinite number of intersections between them.? Furthermore (as we have
discussed for the homoclinic case, Figure 4.11), this also implies the
presence of horseshoe type dynamics and hence chaos. Thus, not only do
we have a dense set of destroyed resonance regions containing elliptic and
hyperbolic orbits, but now we find that these regions of destroyed
resonances also have embedded within them chaotic orbits. Furthermore,
this repeats on all scales as we successively magnify regions around

elliptic points. A very fascinating and intricate picture indeed!

7.3 Chaos and KAM tori in systems describable
by two-dimensional Hamiltonian maps

Numerical examples clearly show the general phenomenology described
for small perturbations of integrable systems in the previous section. In
addition, numerical examples give information concerning what occurs

when the perturbations are not small. Such information in turn points the

Figure 7.12 Stable and
unstable manifolds of
hyperbolic periodic orbits.

a
|
d
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way for theories applicable in the far-from-integrable regime. The clearest
and easiest numerical experiments are those that result in a two-

dimensional map (a two-dimensional Poincar¢ surface of section).

7.3.1 The standard map
As an example, we consider the standard map, Eq. (7.15), which results
from periodic impulsive kicking of the rotor in Figure 7.3. Setting the

kicking strength to zero, K = 0, the standard map becomes

0,1 = (6, + py) modulo 27, (7.40a)
Pnsl = Pn- (7.40b)

This represents an integrable case. The interscctions of the tori in the
(0. p) surface of section are just the lines of constant p (according to
(7.40b) p is a constant of the motion). On each such line the orbit is given
by 8, = (6y + npy) modulo 27, and, if py/27 is an irrational number, a
single orbit densely fills the line p = py. If py/27 is a rational number,
then orbits on the line return to themselves after a finite number of iterates
(the unperturbed orbit is periodic). and we have a resonant torus.

Increasing K slightly from zero introduces a small nonintegrable
perturbation to the integrable case (7.40). Figure 7.13 shows plots of
p = p modulo 2 versus € modulo 27 resulting from iterating a number
of different initial conditions for a long time and for various values of K.
If the initial condition is on an invariant torus it traces out the closed curve
corresponding to the torus. If the initial condition yields a chaotic orbit,
then it will wander throughout an area densely filling that area. We see
that, for the relatively small perturbation, K = 0.5, Figure 7.13(a), there
are many KAM tori running roughly horizontally from 6 = 0 to 6 = 27.
These tori are those that originate from the nonresonant tori of the
unperturbed system (p = pg, po/27 irrational) and have survived the
perturbation. Also, clearly seen in Figure 7.13(a) are tori, created by the
perturbations nested around elliptic periodic orbits originating from
resonant tori. In particular, the period one elliptic orbits, (6. p) = (7, 0)
and (0, p) = (7, 27), and the period two clliptic orbit, (0, 1) = (7, 7).
are clearly visible. We call the structure surrounding a period ¢ elliptic
periodic orbit a period q island chain.

An important property of two-dimensional smooth area preserving
maps is that the area bounded by two invariant KAM curves is itself
invariant. This is illustrated in Figure 7.14 where we show two invariant
curves (tori) bounding a shaded annular shaped region. Since the two
curves are invariant and areas are preserved, the shaded region must map

into itself. Thus, while there may be chaotic orbits sandwiched between
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0 -

(¢) (d)

P

KAM curves (as, for example, in the island structures surrounding elliptic
orbits), these chaotic orbits arc necessarily restricted to lie between the
bounding KAM curves. (As we shall discuss later, this picutre is funda-

mentally different for systems of higher dimensionality.)
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Figure 7.13 Plots of
i alues of
K: = 1.0; (0
K=25(d)K 1.0. (This

figure courtesy of Y. Du.)

Figure 7.14 Two KAM curves

bounding an annular region.
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As K is increased. more of the deformed survivors originating from
the unperturbed tori are destroyed. At K = 1 (Figure 7.13(b)) we see that
there are none left: that is, there are no tori running as continuous curves
from 8 =0 to # =27 In their place we sce chaotic regions with
interspersed island chains. As K is increased further (Figures 7.13(c) and
(d)) many of the KAM surfaces associated with the island chains
disappear, and the chaotic region enlarges. At K = 4.0, for example, we
see (Figure 7.13(d)) that the only discernable islands are those associated
with the period one orbits at (0, p) = (=, 0), (1, 27). Increasing K,
Chirikov (1979) numerically found values of K (e.g.. K =~ 83) for which
there are no discernable tori, and the entire square 0 < (6, p) = 27 is, to
within the available numerical resolution, ergodically covered densely by

a single orbit. Thus, if any island chains are present, they are very small.

7.3.2 The destruction of KAM surfaces and island chains

Considering the standard map, the absence of a period ¢ island chain at
some value K = K', implies that the period ¢ elliptic periodic orbit has
become unstable as K increases from K = 0 to K = K'. How docs this
occur? The answer is that as K increases, the cigenvalues of the ¢th iterate
of the linearized map DM? evaluated on the period § orbit eventually
change from complex and of magnitude 1 (i.c., exp(£if))) to real and
negative with one eigenvalue with magnitude larger than 1 and one with
magnitude less than 1 (i.e., 4 and 1/2 with [4| > 1). That is, the periodic
orbit of period ¢ changes from elliptic to hyperbolic with reflection as K
passes through some value K = K;. When a periodic orbit becomes
hyperbolic with reflection its eigenvalues in the elliptic range, exp(=£if),
both approach —1 by having 6 approach 7z as K approaches K;. The
migration of the eigenvalues in the complex plane as K passes through K;
is illustrated in Figure 7.15. This leads to a period doubling bifurcation
and is typically followed by an infinite period doubling cascade (Bountis,
1981: Greene et al., 1981). In such a cascade. the period § elliptic orbit
destabilizes (becomes hyperbolic) simultaneously with the appearance of
a period 24 elliptic orbit, which then period doubles to produce a period
224 elliptic orbit, and so on. Eventually, at some finite amount past K, all
orbits of period 2”¢ have been stably created and then rendered unstable
(hyperbolic) as they period double. This is a Hamiltonian version of the
period doubling cascade phenomena we have discussed for one-dimen-
sional maps in Chapter 2. As in that situation, there are universal numbers
that describe the scaling properties of such cascades (cf. Chapter 8).
although these numbers differ in the Hamiltonian case from those given in
Chapter 2. Note that, in this period doubling cascade, whenever X is in the
5

range where there is an elliptic period 2” g periodic orbit, there is a nested
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set of invariant tori surrounding that orbit (i.e., there is a period 2" ¢ island
chain).

