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Diffusion of plasma in two dimensions is studied in the guiding center model. It is shown that in this
model diffusion always exhibits the anomalous 1/B varjation with magnetic field. The velocity correlation
function and the diffusion coefficient are calculated in detail using functional probabilities. In addition
to the 1/B field dependence, the diffusion coefficient is unusual in that it depends weakly on the size of
the system. These theoretical results are compared with those from computer experiments and their signif-

icance for real plasma is discussed.

I, INTRODUCTION

It is well known that a strong magnetic field B in-
hibits the diffusion of plasma transverse to the field
and that for plasma in local thermal equilibrium the
diffusion coefficient is proportional to 1/B% However,
experiments often show a much larger anomalous diffu-
sion and to describe this an empirical coefficient propor-
tional to 1/B (originally proposed by Bohm?) is often
invoked. The Bohm diffusion coefficient is

Dp=a(ckT/eB),

where T is the plasma temperature and « is a numerical
coefficient, conventionally taken to be 1/16. The origin
of anomalous diffusion has been assumed to lie in
fluctuating electric fields which exceed the thermal
level.

In studying anomalous cross field diffusion and its
dependence on magnetic field strength it is tempting
to invoke two-dimensional models, particularly in com-
puter simulations which involve computation of orbits
for a large number of interacting particles. It is im-
portant, therefore, to understand the fundamental be-
havior of a two-dimensional plasma and the way in
which it differs from real systems. In this paper we in-
vestigate two-dimensional plasma in the high magnetic
field limit, when the Larmor radius is smaller than the
Debye length, using the guiding center model in which
particles move according to the equation of motion;

v=[(BxV¢)/B']c (1)

with the potential ¢ determined by Poisson’s equation.
(This model also describes the two-dimensional motion
of an incompressible inviscid fluid and some of our re-
sults may have hydrodynamic applications, but it is
convenient to develop the theory solely in terms of the
plasma problem.)

The results of our investigation of diffusion in a
two-dimensional guiding center plasma are surprising.
It is found that the diffusion coefficient always has the
Bohm (1/B) variation with magnetic field—ever in
thermal equilibrium. Far from being anomalous, there-
fore, a Bohm-like diffusion formula is the classical one!

Furthermore, the diffusion coefficient depends weakly
on the size of the system.

As a test of these theoretical predictions a series of
numerical experiments has been carried out. In these
the orbits for several thousand interacting particles
are corupu*ed and the diffusion coefficient and velocity
correlation function calculated. The results are in ex-
cellent agreement with the theory but also bring out
the importance of initial conditions and of statistical
errors which are not reduced merely by increasing the
number of particles.

The theoretical model is developed in the next three
sections after which the numerical experiments are
described. Finally the significance of our results for real
plasmas and for other two-dimensional plasma simula-
tions is discussed.

II. GENERAL PROPERTIES OF GUIDING
CENTER DIFFUSION

We regard the plasma as an assembly of two species
of charged particles, which in two dimensions are repre-
sented by rods with a charge e/l per unit length
(es==e), immersed in a uniform magnetic field B.
The guiding center equation of motion for the par-
ticles is

R=¢(BxVy)/B?, (2)
and the potential ¢ is determined by
Vip=4dwr 3 (e;/l)é(r—Ry), (3)

where the sum is over all particles. Together with an
initial probability distribution these equations com-
pletely determine the plasma properties. In thermal
equilibrium the appropriate distribution would be

W{R} =9 exp [— E (e:6;/T) log | Ri—R; |]. (4)

(Throughout this paper 9 denotes the appropriate
normalization.)

These equations can be reduced to a universal form
by the scale transformations:

R=sX, o=4rey/l, t=(s*Bl/4wec)r, (5)
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in which s is an arbilrary length scale. In the scaled
variables the plasma equations become
dX;

—=bxV,,
dr XV

vov=5 (2)sx-x0,

=1 \€

(6)
Wi{X}=a exp[—g.(e,-e,-/%re”) (1/np) log | Xi—X; ],

where b=B/B and np=«Tl/4ne® is the number of
particles per square Debye length (M= «Tl/4wne?, see
Appendix B).

