CHAPTER

SIX

PERCOLATION AND
RANDOM BOUNDARIES

6.1. CLUSTERS AND PERCOLATION

In Chapter 5 we have mentioned a model of a ball lightning in which the
active matter distribution forms a fractal cluster. The fractal properties
of the matter distribution make the combination of a small weight
(almost the whole volume of the ball lightning is free of active matter)
and great strength (even though the active matter occupies a small
fraction of volume, it penetrates to all parts of the lightning volume)
possible. It is clear that a suitable fractal dimension of the cluster is not
sufficient to reach the required strength of the construction. For a given
fractal dimension, the matter would be concentrated in numerous
relatively small and weakly connected clumps. The strength of the whole
construction would be insufficient. Apart from the fractal dimension, the
degree of internal connection plays an important role. It would be too
restrictive to require that all particles of the active matter are in contact
with one another (this is how the connection is understood in topology):
it 1s admissible that there are a few pieces or clumps within a ball
lightning. A more realistic picture is one that requires that there are
connected parts whose sizes are of the order of the overall size of the ball
lightning. Now we can distract ourselves from the fact that a ball
lightning has a finite size and we consider the problem at scales much
smaller than the lightning size. This brings us to an idealized description
of the fractal cluster of active matter within a ball lightning: to ensure its
strength, connected components that stretch from infinity to infinity
must be present. Thus, we have approached an important concept of
modern mathematics — percolation.
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In our discussion, percolation appears to be connected to the model of
a ball lightning. Of course, this is not the most practical application of the
percolation theory. More important are the applications to the theory of
compositional materials which consist of a mixture of ingredients with
various properties. Consider the conductivity of a sample made of a
pressed mixture of pieces of conductors and insulators. Clearly, the
conductivity essentially depends very much on whether or not the
electric current can flow along the system of conducting pieces. This
phenomenon gives rise to the term ‘““percolation” applied in various areas
of science. Another important application of the percolation theory is in
cosmology where the percolation properties of matter distribution in the
universe are analyzed.

Mentioning the example of a composite material pressed from a metal
and a dielectric, we imply that we have a sufficiently big, homogeneous
piece in which the contents are oriented, on the average, isotropically and
placed randomly. In a general case, the percolation theory usually
considers the percolation properties of random sets in an infinite space
when probability distributions, which determine these sets, are homo-
geneous and isotropic.

Nowadays, acceptable conceptions of the properties of percolation
objects have been formed. In a popularized form, they are summarized
by Efros (1982). First, it seems that the possibility of percolation depends
only weakly on the shape and detailed structure of elementary objects
forming a percolating cluster (pieces of metal in the example above). This
hypothesis, known as the hypothesis of universality, is plausible as long
as the size of the percolating cluster is much larger than the size of the
individual pieces of metal. Next, it is clear that the percolation properties
essentially depend on whether the considered object is one-dimensional
or three-dimensional. In one-dimensional objects, percolation is practi-
cally impossible: any small particle of an ideal insulator disconnects the
one-dimensional electrical circuit. In two dimensions, percolation over
the metal phase implies impossibility of percolation over the insulator
phase and vice versa, provided that the considered system is statistically
isotropic. It is then natural to assume that in this case percolation is
possible over the phase which occupies more than half of the area. In
three dimensions, percolation can occur over both phases simul-
taneously. One can therefore expect that for small concentrations of the
metal phase percolation over this phase is impossible, for higher
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concentration percolation occurs over both phases, and for still higher
concentration of the metal phase percolation occurs over this phase
exclusively. When the statistical properties of both the metal and
dielectric phases depend identically on concentration, the thresholds for
percolation (i.e., the value of concentration C,, for which percolation
begins over the metal phase and the value C,for which percolation ceases
over the dielectric phase) are connected by an obvious relation

sz 1 _Cd'

Numerical simulation gives C, ~ 0.16. This important figure will be
frequently used below. Thus, as little as about twenty percent of the
conductivity admixture make a composite material conductive. When
the fraction of metal reaches approximately eighty percent, percolation
over the dielectric becomes impossible; it becomes isolated into
separated pieces.

The theory of percolation is now a vast field of mathematics and
physics where the results are based on rigorous theorems as well as on
numerical simulations and physical experiments. During the last thirty
years, the pioneering work of English physicist and engineer Brodbent
and mathematician Hammersley has given birth to an immense number
of papers. In order to give a more concrete idea of applications of these
results, we consider an example of the percolation properties of magnetic
field lines (Zeldovich, 1983).

Importance of magnetic lines, which are determined by the equation

dr = B(r)du« (1)

(where « is an arbitrary scalar parameter), has been revived in recent
decades, many years after their introduction by M. Faraday, mainly in
connection with the problem of controlled thermonuclear fusion and
problems of astrophysics, where the magnetic field is frozen into a
plasma. In this case the plasma distinguishes a natural reference frame in
three-dimensional space, comoving with the fluid, in which a (pseudo)
vector B is determined (in contrast to the electromagnetic field tensor F,

in empty Minkowski’s space where there is no such frame).
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Let us consider the topological properties of systems of magnetic lines.
One of the important questions is: can magnetic lines extend to infinity
in this or that direction? One can replace magnetic lines by narrow pipes
filled with a liquid and ask whether or not a given system of pipes can
transport the liquid to infinite distances. This percolational statement of
the problem is complementary to the analysis of linkages of magnetic
lines thoroughly developed by Moffatt and other authors (see Moffatt,
1969; Zeldovich et al., 1983; Ruzmaikin and Sokoloff, 1980).

