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Abstracts:

For beginners:This review tries to explainpercolationthroughtheclusterproperties;it canalsobeusedasan introduction to critical phenomena
at other phasetransitionsfor readersnot familiar with scaling theory. In percolationeachsite of aperiodic lattice is randomlyoccupied with
probabilityp or emptywith probability I — p. An s-clusteris agroupof s occupiedsites connectedby nearest-neighbordistances;the numberof
emptynearestneighborsof clustersites is theperimeter t. For p abovep~alsooneinfinite clusterpercolates~through thelattice. How do the
propertiesof s-clustersdependon s, andhowdo they feel theinfluenceof thephasetransitionat p =

Theanswersto thesequestionsaregivenby variousmethods(in particularcomputersimulations)andareinterpretedby theso-calledscaling
theoryof phasetransitions.Theresultspresentedheresuggestaqualitativedifferenceof clusterstructuresabo~’eandbelowpç: Abovep~some
clusterpropertiessuggesttheexistenceof aclustersurfacevarying as 5213 in threedimensions,butbelowPc these“surface”contributionsare
proportionalto s. We suggestthereforethat very large clustersabovePc (but not at andbelowPc) behavelike large clustersof Swisscheese:
Inspiteof many internalholestheoverallclustershapeis roughlyspherical,similar to raindrops.
Forexperts: Scalingtheorysuggestsfor largeclustersnearthepercolationthresholdp~that theaverageclusternumbersn, vary ass~f(z),with
z (p — p~)s”.Analogouslytheaverageclusterperimeteris t~= s (I — p)/p+ s’ ifi

1(z), theaverageclusterradiusR, variesass~’R1(z),and
thedensityprofile D,(r), which dependsalsoon thedistancer from theclustercenter,variesass~ D1(rs°~,z). Theseassumptionsrelatethe
sevencritical exponentsa, ~, y, ~, v, a-, r in d dimensionsthroughthe well-known five scaling laws 2—a= y + 2~= $5 + $ = dv = j3 + I/cr =

(r — l)/o~leavingonly two exponentsasindependentvariablesto be fitted by “experiment”and not predictedby scalingtheory.For thelattice
“animals”. i.e. the numberg~,of geometricallydifferent clusterconfigurations,a modified scaling assumptiOnis derived: g,~s~t’/(s+ t)’~ ~
s’~

2-f(z)with z ~ (a~— t/s)s” anda~=(I — pj/p~.All theseexpressionsarevariantsof thegeneralscalingideatorsecond-orderphasetransitions
thata functiong(x,y) of two criticalvariablestakesthehomogeneousform xcG(x/yc~)nearthecriticalpoint,with two freeexponentsb andc anda
scalingfunction G of asinglevariable.

Theseassumptions,which may be regardedas generalizationsof the Fisher dropletmodel, aretested“experimentally” by Monte Carlo
simulation,seriesexpansion,renormalizationgrouptechnique,andexactinequalities.In particular,detailedMonteCarloevidenceof Hoshenet
a!. andLeathandReich is presentedfor thescalingof clusternumbersin two andthreedimensions.If theclustersizes goesto infinity atfixed
concentrationp, not necessarilyclose to p~,threeadditionalexponents~, 0, p aredefinedby: clusternumbers~sexp(—const. sC) andcluster
radii ~s’. Theseexponentsaredifferenton both sidesof thephasetransition;for example~(p<pa) = 1 and ~ >pc) = 1— lid was foundfrom
inequalities,seriesandMonte Carlodata. Thebehaviorof 0 andof p(p <pa) remainsto beexplainedby scalingtheory.

This article doesnot cover experimentalapplications,correlationfunctions and “classical” (mean field, Bethe lattice, effective medium)
theories.For thereaderto whom this abstractis too short and thewholearticle is too long we recommendsections1 and 3.

1. Introduction

1.1. What is percolation?

What is percolation?Figure 1 gives a first answer: Percolationis a very fashionablefield. The
numberof paperspublishedeachyear hasgone up by a factorof 10 in ten years,due in part to the
increasedinterest in disorderedsystemsgenerally.Thegreaterpart of thepronouncedpeakin fig. I
for the percolationpublication rate could not be coveredin the earlier reviews of Shanteand
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Fig. 1. Variationwith time of thenumberof articlespublishedeachyearwhich carrytheword peràolation,percolatingetc. in thetitle. Tabulated
from the PermutermSubject Index of the ScienceCitation Index and the Weekly Subject Index of CurrentContents,Institute of Scientific
Information, Philadelphia,PA, USA. Thecritical exponentdescribingthis curvehasnot yet beendetermined.
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Kirkpatrick [1],Essam[2],andKirkpatrick [3].Among shorterreviewswritten sincethenwemention
a moremathematicalpresentation[4],a simple descriptionof applications[51,anda lecturemainly on
randomresistornetworks[6].Kirkpatrick [7] recentlygavea ratherdetailedreview togetherwith new
numericaldata. About simultaneouslywith the presentreview other reviews are beingpreparedby
Essam[8] andby PfeutyandGuyon[9],thelatteremphasizingapplications,whicharelargely ignored
in thepresentarticle.

