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Effective diffusion in laminar convective flows

M. N. Rosenbluth, H. L. Berk, I. Doxas, and W. Horton
Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712

(Received 16 March 1987; accepted 2 June 1987)

The effective diffusion coefficient D * of a passive component, such as test particles, dye,
temperature, magnetic flux, etc., is derived for motion in periodic two-dimensional
incompressible convective flow with characteristic velocity v and size d in the presence of an
intrinsic local diffusivity D. Asymptotic solutions for effective diffusivity D *(P) in the large P
limit, with P~ vd /D, is shown to be of the form D * = ¢DP V2 with ¢ being a coefficient that is
determined analytically. The constant ¢ depends on the geometry of the convective cell and on
an average of the flow speed along the separatrix. The asymptotic method of evaluation applies
to both free boundary and rough boundary flow patterns and it is shown that the method can
be extended to more complicated patterns such as the flows generated by rotating cylinders, as

in the problem considered by Nadim, Cox, and Brenner [J. Fluid Mech. 164, 185 (1986)].
The diffusivity D * is readily calculated for small P, but the evaluation for arbitrary P requires
numerical methods. Monte Carlo particle simulation codes are used to evaluate D * at arbitrary
P, and thereby describe the transition for D * between the large and small P limits.

I. INTRODUCTION

In this work we calculate the effective diffusion of a pas-
sive component (such as test particles, dye, temperature,
etc.) in a laminar flow pattern when local diffusion is pres-
ent, with a diffusivity D attributable to collisions or fluctu-
ations. This problem is of interest in both fluids and plasmas
where two-dimensional laminar flow patterns are encoun-
tered as the stationary states of driven systems. Classical
examples are the two-dimensional rolls of the Rayleigh—
Bénard problem and the Taylor vortices in Couette flow'
and heat flow in a convecting fluid.>® Analogous problems
arise in magnetized plasmas in such examples as the satu-
rated state of the drift wave instability driven by the ion
temperature gradient,” various weakly unstable magnetohy-
drodynamic instabilities,® and the generation of magnetic
field from the passive convection of magnetic flux.>'® The
effective diffusion of dye immersed in a laminar convecting
fluid has also been of some recent experimental interest,''~"?
although turbulence and fluctuations, which will not be
treated here, appear to be playing an important role in the
experimental phenomena.

In these problems each passively convected component
has its own characteristic diffusivity D in the rest frame of
the material. It is well known that the actual transport of the
passive component driven by a large-scale gradient gives rise
to an enhanced effective diffusivity D * as a result of the in-
creased transport from the convective motion. For a convec-
tive cell with a flow velocity v and characteristic size d, the
enhancement is a function of the Peclet number P = vd /D.
For small P the enhancement varies as D * = D(1 + aP?)
with constant a.>* For large Peclet number, boundary layers
form along the separatrix of the convective cells where sharp
gradients of the passive component occur. In this regime,
matched asymptotic methods are used to calculate the flux
across the separatrix. The analysis shows that enhanced dif-
fusion varies as D * = cDP '/? with constant c.
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Surprisingly, the detailed calculation of the enhanced
diffusion for typical simple periodic flow patterns has not
been addressed until recently. The general result of a P'/?
enhancement has been noted by Moffat,” while the analysis
of Sagues and Horsthemke' for the enhancement only ap-
plies to the small Peclet number regime. Nadim et al.'® treat
the diffusion of a more complicated flow attributable to a
periodic set of rotating cylinders. This flow is topologically
similar to the flow treated in the present work and we show
in the Appendix how our analysis can be generalized to de-
scribe the problem solved numerically in Ref. 15. During the
course of this work we have found that Schraiman'® and
Perkins and Zweibel'® have also calculated D * in the limit of
large P by generalizing methods described in Refs. 5 and 6.
These methods require numerical solution of an integral
equation, which are often subject to numerical inaccuracy.

In this work we calculate in detail the effective diffusi-
vity D * for the two-dimensional incompressible flow veloc-
ity given by u=2ZXVy(x,p), where the streamfunction
¥(x,y) is given in the first part of the paper by

¥ = Y, sin(wx/d)sin(#By/d).

The calculation for small P is a straightforward second-or-
der perturbation calculation.”>'* A new technique, particu-
larly well suited for periodic flows, is developed for calculat-
ing D *for large P from which a complete analytic solution is
obtained. Our method differs from the matched asymptotic
method previously employed®”'>'* and does not require nu-
merical solution of an integral equation.

Weshow that D * = cDP '/2, with the dependence of c on
the geometry of the convective cell given. We also generalize
our calculation to more general periodic convection geome-
tries. Specifically, we show that the method can be applied to
the flow past a rough rigid wall and for even more complicat-
ed flows like those treated by Nadim et al.'® The result
D* = ¢DP''? remains the dominant form of the enhance-
ment as noted in Ref. 15.

The solution for arbitrary P still remains difficult to ob-
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tain analytically. To study the complete range of P we have
developed a Monte Carlo code that used two different meth-
ods to measure the transport produced by the diffusion D in
the given convective flow. In the steady-state method, the
flux of particles out of a unit cell is calculated in the steady
state by introducing boundary sources determined by and
justified from the formal method developed here in deriving
the steady-state flux. In the initial value method, the running
diffusion coefficient of a freely evolving initial distribution is
measured along with the particle (Lagrangian) correlation
time.

The structure of this paper is as follows. In Sec. II we
develop our formalism for the special choices of the stream-
functions and solve for the effective diffusivity in the small
and large Peclet number limits. In Sec. III we extend the
method to treat general streamfunctions including flows
along rough walls. In Sec. IV we present the method and
results of the Monte Carlo calculation. In Sec. V we summa-
rize the results of this work. In the Appendix we generalize
our method of calculation to solve analytically the rotating
cylinder problem described in Ref. 15.

Il. BOUNDARY LAYER CALCULATION FOR FLUX
ACROSS CELL BOUNDARIES

In this section we calculate the effective diffusion in a
simple laminar periodic flow pattern. Such a situation might
arise, for example, if we were to study the spreading of dye in
a Bénard convection pattern. We are concerned with the
case of simple laminar two-dimensional incompressible
flow. The governing equation for the density of the dye is

gn + wVn = DV?n, (»
at
where D is the molecular diffusion coefficient and u the given

fluid velocity which for a single mode is of the form

u= (itd /mYEX VY, (2)
with the streamline function
Y = sin w(x/d)sin 78(y/d). (3)

Thus d gives the size of a roll, B its aspect ratio, and # the
maximum flow velocity in the y direction. Figure 1 shows a
segment of the flow pattern. The boundary of a roll is given
by ¥ = 0, the center by ¢ = 1.