It is apparent from this form of the problem that the
particle dynamics depends only on N and the sign of
the charges, ¢;. The distribution function depends on
only one other parameter, #p, so that all plasma prop-
erties can be expressed in the scaled variables as func-
tions of NV and #p alone. Any intensive plasma prop-
erty (i.e., one which is independent of plasma size)
will depend only on #p.

To make use of this result in determining the diffusion
coefficient we write it in terms of the velocity correla-
tion as

« cxkT . .
D= fo O dt= S f X OXi(r)) dr, (7)

which, in accordance with the remarks above, must take
the universal form

D=(cxT/eB)f(N, np). (8)
We see, therefore, that if a diffusion coefficient exists,
then even in thermal equilibrium it can only be pro-
portional to 1/B.

If the plasma is not in thermal equilibrium the diffu-
sion coefficient will still be proportional to 1/B, although
the other plasma parameters cannot then be reduced
to one universal quantity. To confirm the 1/B vari-

ation it is only necessary to introduce the transforma-
tion

t=(mc/eB)r (9)

into the original equations and to observe that B then
disappears from the problem. Expressing the diffusion
coefficient in terms of the velocity correlation as in (7)
then shows it to be of the form

D= (mc/eB)g (10)
where g may depend on other parameters but must be
independent of the magnetic field.

III. THE ELECTRIC FIELD CORRELATION

By introducing Fourier transforms, taken for con-
venience in a square of unit area, into Eq. (3) the po-
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tential may be written

o(r, ) =4r 3 (e/D) T (1/k) explik-[R ()1},
(11)

where k,/2x, ky/2r take all integer values. The electric
field correlation function is therefore

Qup(r) = (Ealt) Eg(t47) )
=16n 3 (eie;/P) Zk) (kaks/R*)

X (exp{ik-[Ri(t) —R;(t+7) ]}), (12)

where the fact that Q is independent of r has been used
to simplify the last expression.

Using the guiding center equations of motion (12)
becomes

€7 Rak
Qutr) =167 £ 5 5 2 (explik [Ru(1) ~R,()])
><exp<IBi” t+'kxE-bdr')>. (13)

Strictly, the final integral depends on the orbit of the
jth particle but we shall ignore the correlation of E with
the orbit and write

(D) =X <Ea<k, 0) Es* (k, 0)
k

X exp(j—;kxb/ot-Edr)>. (14)

To evaluate the ensemble average we assume that
the fluctuating electric field can be represented by a
normal distribution (Appendix A). Then, the prob-
ability of E(f) can be expressed in terms of the cor-
relation (E-E) which we wish to calculate. This is
equivalent to neglecting all higher cumulants, such as
((E-E-E-E)—(E-E)). The normal distribution is
also that which maximizes the entropy subject to a
given correlation (E(t)E(¢+7)). (In three dimensions
a useful expression for the correlation can be obtained
when the influence of the electric field on the particle
orbits is entirely neglected.? Here, such a crude ap-
proximation would merely give a constant value for Q.)

The normal probability distribution for the function
E(¢) has the form

P{E}=% exp —% fw /.”Ea(Tl)QazB—l(Tl_TD

L] 0

XEg(‘rz) dﬂ d‘l’z, (15)

where Q.s7! is the inverse of the correlation function so
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that

[ Quirt(ri=r)Qar(r—12) dr=bu b=, (16)

(Summation over repeated indices is implied.) It is
important to appreciate that P{E} is the probability
that the whole time history of the electric field shall
be given by the function E(#). Equivalently one may
divide the time up into a large number of discrete in-
tervals and specify the probability for the whole set of
E(t) as
P{E} =% exp(—} 2 Eiqii'E;). (17)
+2
Using the weighting functional (15) one finds, after
some manipulation that the average

(E.(k, 0) Es* (k, 0) exp (3-; kxb- /0 "E(r) df»
= (Ea(k) E*(K))

X CXP(" C;Iic“ /ot /ot Qu(r1—7g) dnt de) , (18)

where for brevity k= (k xb). We therefore obtain the
important equation for Q

Qs (t) = Zk? (Eq(k) Eg* (k) )

ckk, vt

s fo j; Ou(r1—13) dry d‘rg) (19)
which specifies the time-dependent correlation function
in terms of the stationary average field fluctuation.