When K = 0 the standard map is integrable. As K is increased, chaotic
regions occupy increasingly large areas, and the original KAM tori of the
integrable system are successively destroyed. Say we identify a particular

nonresonant KAM torus by its rotation number

: ‘ I.'i‘
R= lim — P
)

m—o0 2xm “—
(p, ts the amount by which 6 increascs on cach iterate; see Eq. (7.15a)).
As we increase K, the torus deforms from the straight horizontal line,
p=2xR, that it occupicd for K = (. Past some critical value
K > K i(R) the torus no longer exists. How does one numerically
calculate K.;i(R)? To answer this question we note the result from number
theory that the irrational number R can be represented as an infinite

continued fraction,

where the @; are integers. As a shorthand we write R = [a), a3, a3, ...]. If

one cuts off the continued fraction at a,,.

Figure 7.15 Path followed by
Lthe eigenvalues as an elliptic
orbit changes to hyperbolic.
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R, [aj.azy ..., 4y, 0,0,0,...],

then one obtains a rational approximation to R which converges to R as

n — o0,

R Iim R,.
[f we examine the K > 0 island chain with rotation number R,. we find
that the clliptic Poincaré¢ -Birkhoff periodic orbits (Figures 7.10-7.12) for
the island chain approach the nonresonant torus of irrational rotation
number R as n increases. This leads one to investigate the stability of
these periodic orbits. As illustrated in Figure 7.15, the complex eigen-
values exp(if) of the Jacobian matrix corresponding to such a periodic
orbit change to real negative eigenvalues A and 1/4 at some critical K-
value (which depends on the particular periodic orbit). It is found
numerically that the critical K-values of these Poincaré- Birkhoff periodic
orbits of rational rotation number R, rapidly approach the value K. (R)
as n increases. Since efficient numerical procedures exist for finding such
orbits, this provides an efficient way of accurately determining K ( R).
Schmidt and Bialek (1982) have used this procedure to investigate the
pattern accompanying torus destruction of arbitrary irrational tori. Greene
(1979) conjectured that, since the golden mean R, = (/5 — 1)/2 is the
‘most irrational” number in the sense that it is most slowly approached by

cutoffs of its continued fraction expansion,

Re=[L 1L, 1, 1..]=14 =

] 4 _l__ -

the torus with R = R, will be the last surviving torus as K is increased
(i.e., Keie(R) 1s largest for R = R,). Using the periodic orbit technique
described above, Greene finds that K (R;) = 0.97 ... Figure 7.16 shows
the standard map for K = 0.97 (Greene, 1979) with the R = R, tori and
some chaotic orbits plotted (there are two such tori in 0 = p < 27). An
important result concerning the R = R, torus is that the phase space
structure in its vicinity exhibits intricate scaling properties at and near
K = Kqii(Ry). and this phenomenon has been investigated by the renor-
malization group technique (Kadanoff, 1981; Escande, 1982: MacKay,
1983).

In constructing the figure plotted in Figure 7.13 we have made use of
the fact that the standard map is invariant to translation in momentum by

an integer multiple of 27, p — p -+ 2xk. This periodicity of the map
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]
9

————)

allowed us to use p modulo 27 for the vertical coordinate in Figure 7.13
rather than p. Thus, if we were to ask for the structure of the solutions for
all p, our answer would be given by pasting together an infinite string of
pictures obtained by successively translating the basic unit (as in Figure
7.13) by 27 For example, for the case of K = 4.0 (Figure 7.13(¢)). we sce
that a single chaotic component connects regions of the line p = 0 with
regions of the line p = 2. By the periodicity in p, this implies that this
chaotic region actually runs from p = —oo to p = +o0. Thus, in terms of
the rotor model (Figure 8.3), if we start an initial condition in this chaotic
component, it can wander with time to arbitrarily large rotor energies,
p°/2 (here we have taken the rotor’s moment of intertia to be 1). On the
other hand, if we were to start an initial condition for K = 4.0 inside the
period one island surrounding one of the period one fixed points, it would
remain there forever; its energy would thus be bounded for all time. Note
that if we plot the actual momentum, +o0o > p > —oo, versus 6, then we
are treating the phase space of the two-dimensional standard map as a
cylinder. On the other hand, our plot where we utilized p modulc 27
reduced the phase space to the surface of a torus. While the toroidal
surface representation is convenient for displaying the structure of inter-
mixed chaotic and KAM regions, we emphasize that p and p + 27k
(k = an integer) are not physically equivalent, since they generally repre-
sent different kinetic energies of the rotor.

The casc shown in Figure 7.16 corresponds to the largest value of K
for which there are KAM curves running completely around the (6, p)
cylinder in the #-dircction. The presence of a KAM curve running around

the (0. p) cylinder implies an infinite number of such curves by translation

Figure 7.16 Many iterates for
K = K, resulling from four
different initial conditions, two
of which are on the last
surviving KAM surfaces
encircling the (6, p) cylinder
(Greene, 1979).
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of p by multiples of 277, Furthermore, any orbit lying between two such
curves cannot cross them (Figure 7.14) and so is restricted to lic between
them forever. Thus, the energy of the rotor cannot increase without bound.
When K increases past the critical value K, =~ 0.97 the last invariant tori
encircling the cylinder are destroyed, and a chaotic arca connecting
p=—oc and p = +oo exists. This means that for K > K. the rotor
energy can increase without bound if the initial condition lies in the

chaotic component connecting p = —oo and p = +0ox.