T O
@

——
FIG. 1. Circulation pattern for rolls with a periodicity 2d in the x direction
and 2d /B in the y direction.
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We want to calculate the effective diffusion coefficient
for spreading of a dye in the limit that the overall scale length
of the density gradient is much larger than d and the times of
interest are much longer than the characteristic roll times we
discuss below. Thus if we look over distances large compared
to a roll size, but small compared to the overall spread of the
dye, the density near a point (x;,y;) is given by

a
n=ny(x;.p;) + (x _"'Ci)“n2 + O —.Vi)‘?io’ +n,(xp),
Ix dy

4

where dn,/dx and dny/dy are the components of the global
density gradient at (x,,y;). Here, n, is a periodic fine struc-
ture to the density on the scale of the rolls. The effective
diffusion we wish to calculate will lead to slow changes in
time of n,, as is characteristic of a diffusive process. Since this
is a linear problem for #, the solution will be a superposition
of identical linear forms (to within a scaling factor) propor-
tional to dn,/dx and Jn,/dy. Thus we lose no generality by
specifying the global gradient to be in the x direction and
choosing  (x;,5;) =0. Subsequently, we denote
Iny/dx = ng.

The microstructure introduced by the flow is character-
ized by two characteristic times: 7, =d /#f the time for
circulation around the roll, and 7, = d /D the time for mo-
lecular diffusion of a particle through a roll. The ratio 7, /7y
is known as the Peclet number P. Since molecular diffusion is
generally a very slow process, the physical situation of inter-
est is that of P> 1 with which we are primarily concerned.
We may note in passing that in the opposite limit P<1 the
effective diffusion coefficient D * simply equals the molecu-
lar diffusion coefficient D, with small corrections that have
been calculated by several authors.

Before passing to a detailed mathematical description of
the problem for P> 1, we elucidate the governing physics in
terms of a random walk. Consider the dye particles within a
given roll, and how they will move during a time 7. Those
confined in the interior of a roll will simply circulate around
it. However, those close to the edge in a boundary layer may
diffuse across a roll boundary, after which they are effective-
ly convected a distance d in a random direction depending
on which boundary is crossed. Thus, the effective diffusion
coefficient for the random walk is

D*=fd?r;},
where fis the fraction of particles in the boundary layer, d is
the step size, and 7 a roll circulation time. To estimate /' we
note that it is specified by the number of particles close
enough to the roll boundary to diffuse to the neighboring roll
in a circulation time. Thus, f = §/d with the boundary layer
thickness specified by 8> = Dry,. This leads to an estimate
for the effective diffusion coefficient

D*~ (Dudp)'"?, (5)
which will be verified from our mathematical discussion.

To pose the mathematical problem, we observe that we
seek a steady-state solution of the form

n(x,y) =nox + n,(xy),
wheren, (x,y) isa periodic function with periods 24 in x and
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2d /B in y. Now, using Egs. (2) and (3) we have
ﬁ-u(_x,y) = i~u(x,y) = Xu(x, —¥y),
yu(xy) =yu( —xyp), yulxy) = —yulx,—y).

Then, if we consider the mirror inversions of Eq. (1) about
the x = 0 and the y = 0 planes, the following exact relations,
compatible with our desired solution, are admitted:

n an on —0n
I (x.) =2 (—xp), N (xy) = o

Now, sufficiently inside the cell boundaries, Eq. (1) admits
the asymptotic solution for large Peclet number,

n(xy)=n(d/2,d/28), O<x<d, O<y<d/B,

with n(x,p) changing by 7#{d from cell to cell in the x direc-
tion. Now, using

— %Xu( —x,y),

(-x9~y)'

on (x.3) _gn (—xp),

ox dx
we have
_ d d 72 on
o) o) 2
o n2y " Z’y ~d/zx¢9x(’y)
d /2
n
=2 dx — (x,p).
o x ax (x)
It then follows that

d 2 on
O; = . - d - 2,
n(0) n(2 ) J: * Ix (x5

( d d ) d _,
=n — — 7
2 26 2
Similarly, we find

d d _
dy)y=n[ZL L)+ L7
nldy) = n(2 2ﬁ)+ 2 &

(independent of y).

The condition

an an

3y( xy) = ay(x,—y)
demands

an

— (0,y) =0

e (0y)

Further, one finds dn(d,y)/dy = 0 if one imposes the y-peri-
odicity condition together with mirror symmetry about the
y = 0 plane.

We also note that these conditions are correct indepen-
dent of Peclet number if it can be shown that there is one
x == const plane on which # is a constant. Such a plane exists
in a steady-state problem where #n (x,p) is specified to be zero
on one x boundary.

Thus we have justified seeking a solution within a single
celld>x>0,d /B >yp>0. The boundary conditions are

ii=\nyd, atx=d, (6a)

n= —1inyd, at x=0, (6b)
7] d

_.__—_0, at y:o,——, (60)
B

where /i = n — n,. From such a steady-state solution the flux
across the roll and hence the effective diffusion coefficient
D * may be calculated. Thus our equation is
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Veusn = DV*h (7
in the domain d, d /B> x,p >0 subject to boundary condi-
tions (6), and u specified by Eq. (2).

For the sake of completeness and comparison with later
numerical work, we first provide a derivation for the simple
case of small Peclet number by expanding Eq. (7) in powers
of 1/D. We then find n, = ngx,

d>Ban}, sin w(x/d)cos w(By/d)
7(1+B8%D

from which we can immediately compute the volume-aver-
aged convective flux u, #, and find for the effective diffusion
coeflicient at small Peclet number

D* =D+ p%*i*d*/4r*(1 + B*)D. ¢))]

To show that the volume average of nu, is the exact flux, we
note that at fixed x,

J dyD +

is independent of x. Averagmg over x then gives

ny =

ki

d /B d
dy iu, =(D* — D)n}, -E

(D* —D)n} =—57J‘dxdyﬁux.