When the fluctuations are isotropic, as in the cases we
shall discuss later, Q.s=Q8,s and Eq. (19) simplifies to

X exp(-—

0w =@ [kar| B® D)

62k2 t

xew (=5 |

where we have also taken the opportunity to replace

the sum over % by an integral, using the substitution

(2x)23>"—f dk. This will enable us to give simple ana-

lytic forms for the diffusion coefficient and correlation

function.

For the purposes of calculation Eq. (20) can be put

in a much more convenient form by introducing

R(t)= % /o ' fo Qlri—12) dry drs

/o ' Q(ri—s) dry df,) . (20)

(21)

This is given by the differential equation

2 b
% - f k dk(| BX(R) |) expL—HR()] (22)
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which has a first integral

1 /dR\? 2 rbdk
(%) - [ % (B D= ep(~£R)].

(23)

This last form is convenient for numerical calculation.
The upper and lower limits of integration are the short-
est and longest wavelengths in the fluctuating field:
0=Fmin, b=Fmax. The longest wavelength is clearly
limited by the size of the system.

The function R(¢) can be computed from (23) when
the fluctuating spectrum E2(k) is given (see below) and
provides complete information on the internal dy-
namics of the plasma. The correlation function is given
by the second derivative of R,

B*d’R

Q)=+

62 E.z_ ? (24)

and the diffusion coefficient by the first derivative

dR
D= lim (-——) .

25
tro \ At ( )

R(#) itself gives the mean dispersion of a group of
diffusing particles:

R()=i[Ar()

IV. THE DIFFUSION COEFFICIENT AND
CORRELATION FUNCTION

(26)

The diffusion coefficient can be found without the
need of a full solution of (23). For R(f) must be un-
bounded as i— and, therefore, at sufficiently long
times a?R(#)>>1. In this limit Eq. (23) immediately
gives

¢ bk
® (20 1

T B,

(27)

We shall evaluate this in two cases.

A. Thermal Equilibrium

In thermal equilibrium the spectrum of electric field
fluctuations is given by (see Appendix B):

(| B2 (k) |)y= (4x/D) [«T/(1+EN) ] (28)

so that

D= (ckT/eB)[(2enr?)~1log(L/2x\) T2 (29)

which is the diffusion coefficient for a two-dimensional
guiding center plasma in thermal equilibrium. It has
the form predicted earlier, proportional to «T'/B, and
we now see that the function f is

f(np, N)=[(2rnp)~" log(N/np) JV2. (30)
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F16. 1. Theoretical correlation and dif- |
fusion for thermal plasma.
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D/D

1 J

A feature of the result is that D is not an intensive
quantity; instead it increases indefinitely (but very
slowly) with the size of the system. The correlation
function and the dispersion may be computed from Eq.
(23). Figure 1 shows typical results. The normalizing
factors are

Qo="4n (ne*/P) log(kmex))

ty=ABl/m2cn! %, (32)

while D, has the value given by (29). It is interest-
ing to note that the diffusion coefficient (29) does not
suffer from a divergence at large wavenumber. The
correlation function does diverge at =0 if knin—0, but
is integrable, and initially has the form

Q(8) =Q(0) —Q*(0)2.
B. Random Distribution

(31)
and

(33)

The process of relaxation to thermal equilibrium may
be slow and it is, therefore, of interest to consider other

F16. 2. Theoretical correlation and dif-
fusion for random distribution.

5 10
t/to

distributions. Of these, the random distribution is an
obvious choice, again particularly relevant to computer
experiments where it is difficult to simulate the thermal
distribution. The fluctuating spectrum for a random
distribution of particles (Appendix B) is

(E*(R) )= (16x°n?/P) (1/R%)

and in this case

(34)

D=ecn'?L /7% B (35)

which depends strongly on the size of the system.