Percolation along magnetic lines is interesting mainly because the
charged particles are spiralling along these lines. Evidently, the thermal
conductivity of fusion plasmas, as determined by diffusion of electrons,
depends on the properties of the magnetic lines and the surfaces around
which the lines are wound. In particular, Kadomtsev and Pogutse (1979)
consider a three-dimensional problem in which a weak random two-
dimensional magnetic field b = (b, b,, 0) is superimposed on a strong
uniform field B = (0, 0, B,) directed along the z-axis. Diffusion and heat
conduction are determined by the tangling of magnetic lines associated
with the presence of b. The two-dimensional field b can be expressed
through a scalar function a of two variables, i.e., the z-component of the
vector potential a = (0, 0, a):

da —aa
b,=—: b, = : 2
) 3 By . (2)

On the plane (x, y), the magnetic lines wound around the maxima in a
counter-clockwise direction and around the minima in a clockwise
direction.

When a is independent of both the time 7 and the z-coordinate, the
problem reduces to the percolation properties of a random function of

two variables.
Let us adopt the following normalization:

(@) =0; (a®)=1. (3)

Let us also consider the sufficiently smooth functions a, whose autocorre-
lation function is also sufficiently small at large distances. Using a
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spectral representation, this means that the Fourier transform of a has
random phases and amplitudes a, such that, e.g.,

k2
<ai>~exp<—;(—2), k> ko,

0

and (4)

k 2n
(a,f)~(—k—) , n>0, k<<k,.

0

It is natural to expect that the regions where a > ¢ (with & > 0), which
occupy less than half the total area, are isolated (islands) and there is no
percolation over them. One may also introduce the quantity /(¢) that
characterizes the average size of an island or the average length of the
isoline that surrounds an island.

.~ In a two-dimensional problem, when the plane is divided into regions
of two types, it 1s natural to assume that when the regions of one type
form isolated islands, the regions of the other type form a globally
connected ocean. Correspondingly, the conditions a<é¢ and £>0
determine a unified region along which percolation occurs.® The value
¢ = 0 1s critical with respect to the possibility of percolation.

Kadomtsev and Pogutse (1979) obtained an estimate of the function
[(¢) and suggested that the properly averaged value of /(¢) plays the role
of the effective free pathlength in the theory of diffusion and heat
conduction.

In plasma devices with strong longitudinal field B, = B,, there is no
reason to believe that the weak perturbations, b, are independent of z
and/or time. Let us consider an opposite case when (i) either the field B,
directed along z is absent or there is periodicity along the z-axis, with
period 2nR that corresponds to a torus of large radius R with the z-axis
chosen along the torus’ large circumference; (ii) the two-dimensional
field b is independent of both z and ¢; and (iii) the total field is strong and

* Some parts of the region where a < ¢ can form lakes isolated from the percolating ocean.
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charged particles move along the magnetic lines, i.e., the Larmor radius r
of the electrons’ spiral trajectories is neglected as well as the collisions
and other effects that can cause jumps of the electrons from one magnetic
line to another.

Due to this change of the magnetic field configuration, the solution of
the considered problem becomes quite different from that obtained by
Kadomtsev and Pogutse (1979): in a two-dimensional random field,
diffusion of electrons is impossible, i.e., diffusivity is zero. To express
this result in a constructive form, this means that the diffusion
approximation is applicable only in such large space-time scales where
the dependence on z and ¢ is essential. At smaller space-time scales, the
turbulent diffusion approximation is inapplicable.

This result is based on the fact that orbits of the electrons in the (x, y)
plane turn out to be closed. When the initial smooth distributions of the
electron number density # and the temperature 7 are given, the motion
along the closed orbits leads to nothing else but only averaging over the
orbit. In this approximation, the values averaged over the orbits, 7 and
T, remain always different for different orbits.

Another formulation of the problem considers a layer of finite
thickness, e.g., 0 <x<x, where the considered two-dimensional
random magnetic field is concentrated. The currents flowing along the z-
direction that produce the field b are absent on both sides of this layer.

Let us prescribe the value n, of the number density to the left of the
layer (x < 0) and another value 7, to the right (x > x;). The particle flux is

given by
4. = D(n, — ny)/xo, (5)

following the definition of coefficient of diffusion D. It is now clear that
with the growth of the layer thickness x, the fraction of orbits which are
not closed within the layer (i.e., between x = 0 and x = x;) decreases.
Therefore, the particle flux decreases more rapidly than x; ', either as
Xxo ™ with m> 1 or as exp (—kyx,). But this implies that there is no
definite value of D and in the limit of large Xx,, the effective value of
D tends to zero.