Returning to the case of large Peclet number, we are
interested in the limit of slow diffusion where the convection
along streamlines is very rapid, and we need only consider
diffusion across streamlines. To that end it is useful to use the
streamline function 3 and an orthogonal anglelike coordi-
nate @ as the variables in which to solve the problem. While it
is possible to write down 8 explicitly in terms of x and y, this
will turn out not to be necessary for our purposes. Making
the standard coordinate transformation of the Laplacian,
Eq. (7) becomes
9 |ujp _ad r _p 6 VY| OR

6 \Vy| 7 36 o |VO|
Here we have used Eq. (2) and have omitted the diffusion
along streamlines. We may thus write

S _ .9 |vY G ©)

a6 Y V8| dy
where D'=#wD /id <1 in our large Peclet number limit.
Thus, solutions to Eq. (9) will exponentiate rapidly in ¢ and
we may expect 7 to be confined to a small boundary layer
near ¢ = 0. Similarly, we may neglect the weak y variation
of the geometric factors |Vi|/|V8@ |, and use their values at
1 = 0 to define a new angle variable

fo|Veldl’
$Ivylalr

where the indicated streamline integrals are to be taken
along the boundary of the roll. In passing completely around
the roll @ * changes by unity. In these variables our equation
becomes
O _ p. 9%
a6 * Y
with

"= ! =1q
D"=D 35 \Vy|di= ad§§|v¢|dl.

* —

(10)
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We note that Eq. (10) implies a boundary layer thickness
S~ (D")''? as estimated earlier. Using Eq. (3), we may
now map out the roll boundaries as expressed in 6 *. First we
note that the complete circuit integral

1
Yy|dl' = 4(B + —).
$ivvl 5
Further, the boundary x = 0,d /B>y > 0mapinto therange
282+ 1)]7'>6*>0,
where 6 * is given by
0* = (1 —cos mBy/d)/4(B* + 1), (12)
and similar expressions can easily be derived for the boun-
daries. We may now define our problem, reexpressing the
boundary conditions (6) in the new coordinates as being the

solution of Eq. (10) subject to periodicity in 8 * with period 1
and satisfying, at ¥y =0,

(11)

A= —igd, for 1/[2(B*+1)]>6*>0,  (13a)
an 1 1

——=0, for —->0*>_—>—, 13b
g or 2> > 26+ D) (13b)
i =1ligd, for 4+ 1/[2(B*+ 1)]>60%*>1,  (13c)
I 1 1

—=0, for 1>80*>— 4+ ————. 13d
ER S S T L TR

This is still a difficult problem because of the mixed bound-
ary conditions. We note, however, that because of the small-
ness of D ”, the regular solutions must die away rapidly for
¥> 0 so that effectively we can take the range of ¢ from 0 to
. Similarly, as long as we preserve the periodicity of the
solution we may let 8 * run from — oo t0 o0, SO we are really
dealing with a half-space problem. We may convert it to a
problem in the complete & *-¢ plane, amenable to Fourier
transform solution, by the artifice of introducing a source
S(8*)8(y) at the boundary ¢ =0 and seeking solutions
with 7(¥) = 7( — ¥). This artificial source can then be re-
lated to the particle flux as will be seen below. Our even
solution will thus have dn/dy change signs at ¢ = 0. Note
that this actually corresponds to dn/dx being continuous
when passing to the next cell.
Thus we repose Eq. (10) in the full 8 *-¢ plane as

dn d%h

—=D" S@*)s(y). 14

30+ Ewe +S(6*)5(¢) (14)
Here .S must have the following properties

S(E*+m/2) =(—1)"S(6%), (15)

where m is any integer. This will guarantee the proper peri-
odicity, and imply

a@*+m/2)=(—1)"a(0*)
as desired. Moreover, S = 0 when

1>6*>1/[2(8*+ D] (16)
This will satisfy Eq. (13b) since any regular solution to Eq.
(14) must be even in ¢, and dn/dy is continuous if S = 0.
Now S must be determined to be compatible with the speci-

fied values of n given in Eq. (13a). From Eq. (14) we must
have
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prdi|  __SEY
M ly-o 2
Hence, S(8 *)/2 is basically the desired flux.
We proceed to Fourier transform Eq. (14) in :
on,
a0 *
with solution

(17)

= — D"k, +5(6%),

]
ﬁk =J. e—D"kZ(Bt...at')S(B*:)do*/. (18)

Using Eq. (15), we may convert this solution to one ex-
pressed in the finite range [2(82 + 1)] 7 '>0*>0,

o
;lk =f e—D”k’(O‘—G")S(o*:)dG*:

(v

[287+ D]
L D"k2(Q% _ g% _p-
+J- e D k%6 9‘)(_e D" k?*/2
0

+e—D"k2_e—3D'kz/2+ .. ')S(B*')d@*'.
Finally we invert the transform to find the density # at
¥ =0intherange [2(B2+1)]"'>6*>0,
(0*)= —inyd
__ U (" s*)de
W7D\ JaF_g¥

) (282 + 117*
+ Y (- l)mf
0

m=1

S(@*)do* )

Vm/2 + (6*—6%)
(19)

We have thus converted our complex boundary value prob-
lem to an integral equation over a finite interval. This equa-
tion is exact in thelarge P limit. This could be solved numeri-
cally or, by Fourier transform, converted to a symmetric
matrix equation from which a variational expression for the
flux could be obtained. However, since physically we expect
that the first term in the above integral equation correspond-
ing to local contributions will dominate except for very small
B, and further, since the second term is slowly varying in 6,
we choose to find an approximate solution by using an ex-
pansion in @ for the kernel of the second term. Note that for
large 3, corresponding to many experiments, this should, in
particular, be an excellent approximation. Our results will
tend to verify the approximation since the local contribu-
tions indeed dominate. We thus use the expansion

$(-pn !

m=1 Jm/2 + (6% —6*)
=23 (= D"lm+2(6*—6*)]7""

=\/§2[( - l)m(m)"l/Z_ o* _0tl)m—3/2+.“]

= —2[(1—V2)e)

— (= 1ADEQO*—6%) -],

where £(1) and £(3) are the Riemann zeta functions. Hence,
we approximate
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1
S(—1)"
Vm/2 + (6% — %)

= —0.86+ 1.08(8* — 9%),
Notethatmax|6* — 6 *'| = [2(8? + 1) ]~ 'sothatexceptfor
small B, the kernel does not vary rapidly. We will see later that
even for f—0 quite accurate results are obtained from the
truncation. With this truncation we must solve Eq. (19) in
the form
—vmD"nyd

_ (°Ss6*)do*

o Jo*—-6%

2B+ D]
—(f S(6*)[(0.86 + 1.089*")
0

— 1.080 *]d6 "). (20)