The correlation function and dispersion for the
random distribution may be computed as before and
typical results are shown in Fig. 2. The normalizing
factors are now

Qo=4r(ne’/F) 10g(kmax/kmim),
to=BIL/(2x)3%cen\i?
with D, given by Eq. (35).

(36)
(37)
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V. SOME NUMERICAL EXPERIMENTS

A, The Computer Programs

To check the theory presented above a number of
computer experiments have been carried out. In these
simulations the orbits of several thousand particles are
computed, using Eq. (6), in a square with periodic
boundary conditions. From these orbits diffusion co-
efficients and correlation functions are subsequently
computed by appropriate analysis programs.

Two distinct computer models were used, both based
on programs described elsewhere. In the first, a modi-
fication of carLaxy,? the charge of each particle is as-
cribed to the nearest mesh point and Poisson’s equation
is solved by a Fourier transform technique in both
coordinates. The advantages of this program are that
it can accommodate a very large number of particles
(over 16 000 in our calculation) and that the Fourier
transform technique allows one to retain an optional
number of Fourier modes so that the numerical experi-
ment has a direct equivalent to the maximum and
minimum wavenumbers introduced in the analytic
theory. However, at least in our modified form, caraxy
is less accurate than the alternative program.

The second program VORTEX* was originally written
to study vortex motion of fluids in two dimensions, but
as we have noted the equations for this are identical to
the guiding center Eqs. (6) if e is interpreted as the
vortex strength. The VORTEX code uses more accurate
integration methods than the modified caraxy, and
the charge density on the mesh is obtained by area
weighting. The Poisson equation is solved by a Fourier-
transform technique in one space direction and a cyclic
reduction in the other. As a result of these more elabo-
rate numerical techniques, the VORTEX code is more
accurate than GAraxy, but it cannot deal with more
than about 3000 particles and there is no explicit intro-
duction of a cutoff in the Fourier modes as in GALAXY
and the analytic theory. However, a comparison of
results from GarLaxy and from vorRTEX, and a direct
analytic assessment, show that the area-weighting
technique of VORTEX is equivalent to retaining 10-12
exponential Fourier modes in each direction (i.e.,
100-150 modes altogether).

B. Initial Conditions and Fluctuations

A feature of the numerical experiments is their de-
pendence on initial conditions. Although it is easy to
simulate a thermal velocity distribution, the important
spatial correlations, essential to our computation, are
difficult to simulate correctly. We have, therefore,
carried out our computations, and the comparison with
theory, for the random distribution of Sec. IVB.

The influence of initial conditions in this type of
numerical experiment is reflected in the fact that, even
with more than 3000 particles, the statistical accuracy

J. B. TAYLOR AND B. McNAMARA

of the results is poor with wide fluctuations from one
run to another. These fluctuations are not reduced by
increasing the number of particles. The existence of
such statistical fluctuations can be seen from elementary
considerations (cf. Appendix B). For if the charge
density is

=2 (es/l) exp(ik-Ry), (38)
then for a random distribution:

(| ox [F)=N(et/B) (39)
and

(| o [*)= (2N?—N) (¢t/19), (40)

where .V is the number of particles. The relative fluctu-
ation in | g2 | is, therefore,

o2 = w2 DY/ (| 2 [*=(1=N7Y),

and does not tend to zero as N is increased. However,
the fluctuations can be reduced by taking the average
of a number of independent runs, according to the usual
rules for the statistics of independent events.

(41)

C. Diffusion and Correlation Coefficient

Our main numerical experiments were 16 independent
runs, using the vOoRTEX code, each of which followed
3072 particles on a 64X 64 mesh. Supplementary experi-
ments using caraxy were done with up to 16 000
particles. At each time step in the calculation the
x component of velocity of each particle was recorded
and subsequent analysis yielded the average velocity
correlation function Q(r) and diffusion coefficient

D(7) =/r Q(r) dr.
0

Each run occupied about 250 time steps.