7.3.3 Diffusion in momentum

Let us now consider the case of large K such that there are no discernible
KAM surfaces present, and the entire region of a plot of p modulo 27
versus ¢ appears 1o be densely covered by a single chaotic orbit. Referring
to Eq. (7.15b), we see that the change in momentum (not taken modulo

27t), Apy = pur1 — pu = Ksinb,41, is typically large (i.e., of the order

of K). If we assume K > 2, then p will also typically be large compared
to 27z, Thus, by Eq. (7.15a), we expect 6 (which is taken modulo 27) to
vary very wildly in [0, 27]. We, therefore, treat 6, as effectively random,
uniformly distributed, and uncorrelated for different times (i.c., different
n). With these assumptions, the motion in p becomes a random walk with
step size Ap, = Ksin0,.. Thus, over momentum scales larger than K,
the momentum evolves according to a diffusion process with diffusion

coefficient,
R S
el = ——(sin" 0,41 ), (7.41)

where the angle brackets denote a time average, and by virtue of the
randomness assumption for the €, we have (sin’0,, .| 5. Inserting
the latter in (7.41) gives the so-called guasilinear approximation to the
diffusion coefficient,

D= Do = K*/4 (7.42)

[f we imagine that we spread a cloud of initial conditions uniformly in
# and p in the cell —z = p =< z, then the momentum distribution function
f(p, n) at time n, coarse grained over intervals in p greater than 27z, is
: 1 P’ \J 74
f(p, n)=~ A—A———-,--;cxp( - (7.43)
(2anD)'/> \ 2nD/
That is, the distribution is a spreading Gaussian. This result follows from
the fact that the process is diffusive. Taking the second moment of the
distribution function, [p’fdp, we see that the average rotor energy

increases linearly with time.®
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,1" 2) >~ Dn. (7.44)

The quasilinear result (7.42) is valid for very large K. For moderately
large, but not very large, values of K, neglected correlation effects can
significantly alter the diffusion coefficient from the quasilinear value
These effects have been analytically calculated by Rechester and White
{1980) (scc also Rechester er al. (1981), Karney er al. (1981) and Carey
et al. (1981)). Figure 7.17 shows a plot of the diffusion coefficient D
normalized to Dy as a function of K from the paper of Rechester and
White. The solid curve is their theory, and the dots are obtained by
numerically calculating the spreading of a cloud of points and obtaining D
from Eq. (7.44). Note the decaying oscillations about the quasilinear value

as K increases.

7.3.4 Other examples

So far in this section we have dealt exclusively with the standard map. We
now discuss some other examples, also reducible to two-dimensional
maps, where similar phenomena are observed.

We first consider a time-independent two-degree-of-freedom system
investigated by Schmidt and Chen (1994). This system, depicted in Figure
7.18, consists of two masses, a large mass M connected to a linearly

behaving spring of spring constant &g and a small mass m which clastically

D/Dgy,
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Figure 7.17 D/ Dy versus K
for the standard map
(Rechester and White, 1980).
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Figure 7.18 The system
considered by Schmidt and
Chen. /2 represents the
distance between the left-
hand wall and the right-hand
surface of mass M when the
spring is in its equilibrium
position. (Courtesy of Q. Chen
and G. Schmidt.)
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bounces between a fixed wall on the left and the oscillating large mass on
the right. The motion in space is purely one-dimensional. This represents
a time-independent Hamiltonian system which Schmidt and Chen call the
‘autonomous Fermi system’. Since the Hamiltonian is time-independent,
the total encrgy of the system, consisting of the sum of the kinetic energy
of the two masses and the potential energy in the spring, is conserved.
(This is unlike the rotor system (Figure 7.3) which has external kicking
that enables the energy to increase without bound for K > K..) Schmidt
and Chen numerically calculate a Poincar¢ surface of section and plot the
state of the system at the instants of time just after the masses m and M
collide. Plots corresponding to thrce cases are shown in Figure 7.19. In
this figure v is the velocity of the small mass and ¢ is the phase of the
large mass in the sinusoidal oscillation that it experiences between
bounces. The maximum value of v is | (for the normalization used) and is
attained if all the system energy is in the small mass. The three cascs
shown correspond to successively larger values of wgT. where
wo = (ks/M)'/? is the natural oscillation frequency of the large mass and
T is the mean time between bounces. We note that at low woT (Figure
7.19(a)) we see many KAM surfaces as well as island chains and chaos
for lower v(v = 0.25). At higher wy7 (Figure 7.19(b)), the chaotic region
enlarges substantially, while at the highest value plotted (Figure 7.19(c)) a
single orbit appears to cover the available area of the surface of section
ergodically. This latter situation corresponds to ergodic wandering of the
orbit over the energy surface in the full four-dimensional phase space.
Accordingly. for the case of Figure 7.19(¢) Schmidt and Chen numerically
confirm that there is a time average energy equipartition between the
encrgies of the two masses and the energy of the spring, each having on
average very close to one third of the total energy of the system.

The equipartition of time averaged kinetic energy is a familiar result
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in the statistical mechanics of many-degree-of-freedom systems
(p})/2my = (p3)/2my = --- = (p%)/2my). Here equipartition of kin-
etic energy for a system of only two degrees of freedom holds because the
system is essentially ergodic on the energy surface. (Indeed it is the most
important fundamental assumption of statistical mechanics that typical
many-degree-of-freedom systems are ergodic on their energy surface. The
Jjustification of this assumption, however, is far from obvious, and remains
an open problem.)

We could go on to cite many other examples of mechanical systems
displaying the type of behavior seen in the two examples of the kicked
rotor (Figure 7.3) and the autonomous Fermi system (Figure 7.19). It is,
perhaps, somewhat more surprising that these same phenomena apply to
situations in which one is not dealing with straightforward problems of
mechanics. The point is that these problems are also described by
Hamilton’s equations. Three examples of this type are the following.