Thesereviews usuallyemphasizethe “bulk” behaviorof the percolationsystemas a whole. The
presentarticle reviews the scalingtheory of percolationclusters,i.e. it concentrateson the often
neglectedquestionof how these“bulk” propertiescanbe explainedby clusters,andhow the cluster
propertiesdependon theclustersize.Takentogetherwith refs. [7—9]the readerwill, we hope,get a
balancedview of percolation.(Our list of referencesis an incompleteand subjectiveselectionof
percolationpapers.)Instead,if the readerdoesnot havethe time to readthe presentarticle fully we
recommendthat he restrictshimself to our long introductionand to section 3 only. Then he is
informed on thosecluster propertieswhich at presentseemno more controversial.De Gennes’s
review [5] is suggestedfor an elementaryintroductioninto percolationtheoryand its applications.

What else is percolation?This review tries to showthat, besidesbeingfashionable,percolationis
alsoa very simple problem.It is easilydefined(seebelow), and themethodsof numericalsolutionare
alsoeasyto understandin principle. In this sensethephasetransitionbehaviorof percolation,i.e. the
“scaling” properties,canbe usedasanintroductionto morecomplicatedphasetransitionsandcritical
phenomena[10,11]. In order to understandpercolationit is not necessaryto know what propertiesa
spin hasor what a free energyis. In short,onedoesnot haveto study physicsin order to understand
what is going on in this review. Basically,only the conceptof probability andthe purely geometrical
counting of “cluster” configurationsis necessary;and usually we do this here on two-dimensional
lattices like large chessboards.The most complicatedmathematicalmethodsusedhere (only sel-
domly) are Taylor expansions,the definition of the Gammafunction 1’(x) = ~ y~~’ e~dy for real
argumentx, and the relatedknowledgeof fff exp(—y2)dy = V~r.In fact, a simple percolationgame,
which can be finished during one lecture, has been used repeatedlyto give studentsan active
experienceof what a critical exponentand a Monte Carlo experimentare [12].Of course, not
everythingconnectedwith percolationis simple: So far none of the critical exponentslike 13 etc.,
which we will discusslater attheendof this introduction,hasbeencalculatedrigorouslyandexactly
for two or threedimensions,althoughfor the two-dimensionalIsing model of magnetismsuchexact
exponentsare known since many years [10, 11]. Our review here will simply try to avoid the
complicatedproblemsandconcentrateon thesimpler concepts.

Whatis thedefinition of percolation?Imaginea very large quadraticlattice like a hugechessboard.
Assumethat every single squareon this lattice can be in either one of two states,which we call
“occupied” and “empty”. Moreover, each square is occupied or empty entirely randomly, in-
dependentof whetherits neighborsareoccupiedor empty. Thus thewhole problemis defined,for a
givenlattice type,by a singleparameterp, wherep is theprobability (the samefor eachsquare)to be
occupied.Fig. 2 showsan examplehow a 20 by 20 chessboardis slowly filled up from p = 0.1 to
p = 0.9. If our lattice is not a chessboard(squarelattice) we call its units the lattice sites; theyare

eitheroccupiedor empty.In thetriangularlattice,for example,theseUnits arethe
dotsshownschematicallyin this diagram;in the simplecubiclatticetheyarecubes.

Numerous suchlatticeshavebeenstudied[1,2]; thepresentlywidespreadbelief in
“universality” assertsthat it does not make much differencewhich lattice we

choose.
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Fig. 2. Examplesfor percolationon a 20 x 20 squarelattice, for p = 0.1, 0.2,. . .0.9. Occupiedsitesareshownasdots,emptysitesarenot shown.
The overlappingcrossesat 60 percentprobability give the largest“percolating” cluster.

In this percolationproblemthe occupiedsites are either isolated from eachother or they form
small groupsof neighbors.Thesegroupsarecalledclusters:

A clusteris definedasa groupof occupiedlattice sites (1)
connectedby nearest-neighbordistances.

In fig. 2 the largestclusterat p = 0.6 was symbolizedby overlappingcrosses+, which distinguishit
clearly from the smaller clustersalso presentthere. Isolatedsites are regardedas clustersof size
unity; andgenerallywe call any clusterconsistingof s occupiedconnectedsitesan s-cluster.

In a largelattice therewill be moreclustersthanin asmall lattice; thus it is convenientto divide the
numberof clustersby thenumberof lattice sites in thewhole lattice.This ratio is calledthenumbern,,
of s-clustersif it is an averageover manydifferent distributionsof occupiedsites amongthe lattice
sites:

n5 is theaveragenumber(per lattice site) of s-clustersand dependson concentrationp. (2)

Eqs. (1) and (2) define the two most important conceptsusedin this report, the s-clusterand the
numberof s-clusters.