VI. COMPARISON WITH THEORY

The theory has been developed in terms of physical
variables, but it was pointed out that the equations of
motion become parameter free on introducing one ar-
bitrary scale s which in the numerical experiments
is taken to be L/64 as the programs use a 64X64
mesh on which to solve Poisson’s equation. Apart from
statistical effects and a weak dependence on the number
of modes retained in solving Poisson’s equation, all
possible experiments are thus embodied in a single cal-
culation. This one calculation therefore provides a com-
plete test of the theory.

Before the comparison can be made however, a minor
modification of the theory is required. Because the ex-
periment involves only 10 or 12 Fourier modes in each
direction, the replacement of sums over wavenumber by
integrals is not sufficiently accurate, and the theory
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TaBLE 1. Comparison of experimental and theoretical results.

Numerical Theoretical Theoretical Theoretical
experiment value value value
(10 modes) (12 modes) (integral)
D(=) 6.37+1.82 6.16 6.10 4.55
Q(0) 0.1970.034 0.207 0.203 0.238
Tie 12.543.0 12.13 10.4 8.23

must be written using summations rather than integrals.
The basic equation, in the dimensionless variables X,
7 is then,

dR\! 2N 1 2
(5) = o I Gy (1 - (B+RR().

kil
(42)
In the same dimensionless variables the initial cor-

relation function Q(0) and the diffusion coefficient
become

N 1 1
00 =25 1 E o (43)
and
1N 1\
po (L) - @

In Figs. 3 and 4 we compare the results of the main
computer experiments with the analytic theory as
given by (42). We have made the comparison in terms
of two quantities, the correlation function Q(7) and the
running diffusion coefficient

D(7) =/: Q(") dr'.

2le
e

I'r6. 3. Experimental and theoretical correlation functions.

The error bars on the results from the computer experi-
ment represent one standard deviation on each side
of the mean of 16 runs. The experimental and theoreti-
cal value for the salient parameters of these curves are
summarized in Table I which provides a concise indica-
tion of the over-all agreement between theory and ex-
periment. (ry is the time for the correlation to fall to
half its initial value.) It can be seen from this and the
figures that the theory and computer experiment are
in very good agreement, any discrepancies lying well
within the statistical errors. In assessing this agreement
it should be recalled that there were no adjustable
parameters or normalizing factors in the theory, which
is entirely self-contained and derived from basic prin-
ciples.

The close agreement of theoretical and experimental
values of Qo is to be expected and represents a check
on the VORTEX program. The agreement of the correla-
tion decay time is the most sensitive test of the over-all
theory. The agreement of the asymptotic diffusion co-
efficients confirms indirectly that the diffusion depends
on the size of the system. The other important theo-
retical result, that the diffusion is proportional to 1/B,
is a consequence of the scaling laws alone and is inde-
pendent of the need for experimental confirmation.

———

-
¥
\
|

T

Fic. 4. Experimental and theoretical diffusion.
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VII. DISCUSSION

A theory of two-dimensional plasma based on the
guiding center equations of motion has been developed
and the velocity correlation function and diffusion co-
efficient, have been calculated. In this model diffusion
must always be proportional to 1/B and depends on
the size of the system. In thermal equilibrium the size
dependence is very weak, the diffusion coefficient being

_CKT( 1 1 )1/2
= B \2ennt B2/

These results must throw some doubt on the useful-
ness of two-dimensional computer calculations as a
mean of investigating anomalous diffusion in experi-
ments. On the other hand, they make the study of two-
dimensjonal systems an interesting problem in its own
right, particularly as the theory yields detailed predic-
tions without arbitrary parameters.