(1) Nonturbulent mixing in fluids.
(2) The trajectories of magnetic field lines in plasmas.
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Figure 7.19 Poincaré sections
of v versus ¢. (@), (b) and (¢)
correspond to three
successively larger values of
woT. (Courtesy of Q. Chen
and G. Schmidt.)
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Figure 7.19 (cont.)
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(3) The ray equations for the propagation of short wavelength waves in
inhomogeneous media.

In the case of mixing in fluids we restrict ourselves to the situation
of a two-dimensional incompressible flow: v(x, 1) = Us(x, y, )Xo +
Uy(x, y, t)yo with dv,/0x + dv, /8y =V -v = 0. The incompressibility
condition, V- v = 0, means that we can express v in terms of a stream
function v,

v =12y X Vip(x, y, 1)

or
Ur = —0y/0y, v, = Oy/Ox.
Now consider the motion of an impurity particle convected with the fluid.
The location of this particle is given by dx/dt = v(x, ), or, using the
stream function,
dx/dt = -8y /0y, (7.45a)
dy/dt = 0y /0x. (7.45b)
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Comparing Egs. (7.45) with Egs. (7.1), we see that (7.45) are in the form

of a one-degree-of-freedom (N = 1) time-dependent Hamiltonian system,
if we identify the stream function 1 with the Hamiltonian H, x with the

momentum p, and y with the “position’ g:

wix, y. 1) <= H(p, q. 1),

Thus, in our fluid problem the canonically conjugate variables are x and y.

As an example, we consider the ‘blinking vortex’ flow of Aref (1984).
In this flow there arc two vortices of equal strength, one located at
(x, v) = (a, 0) and the other located at (x, y) = (—a, 0). The vortices
(which may be thought of as thin rotating stirring rods) are taken to *blink’
on and off with time with period 27. That is, for 2kT =<t =
2k + 1)T(k=0,1, 2,3, ...), the vortex at (a, 0) is on, while the vortex
at (—a. 0) is turned off, and, for (2k + 1)T = ¢ = 2(k + 1)T, the vortex at

(a, 0) is off while the vortex at (—a, 0) is on. The flow induced by a single

Figure 7.19 (cont.)
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vortex of strength I" can be expressed in (p, €) polar coordinates centered

al the vortex as
vg =I'/2ap and v, = 0.

Thus, the blinking vortex has the effect of alternatively rotating points in
concentric circles first about one vortex center and then about the other
vortex center, each time by an angle A6 =TT/2xp?. Sampling the
position of a particle at times ¢ = 2k7 defines a two-dimensional arca
preserving map which depends on the strength parameter u = ['T/27a’.
Figure 7.20 from Doherty and Ottino (1988) shows results from iterating
several different initial conditions for successively larger values of the

strength parameter w«. For very small ¢ (Figure 7.20(a), ¢ = 0.1) the result
is very close to the completely integrable case where both vortices act
simultaneously and steadily in time. As u is increased we see that the area
occupied by chaotic motion increases.

The practical effect of this type of result for fluid mixing can be seen
by considering a small dollop of dye in such a flow. For example, say the
dye is initially placed in the location indicated by the shaded circle in
Figure 7.20(a). In the near integrable casc Figure 7.20(«a), as time goes on,
this dye would always necessarily be located between the two KAM curves
that initially bound it. Due to the different rotation rates on the different
KAM surfaces, the dye will mix throughout the annular region bounded
by these KAM curves, but (in the absence of molecular diffusion) it can
never mix with the fluid outside this annular region. In contrast, for the
case u = 0.4 (Figure 7.20(e)), we see that there is a large single connected
chaotic region, and an initial dollop of dye in the same location as before
would thus mix uniformly throughout this much larger region. Thus, we
see that, for the purposes of achieving the most uniform mixing in fluids,
chaos is a desirable attribute of the flow that one should strive to
maximize.

Several representative references on chaotic mixing in fluids are Aref
and Balachandar (1986), Chaiken et al. (1986), Dombre er al. (1986),
Feingold er al. (1988), Ott and Antonsen (1989), Rom-Kedar et al. (1990),
and the comprehensive book on the subject by Ottino (1989).

We now discuss the second of the three applications mentioned above,
namely, the trajectory of magnetic field lines in plasmas. Let B(x) denote
the magnetic field vector. The field line trajectory equation gives a
parametric function x(s) for the curve on which a magnetic field line lies,
where s is a parameter which we can think of as a (distorted) measure of

distance along the field line. The equation for x(s) is

dx(s)/ds = B(x). (7.46)
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location Figure 7.20 Blinking vortex
of dye orbits for (@) i« = 0.01,

(b) = 0.15, (¢) u = 0.25,
(d)pu=03and(e) u =04

(Doherty and Ottino, 1988).

= = (d)
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(Alternatively, we can multiply the right-hand side of (7.46) by any
positive scalar function of x.) Since VB =0, Eq. (7.46) represents a
conservative flow, if we make an analogy between s and time. Thus, the
magnetic field lines in physical space are mathematically analogous to the
trajectory of a dynamical system in its phase space. In Problem 3 you are
asked to establish for a simple example that (7.46) can be put in
Hamiltonian form.

The Hamiltonian nature of ‘magnetic field line flow’ means that under
many circumstances we can expect that some magnetic field line trajec-
tories fill up toroidal surfaces, while other field lines wander chaotically
over a volume which may be bounded by tori. In other words, the situation
can be precisely as depicted in Figure 7.12.