This equation is easily solved by Laplace transform if we ex-
tend the domain of this equation to 0 < @ * < oo with only the
solutionintheregion0 < 8 * < [2(1 + B?)] ! being physical.
Introducing the Laplace transform variable p and using the
Faltung theorem,

730 - L R
b P

(282 + D]~
+f S(8*')(0.86 + 1.086 *’)d@*')
0

287+ )"
_ 108 J' S(6*)do*,
(V]

2

P
or inverting the transform

S(H*)___i_[g*—l/Z( (TrDll—-'d
T

[2¢8*+ 1]~*
+ f S(6*')(0.86 + 1.089 *)d6 *')
0

[2(82+ 1)
—6*”22.16f S(6’*)d€’*].
o

By substituting the form
S(6*) = —JmD "hgd(af* 2 — be*'/?) (21)
into the integrals, we may match coefficients and obtain
a= (77_ _(1.22-0.204) (0.25 — 0.07/1)) - ‘,

B+ 12 B*+1)*?
A=[B*+1)°?+0.16 ', (22)
b=097(8%+ 1)Aa.

It can be seen that the corrections obtained to the simple
approximation of keeping the first term in (20) are finite,
but numerically small even for S = 0. We may now con-
struct the flux F(y), across the x = Q boundary, which is the
physical quantity of interest. Using Egs. (3), (11), and (17)
we have

Fi —D(V —= v
o) = (V¢) £ ( ¢)2D”
=s;n7TByS( *)__.L
d 8(1+p8%
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Then expressing the answer in terms of y by using Eq. (12),

our- L ___1___ g, By
B BP+ D) 2d

we find that the flux crossing the surface x = 0 is

— T '.l)_ﬁzd_ﬁ.cos ﬂ—ﬂya(ﬂ)

( — 0.484(B) sin? By)?z{,,

’

F(y) =

(23)

wherea and A have been defined in Egs. (22). The flux is thus
a maximum at y = O where the flows in the x direction enter
the corner and falls to zero at the corner where the x flows
diverge. Finally we may average the flux over the period
y = 0-d /B to obtain the effective diffusion coefficient

d /B
Do ﬁ_f%(y_) = V2DadB a(1 — 0.161). (24)

We have, of course, defined D * such that the y-averaged
global flux F = — D *#,. We may note that the aspect ratio
dependence enters primarily through the factor VB since
a(1 —0.164) varies only from 0.45 at S =0 to 0.32 at

= . Aside from this aspect ratio dependence, the diffu-
sion coefficient is exactly of the form given by our earlier
physical argument leading to Eq. (5).

We may check the accuracy of our expansion of the ker-
nel by looking at the limit 8 = 0 where it is least justified. In
this limit we know 7 at all points on the boundary since the
boundary consists only of the boundaries at x = 0, d, and
= —(—1)"a/2, where m/2 —}>60*>m/2. Hence,
we may use Eq. (18) directly to find by inverting the Fourier
transform

+ 45 f S(e*'>de*'
- 2 o 2 'ﬂ_D ”n ' - 0*[
X[ —sign if 20*mod(2) <1,
+sign if 260* mod(2) > 1.

This may now be solved exactly by Laplace transform to
yield, for >80 * >0,

JaD”’ & _
— 3 (—ym—2% 5
T m=0

ym/2 + 0*
(25)

In order to compare the total flux with our previous
estimate we need to calculate

fonar - 2 a3 (4]

= — J7D " 7yd X0.696.

Our approximation, on the other hand, yielded from Egq.
21n

f S(0%)d6* = — J7D" "ﬁ{,d(\/ia _ ﬁ%)

= — 7D "nyd x0.64.

We may thus conclude that our approximate expansion
of the kernel yields a good representation of the solution for

SO*)= -2
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all B. In order to obtain a highly accurate value of the flux for
arbitrary S we have carried the expansion of the kernel in
Eq. (19) to higher order, the integrals being readily done in
terms of Reimann zeta functions and an expansion for (8 *)
in inverse powers of (82 + 1) developed by the method
shown above. The resulting diffusion coefficient is given by

* = (2DudB)V'*/7A(2), (26)
where, with Z= (82 + 1)},
A(Z)=1-—0.384Z "2 + 0.081Z 32 — 0.060Z 5/2
+0.011Z3 4 0.033Z7/2 — 0.008Z *

—0.028Z°/2 4 (0.012Z3). 27N

The expansion was carried out to order Z°/? and the last
term in parentheses arbitrarily added to agree with Eq. (25)
for Z = 1, which can be put in the form

Al = —[BV2—4)5(~p]~'=0.657.

It can be seen that Egs. (26) and (27) should be accurate to
within a small fraction of a percent over the entire range of 5.
A simple approximation to Eq. (27) correct for Z =1 and
Z = o« can be given by

A(Z)=1-0.343Z"? (28)

which is in error by about a percent for the case of a square
cell, Z = 0.5. Equation (27) yields 4(0.5) = 0.749.

Further we note that, if desired, one could use our solu-
tion (21) to calculate the density along the boundaryy =d /
Bby using Eq. (19) in the domain} > 6*> [2(B2+ 1)] 7},
1 o0
— 1™

2yaD" m2=:0 ( )

no*) =

{282+ D]~! Y *!
XJ S(6*)do .
o Vm/2 + (6% —6¥)

If for simplicity we use Eq. (21) neglecting the small b term
we find

AO% = —aiy 3 (= D"
m=0

XsinT!H(B24+ 1)(m+20%)]7Y2  (29)

We note that for large and moderate 3, 7i becomes small
fi~ —0.39/(8%+ 1)"/*d7n}/2as 6 * approaches }. It does
not change sign and thus a discontinuity appears at the cor-
ner @ * = }. This, however, is physically acceptable since the
discontinuity has a zero width in #. In fact, right at the
corners where the velocity vanishes, the diffusion along
streamlines should be taken into account and a small
smoothing in @ * over a distance VD * must occur. This sub-
boundary cannot, however, affect our results to the domi-
nant order to which we calculate.

To indicate again the physical nature of the solution, we
show in Fig. 2 a schematic plot of the density versus x for fixed
». The solid curve would apply for all y except the horizontal
boundaries, the dotted curve would apply at the boundaries
(y=0o0rd/B).

The main point, of course, is that the density must be flat
in the interior of the rolls because of the rapid circulation so
that the global gradient must appear as a steep gradient con-
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FIG. 2. Schematic density profile for the dye along the x direction. Steep transi-
tions in the density exist between each cell.

fined to the boundary layer. This steep gradient then leads to
an enhanced diffusive flux as given by Eq. (26).