If p is closeto zero, mostoccupiedsiteswill be isolated,with only a few pairsandtriplets present
(fig. 2 with p = 10%). If, on the other hand, p is closeto unity then nearly all occupiedsites are
connectedto eachotherand form one largeclusterextendingfrom oneendof the lattice to theother
(fig. 2 with p = 90%). Accordingto presentknowledge[1],in a sufficiently largelattice thereis either
one or none, but never two or more such“infinite” clustersor “networks”. This infinite cluster
percolatesthroughthe lattice just as water is percolatingthroughwet sandakngthenetworkof wet
pores.Our examplesatp = 70%and80% alsoshowthat besidesthis percolatingnetworkmanyfinite
clustersexist, too. A cleardistinctionthus existsfor largelattices: Either an “infinite” clusterexists,
or it doesnot exist.Thereforeit is plausible that for an infinite lattice a sharplydefinedpercolation
thresholdPc exists,i.e. a critical point, wherefor the first time an infinite net*ork percolatesthrough
the lattice with finite probability.ThusPc indicatesaphasetransitionsuchthat:
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Forp abovePc onepercolatingnetworkexists;
for p belowPc no percolatingnetworkexists. (3)

In this sensepercolationis a phase transition [10,11] which generally can be defined as the
phenomenonthat a systemexhibits a qualitativechangeatonesharplydefinedparametervalue,if that
parameteris changedcontinuously.Only in an infinite system(“thermodynamiclimit”) do we observe
a true phasetransition in this sense.For example,in our finite systemof fig. 2, we do not know
precisely whether p = 0.6 is above or below the percolationthreshold p~for the large cluster
percolateshorizontallybut not vertically. Suchaccidentaldifferencesbetweenhorizontalandvertical
directionsbecomelessand lessprobableif the lattice sizeincreases.Thus Pc is defineduniquely in an
infinite system.(Of course,evenfor p -~0wecanproducean infinite clusterby filling merelyonerow
of our lattice with occupiedsites.However,sucha configurationhasan extremelylow probability for
a large lattice in a truly randomdistribution of occupiedsites.And we require abovePc to havean
infinite network in an infinite systemwith probability one.)

Morequantitatively,we call thepercolationprobability P the fraction of occupiedsitesbelonging
to the infinite percolatingnetwork.ThenP vanishesbelow Pc and is nonzeroabovePc; closeto Pc we
candefine a “critical exponent”13 by postulatingP00 ~ (p — PcY

5 for p slightly abovePc. The behavior
of theinfinite networkandof largefinite clusters,for p very closeto Pc, is calledthecritical behavior
of percolationtheory;the regionof parameterswhere it appliesis calledthescalingregion.

In general,every lattice site hasthreechoices: It canbe empty,with probability 1 — p; it can be
partof the infinite networkof occupiedsites,with probabilityp P; or it canbe part of oneof the
many finite clustersincluding single sites,with probability p (1 — F

00). Since eachs-clustercontains
exactlys sites,theprobability of any lattice site to belongto an s-clusteris P~= s - n, (rememberthat
n5 wasdefinedasthenumberof s-clustersdivided by the total numberof lattice sites).The sum of all
theseprobabilitiesequalsunity:

1 — p + pP + s n~= 1 (4)

where ~ denotesthe sum over all finite clustersizes,s = 1, 2 Thus, if we know all the cluster
numbersn5, thenwe cancalculatefrom eq. (4) thestrengthP of the infinite network.We seealready
herethat theclusternumbersn, arethebasicquantitiesfor our discussion.

To study percolation experimentallywith simple methods one can flip coins in a classroom
experiment[12]to produceeasily a probabilityp = ~for a site to be occupied.More efficiently, one
canaska computerto do that, and for readersinterestedin Fortranprogramminga simple exampleof
such a “Monte Carlo” method is shown in table 1. A computerprogram similar to the one in
table I produced the results for fig. 2; our example might be used for teaching Monte
Carlo methodssince the execution time was smaller than the compilation time. (If computer
experts ask for money to make such Monte Carlo computer simulations they in general
will not (at least not officially) use that money on the roulette tables of that Mediterranean
town in order to producea seriesof randomnumbersneededfor percolation.Instead,thecomputer
hasbuilt in methodsto generatepseudorandomnumbersby multiplying largenumbersanddropping
the leadingdigits. For the CDC computerusedhere,this aim is achievedby the function RANF(n)
which gives,for arbitraryn, a realnumberdistributedrandomlybetweenzeroandunity. The program
comparesthis randomnumberwith theconcentrationp to decidewhetherthe lattice site is occupied
or empty.)
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Table I
A simple Fortrancomputerprogramto producea percolationexam-
pleon a 20 x 20 squarelattice.The function RANF for thiscomputer
produces random numbers distributed evenly between 0 and I.

Empty placesarestoredaszeros,occupiedsitesasones.