These considerations are of great importance in plasma physics and
controlled nuclear fusion research. In the latter, the fundamental problem
is to confine a hot plasma (gas of electrons and ions) for a long enough
time that sufficient energy-releasing nuclear fusion reactions take place. If
the magnetic field is strong, then, to a first approximation, the motion of
the charged particles constituting the plasma is constrained to follow the
magnetic field lines. (This approximation is better for the lighter mass
electrons than for the ions.) In this view, the problem of confining the
plasma becomes that of creating a magnetic field line configuration such
that the magnetic field lines are confined. That is, the magnetic field lines
do not connect the plasma interior to the walls of the device. The most
simple example of such a configuration is provided by the tokamak device,
originally invented in the Soviet Union. (This device is currently the one
on which most of the attention of the nuclear fusion community is
focused.) Figure 7.21(a) illustrates the basic idea of the tokamak. An
external current system (in the figure the wire with current /,) creates a
magnetic field By running the long way (called the ‘toroidal direction’)
around a toroid of plasma. At the same time, another current is induced to
flow in the plasma in the direction running the long way around the torus.
(This toroidal plasma current is typically created by transformer action
wherein the plasma loop serves as the secondary coil of a transformer.)
The toroidal plasma current then creates a magnetic field component B,
which circles the short way around the torus (the ‘poloidal direction’).
Assuming that the configuration is perfectly symmetric with respect to
rotations around the axis of the system, the superposition of the toroidal
and poloidal magnetic fields leads to field lines that typically circle on a
toroidal surface, simultaneously in both the toroidal and poloidal direc-
tions, filling the surface ergodically. Thus, the field lines are restricted to
lie on a nested set of tori and never intersect bounding walls of the device.
This is precisely analogous to the case of an integrable Hamiltonian

system.
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wall
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This is the situation if there is perfect toroidal symmetry. Unfortu-
nately, symmetry can be destroyed by errors in the external field coils, by
necessary asymmetries in the walls, and, most importantly, by toroidal
dependences of the current flowing the plasma. (The latter can arise due
to collective motions of the plasma as a result of a variety of instabilities

that have been very extensively investigated.) Such symmetry-breaking

Figure 7.21 (a) Schematic
illustration of a tokamak.
(b) Toroidal coordinates.
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magnetic field perturbations play a role analogous to nonintegrable
perturbations of an integrable Hamiltonian system. Thus, they can destroy
some of the nested set of toroidal magnetic surfaces that exists in the
symmetric case. If the perturbation is too strong, chaotic field lines can
wander from the interior of the plasma to the wall. This leads to rapid heat
and particle loss of the plasma. (Refer to Figure 7.13 and think of & as the
strength of the asymmetric field perturbation.)

Some representative papers which discuss chaotic magnetic field line
trajectories in plasmas and their physical effects are Rosenbluth er al.
(1966), Sinclair et al. (1970), Finn (1975), Rechester and Rosenbluth
(1978), Cary and Littlejohn (1983), Hanson and Cary (1984) and Lau and
Finn (1991).

As our final example, we consider the ray equations describing the
propagation of short wavelength waves in a time-independent spatially
inhomogeneous medium. In the absence of inhomogeneity, we assume that
the partial differential equations governing the evolution of small ampli-
tude perturbations of the dependent quantities admit plane wave solutions
in which the perturbations vary as exp(ik - x — iw¢), where @ and k are
the frequency and wavenumber of the wave. The quantities @ and k
are constrained by the governing equations (c.g., Maxwell’s equations if

we are dealing with electomagnetic waves) to satisfy a dispersion relation
D(k, w) = 0.

Now assume that the medium is inhomogenecous with variations occurring
on a scale size L which is much longer than the typical wavelength of the
wave, |K|L > 1. For propagation distances small compared to L, waves
behave approximately as if the medium were homogeneous. For propaga-
tion distances of the order of L or longer, the spatial part of the
homogeneous medium expression for the phase, namely k - x, is distorted.
We, therefore. assume that the perturbations have a rapid (compared to L)

spatial variation of the form
exp[iS(x) — iw1], (7.47)

where the function S(x) is called the eikonal and replaces the homo-

geneous medium phase term k - x. The /ocal wavenumber K is given by
k = VS(x). (7.48)

We wish to find an equation for the propagation of a wave along some path
(called the ‘ray path’). Along this path we seek parametric equations for x
and k. That is, we seek (x(s), k(s)), where s measures the distance along
the ray. In terms of these ray path functions, we can determine the function

S(x) using Eq. (7.48),
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S(x) = S(xg) 4 K(s) - dx(s).

(In addition, by a systematic expansion in |k|L, one can also determine the
variation of the wave amplitudes along the rays as well as higher order
corrections. See, for example, Courant and Hilbert (1966) and references
therein.) Using the local wavenumber k, we can write down a local

dispersion relation,

Dk, w.x) =0, (7.49)

which is identical with the homogeneous medium dispersion relation if we
use the local parameters of the inhomogenecous medium at the point x.
Since the medium is assumed time-independent, the frequency w is
constant. Differentiating (7.49) with respect to X, we obtain

oD oD

; 1 T]\"—,—
X 4lk

= 0. (7.50)
The x-component of this equation is
abD  dD Ok,
dx Ok, Ox

JdD 1’//(, | ()/) U/\'_— —0
Ok, Ox ' Ok. Ox

However, from (7.48) we have V X k = 0, so that 0k, /0x = 9k, /0y and
k. /Ox = Ok/0z. Thus, the above equation becomes

ap aD Ok,

Ox Jk  Jx
Since similar equations apply for the y- and z-components, (7.50)

becomes

i

(OD/OK) - Vk = —0D/0x. (7.51)

If we regard D/OKk as being like a velocity, the (0D/0K) - V is like the

time derivative following a point with the ‘“velocity” D /Jk. Thus,

dk aD "

— = ——, (7.52a)
ds ox

dx D

—_—= 7.52b)
ds Ok (

which are the ray equations, the second of which comes from our
interpretation of @D/dk as being like a velocity with the parametric
variable s playing the role of the fictitious time variable. More formally,
Egs. (7.52) represent the solution of the first-order partial differential
equation, Eq. (7.51), by the method of characteristics (Courant and

Hilbert, 1966). In the special case where the dispersion relation is written

in the form, D(k, w, x) = @(k, X) — w, we have that 9D/0k = dw/dk
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which is just the group velocity of a wavepacket. Thus, letting t denote

time, we have dx/dr = dw/dk, and hence s = 7 in this case. This viclds
dk/dr = —da /ox. (7.53a)
dx/dr = dw /K, (7.53b)

which can be interpreted as giving the temporal evolution of the position x
and wavenumber k of a wavepacket. Both (7.52) and (7.53) are Hamil-
tonian with D and @ respectively playing the role of the Hamiltonian, and
(k, x) being the canonically conjugate momentum (k) and position (x)
variables.