Il. GENERALIZATION TO ARBITRARY PERIODIC
FLOW PATTERNS

We now further note that our calculation is not limited
to the particular streamline function assumed in Eq. (3). A
typical situation might involve unstable rolls developing
from an equilibrium homogeneous in x but with structure in
». To describe such a case we choose a streamline function

¢ = sin(mx/d) f(mPy/d), (30)

where f (0) = f () = O to define the streamline boundaries
as being at y = 0, d /B; and, further, we normalize f (7/2)

= 1 so that # retains its meaning as the peak velocity along
the vertical (x =0) boundary. It is also assumed that
Sf(mBy/d) = flw(1 —By/d)).

A particular case of interest is that of rough (rigid) hori-
zontal boundaries aty = 0,d /f3. For that case, since the hori-
zontal velocity must vanish at the rough wall, it follows that

S'(0) =f'(m) = 0. While this leads to a vanishing of the geo-

metric factor |Vi|/|V€]| in Eq. (8) along the horizontal
boundary, we will show below that this does not invalidate
our results to leading order in large Peclet number.

We indicate here the modifications in our calculation
introduced by the change in streamline function neglecting
for the moment any possible singular behavior. Equa-
tion{10) remains valid as do the definitions

n_7D o« Jo|VYidl
b _adﬁg vpldl, 6= $|Vyldl

with the integrals taken along streamline boundaries as be-
fore. Hence, the governing equation (19) is recovered except
that the upper limit of the last term which has been defined
to be

1 slov/dsidy

2 f|8y/dx|dy + §|3¢/dp|dx
now becomes

£=i fgf(ﬂ)d/-‘ (31)

2 2 53 flp)du+28%'(0)

D" = %”—D(J. fl)dp + 2BZf’(0)) : (32)
adB \Jo

Our previous solution, Eq. (21), now applies with
(B% + 1) ! replaced by Z in Eq. (22). Note that Z = 1 for
the rough boundary case, since the vanishing of /' implies
that the total range of @ * is subsumed on the vertical boun-
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daries. We may now calculate the desired diffusivity:

pr_ _ D §57(3hy/Ix)dy

71 d/B

_ DB 478 3nf<7Tﬂ,V)y
dn, d Y
_ DB w (S f(vrﬁy)
d d 2D”

__ D8 95|V¢'|dl Z/zs(g*)dg*
2 dny, D" 0

Z /2

_ _udp 1 S(6*)do*.

27 dny
Therefore,

D* = (adB /2{7)\D"g(Z),

where g(Z) is determined from the same integrals as those
leading to Eqgs. (22) or (27). Finally then
px_ [P dB G flu)du] ”2’
7A(Z)
where Z has been defined in Eq. (31) and 4(Z) in Eq. (27).
This provides our large Peclet number diffusivity for the gen-
eral streamfunction. For the rough boundary case Z = 1 and

(33)

T 172
D*= 0.48(Df¢ dﬂj f(u)du) . (34)
0

We now discuss the physics of the rough boundary case.
We have seen that Vi//V8 vanishes near the horizontal boun-
daries, in fact vanishing like y ~ ¢'/2. Hence, since y~D '/2,
these terms are small by order D '/* compared to those we
have kept. Thus we have neglected cross-field diffusion near
y=0.

To understand the situation physically we revert to the
arguments given at the beginning of this article. The parti-
cles that undergo mixing between cells lie within a vertical
width Ax of the cell boundary that is determined from the
condition that cross-stream diffusion is balanced by the ver-
tical convection time 74 ~d /Bi. Therefore,

Ax*~Dry = Dd /Bi.
The particles in the boundary layer will take a random

step d in a crossing time 7,. Hence, the effective diffusion
coefficient is given by
=fd*/r.,
where fis the fraction of particles in the boundary layer. Now
f is estimated as BAy/d, where Ay is related to Ax by the
condition that Ay along the vertical and horizontal boundar-
ies be the same. Thus 52Ay? ~ Axd. The crossing time for
particles that are Ay from the horizontal boundaries is
~d /(B*iAy/d). We then find

B )

1 _Braby pi <_)‘”~_ﬂi (_2_)‘“
r.  d* Td\d) ~ Biud) '
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D*=d?*/r.~(BudD)""?
as given by Eq. (34).

However, for particles very close to the boundary, the
cross-field diffusion must be considered and an “inner”
boundary layer will form. For a particle very near y =0,
Ay~ (Dr.)"? and since 7.~1/u, and u, ~Ay, we find
Ay~D '3, As before, the diffusivity is D * ~f/7,, and with
f~ Ay, wefind D * ~ D ?/3, Thisis a smaller contribution to D *
than previously calculated since D '/> <D '/# and the inner
boundary layer contribution may be neglected asymptotical-
ly. Needless to say, one might anticipate that our results might
only be an accurate approximation for very large Peclet
numbers. In fact, since (D !/3) of the particles in the boundary
layer are being improperly calculated, we would expect a dif-
fusivity of the form D * ~aD /2 4 bD* of which we have
calculated the first term.

Finally, we note that the method of calculation can be
generalized even further to describe diffusion in even more
general periodic flow structures such as the forced rotating
cylinder problem in Ref. 15. The description of the problem
and the analytic solution is given in the Appendix. The nu-
merical result given in Ref. 15 is recovered.

IV.MEASUREMENTS OF THE DIFFUSION COEFFICIENT

Simulations of the diffusive convective flow given by
Egs. (1)-(3) are made by following particles along their
laminar flow lines and simultaneously introducing periodic
random displacements after each small time interval 7. The
particles move according to the equations

x=—3,¥(xp), y=9,¥(xyp), (35)

where we now choose W(x,y) =sinx cosy. Note that
w, =1, where w, is the angular frequency of rotation
around the elliptic fixed points, and the size of the square cell
(B = 1)is . During the random jump a particle moves from
x to x + § with a probability given by W(£, &, ). Thus the
change of a given particle distribution in a time 7, attribut-
able to the random scattering in and out of a volume element
surrounding x is given by

St + 75 ) — f(x,1)

- fd & WE(x — £0) —f(x,nfd; WE).

We studied two different probabilities for W(E): (a)
constant § steps

X[6(5, =D +8(, +D], (37)

for which D = /2/2r; and (b) Gaussian distribution of steps

W(E) = (2m(£*)) ™" *exp( — £7/2(£?)) (38)
for which D = (£2)/2r.