DIMENSION IS(2Ø,2~)
P =

N=1
DO 1 1 = 1,2~
DO 1 J = 1,20
IS(I,J) = 0

1 IF(RANF(N).LT.P) IS(I,J) = 1
DO 2 I = 1,20

2 WRITE(6,3) (IS(I,~J),J=1,20)
3 FORMAT (1X,2012)

STOP
END

Besides such computer experiments,also real experimentscan be done to study percolation.
Imaginefor examplethat eachoccupiedsquareon thechessboardis electrically conducting,whereas
emptysitesareinsulators.A currentcanflow from oneconductingsquareto theotherif both squares
shareone line as commonborder.This meansthatanelectriccurrentcanflow only within onecluster,
andnot from one clusterto the other.Only if a percolatingnetwork is present,i.e. for p abovethe
percolationthresholdPc, hasthe lattice a nonzerobulk conductivity. In this form the percolation
problemis known as the randomresistornetwork; we may also interpret it as oil or water flowing
throughporousrock or wet sand.By coating candydrageesor plastic bul1~tsfrom toy gunswith
copper,theMarseillegroup [13]studiedtheconductivityabovePc. RandommLxturesof thesespheres
with equalsize but two different coloursarrangethemselvesinto a triangular~lattice if shakensoftly
on a flat surface;then clusters and the infinite network can be seen easily. Unfortunately, as
quantitativeexperimentsthesemethodsaretoo complicated[13]for teachingpurposes.Earliersimple
experimentsincludedthepunchingof randomholes into conductingpaperby LastandThouless[14],
andtherandomcutting of wires in asteel-wiremesh,boughtin a local hardwarestore,by Watsonand
Leath [15]. But in thepresentreviewwe will be satisfiedwith regardingpercolationasa mathematic-
ally well-definedandsimple problem;the difficulties of approximatingrea1isti~disorderedsystemsin
natureby percolationmodelsand theproblemsof conductingexperimentswith realmaterialsare left
to otherreviews [5,9].

Readerswho insistthateverythingis explainedto them in thelanguageof thespin~Ising modelfor
ferromagnetsat finite temperatureT in a magneticfield H canalsobe satisfiednow; otherreaders
may go aheadto section1.2. Imaginethat in a lattice, magneticatomsand ponmagneticatoms are
mixed randomlyand then cooleddown (“quenched”)to very low temperatures.Then the magnetic
atomsform clustersaccording to percolationtheory,with p = mole fractionof the magneticspins.
Eachspin hasa magneticmoment~ pointing either up or down. Nearest-neIghborexchangeforces
forcethemagneticmomentsof neighboringatomsto beparallelsincethe thermalenergyattheselow
temperaturesis too low to breakup theseexchangebonds.Thus all momentswithin oneclusterare
parallel.(We neglectany dipole—dipole interactionbetweenthe spins.)The whole clustertherefore
actsas if it would be one large isolated(“superparamagnetic”)spin. An isoiatedsingle spin hasin
thermalequilibrium a magnetizationof tanh(~H/k8T)in units of the saturationmagnetization.Thus
for a superparamagneticclusterthe argumentof the tanh is replacedsimply by s ~HIk8T since its
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magneticmoment is s~s.The contributionof clustersto the total magnetizationmoreovercontainsa
factor s sincea large clustercontributesmore thana small cluster. Finally, the contributionof all
s-clustersis proportionalto the clusternumbersn~.Therefore,the total magnetizationcontribution
from finite clusters is (1/p) . . ,i~tanh(s~H/kBT)in units of the saturationmagnetization.The
infinite networkcontainsthefraction F00 of all spinsandis orientedeitherfully up or fully down.Thus
the whole equationof state M = M(p,T,H) for the magnetizationM (units of the saturation
magnetization)is givenby

M = ±P00+(l/p)’~ n~tanh(s~H/kBT)

or, with theuseof eq. (4):

pM= ±~ . n~)+~ç . ~ tanh(s~LH/kBT). (5)

In this way for low enoughtemperaturesthemagnetizationin this “dilute” ferro-magnetis related
directly to theclusternumbers.For p below Pc no infinite network is present,and for H = 0 thefinite
clustersgive zero magnetization,correspondingto the paramagneticstate.But for p above Pc the
infinite networkgivesa “spontaneous”magnetizationP~,i.e. a “remanence”evenfor zeromagnetic
field. Eq. (5) looks asif it is adirect experimentalrealizationof thepercolationproblem;but actually
experimentsasa functionofp arequite difficult [16],andnotmuchinformationhasbeengainedso far
from suchexperimentson theclusternumbers.The time-dependentbehaviorof this model [61]is not
discussedhere.[Expertson metastablesystemsmay noticethat the ±sign in eq. (5) givesabovep~,a
unique and smooth but nonanalytic continuation of the stablebranch,M parallel to H, into the
unstablebranch,M antiparallelto H. Thereare no van der Waalsloops and no spinodallines with
8MIDH = ~ in this expressionfor p abovep~.]

Theseremarksconcludeour qualitativedescriptionof percolation;we now turn to thequantitative
descriptionof thescalingregionby critical exponents.