A finite (non-vanishing) value of D can be obtained only when the
Larmor radius r is finite.
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In a similar problem of a two-dimensional steady vortex motion of
incompressible fluid, the turbulent diffusivity is non-vanishing only
when the molecular diffusivity k is non-vanishing (Zeldovich, 1982). In
this case D is proportional to a certain fractional power of k.

In this respect, a two-dimensional steady motion is similar to a one-
dimensional unsteady motion (Zeldovich, 1982). The analogous corre-
spondence with the patterns of caustic lines (or surfaces) in problems
with equal numbers of variables (e.g., either x and ¢ or x and y) was noted
by Arnold (1982).

In similar completely three-dimensional stationary problems as well as
in two-dimensional non-stationary problems (three variables, either x, y,
zor x, y, t), both the electron diffusivity D along the magnetic lines and
the turbulent diffusivity D, of hydrodynamic motion differ from zero

even in the limits r — 0 and k — 0.
To verify this, consider, e.g., a non-stationary two-dimensional per-

colation problem for a system of magnetic lines with arbitrary unsmooth
dependence of the magnetic field on time. Here a particle moves along a
closed field line around some center during the time interval 7, and
during this period its coordinates differ from their initial values by at
most the orbit radius. In the following time interval 7,, after the magnetic
field has abruptly changed, the particle can jump to another center and
move along a new trajectory which is independent of the previous one.

Evidently, after a few such steps, the displacement grows with the
square root of time, that is, according to the typical diffusive law.

Let us consider briefly the percolation properties of a two-dimensional
field consisting of two components, a steady uniform field and a
randomly varying field. The weak random field bends the field lines of
the uniform field only slightly. It is clear that the only physical effect is
the following. In some places, where the random field is sufficiently
strong, local catastrophes lead to the isolation of islands of closed
streamlines associated with the local maxima of @ accompanied by saddle
points.

More interesting is the opposite case when a very weak uniform steady
field is imposed on a given random field. It can be shown that the
magnetic flux corresponding to the uniform field concentrates into
narrow ropes (channels) along which occurs percolation in the direction
of the uniform field, even though the ropes are tangled. Within the ropes
the field strength is of the order of the r.m.s. chaotic field; weakness of the
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uniform field leads to the narrowness of the ropes.

Note one more particular case. Consider a uniform field in an ideally
conducting medium. The random motion of the medium amplifies the
field. The flux is conserved because under chaotic tangling the mean
cosine of the angle between the current field direction and the original
one tends to zero. The percolation remains to be ideal until the field is
frozen into the medium and the field lines do not reconnect. The pattern
of narrow percolation that channels here arises only after a sufficient
time has elapsed from the beginning of the motion.

To conclude this discussion of percolation along the magnetic lines of a
two-dimensional field, we should emphasize that although this picture
seems to be quite natural, it implicitly relies on a non-trivial restriction
on the magnetic field configuration. This restriction can be conveniently
expressed in terms of the correlation properties of electric currents that
produce the considered magnetic fields; recall that in the two-dimen-
sional case, the current j is directed along the z-axis and is related to the
potential a through

Aa =j.

It can be shown (Zeldovich, 1983) that the discussion above implicitly
assumes that the electric currents are positively correlated, i.e.,

(J(x)j(x +1))=0. (6)

In particular, the discussion above is applicable when the considered
magnetic field is produced by currents that are directed completely at
random (are uncorrelated). However, the situation can be very different
when the currents are screened and thus compensated. Percolation in a
more complicated system is considered in the following seéction where the
cosmological percolation problem serves as an example.

6.2. INTERMITTENCY AND PERCOLATION

The picture described in the previous section reflects only one aspect of
percolation even though it is very important. In order to reveal another
aspect, let us turn to matter percolation in the universe. Presently, the
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average matter density in the universe is much below the density of any
cosmic body, from planets to galaxies and galaxy clusters. This implies
that matter is distributed uniformly only over a large scale while at
smaller scales the distribution is highly non-uniform: vast voids coexist
with compact clumps of matter. The volume fraction occupied by these
clumps (specifically, the galaxy clusters) is considerably smaller than the
constant of percolation, 0.16. Thus, the results of Section 6.1 seem to
imply that galaxy clusters should form isolated islands separated by
voids. Such distribution of matter in the universe coincides with the
clustering model which assumes that the observed structure of the
universe is the result of progressive hierarchical clustering of matter at
much larger scales. It is noticeable that a careful analysis of observations
definitely rejects this model (see the review of Zeldovich and Shandarin,
1982) and it can be consistent with observations only with a very low pro-
bability. In other words, the galaxy clusters cannot be described as balls
widely scattered according to the Poisson law. In order to reach a correct,
rather than apparent, conclusion about matter distribution in the
universe, one should remember (Zeldovich, 1983) that at the earlier
stages of evolution of the expanding universe matter distribution was
quite different: almost all the matter was in the state of high density,
exceeding the average density of the present universe. At these epochs,
the matter that now forms clusters of galaxies occupied a major fraction
of the universe volume. The results of Section 6.1 then imply that
percolation at that time must proceed along these dense regions while the
future voids must be isolated. The present low-density state of the
universe is produced from a dense state of the early universe due to
expansion which can be considered here as continuous mapping.
Obviously, a continuous mapping cannot affect the percolation proper-
ties of the objects, i.e., even now the percolation must occur along the
system of galaxy clusters.