For an ensemble of ¥V particles the evolution of the sys-
tem is computed according to Eq. (35). A sixth-order
Runge-Kutta method is used to integrate the equations of
motion between random kicks. The time step is chosen inter-
nally with the requirement that the overall estimated error at
the end of the integration be less than a specified value (typi-
cally 10~°). In the stochastic part of the evolution, the parti-

(36)
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cles are randomly displaced in both the x and y direction.
The system is allowed to evolve for several rotation periods
until the transients decay away, and then measurements are
taken at regular intervals of nry, with # ~ 501000 in differ-
ent runs. Two initial distributions are used:

(1) fxp.tp) = const, for |x|<xp [V <¥o
(39)

) flxpty) =6(x — x0), V| <Vo

and no effect of the shape of f(x,y,t,) or the values of x, and
¥o is detected in the results other than the length of time
required for the transients to die out.

Two methods are used to obtain values of the effective
diffusion coefficient D *. In the first method we follow the
evolution of the given initial distribution. This initial value
method relies on the fact that, since the evolution of the
system is equivalent to a diffusion process with an effective
diffusion coefficient D *, the particle distribution function
JS(x,p,t) will, after an initial transient, have a Gaussian pro-
file with a standard deviation o related to the running diffu-
sion coefficient D *(¢) by

N
o2 (1) =~;— S50 — () P=2D*)t,  (40)

i=1

with D * given by

D* =1mD*(z).
T

Three different values of kick length were used, 0.017,
0.057, and 0.17 (the size of the cell is 7). In each case the
kick length / was chosen so that /<€min(8,7), where
&% = Dry, is the boundary layer thickness (cf. Sec. IT). The
need to make / small enough is essential for an accurate sim-
ulation.

To insure that the codes were working properly, the sys-
tem was first advanced only with random kicks (no laminar
motion) and the value of D * obtained was found to agree
with the theoretical value D * = [2/2r, to well within the
error bars. Also for pure laminar flow (no kicking), the par-
ticles were advanced for 500 rotation periods with no more
than the nominal error (typically 10~°) in the final position
of the particle.

In the first example shown in Fig. 3, the evolution of the
distribution from stochastic kicks with the Gaussian probabil-
ity distribution W(g) [Eq. (38)] is used with a mean step
length (£2)"/? = 0.1 and the step period 7 chosen to give the
desired collisional diffusion coefficient D. Figure 3(a) shows
a sample particle distribution in the x-y plane. In this example,
256 particles randomly distributed in the unit cell at the origin
are advanced 10* random steps, with 7, chosen to give
D = 0.9. Figure 3(b) shows the running diffusion coefficient
D *(1), defined in Eq. (40).

In the initial value method, the system evolved for typi-
cally 20 circulation periods 7, before any measurements were
taken to allow for any transients to die out. Also D *(z) was
calculated at times 457 apart to keep the values of D *(¢)
statistically independent. These values were then averaged to
provide the value of D *. To make sure that all the values of the
running diffusion coefficient D *(¢) used in the calculation of
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FIG. 3. The running diffusion coefficient for a typical initial value simula-

tion for D = 0.9. (a) Particle distribution in the x-y plane. (b) The running
diffusion coefficient D *(¢) as a function of time.

the average diffusion coefficient D * are statistically indepen-
dent, the correlation time 7, was computed. The system was
advanced according to Eq. (35) and after each kick the two-
time correlation function

1 & [xi(8) = % (2))] [*: () — (x;(1))]

C(t) =—
® Nigl o(t,)o(r)

(41)

was calculated. Figure 4 shows a typical plot of C(2); the
unit of time is the kick time 7. The time at which the value
of C(¢) falls to 1/e~0.37 is the correlation time 7,. In this
particular case, 7, = 207,.

Since the assumption that the particle distribution func-
tion f{x,y,#) is Gaussian is crucial to the initial value mea-
surements, a statistical test, the y* goodness-of-fit test, was
used to test f(x,p,¢) for normality and reject the values of
D *(1) that were obtained from particle distributions that
were not a good approximation to a Gaussian. A 90% confi-
dence level was used. The critical value y? for the chosen
confidence level is determined from tables, and the test sta-
tistic CHI is compared to it. If CHI < y? the distribution is a
good approximation to a Gaussian, and the value of D *(7)
obtained from it is accepted, whereas if CHI > y? it is reject-
ed.'” The good values of D *(¢) that were obtained in this
way were used to calculate the quoted D * for that particular
choice of parameters. The same y? test with a 90% confi-
dence level as before was used to estimate the error bar.

Figure 5 shows D * as a function of D. A regression fit of
the data to the curves

S 20 30 60 80 100

FIG. 4. The correlation function is plotted against time, measured in kicks
in an initial value simulation. In this case 7, = 207,.
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FIG. 5. Measured effective diffusion coefficient D * as a function of D in an
initial value simulation. 200 particles using the y? test and no regression fit.
The range where the square root law applies (D<0.5) is expanded on the
left. If no error bar is shown then the error bar is too small to show on this
scale.

D*(D)=C,D"? for D<0.5,
(42)
D*(D) =D+ C,/D, for D>0.5

was used to derive the two solid curves. The regression fits
give C, = 1.04 + 0.02, C, = 0.12 + 0.03. These values over-
lap with the derived asymptotic values C, = 1.065 [obtained

from Eq. (26) usingd =, =1, Z(0.5) =0.7494] and
C, =}

A second simulation method was developed that makes
use of the analytic theory of Sec. II. The system is considered
confined to a domain —xy<x<x, —m/2<y<n/2,
where x, = nm and n an integer. Beyond this domain, values
in y are taken periodic in the basic p cell. Particles leaving the
boundary x = + x, are annihilated (hence there is a sink
there) and reintroduced at x = 0,y = ( — 1)"y (hence there
is a source at x = 0). Thus the relationship between sources
and sinks given by Eq. (15) is preserved. When the system
reaches a steady state, the strength of the sources are ob-
tained by counting the particles passing through x = + x,,.
In practice only the y-integrated source, which corresponds
to the total number of particles crossing x = + x,, is needed.
The particles are initially randomly distributed in the range

—Xg<X <Xy — M/ 2<y<m/2. In different simulations,
different values of x; were used to check the consistency of
the method, and no significant dependence on the value of x,,
was found for 1<n<S.