1.2. Critical exponents

The behaviorof systems close to a phasetransition [10,11], also for percolation,is usually
describedby critical exponentsa,/3, y,... (exceptfor first orderphasetransitions).For our reviewwe
needonly thedefinitions

[~n~(p)J or p —p~I
2~

s sing

[~s.n(p)] oc(p—p~)~ (6b)
sing[~~2,~(p)] or p —p~fl

sing[~ç . n
5(p)e~5] or h’~

s sing

~(p) or Jp —p.fl. (6e)

All five equationsaresupposedto be valid only for p nearp.~or h nearzero.For simplicity weassume
that the sameexponentdescribesthebehavioraboveandbelow Pc, whenappropriate.The subscript
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sing denotesthe leadingnonanalyticpart of the subscriptedquantityanddoes not necessarilymean
that that quantity goes to infinity; for example, if close to p~a quantity A varies as A =

A0+A1(p—p~)+A2(p—p~)’
355+A

3(p—pCf
855+A

4(p —p~)
2~then the “singular” (or critical) part

Asing is the term A
2(p—p~Y

355,whereasA
0+A1(p—pC)+A4(p—pj

2 are denotedas the “analytic
background”and A

3(p — p~~
855as a “correction to scaling”. This review will concentrateon the

singular partsonly. (According to this definition we have ~ S fls]sing or P.. in eq. (6b), sincethe
concentrationp which also appearsin eq. (4) contributesonly to the analytic backgroundetc.)The
real numberh in eq. (6d) is merely a dummy variable to calculatea sum and approacheszero;the
backgroundof that sum is its valueat h = 0 which is ~ s n,(p~)= PC~from eq. (4). Finally, ~ is the
coherencelength(or correlationlength,connectivitylength)andcorrespondsto theaverageradiusof
a typical percolationcluster,as will be discussedlater.We neglectherethepossibility that logarithmic
factorsappearbesidespowers of p — Pc; in six dimensionssuchfactors are importantwhere e.g.
[~.s2n,]~

1~or (PC — pY’Ilog(p~— p)1
2u17 accordingto Essamet al. [17].(Anotherexponent~ 2— yiv is

notneededhere [18].)
So far eqs. (6) are merely definitions of exponentsby various moments of the cluster size

distribution n
5. But thesedefinitions areindeed analogousto what is usually definedat otherphase

transitionswhere T~— T replacesp — Pc asthedistancefrom thecritical point. In eq. (20) we will see
laterthat ~ n, correspondsto afree energy,whichat thermalphasetransitionsis assumedto vary as
(T— T~)

2~in its singularpart, in order that the specific heatdivergesas (T — TCI”. Moreover, the
percolationprobability P

0, correspondsto the spontaneousmagnetizationor (TC — T)~,similar to our
remarksafter eq. (5) for dilute ferromagnets.We also see from eq. (5) that the susceptibility
x 3M/aH is connectedwith ~ s

2n~,andat thermalphasetransitionsthis susceptibilitydivergesas
(T— T~)~as a generalizationof the Curie—Weiss law. At the critical temperature T T~the
magnetizationis usuallyassumedto vary as H”5, analogousto eq. (6d); indeedthe factore~in eq.
(6d), basically introducedby Gaunt and Sykes [19],can be interpretedas a “ghost” field (with e~
replacedby 1 — h), a magical trick avoided in this review but usedelsewhere[20—23].Another
interpretationof e is given in ref. [24]in connectionwith semiconductors.Also a coherencelength
canbe definedat thermalphasetransitionsto describethedecayof correlationsover long distances,
divergingasIT — TC~0,similar to eq. (6e). Sinceabouttenyearsthis exponentnotationis standardfor
phasetransitionsand hasbeenadoptedconsistentlyin the literaturealso for percolation.Of course,a
readernot familiar with thermalphasetransitionsmay simply overlooktheaboveanalogies.

A completeunderstandingof percolationwould requireto calculatetheseexponentsexactly and
rigorously.This aim hasnot yet beenaccomplished,even in generalnot for Other phasetransitions.
(Ref. [25]givesreasonsto hopefor an exactresult in two dimensions:v = log(3”2)/log(~).)The aim of
a scalingtheory asreviewedhere,is more modestthancompleteunderstanding:We want merely to
deriverelationsbetweencritical exponents.And sincethis reviewdealsmainly with thescalingtheory
of clusters,we want to understandhow the above exponentslike /3 can be calculatedfrom cluster
propertiesand clusterexponents.