Thus, we have reached a paradoxial result: the concepts of percolation
discussed in Section 6.1 seem to imply that both clusters and voids must
be isolated in the present universe.

The paradox is solved as follows. It seems plausible that matter
inhomogeneities in the early universe are approximately spherical in
shape and the percolating structure of the dense regions is formed by
contacts of these spherical regions. The situation is quite different at the
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present epoch: during the expansion of the universe, the gravitational
instability, to the first approximation, compresses the matter inhomo-
geneities along one direction only while expansion still can occur along
the remaining two directions (Zeldovich, 1970). As a result, matter is
concentrated within flat, thin formations — like pancakes. Thus, the
percolation theory for the present universe should incorporate an
additional characteristic parameter, a small ratio of the thickness of the
pancake to its diameter. The value of this parameter is considerably
smaller than the value 0.16 of the three-dimensional percolation para-
meter; percolation properties of the matter distribution are determined
by the former parameter. Gravitational instability leads to the pron-
ounced cellular structure of the matter distribution in which large voids
are separated by very thin walls that contain the principal part of the total
mass.

We see that the intermittency in the distribution of a random field can
qualitatively modify the percolation properties. Percolation properties of
a system of thin, long strings or plates can considerably differ from those
of a system with more or less spherical bodies considered in Section 6.1.
This kind of percolation is very important for many applications. For
example, the implantation of flat flakes of suitable impurity into a
polymer can lead to a considerable slowing down of its deterioration with
time. Modern advances in the theory of percolation in intermittent
media are reviewed by Menshikov ef al. (1986). The authors are much
indebted to S.A. Molchanov for numerous discussions of the percolation
theory reflected in this chapter.

In three-dimensional intermittent systems, percolation seems to be
associated with the presence of a rather long and thin structure. For
moderate ratios of the impurity bodies or for low concentrations, their
role seems to be negligible. An implicit indication of this is a low value of
the percolation threshold even for spherical particles, C,, ~ 0.16.

The situation is different in two dimensions where percolation is not
connected with any small parameters. In particular, Menshikov et al.
(1986) proposed the following picture of two-dimensional intermittent
percolation: for small concentrations of the conductor phase, percolation
cannot occur along it, for its large concentration stops percolation over
the insulator phase. However, unlike non-intermittent distributions, for
intermittent distributions transition between these two regimes occurs
before the conductor phase reaches half the volume. Around the state



PERCOLATION AND RANDOM BOUNDARIES 149

with equal concentrations of both phases, there is a finite interval of
concentrations for which percolation does not occur along either phase.
The structure in these cases is similar to a set of nested alternating closed
layers of conductor and insulator. What occurs is a local spontaneous
violation of translational symmetry and the matter distribution re-
sembles a polycrystal whose individual crystals consist of such nested
layers. An isolated set of nested layers has a distinguished center. A
nested-layer monocrystal has finite size but a large number of such
monocrystals fill the pores of a larger nested-layer monocrystal. The
resulting hierarchy of nested-layer monocrystals is translationally invar-
iant (see Fig. 6.1). In finite bodies, such a structure leads to irregular
changes of conductive to insulating properties under weak changes of size
of samples.

Fig. 6.1. Qualitative scheme of nested structure for which percolation is impossible over
either phase in two dimensions.
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These ideas can be expressed also in another way. For intermittent
media, the standard ergodic concepts are typically violated. In the
considered case, intermittency leads to ambiguity of the notion ““percola-
tion threshold”. This threshold can be understood as a critical value of
the concentration at which exists an infinite cluster of a given phase (Cy),
or as the value of concentration at which the mathematical expectation
value of the cluster size becomes infinite (Cy"). One can also introduce
an intermediate percolation threshold, C+? for which the p-th moment of
the cluster size becomes infinite. Finally, one more quantitative charac-
teristic of the percolation can be introduced, that is the value of the
concentration C; for which

lim P(/) =0,

-

where P(/) is the probability of percolation through a region of size /.
Clearly,

C=..sCysCP. .25 s0. (7)

These relations among the differently defined percolation thresholds can
be compared with the relations among the growth rates of the magnetic
field moments in a typical realization in a random medium (see Chapter
9).