We now discuss a particular example where chaotic solutions of the
ray equations play a key role (Bonoli and Ott, 1982; Wersinger et al.,
1978). One of the central problems in creating a controlled thermonuclear
reactor lies in raising the temperature of the confined plasma sufficiently
to permit fusion reactions to take place. One way of doing this is by
launching waves from outside the plasma that then propagate to the
plasma interior, where they dissipate their energy to heat (similar, in
principle, to a kitchen microwave oven). Clearly, conditions must be such
that the wave is able to reach the plasma interior. In this casc, in the
terminology of the field, the wave is said to be ‘accessible.” Of the various
types of waves that can be used for plasma heating, the so-called ‘lower
hybrid® wave is one of the most attractive from a technological point of
view. The accessibility problem for this wave was originally considered by
Stix (1965) for the case in which there are two symmetry directions. For
example, in a straight circular cylinder, k. and m = kgyr are constants of
the ray equations due to the translational symmetry along the axis of the
cylinder (the z-axis) and to the rotational symmetry around the cylinder
(in @). The accessibility situation for this case is illustrated in Figure 7.22

for a cylinder with an applied magnetic field B = Byzy + By, and a

wave launched from vacuum with m = 0. Let » k-c/w (where ¢ is the
speed of light) and n, = k,¢/w. We assume that the plasma density N
increases with decreasing radius » from N, =0 at the plasma edge

(r = a) to its maximum value in the center of the cylinder (» = 0). Figure
7.22 shows plots of »n? (obtained from the dispersion relation) as a
function of Ny. For ny < n,, ny = n,, and ny > n,, Figures 7.22(a). (b)
and (c) apply. respectively, where n, is a certain critical value (Stix,
1965). Between Ny =0 and Ny = Ng, there is a narrow cutoff region
through which a slow wave (i.c.. lower hybrid wave), launched from the
vacuum region, typically has little trouble in tunneling. Figure 7.22(a)
shows that for ny < n, an additional, effectively much wider, cutoff
region between Ny = Ny, and Ny = Nyy exists. This cutoff region

presents a barrier for propagation to the plasma center and prevents
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Figure 7.22 Plots of »% versus
density Ny for (a) n; < n,,

n n?
; 1 . (b) n n, and (c) ny > n,.
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accessibility. Figure 7.22(¢) shows that for n, > n, this barrier is absent,

and the lower hybrid (slow) wave becomes accessible.

Now we consider heating a circular cross section toroidally symmetric
plasma (a tokamak). We use toroidal coordinates wherein », @ are circular
polar coordinates centered in their circular cross section of the tokamak
plasma such that the distance of a point from the major axis of the torus is
R = Ry + rcos@, where Ry is the distance from the major axis of the
torus to the center of the plasma cross section (Figura 7.21(b)). We refer
to @ as the poloidal angle, and we denote by ¢ the toroidal angle (i.e., the
angle running the long way around the plasma torus). Let & = a/R,,
where » = @ denotes the plasma boundary. As & — 0 with a fixed, the
straight cylinder limit is approached. However, for finite ¢ the plasma
equilibrium depends on 6. Thus, it is no longer expected that m = rky is a
constant of the motion, although the toroidal symmetry still guarantees
that a constant of the motion analogous to 4. in the cylinder still exists;
namely, n = Rk, is a constant. The questions that now arise are what

happens to the constant ., and how is the accessibility condition for lower
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Figure 7.23 Surface of section
(0 = 0) plots for several
different initial conditions.

n, =20.(a) 1.3 < n = 1.4,
a/Ry=0.10; (b) 1.25=n
a/Ry = 0.15; (¢) same as

(b) but with a different initial
condition (Bonoli and

Ott. 1981).
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hybrid waves affected? For finite € there may still be some other constant
m = m(r, 0, k,, m), which takes the place of m. For small &, regions
where 1 exist (KAM tori) occupy most of the phase space. As ¢ increases
the regions occupied by chaotic trajectories increase, until almost all
regions where KAM tori exist are gone. A ray in the region with no tori
may eventually approach the plasma interior and be absorbed even if n; at
launch does not satisfy the straight cylinder accessibility condition. Thus
we need to know at what value of ¢ most of the tori are gone.

Figure 7.23 shows numerical results (Bonoli and Ott, 1982) testing for
the existence of tori by the surface of section method with € = 0 (mod 27)
as the surface of section. Figure 7.23(a) shows that for & = 0.10, most tori
are not destroyed, and initially inaccessible rays (i.e., n| < n, at launch)
do not reach the plasma interior. Figures 7.23(b) and (c¢) show a case for
e = 0.15, illustrating the coexistence of chaotic and integrable orbits
including (Figure 7.23(¢)) higher-order island structures. For & = 0.25 all
appreciable KAM surfaces are numerically found to be completely
destroyed, and even waves launched with #n; substantially below n, are
absorbed in the plasma interior after a few piercings of the surface of

section.
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7.4 Higher-dimensional systems

7.4 Higher-dimensional systems

There is a very basic topological distinction to be made between the case

of time-independent Hamiltonians with N = 2 degrees of freedom. on the

one hand, and N =3 degrees of freedom, on the other. (For a time
periodic Hamiltonian the same distinction applies for the cases N = | and
NV = 2.) In particular, since the energy is a constant of the motion for

a time-independent system, the motion is restricted to the 2N — 1)-
dimensional energy surface H(p, q) = £. Thus, we can regard the
dynamics as taking place in an cffectively (2N — 1)-dimensional space. In
general, in order for a closed surface to divide a (2N — 1)-dimensional
space into two distinct parts, one inside the closed surface and another
outside, the closed surface must have a dimension one less than the
dimension of the space; i.e., its dimension is 2N — 2. Thus, KAM surfaces
which are N-dimensional tori only satisfy this condition for N = 2. In
particular, for N = 2, the energy surface has a dimension 3, and a two-
dimensional toroidal surface in a three dimension space has an inside and
an outside. As an example of a toroidal ‘surface’ which does not divide
the space in which it lies, consider a circle (which can be regarded as a
‘one-dimensional torus’) in a three-dimensional Cartesian space. For
NV = 2 the situation for KAM tori in the energy surface is similar (e.g., for
N=3wehave 2N —1=5and2N —2=4 >3 = N).