For even in the clusterpropertiessome simple power laws are found. Fig. 3 gives Monte Carlo
results for the cluster numbers n

5 at p = Pc = ~ in the triangular lattice. The data in~this double
logarithmic plot follow a straightline with slope —r —2, i.e. log n5 = const— r log s, or n~or s~.
Whatrelationsexist betweenthis newexponenti~and theothercritical expoilientsdefinedin eq. (6).
Doesa singleexponentlike r suffice to describetheclusternumbersin thescalingregion?Theseare
thequestionsour review tries to answer.Of course,to testthesescalingtheotlieswe will haveto use
the numericalmethodsand results for finding critical exponents,asdescribedin greaterdetail in
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1 I I

1015 I I I
0 102 10~ 106

Fig. 3. Computersimulation [26] of cluster numbersin a 4000X 4000 triangular lattice at the percolationthreshold.The straight line shows
n,(p

0)xs~,i.=2

section2 andas evidentalready in this exampleof fig. 3. After we haveexplainedin section3.1 the
scalingtheory of percolationclusterswe will list therethe presentestimatesfor the exponentsand
also for the percolationthresholdsPc. We merely mention here that for two dimensions,we have
roughly

a= —0.7, j30.14, y2.4, 818, i’1.35,

results which are expectedaccording to the universality hypothesisto be valid for (nearly) all
two-dimensionalpercolationproblems,independente.g. of the lattice type. On the other hand,p.~
dependson the lattice andequals0.50 for the triangularand0.59 for thesquarelattice.

[Oneexactly solvedproblemis percolationon theBethelattice,alsoknownasCayleytree[27—30],
where a = — 1, /3 = 1, y = 1, 5 = 2. We refer to refs. [2,30] for a discussionof Bethelatticesand
restrictourselveshereto thenot yet exactly solvedcaseswheretheexponentsarenot integers.]

In this sensethe percolationproblem can serveas an introduction to the scalingtheory of phase
transitions and critical phenomena:the critical exponentsare defined by mathematicallysimple
expressionsin eq. (6); and later in section3.1 we will derive relations betweenthem [31],using a
simple scalingansatzfor the cluster numbersn,. As promisedbeforeone doesnot have to know
conceptslike “free energy”of “magnetic moment”to understandthedefinitions (6),contraryto most
otherphasetransitions[10].

But besidesbeing perhapsthesimplestnot exactlysolvedphasetransition,percolationtheoryalso
servesas an introduction to clusterapproximationsof collective phenomena.In statisticalphysics,
systemswith interactionsbetweenthe units (molecules,spins,...)in generalcannotbe calculated
exactly, whereasmost systems without interaction are easy to solve. Thus an often-usedap-
proximation is the cluster (or droplet) approximationwhich tries to transform the problem of
interacting units into the approximationof non-interactingclusters. For example,to describethe
equationof stateand the condensationprocess(nucleation)in a real gas, one may group the gas
moleculesinto clustersof neighboringmolecules(“liquid droplets”) suchthat interactionsbetween
different groups can be neglected.Interactionswithin the samegroupare takeninto accounteither
exactly (for very small clusters)or by simple approximationscontainingonly a few free parameters
like surfacetensionetc.If thecritical point of a fluid is described[30]by sucha “droplet” model, it is
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characterizedby the appearanceof very large clusters leading to critical opalascencein light
scattering.Such cluster modelsexist not only for fluids but also for magnets,polymers,structural
transitions,semiconductors.For early referencesseeDomb [32].

To put suchclustermodelsfor generalphasetransitionsonto a more rigorousbasisone can study
simplified models,insteadof realwaterdroplets,to look directly at themicrOscopicclustersand their
impact on macroscopicquantitieslike susceptibilityetc. In order to be uselul sucha model should
havefive properties:

(1) it canbe usedin threedimensions
(ii) for every configurationthereis an unambigousandunartificial separationof unitsinto clusters

(iii) thedefinition of clustersaccordingto (ii) is simple enoughfor computerhandling
(iv) atleastsomemacroscopicquantitiescanbe calculatedreliablyfrom theclusterproperties
(v) thesystemhasa critical point; thereandonly therelargeclustersappear.

Someyearsago therewasreasonto hopethat the Ising magnet(lattice gasmodel) fulfilled all the
aboverequirements,sincein two dimensionscomputersimulations[33]agr~edwell with the Fisher
droplet model [31,34],if a “cluster” is defined as a group of overturnedspins connectedby
nearest-neighborexchangeforces.Unfortunatelylaterwork [35] showedthatcondition(v) is violated
in threedimensions.Thus the cluster situation in this Ising model is rather complicated[36],and
percolationseemsright now to be the only problemwhere all the aboverequirementsare fulfilled.
Thus percolationcanbe usedasa guideto clusteringphenomenaat otherphasetransitions.Of course
thereis no guaranteethat otherphasetransitionswill havethesameclusterpropertiesas the simple
percolationproblem; but it seemsplausiblethat a completeunderstandingof simple clusters(i.e.
percolation)is helpful for a betterunderstandingof morecomplicatedclusters(e.g.fluids, magnets).It
should be noted,however,that the abovedifficulties with clustersat other phasetransitionsarise
mainly nearthe critical point; far below the critical temperatureof a fluid, for example,an often
experiencedexample of quite well-defined clusters are raindrops;they are nothing but grown-up
stagesof thoseclustersrelevantfor the liquid-gasphasetransition in a supersaturatedvapor [37,38].
The possiblesimilarity of percolationclusterswith raindropswill thereforebe discussedin detail,see
section4.3.1.