Differences in the various thresholds can be considered as a criterion
of the intermittent character of percolation. Modern theory has not as yet
studied relations between differently defined thresholds in full detail.
More or less understood is not the problem of percolation on a
continuous plane but the more artificial problem of percolation on a
metal lattice with randomly scattered inclusions of insulator. Kesten
(1982) has proved that if these inclusions are uncorrelated, then all kinds
of thresholds exactly coincide. Menshikov et al. (1986) conjectured that
for Poisson random fields, the percolation thresholds differ due to well
pronounced correlations. For Gaussian fields, intermittent percolation,
i.e., strict inequalities in (7), seems to be impossible, at least when the
field correlation function is non-negative.
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In its initial formulation, the percolation theory considers percolation
along purely random regions. This theory is related to another realm of
problems in which the presence of some degree of regularity is essential,
e.g., in the case of regions with regular but randomly deformed
boundaries. Such regions are exemplified by deformed or imperfect
resonators. The theory of such resonators has some common aspects with
the theory of percolation, and we shall briefly consider them in the
following section (Zeldovich and Sokoloft, 1983).

6.3. EIGEN-OSCILLATIONS OF A REGION WITH RANDOM
BOUNDARY

Modern mathematical physics considers the analysis of generic problems
(see, e.g., Arnold, 1983) very important. These problems often drastically
differ from exactly solvable problems where solvability is associated with
a high degree of symmetry. One particular case of a generic problem is the
problem with statistically (randomly) determined parameters.

Here we consider the question of eigen-oscillations of a region with
randomly determined boundary, i.e., the question of eigenfunctions of
the problem

- 2 s
Au - —).. u, ulay(w) = O ’

where 44 (w) is the random boundary and w is the random parameter
(Babich and Buldyrev, 1972).

First consider a one-dimensional problem where the random region is
a line segment [a(w), b(w)]. Although the solutions to this problem are
random functions, the n-th eigenfunction has, like the deterministic one,
n — 1 zeros in the interval (a, b) so that the distance between the zeros is
of the order of (b — a)/n. In the one-dimensional case, the requirement
of generic properties does not introduce novel properties into the
structure of the zeros of an eigenfunction. The situation is more
complicated in multi-dimensional cases.

Consider now a two-dimensional region & (w) whose boundary is close
to a regular curve of diameter 2R, e.g., to a circle of radius R or a square
of side R. This regular curve is disturbed by a random function which is
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locally similar to the Wiener process, i.e., A& ~ (Al)"/?, where AL is the
deviation from the unperturbed curve and A/ is the coordinate measured
along the regular curve.

The eigenfunctions have zero lines within the region &'(w), which are
analogous to the zeros of one-dimensional eigenfunctions. The zero line
patterns can be used for topological classification of the eigenfunctions.
Excitation of the next higher oscillation mode adds an extra zero line.
Due to the random nature of the boundary, this new line with probability
unity does not intersect other zero lines. Indeed, level lines u = 0 of a
random function u(r) have no singular points. The intersection of two
zero-level contour lines is not a generic event in the random media, i.e.,
in the space of the surfaces the measure corresponding to this event is
zero. A formal proof of this fact can be found in Brining (1978).
Therefore, n zero lines divide the region &(w) into n + 1 parts. These
zero lines must either be close to or intersect the region boundary. Of
course, in contrast to the one-dimensional case, the number of zero lines
now cannot completely describe an eigenfunction; an accurate classifica-
tion should be taken into account as well as the topology of the network of
zero lines.

We should stress that the absence of any symmetry in the shape of the
considered region implies that the distance between zero lines is of the
order of R/n, i.e., zero lines can approach each other closely only with a
small probability or for large n.

When there is some symmetry, the set of zero lines can have a more
complicated structure. Due to symmetry, zero lines can have numerous
mutual intersections so that m + n zero lines parallel to the sides of a
regular square divide the square into (m + 1) (n + 1) regions (see
Fig. 6.2). R. Courant (see Hilbert and Courant, 1981) has obtained an
estimate of the number of such regions as a function of the eigenfunc-
tion’s order. He has also noted that in degenerate situations, including
the problem of oscillations in a square, only a few very symmetric
eigenfunctions provide that large number, (m + 1) (n + 1), of regions
separated by zero lines. A linear combination of eigenfunctions with
generic coefficients behaves similarly to an eigenfunction of a statistical
problem. The intersection points of zero lines are destroyed while the
zero lines become closed. However, in this case the intersections of zero
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Fig. 6.2. Schematic structure of zero lines of eigenfunctions in problems (a)with
symmetry; (b) with weak deviation of symmetry due to boundary perturbation; (c) with
strongly violated symmetry.

lines are destroyed due to violation of the symmetry by the coefficients of
the linear combination of symmetric eigenfunctions, rather than due to
violation of the region’s symmetry.

There exists a class of perturbations of a symmetric region that leads
to, in a certain sense, weak perturbation of the pattern of zero lines even
though the intersection points are destroyed (see, e.g., Babich and
Buldyrev, 1972; Lazutkin, 1979). It turns out that when a circle is
perturbed in such a way that the curve remains convex, the distance
between neighbouring closed zero lines is exponentially small in the
perturbation, rather than of the order of R/n. In this case, perturbation of
the boundary is too weak to lead to a considerable change of the zero lines
pattern.