Whether the theory is relevant to real plasma is more
speculative. Clearly, an equilibrium plasma differs
greatly from our two-dimensional model, but there are
circumstances in which real plasma may behave very
like a two-dimensional system. This is because equilib-
rium in a plasma is attained quickly along the lines of
force but more slowly perpendicular to them. Further-
more, as all charges on a given flux tube tend to remain
together, the flux tubes and the particles on them retain
their identity. If, therefore, a plasma acquires an im-
balance of charge between various flux tubes, e.g.,
during its formation, or as a result of passing through an
unstable phase, then these tubes would behave exactly
as the charged rods of our model. (It may also be noted
that two-dimensional behavior depends mainly on the
longer wavelength fluctuations, which are the slowest
to disperse and for which the guiding center approxi-
mation is most accurate.) Unfortunately, it is not pos-
sible to predict the charge acquired by each flux tube
so the diffusion coefficient in such a situation can only
be expressed in terms of the potential fluctuations.
Using Eq. (27) it then takes the form

D= (V2 ¢/B){¢*)'".
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APPENDIX A. THE NORMAL DISTRIBUTION FOR
A FUNCTION

The normal distribution for a finite set of independent
variables X is

P=3exp[—2 3(X#/04)], (A1)

J. B. TAYLOR AND B. McNAMARA

a form which can be justified by the central limit
theorem. If the X are not independent but have finite
correlations, (X;X;)=0.;, then (A1) generalizes to

P= exp[— 2 ¥(0:}) 71 X:X;].

If we consider a transition from the sequence of {X;}
to a continuous function X (¢), then Eq. (A2) goes over
to the functional probability

(A2)

P=93 exp (—& f X(h)o 1 (ty, ) X (1) dty dt,) . (A3)

For systems which are time invariant,
G’_I(tl, tz) =0'—1(t1—t2) .

Equation (A3) gives, in a formal sense, the probability
of the function X (t) occurring.

A property of Eq. (A3) is that it yields a normal dis-
tribution for the probability of X at any given instant,
ie.,

P(X) =T exp(—X*/2(X?)). (A4)

Note the distinction between (A4), the probability
that the value X shall occur at some chosen instant,
and (A3), the probability that X shall be specified by
the function X (¢) for all times.

APPENDIX B. SPECTRUM OF FLUCTUATIONS OF
TWO-DIMENSIONAL PLASMA

(i) Random Distribution

It is convenient to first treat the case of a random
distribution of particles. If px is the Fourier transform
of the charge distribution and nl=| p? |, then

()= (oup*)= (X (eie;/7*) exp[ik- (Ri—R;)]) (B1)

so that for a random distribution

(n)=ne*/P, (B2)
and the electric field fluctuations are
(| E*k) |)= (16a’ne?/I?) (1/k?). (B3)

It is convenient to write the full distribution for r?,
which is most easily done by considering all its mo-
ments. The odd moments vanish and for large »# the even
moments are

{r@my=m!(ne/I)m, (B4)
so that the distribution for 2 must be
nel
P(nd®) dn?=N exp [~(2;—62)] dnl. (BS)
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(ii) Thermal Distribution

In thermal equilibrium the probability of any con-
figuration R; is given by the usual Gibbs function of the
energy of that configuration, and the problem of finding
the fluctuation spectrum is simply that of transforming
from a description in terms of the R, to a description
in terms of the p.. As both species are involved the
charge density fluctuations alone do not completely
specify the configuration, and one must introduce a
px* and py* for ions and electrons separately. In a random
distribution, p* and p* are each distributed according to
(BS) and all cross correlations are zero.

To transform from {R;} to {m*, g’} we need the
Jacobian of the transformation from R—p. However,
this is exactly the same quantity as the distribution of
the px when the R; are uniformly distributed,’ and this
we have already calculated.

The energy may be expressed in terms of the pi as

W=X (2xl/k) | | =X (2xl/B)re,

so that combining this with the Jacobian, the thermal

(B6)
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equilibrium distribution for 2 is

2nl
P(rd) dni=exp [— (k"’% + -2-5—62) rk"] drid. (B7)

Therefore the fluctuations of 7,2 are
(nd)=[k2T /4xl(1+E22) ], (B8)
where the two-dimensional Debye length is defined by

N2 =«Tl/4xne. (B9)
The corresponding electric field fluctuations are
(| E? |)=4mxT/1(14+F2N), (B10)
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