2. Numericalmethods

This sectiondescribesshortly the main methodsusedso far to calculatepercolationquantities
approximately.It is not necessaryto readthis sectionin order to understand(we hope) the later
scalingtheories,where theresultsof thesenumericalmethodsarereportedandinterpreted.

2.1. Seriesexpansions

The averagenumbern, of small clusterscanbe calculatedexactly.Take,for example,a pair in the
squarelattice, i.e. an s-clusterwith s = 2. It consistsof two occupiedsql$aressurroundedby six
empty neighborsquares.Moreover it can be orientedeither horizontally or~vertically in the lattice.
Thustheaveragenumberof pairs is n2 = 2p

2(1— p)6 sincein percolationeacl~of thesquaresinvolved
is eitheroccupied(with probabilityp) or empty (with probability 1 — p) entirely independentlyof the
other squares.Generallywe denoteasthe perimetert the numberof empt~’lattice sites which are
nearestneighborsof occupiedclustersites,and as g~,the numberof geom~tricallydifferent cluster
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configurationsof s siteswith perimetert. (Theg,~arealso calledthenumberof “animals”; seesection
5; if two configurationsare identicalapartfrom a rotation they are countedas different; if they are
identicalapartfrom a translationtheyare countedas thesameconfiguration.)Then we haveexactly

n,(p) = ~ g,,p’(l —p)’. (7)

The following diagramsshow small clusterson a squarelattice togetherwith theresultingexpressions
for n,; theclustersitesaredenotedby dots, theperimetersitesby crosses:

x x x ~x xxx Xx X•X XXX X-X XX XX X~~X X~X
X.X X..X X.X X...X X.X + X~.X X..X X.X X~X

X XX x XXX X.X XX XX X X
x

n, = p(l — pY’; n2 = 2p
2(l — p)6 n

3 = 2p
3(l — p)8+ 4p3(l — p)7.

This method of exact cluster counting was already usedtwenty years ago [39—41].The above
diagramsshow that for largerclustersizes more possibilities and thus more difficulties arise.The
exactresultfor s = 14 in the triangularlattice, with q = 1 — p, is [42]

n,
4(p)=p’

4(3q’6+ 168q17+1524q’8+ 10029q19+46119q20+185220q2’+605766q22+1730943q23
+4287699q24+9131949q25+16871550q26+26571525q27+35061399q28+3796541q29
+ 32198928q3°+ 19012074q3’+ 5812482q32),

a resultwhich illustratesconvincinglythat thecountingis donebeston a computer [43].Even then the
n~areknownonly up to 5 = Smax, with Smax usuallyof order ten.For examplewe haveSmax= 17 in the
squarelattice, 5max = 11 in thesimplecubic lattice,and SmaX = 7 for thehypercubiclattice in arbitrarily
largedimensionality[44,45]. For applications,a tableof n,(p) in two and threedimensionscalculated
from thesepolynomialswasgiven in ref. [46].

For thetriangularlattice,besidesthe full rangeof g,.~at fixed s up to 5max= 14, exactg,~for fixed t
were given in ref. [47]up to tmax= 22. Duarte [48]analyzedin detail the behaviorof averagesat
constantperimetert, in particularthe deviationsfrom a Gaussiandistribution. We will not usethis
informationheresincewe will look atthedistribution of perimeterst atfixed size s instead.

Theseexactresultsof Sykeset a!. [42,47]havetheadvantagethat theycanbe usedevenfar away
from Pc where the clusternumbersn, becomevery small. Thatregion,for example,is important for
nucleationapplications[38,49]. Moreovertheygive not only theclusternumbersbutalso theaverage
perimeter t, of s-clusters: t, = ~., t . g~,p’(1— p )t/~, gS (1 — p )t~ Their main disadvantageis their
restrictionto small and intermediateclustersizes s. So far mostextrapolationsto s—~ [46,50, 51]
employedrathersimple methods:If a quantity A, is expectedto haveafinite limit A

00 for s—~co,then
A, is plotted against1/s. If one is lucky thesedatafollow a straight line for large s; the intercept
(1/s = 0) of this line gives A00. If insteada clearcurvature is seen,one plots A, againstsomeother
powerof 1/s until thepoints fit a straightline; againthe interceptof that line gives theextrapolated
A00.Particularlyaccurateresultsweregiven in ref. [52].Usuallythe resultingextrapolationsareabout
asaccurateasthosefrom MonteCarlo results,ascanbe seenby comparingthecorrespondingresults
of refs. [26,51] or [53,52].