One can also analyze the opposite case of very strong perturbations
which drastically change the picture. This change is associated with the
fact that, apart from eigen-oscillations localized far from the boundary,
which were considered above, there arise in a region with random
boundary special boundary-layer eigen-oscillations of the type of Echo
Wall.® Their existence is associated with the irregularities of the
boundary and interference of the eigenwaves at these irregularities. Such
® The Echo Wall, known as the Whispering Galleries in Russian, a masterpiece of Chinese

architecture in Beijing, more than adequately describes the phenomenon. A whispering

sound propagates very far along these walls, to distances where one cannot normally hear
a loud voice originating from the same location (Fig. 6.3).
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5

Fig. 6.3. The Echo Wall in Beijing always attract tourists (the illustration from Peng Zhen,
1986).

oscillations decay exponentially with distance from the boundary and the
question of the structure of zero lines is of minor importance for them.
However, if the surface diameter ~2R is much greater than the
perturbation amplitude and, in addition, the perturbed boundary length
does not differ by an order of magnitude from 2R, then “whispering” per-
turbations are negligibly deep within the considered region. The situation
is different in three (and more) dimensions. In such a case, the boundary
area (~R?) grows faster than its diameter and the large area of the
boundary leads to the plausible appearance of high peaks of height ~R
even if the probability of such a peak is low. Therefore, in the three-di-
mensional case, the dependence required for the damping of boundary-
layer perturbations is A& ~ (A/)*2.

Let us now discuss how these problems are connected with the
percolation theory. To do this, one should consider a double iimit case
when both the region size and order of the eigenfunction simultaneously
tend to infinity so that the characteristic value of the wave number
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constant. In this case, the problem reduces to that of a random function ¢
with zero mean value whose spectrum is concentrated in the “sphere”
|K| = K, (see Section 6.1).

Now we are able to formulate the percolation problem, i.e., the
question whether or not it is possible to pass from infinity to infinity, e.g.,
along the regions where the eigenfunction ¢ is positive. In three
dimensions, the possibility of percolation is typical. For a very large ¢,
exceeding some critical value ¢,, percolation is impossible along the
region with ¢ > ¢; for ¢, > ¢ > —¢, percolation occurs over both regions
with ¢ > e and ¢ < ¢; for smaller ¢ percolation along the region with ¢ < ¢
is impossible. Roughly, the value of ¢, is of the order of (¢*)"/? which
means that for a Gaussian random variable the region with ¢ > g,
occupies 1/6 of the total volume. This problem is much more compli-
cated in two dimensions where simultaneous percolation along both
phases is impossible. In the two-dimensional case, the simplest possi-
bility is the following. For any ¢ > 0 the lines ¢ = ¢and ¢ = —e¢ delineate
a system of islands with positive and negative values of ¢. There can exist
a system of lakes with ¢ of opposite sign within any island. When ¢ tends
to zero, the picture remains qualitatively the same: the sea between the
islands reduces to a system of channels but the islands remain isolated.
However, one can envisage another intermittent picture: at a certain
value of ¢ a “phase transition” occurs and the system of islands and
channels is replaced by a nested-layer structure with islands of smaller
size nested in larger islands with opposite sign of ¢ so that the whole is-
land hierarchy is infinite.

6.4. THE ZEROS OF EIGENFUNCTIONS OF FREE AND
FORCED OSCILLATIONS

The question of the structure of the manifold in which the oscillation
amplitude in a resonator vanishes is also close to the percolation
problem. In the simplest case, for a three-dimensional resonator this
manifold consists of surfaces. However, in the generic case the oscillation
amplitude vanishes at one-dimensional manifold lines which are closed
or otherwise begin and end at the region boundary. After traversing along
a closed zero-amplitude line, the oscillation phase changes by +2x7.
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The appearance of topological singularities of filamentary structure
whose traversal changes the phase by +2x is typical of many physical
problems. Polyakov (1975) has noticed such singularities in the theory of
spontaneous symmetry breaking. Consider a complex scalar field ¢. For
the fields that appear in the cosmological inflation theory, the vacuum
corresponds to ¥ =y, # 0. If the phase changes by * 2z after traversing
along a closed contour, this contour must enclose a line (string) at which
¢ = 0. Similar ideas can be developed for auto-oscillatory systems.
Aldushin et al. (1980) consider the surface of a flame in the case where its
propagation at constant speed is unstable, while nonlinear effects
stabilize oscillations of the flame front at a certain amplitude and phase
and the transverse dissipation equalizes the phase over the whole flame
surface. If the initial conditions are such that at a certain contour on the
flame surface the phase changes by + 2x, then this contour must enclose
a point with a vanishing oscillation amplitude. This singularity occurs at
a point rather than a line because the flame surface is two-dimensional.
Singular lines are typical of three-dimensional auto-oscillatory systems.
Similar problems appear in the theory of chemical auto-oscillatory
systems and in the theory of nearly parallel rays (Berry and Nye, 1974;
Ivanitsky et al., 1978; Baranova and B. Zeldovich, 1981).

Similar lines also arise in the simple case of a linear oscillatory system
with periodic external forcing or dissipation.