Now consider the situation where an integrable system is perturbed. In
this case tori begin to break up and are replaced by chaotic orbits. For the
case N = 2 these chaotic regions are necessarily sandwiched between
surviving KAM tori (Figure 7.15). In particular, if such an orbit is outside
(inside) a particular torus it remains outside (inside) that torus forever.
Because of this sandwiching effect, the chaotic orbit of a slightly
perturbed integrable two-degree-of-freedom system must lie close to the
orbit on a torus of the unperturbed integrable system for all time. Hence,

two-degree-of-freedom integrable systems are relatively stable to pertur-

bations. The situation for N = 3 is different because chaotic orbits are not
enclosed by tori, and hence their motions are not restricted as in the case
N = 2. In fact, it is natural to assume that all the chaos created by
destroyed tori can form a single connected ergodic chaotic region which is
dense in the phase space. Under this assumption a chaotic orbit can, in
principle, come arbitrarily close to any point in phase space, if we wait
long enough. This phenomenon was first demonstrated for a particular
example by Arnold (1964) and is known as “Arnold diffusion.” For further
discussion of Arnold diffusion and other aspects of chaos in Hamiltonian
systems with more than two degrees of freedom we refer the reader to the
exposition of these topics in the book by Lichtenberg and Lieberman

(1983).
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7.5 Strongly chaotic systems

We have seen in Sections 7.2 and 7.3 that when elliptic periodic orbits are
present there is typically an exceedingly intricate mixture of chaotic
regions and KAM tori: surrounding cach elliptic orbit are KAM tori.
between which are chaotic regions and other elliptic orbits, which are
themselves similarly surrounded, and so on ad infinitum. It would seem
that the situation would be much simpler if there were no elliptic periodic
orbits (i.e., all were hyperbolic). In such a case one would expect that the
whole phase space would be chaotic and no KAM tori would be present
at all.

As a model of such a situation, one can consider two-dimensional area
preserving maps which are hyperbolic. One example is the cat map, Eq.
(4.29). discussed in Chapter 4. In that case we saw that the map took the
picture of the cat and stretched it out (chaos) and reassembled it in the
square (Figure 4.13). (Recall that the square is an unwrapping of a two-
dimensional toroidal surface.) More iterations mix the striations of the
unfortunate cat more and more finely within the square. Given any small
fixed region .72 within the square, as we iterate more and more times, the
fraction of the area of the region .2 occupied by black striations that were
originally part of the face of the cat approaches the fraction of area of the
entire square that was originally occupied by the cat’s face (the black
region in Figure 4.13). We say that the cat map is mixing on the unit
squarc with essentially the same meaning that we use when we describe
the mixing of cream as a cup of coffee is stirred. More formally, an area
preserving map M of a compact region S is mixing on S if given any two
subsets o and ¢’ of § where ¢ and ¢ have positive Lebesgue measure

(t1 (o) > 0, uy (o) = 0), then

(o)

——=1i

uLlo' NM”(0)]
1 ——
uL(S) M—X 1241 (o)

As another example of an area preserving mixing two-dimensional hyper-
bolic map, we mention the generalized baker’s map (Figure 3.4) in the area
preserving case, 4, = a, 4, = f5. (It is easy to check that the Jacobian
determinant, Eq. (4.28), is one in this case.)

Another group of strongly chaotic systems can be constructed from
certain classes of ‘billiard” problems. A billiard is a two-dimensional
planar domain in which a point particle moves with constant velocity
along straight linc orbits between specular bounces ((angle of inci-
dence) = (angle of reflection)) from the boundary of the domain, Figure
7.24(a). Figures 7.24(bh)—(g) show several shapes of billiards. The circle
(b) and the rectangle (c¢) are completely integrable. The two constants of
the motion for the circle arc the particle energy and the angular momen-

tum about the center of the circle. The two angular frequencies associated
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with the action-angle variables are the inverses of the time between
bounces and the time to make a complete rotation around the center of the
circle. For the rectangle the two constants are the vertical and horizontal
kinetic energies, and the two frequencies are the inverses of twice the time
between successive bounces off the vertical walls and twice the time

between successive bounces off the horizontal walls. The billiard shapes

shown in Figures 7.24(d)-(g) are strongly chaotic (Bunimovich, 1979;

Figure 7.24 Billiard systems.
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Sinai, 1970) in the same sense as the cat map and the area preserving
gencralized baker’s map: almost every initial condition yields a chaotic
orbit which eventually comes arbitrarily close to every point in the phase
space. (In Figures 7.24(d)—(g) the curved line segments are arcs of
circles.) In particular, for these chaotic billiard problems the orbit gener-
ates a density which is uniform in the angle of the velocity vector and is
also uniform in the accessible area of the billiard. Note that, unlike the cat
map and the area preserving generalized baker’s map, the billiard systems
shown in Figures 7.24(d), (/') and (g) are not hyperbolic. This is because,
in violation of the definition of hyperbolicity in Section 4.3, they possess
periodic orbits with zero Lyapunov exponent. (For (¢) and (/') there are
simple zero exponent periodic orbits bouncing vertically between the
straight parallel walls (and, for (). not intersecting the interior circle). For
(g) there is a zero exponent periodic orbit tracing out a triangle as it
bounces between points on the straight line component segments of the
boundary.)