The effective diffusion coefficient is given by

D* = A(nm)?/2N, (43)

where N is the total number of particles in the simulation and
A is the total number of particles entering at x = O per unit
time. Equation (43) is readily derived by assuming that the
mean 7i(x) satisfies a steady-state diffusion equation

0

axr’

Note that 7 varies linearly in |x|, vanishes at the boundaries,
and it is required that f , ndx = N.

In the simulation the system is allowed to evolve until all
transients die out and a steady state is reached, and then the
number of particles leaving the range in a suitably chosen
time interval are counted.

Figure 6(a) shows a plot of the number of particles leav-
ing the range as a function of time, Without laminar flow this
method also gives D = [2/2r1,. In this particular example
with x, = 1, 250 particles were advanced for 7000 random
steps, and the measurements were taken after the first 3100
steps. The total number of particles » escaping between ¢ and
t + 20r is plotted against ¢. In Fig. 6(b) a histogram of the

Ab(x)= —D*

T L T T 20 T T
(a) (b}
801 y .

L - FIG. 6. Typical plots for the steady-state method.
F Here, 250 particles are advanced 70007, with
L 1 Ne Xo =, D = 0.02. (a) Number of particles N, es-
Ne ok caping the region x < |x,| between times ¢ and
1 #+ 207 plotted against ¢ measured in kicks. (b)
40L 4 Histogram of N, for the case in Fig. 7(a). Fy_is
the number of times that N, particles escaped in
I {  20r,. The dashed line shows the Gaussian fitted

L MWWMJW to the distribution.

03000 ; 5000 7000 O 20
Tk
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FIG. 7. Here D * is plotted against D for the steady-state method. The range
D<0.5 is expanded on the left. If no error bar is shown then the error bar for
that point is too small to show on this scale.

spread of values of » is fitted to a Gaussian and the same
scheme as before is used to obtain error estimates for » and
hence D*. Figure 7 shows D* against D. In this case
C, = 1.03 + 0.03, C, = 0.09 + 0.03.

In comparing the properties of the two codes, we note
that both the initial value and the steady-state methods exhib-
ited a sensitivity to the value of the kick length / used. They
both converged to the theoretical value of D * for smaller / but
in quite different ways. The initial value method produced
values of D * that oscillated around the theoretical curve for
large / and the oscillations were reduced as / was reduced. The
steady-state method produced values of D * consistently lower
than the corresponding theoretical value for large / and as-
ymptotically approached the curve as / was reduced. The ef-
fect was more pronounced for x, = 1l than it was for larger
values of x,,. The length of integration time required to obtain
comparable convergence was roughly 1.5 times longer for the
initial value method than for the steady-state method. The
statistical deviations of the steady-state method consistently
conformed better with a Gaussian statistical model than the
deviations in the initial value simulations.

As was mentioned in Sec. II above, the particle distribu-
tion is expected to be flat in the interior of the rolls with a steep
gradient close to the separatrix. Evidence of this was observed
during the numerical simulations. In the early times after we
start advancing the particles from their initial position, all
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particles are confined to the cell they are initially placed in. If
we run the y? test on the distribution we will see that it is a
good fit to a Gaussian. If we wait a bit longer until the distri-
bution flattens in that cell, and a few particles have leaked to
the neighboring cells, the distribution is no longer Gaussian,
and we have to wait for enough particles to leak to the neigh-
boring cells for the distribution to regain its Gaussian shape. It
was because of this effect that we had to incorporate the y? test
in the measuring process and reject the values of D * that came
from non-Gaussian distributions.

V. CONCLUSIONS

To summarize our conclusions, we have found that in the
large Peclet number [P = (cell diffusion time)/cell circula-
tion time) ] limit the effective diffusion coefficient for hori-
zontal diffusion through a pattern of steady-state laminar
convection cells is given by

D* =0.6(DidB) " *a. (44)

Here, D is the molecular diffusion coefficient, # the peak verti-
cal convection velocity along the cell boundary, d the horizon-
tal cell extent, d /B3 the vertical cell extent, and ¢ is a coefficient
of about unity (varying less than a factor of 2 depending on
the details of the problem). For a specific streamline function
of the typical form of Eq. (30), a detailed calculation of & is
given by Egs. (31)-(33) and (27).

A numerical simulation of particle diffusion for the case
B = 1 verifies the analytic prediction and provides a smooth
join for the full range of Peclet numbers.
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APPENDIX: THE PROBLEM OF PERIODIC ROTATING
CYLINDERS

We now address the problem formulated by Nadim,
Cox, and Brenner, who considered the transport of dye (or
heat) in a system with nearly laminar flow driven by periodic
rotating cylinders. The configuration is shown in Fig. 8. The
dotted boundary cell represents the periodic cell of length d.

FIG. 8. Schematic diagram of the circulation pattern from rotating cylin-
ders.
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At each vortex is the axis of a rotating porous cylinder of
radius d(1 — 8§)/2, with 6«1, rotating counterclockwise
with an angular frequency €. One can show, in the limit of
very high Reynolds number, that over most of the fluid a
laminar flow pattern is established, with a separatrix indicat-
ed by the dashed curve. Inside the dashed curve (interior
region) the flow is clockwise, with the speed near the separa-
trix being
u=dQ/2 + 7 (5).

Near the vertices of the separatrices the speed varies, and is
determined by a solution of the Navier-Stokes equation.
However, for the purposes of our calculation we can neglect
such variation. Outside the separatrix (external region) the
flow moves circularly around each cylinder with a speed
u=dQ/2 + & (8) (with the exception of a flow boundary
layer between oppositely rotating cylinders whose detailed
form is unimportant to our calculation).

We take the global density variation to be in the x direc-
tion, where

ony _ ., Iy

ax o dy
Using the arbitrariness in the overall density of the dye, we
choose the dye density to be zero at the origin. Then, within
the square of Fig. 8, n—n(¥,,,.) = dn}/2 in sectors I' and
IV, n—sn(¢,.,) = —dn{/2 in sectors II' and IIT’.

In the interior we have labeled near each separatrix re-
gions I, I, I1I, and IV as indicated in Fig. 8. On the opposite
side of the separatrix we have labeled regions I', II', III', and
IV’. From the symmetry of the problem, we note that the
matching primed regions have identical density gradients on
the separatrix. Thus the exterior region can also be considered
as surrounding a rotating cylinder with a streamline moving
cyclically from region I' - IV' S III' - IT'.