To verify this, recall that the equation of oscillations supplemented by
the boundary condition ¥ = 0 at a closed surface represents a self-adjoint
problem for the equation Au = —w?u. Therefore, its solutions are real.
Even if some eigenfunctions u, are complex, the conjugated functions #,
are also solutions corresponding to the same eigenvalue w; these pairs of
eigenfunctions can be represented as pairs of real functions whose zeros
lie on a surface. A similar result applies to the case of phased forcing, i.e.,
when the condition u(s, 1) = R(s) exp (iwt) with real R applies to some
part of the boundary surface.

Let us now turn to the case where zero surfaces are replaced by zero
lines. The case of forced oscillations with unphased excitation,

R,
R(s) = R,(s) + iR,(s), E— # const. (8)

2
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1s simple and clear. Indeed, due to the linearity of the problem solutions
have the form

u(t, r) = exp (iwt) [p,(r) + ip,(r)],

where p, and p, correspond to R, and R,, respectively. Physical solution is
given by the real part of this expression, Reu = p, cos wt + p, sin wt, and
the condition ¥ = 0 leads now to two conditions, p, = 0 and p, = 0.

Thus, the zero manifolds are now intersections of two surfaces, i.e., the
lines. Note that for R, oc R, we have p, oc p, and Reu o« cos (wt + ¢)

with ¢ constant. Thus, in this case the zero manifold is a surface, and it
reduces to a line only for R,/R, # const.

The situation is the same for oscillatory systems with damping or
radiation. The oscillations are now described by the equation u, = Lu
where L is the differential operator. Consider a boundary-value problem
for this equation which is not self-adjoint, e.g., due to specific boundary
conditions. Evidently, in a generic case the eigenfunctions are complex-
valued. Therefore, the amplitude of oscillations turns to zero on a line or,
in the case of an arbitrary number of dimensions, on a manifold with co-
dimension 2 (co-dimension is the difference between dimensions of the
space and of the embedded surface).

V.I. Arnold has drawn our attention to the fact that the problem of zero
manifolds of eigen-oscillations was discussed by mathematicians, in
particular, problems like the oscillations of two-dimensional surfaces in
four-dimensional space. However, this direction has not been developed
too far. The reason for this is probably associated with the fact that in
classical problems of mathematical physics, even in the presence of non-
self-adjoint operators, the situation usually is not generic and complex-
valued frequencies correspond to real-valued eigenfunctions.

Let us illustrate the situation with examples. Consider dissipation
described by the term au,. Then the boundary value problem for the

oscillations is formulated as

0

ll

u
(—w? + iaw)u = Au, Flb
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and, for constant g, the substitution > = @’ — iaw reduces the problem
to one of undamped oscillations. Based on the linearized Navier-Stokes
equation, let us now describe dissipation through the term v(Au),. Then

the corresponding boundary-value problem is given by
. u
—w’u = Au + iwv Au; F|b=0.

For constant v the substitution A*> = w?(1 + iwv)~ ' again reduces the
problem to a dissipationless one. Finally, consider a parabolic equation
u, = (v +iQ)Au. For u oc exp(yt), the substitution 1 = y/(v + iQ) again
makes the problem self-adjoint in a homogeneous and isotropic case. In
these cases the complex-valued solutions arise only when, e.g., the
dissipation is inhomogeneous [cf. condition R,/R, # const. in (8)]. The

zero lines also arise when the excited waves leave the considered region
through a hole.
Consider now another case of waves in an infinite medium:

u(t,r) = r ' exp(iowt — ikr) .

Due to planar symmetry, this complex solution differs from zero
everywhere. However, for the superposition of a spherically symmetric
spreading wave and a travelling planar wave (which introduces a
distinguished direction at infinity):

u(t,r) = [Ar ' exp(—ikr) + Bexp(ikx)]exp(iwt),

we see that the amplitude is zero when the two conditions are fulfilled:
first, r=ry=A/B and second, on the sphere |r| = r, the phases
r—x = 2nn/kwithn =0, 1, 2, . .. coincide up to 27z. The zero lines are
of a few (with the number dependent on the value of kr,) parallels on the
spheres determined by the wave front. This group of problems is
important in the studies of weakly divergent light beams (Baranova and
Zeldovich, 1986).

All these results rely heavily on the monochromatic nature of oscilla-
tions. Qualitatively new physical effects can be associated with quasi-
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monochromatic oscillations. An important example is provided by the
Langmuir plasma oscillations whose wavelength is much greater than the
Debye wavelength. As a result, there arises a natural distinction between
fast and slow oscillations and the physical picture may reduce to a slow
drift of the zero lines of fast oscillations.