For the cases (d) and (e) in Figure 7.24 the origin of the chaos is
intuitively fairly clear. The curved boundary segments have curvature
vectors pointing out of the billiard area. As shown in Figure 7.24(d) this
has a “dispersion’ effect on two parallel orbits, and one expects this to lead
to rapid separation of nearby orbits after a few bounces. Indeed, Sinai
(1970) showed that such systems were chaotic. Further work by Bunimo-
vich (1979) showed that a certain class of nondispersing billiards, of which
(f) and (g) of Figure 7.24 are members, arc also chaotic. The so-called
stadium billiard ( /) is of particular interest in that it has been the subject
of a number of numerical studies, particularly in the context of quantum
chaos (Chapter 11). Note that the stadium is chaotic for any value of
d > 0, where d is the length of the two parallel line segments joining the
two semicircular segments at the left and right end of the stadium. Thus,
we have the somewhat surprising result that the stadium is chaotic for any
d > 0, but, as soon as we make d = 0, we have the circular billiard, Figure
7.24(b), which is integrable.

The author is unaware of any example of a smooth two-dimensional

potential ¥(x, y) in Cartesian spatial variables q = (x, y) such that the

Hamiltonian H = (p?2/2m) + 4/;{_/‘21;1) + V(x, y) yields chaotic orbits
that are ergodic on the energy surface. For a time it was thought that the
potential V(x, y) = x?y? would yield chaotic orbits for almost all initial
conditions, but very careful numerical analysis (Dahlqvist and Russberg,
1990) has found KAM surfaces surrounding a small region about an
elliptic periodic orbit of high period (period 11 in the surface of section).
An example of a continuous time two-dimensional dynamical system
which is completely chaotic, in the sense we have been using, is the case

of a point mass moving along geodesics on a closed two-dimensional
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surface of negative Gaussian curvature (the two principal curvature
veetors at each point on the surface point to opposite sides of the surface,
Figure 7.25) (Hadamard, 1898). Two geodesics on such a surfacc that are
initially close and parallel separate exponentially as they are followed
forward in time. Note, however, that a closed surface of negative curvature
cannot be embedded in a three-dimensional Cartesian space (four dimen-
sions are required), so this example is somewhat nonphysical, although it

has proven to be very fruitful for mathematical study.

7.6 The succession of increasingly random
systems

[n the previous section we have discussed ‘strongly chaotic’ systems by
which we meant chaotic systems that were mixing throughout the phase
space. One often encounters in the literature various terms used to describe
the degree of randomness of a Hamiltonian system. In particular, one can

make the following list in order of ‘increasing randomness:’

ergodic systems,
mixing systems,
K-systems,
C-systems,

Bernoulli systems.

We now discuss and contrast these terms, giving some examples of each.
Ergodicity is defined in Section 2.3.3 for maps. For an crgodic
invariant measure of a dynamical system, phase space averages are the
same as time averages. That is, for the case of a continuous time system.
ergodicity implies
T

F(X()dr = (f(X)), (

S
o

lim

where f(X) is any smooth function of the phase space variable X, x(7)

Figure 7.25 Geodesics on a
surface of negative curvature
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represents a trajectory in phase space, (/(X)) represents the average of
S(X) over the phase spacc weighted by the invariant measure under
consideration, and (7.55) holds for almost every initial condition with
respect to the invariant measure. As an example, consider the standard
map, Eqgs. (7.15). In the case K =0, we have (Eq. (7.40)) 0,,, =
(6 + pp) modulo 27, p,.; = p,. Thus the lines p = const. are invariant.
Any region p, > p > p; is also invariant. Orbits are not crgodic in
Pa = p = pp. Orbits are, however, ergodic on the lines p = const.,
provided that p/2xz is irrational. Ergodicity is the weakest form of
randomness and does not necessarily imply chaos. This is clear since the
example, 0, = (0, + p) modulo 27, p/2x irrational, is ergodic on the
line p = const. but is nonchaotic (its Lyapunov exponent is zero). In the
case of K > 0 there are connected regions of positive Lebesgue measure
in the (6, p)-space over which orbits wander chaotically (see Figure 7.13).
In this case, for each such region, ergodicity applies (where the relevant
measure of a set A is just the fraction of the area (Lebesgue measure) of
the ergodic chaotic region in 4).

Mixing is defined by (7.54). An example of a nonmixing system is the

)

map, 6,1 = (0, + p) modulo 2, p/27 = irrational, which is just a rigid

rotation of the circle by the angle increment p. An example, which is
chaotic but not mixing, occurs when we have a p/g island chain (§ > 1)
for the standard map. In this case, there are typically chaotic sets
consisting of component areas (within the p/g island chain), each of
which map successively one to another, returning to themselves after §
iterates. To see that these chaotic sets are not mixing according to (7.54),
let o' be the arca of one of the ¢ components, and ¢ be the area of
another. Then, as m (time) increases, the quantity [u (o' M M™(0)]
/ui(0”) is equal to one once every ¢ iterates and is equal to zero for the
other iterates. Hence, the limit in (7.54) does not exist.”

A system is said to be a K-system if every partition (see Section 4.5)
has positive metric entropy. Basically, in terms of our past terminology,
this is the same as saying that the system is chaotic (possesses a positive
Lyapunov exponent for typical initial conditions).

A C-system 1s one which is chaotic and is hyperbolic at every point in
the phase space (not just on the invariant set). Examples of C-systems are
the cat map, a compact surface of negative geodesic curvature, and the
billiard of Figure 7.24(e). An example, which is a K-system, but not a C-
system, is the stadium billiard, Figure 7.24( /).

A Bernoulli system is a system which can be represented as a
symbolic dynamics consisting of a full shift on a finite number of
symbols (see Section 4.1). An example, of such a system, for the case of
an area preserving map, is the generalized baker’s map with 4, = « and

)

Ay = P.