In the large Peclet limit (and large Prandtl number so
that the laminar flow approximation holds over most of the
Peclet boundary layer), we expect the dye density to be spa-
tially constant except near the separatrix, where the density
rapidly changes by njd /2 when moving from left to right.
Then in the neighborhood of a separatrix we can reduce Eq.
(7) to Eq. (10). We again introduce source functions, in this
case S, (€ *) surrounding the interior region and S,,, (6 *)
surrounding an exterior region. The flow circulates in the
clockwise direction in circumventing the interior region and
the counterclockwise direction in circumventing the exterior

=0

region.

The equation for the dye density is then

n 9%n C .
——=D"——+ 8§, (6*)5(¢), interior region, (Al)
20 * gYE + S (6%)5(¥) g (
a[n_n(¢max)] ” az[n—”(¢max)]
=D
a0 * P
+ 8. (8*)5(y), exterior region.

(A2)
The solution on the separatrix in terms of S(8 *) can then be
obtained in the same manner as was Eq. (19), and we find
1 de’'Ss,.. (8"
—_— _— (A3)
2(77_00)1/2 — (0*_0')1/2

interior orbit

Neep (0%) =
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nsep (0 *) - n(¢max )

g 40’ 5., (6") At
_-2(77'0”)1/2 -~ (0#~0')l/2'

exterior orbit
Since 7 is continuous on the separatrix, n.,,, (6 *) is the same
in (A3) and (A4). Weeliminate ., (6 *) by subtracting the
two solutions and find

([, s
_2(1,.1)")1/2 —» (0:&_0)1/2

interior

d
n(wmax)E i?n(l)

°*  do’'s..(8)
), (A5)

e:t::ior (0 * - 9) 1/
where the + ( — ) sign is for regions I and IV (II and III).
Now we observe that at a given point on the separatrix S;,,
= — S, which is required if the sum of Egs. (A1) and
(A2) is to satisfy Eq. (10) and yield a solution over all space
[note in Eq. (A1) n =0 in the exterior region, and in Eq.
(A2) n = Oin the interior region]. Thus, along a streamline
with 8’ = 0 at the beginning of the quadrant that @ * is in,

0<8 ' mod(1) <6*,
i< —6'mod(1) <},

0< — 6" mod(1) <},

1< —6'mod(1) <3

We also observe that S, (0 *) = — S, (6 * + 1) as the global
inversion symmetry of Eq. (7) for this flow pattern allows an
antisymmetric solution for »n, which requires an equal strength
source and sink at 6* and &* + J, respectively. Now we
break up the integrals into sums along various sectors. We de-
fine

2(mD ")VK,(8%,0)
_ H(6*-06) i 1
(9*_61)1/2 = (0*_6r+m)1/2’
i 1
2(wD ")'?K,(0*,0) = ,
(roTKENO = 2, (0*—6"+m+1'"?
Ll 1

Z(W'D”)l/zKE}(e*’a): 2 (0* 6r+m+l)l/2’
m=20 - 2

Sint(el)': _Sext(el)’ [
(A6)

S (0') = — S5, (8" + 1), [

(AT)

d 1
2(mD ")k, (0*%,0) = ,
(ﬂ' ) 4( ) m§=:0 (0*-9,+m+‘%)]/2
where
1, x>0,
H =[
(> 0, x<0.

Equation (A5) for the four sectors becomes

(7D ") *(myd /2) = 2K,S() + (K, + K)S(IV)
+ 2K,S(D) + (K, + K)S(I),
— (7D ") (nyd /2) = 2K, S(1I)
+ (B, +R)S(1) + 2K,5(0V)

+ (K, +K,)SI), (A8)
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— (#D ") (yd /2) = 2R, SUII) + (K, + K,)SAID)
+2K,5(1) + (&, +K)SAV),
(7D ") 2(myd /2) = 2R S(IV) + (K, + K,)S(ID)

+2K,5(1) + &, +K)S(D),
where

~ 1/4
RSt = [ db’ K (66150 e
(4]

and S(0 geciori = Sine (@) in the ith quadrant, with ' =0 at
the beginning of the sector that #* is in. Now, as
S(I) = — S(II) and S(II) = — S(IV), we then have for
SAI) [or S ]
— (7D ") Xnyd 12) = (K, — K;)S(ID)

% de’'s,.(8") «

= | = Sm” 2 — 1™
L @ —onyt, 2, (7D
J‘"“ S...(8')do’
0

[m/2 + (6% —0")]'/?
(A9)

This is just Eq. (19) for S = 1 for which we have obtained a
solution. Then using § u dl = mud, we may solve for the total
flux along the separatrix and obtain
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D* = (Dud /2)"*[1/4(0.5)] = 0.944(Dud)''>.
(A10)

This result has also been obtained in Ref. 15. Note that
our original method of solution has been generalized to this
more complex problem even though n varies along the separ-
atrix.

'S. Chandrasekhar, Hydrodynamic and Magnetohydrodynamic Stability (Do-
ver, New York, 1961).

M. J. Lighthill, Proc. R. Soc. London Ser. A 202, 359 (1950).

3G. L. Taylor, Proc. R. Soc. London Ser. A 219, (1953).

“G. W. Morgan, A. C. Pipkin, and W. H. Werner, J. Aerosol. Sci. 25, 173
(1958).

SR. Ariz, Proc. R. Soc. London Ser. A 235, 67 (1956).

SA. Acrivos and J. D. Goddard, J. Fluid Mech. 23, 273 (1965).

"W. Horton, Plasma Phys. 23, 1107 (1981).

*W. Horton, in Handbook of Plasma Physics II, edited by M. N. Rosenbluth
and R. Z. Sagdeev (North-Holland, Amsterdam, 1984), pp. 384-402.

°H. K. Moffat, Rep. Prog. Phys. 46, 621 (1983).

'F. W. Perkins and E. G. Zweibel, Phys. Fluids 30, 1079 (1987).

"1J. Gollob and T. Solomon, Chaos Related Nonlinear Phenomena, edited by
X. Procaccia (Plenum, New York, 1987).

2B, Walden, P. Kolodner, A. Passner, and C. Surko, Phys. Rev. Lett. 55, 496
(1985).

'3H. Swinney and W. Y. Tam, Phys. Rev. A 36, 1374 (1987).

'“F. Sagues and W. Horsthemke, Phys. Rev. A 34, 4136 (1986).

SA. Nadim, R. G. Cox, and H. Brenner, J. Fluid Mech. 164, 185 (1986).

'5B. Schraiman, Phys. Rev. A 36, 261 (1987).

"T. H. Pollard, Numerical and Statistical Techniques (Cambridge U. P., Lon-
don, 1977).

Rosenbluth et a/. 2647