6.5. THE MATHEMATICAL LANGUAGE OF
THE PERCOLATION THEORY

Traditionally, mathematics is considered as a science of quantitative
relations and spatial patterns. These two realms of mathematics were not
always in a harmonious combination and relation. In the second half of
the 19th century, it seemed that The Quantity had won this competition.
Treatises on geometry had got rid of drawings and figures, geometrical
problems had been translated into the language of equations and
methods of mathematical physics had merged with the theory of
differential equations. The Form won back in early 20th century when to-
pology appeared. In this non-quantitative science, even an invariant is
not necessarily a number. The modern development of mathematics can
be compared to a symphony with two dominating colliding themes. One
theme is the quantitative mathematics which becomes more and more
computerized, pays less attention to the rigorousness of proofs and
approaches further the applied sciences and engineering. Another theme
is the non-quantitative mathematics — geometry, topology, etc. This
branch of mathematics has found many unexpected common points with
the humanities and arts. It is still developing adequate language of self-
expression and is, therefore, much concerned with the rigorousness of its
proofs. However, this branch also makes its first steps toward computers,
declaring that the numerical nature of computer science represents only
the embryonic state of development of this science. Applications of non-
quantitative mathematics to physics and other natural sciences are still
not numerous even though their number grows steadily. In this respect,
the mathematical method of percolation theory is unique, being almost
completely based on the achievements of non-quantitative mathematics.
Unfortunately, it is a tradition of this field of thought to express the
results in a very abstract way paying much attention to rigorous proofs.
As a result, books on percolation theory written by mathematicians often
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Fig. 6.4. In the knots problem, the knots conduct electric current with probability p (plus
signs) and are insulating with probability ¢ = 1 — p (minus signs).

can only be understood by their authors. Percolation mathematicians are
more than suspicious about the results obtained with the help of
computers and persistently argue that simple and clear results obtained
in percolation theory by physicists may prove to be inaccurate, having
neglected a whole world of complex percolation phenomena like, e.g.,
intermittency. Hopefully, a synthesis of physical and mathematical
approaches to percolation theory will be reached in the foreseeable
future. But now we can only reflect this complicated state of lack of
mutual understanding and give only a hint on specific methods of
percolation theory.

The first step that mathematicians take in the studies of percolation is
the discretization of space. Instead of percolation along a region in which
a random field exceeds a given value, one considers percolation along a
regular lattice with certain links removed with a given probability. It
turns out that the result strongly depends on the manner of discretiza-
tion, i.e., on whether one considers a regular square, triangular, hexag-
onal or more complicated lattices. The links also can be removed in
different ways. For example, one can leave a chain crossing unaffected
with probability p and remove it with probability ¢ =1 — p. This
discretized problem is called the knot problem (see Fig. 6.4). Otherwise,
one can leave a link unaffected with probability p and remove it with
probability ¢ = 1 — p (Fig. 6.5). This is the link problem. These two
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Fig. 6.5. In the links problem, the square lattice (solid lines) and the dual one (dashed lines)
are shifted by a half-period with respect to each other along both axes.

kinds of formulation are seemingly analogous and one would expect that
percolation thresholds (i.e., those critical values p,, that correspond to

marginal percolation) are close to each other. However, the actual link
problem possesses higher symmetry than the knot problem. It turns out
that the destructive role of a removed crossing is more pronounced than
that of a removed link. To verify this, one should formulate the link
problem in a symmetric form. This is achieved by the construction of the
so-called dual lattice (Fig. 6.6) which is composed of connections
between the cell centers of the initial lattice. A crossing of the dual lattice
1s considered present (switched on) when it crosses a removed crossing of
the initial lattice and vice versa. It can be seen easily that if percolation
occurs from the left to the right along the switched-on links of the initial
lattice, then removed links of the dual lattice are percolating from above
to below and vice versa. The absence of percolation along the switched-
on links of the initial lattice implies percolation along the removed links
of the dual one. Unfortunately, it is very difficult to turn this intuitive
knowledge into a rigorously proved result (see Kesten, 1986). The
existence of such symmetry implies that percolation along the switched-
on links is immediately followed by percolation along the removed links
when the critical value of probability is passed (i.e., the intermittent
percolation is impossible). Since the properties of the initial and dual
lattices are symmetric, this means that
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Fig. 6.6. A dual lattice composed of connections between the cell centers of quadratic
lattice.

Pe=05.

There is no such symmetry for the knot problem and a similar procedure
brings us to a dual lattice whose percolation properties differ from those
of the initial one. For this reason the percolation threshold exceeds one
half in the knot problem. Numerical experiments give the value

Py =159 .

Those cases where percolation thresholds can be estimated at the
mathematical level of rigor, without the aid of computers, are also based
on symmetry arguments, even though they are much more complicated
and subtle than in the problem considered above. Sometimes the
problem can be reduced to some equations. For instance, symmetry
arguments lead to the conclusion (see Efros, 1982, pp. 171-172) that the
percolation thresholds for the link problem on a triangular lattice obeys
the equation

pcr3_3pcr+ 1 =O'

Verification of the fact that this equation has only one root
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2 sl -
= 2sin—
pcr 1 18

belonging to the interval 0 < P,, < 1 or an approximate estimation of this
root is a problem of quantitative mathematics, and the estimation can be
obtained easily with the help of a computer. However, these compu-
tational problems are incomparably easier than those that arise in an
attempt at direct numerical estimation of the percolation threshold.