Bettermethodsof extrapolationexist to calculatethecritical exponentsfor thevariousmomentsof
theclustersize distribution,e.g. the exponent‘y for ~, s

2n, or (p~ — p)~below p.~,eq. (6c). Insteadof
first extrapolatingfor larges theclusternumbersn~,one dealsdirectly with this sum andexpandsit
into a power seriesin p by usingthe exactexpressionsfor n,(p) and by collecting the appropriate
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powersof p arisingfrom pS(1_p)t in eq.(7):~5
2fl,(p)=>~kakph1. Sincen, variesasp’ apartfrom

higherpowersin p, exactknowledgeof n, up to s = 5max alsogives theexactexpansioncoefficientsak
up to k = 5max additionaltricks [42]gaveak for k = Smax+ 1 and Smax+ 2. Theseseriesexpansionsin
powersof p etc. havegiven this subsectionits name;for simplicity wewill refer to all resultsderived
from theexact n,(p) as “series”resultsevenif no power seriesin p wasused.The analysisof such
power seriesin termsof critical exponentsis a standardmethodof phasetransitiontheory and is
reviewedin vol. 3 of ref. [11];usually exponentsestimatedin this way are ipore reliable thanthose
estimatedby othermethods.A rathersimple wayof seriesanalysisis the “ratIo” method:if ~k akp is
supposedto diverge as (Pc— p)~’and if the ratios ak+1/ak are plottedagainst1I(k + 1), thenthe data
should follow a straight line for large k, with intercepti/Pc and slope (y — 1)/Pc, as the readercan
check by himself, employing the Taylor series f(p) = ~k [dkf/dpt(]~.opkIk!More complicatedbut
usuallymoreaccuratearethe Padéapproximations(particularywhenthe ratiO plotsoscillate),where
the power seriesis approximatedby the ratio of two polynomialsin p [19,44, 54, 55]. The accuracy
sometimescanbe increasedfurtherby suitabletransformationsof variables[~6].Practicalexperience
with suchseriesmethodshasaccumulatedover manyyearsof experiencewith otherphasetransitions
[11].

An importantdifferencebetweenpercolationandotherphasetransitionsis,~however,that no exact
expressionsso far havebeenpublishedfor the cluster numbersn,(T) in, say, the Ising model of
magnets. Only power series of thermo dynamic quantities like susceptibility 4tc. as a function of lIT
or exp(—2p~H/kBT)havebeenderivedandanalyzed,e.g. in ref. [57]. As mentioned above, percolation
is thesimplestphasetransitionasfar as clustersareconcerned.

2.2. Monte Carlo simulation

Examplesof Monte Carlo computer simulationswerealreadygiven in the~Introduction, figs. 2, 3
and table 1. Similar to seriesexpansions,thequality of thedatais limited by thenumberof computer
hoursavailable (and also by limitations in the computermemory).But whereas“series” give exact
expressionsif s is near10, Monte Carlo resultsare available for muchlargerclusters,s —~ i03, with
finite error bars. (Seeref. [58]for a theory of Monte Carlo fluctuations ii~the cluster numbers.)
Thereforeit is seldomlynecessaryto extrapolateMonte Carlo resultsto s -+oo, sinces = 102. . . iO~is
usually closeenough to infinity, if the finite error barsof the computerexperimentare takeninto
account.If possible,a combinationin one plot of exact seriesresults for small s and approximate
Monte Carlo data for large s gives a good impression of the accuracyand limitations of both
approaches.(Werefer to Binder’s book [591for reviewsof thermalMonteCailo methods.)

An advantageof percolationcomparedwith otherphasetransitionis that ~on-equiiibriumdilficul-
tiesdo not appearin mostpercolationstudies:If a whole lattice is filled onceWith sites,the resulting
clusterscanalreadybe usedfor thestatisticsof clusternumbersetc.But for thprmalphasetransitions
one first hasto simulateperhapsthousandsof Monte Carlo stepsper site until the systemhascome
closeenoughto thermalequilibrium in order that the averagingprocedurecanstart.

Our presentationhere is restrictedto threedifferent methods:SimuIation~of the whole lattice;
growthof onecluster;and shapefluctuationsfor onecluster.

2.2.1. Simulationsof the wholelattice
Table 1 gives theusualmethodof filling a lattice of N = L” sites in d dim~nsionsrandomlywith

pN occupiedsites.In a thoroughstudyoneshouldvary the lengthL of the lattice andextrapolatethe
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resultsto L = ~ [60,61].So far the largestsystemsstudiedseemto beL = 4000 in two andL = 400 in
threedimensions[26,61];carewith thecomputermemoryis essentialfor suchlargesystems.Eachof
theselatticescan be simulatedonce or severaltimes; ref. [62] simulateda 110X 110 lattice forty
thousandtimes. “Finite size” effectsdue to the limited sizeL canbe annoyingandmight be reduced
by employingperiodic boundaryconditionswhere layernumberL+ I in acube is identifiedwith the
first layerto give aquasi-infinitelattice.The really complicatedprogrammingproblemis thecounting
of clusters;ordersof magnitudein computertime canbe savedby efficient algorithms.We refer the
readerto refs. [7,63, 64] for thesedetails.

Monte Carlo simulationof percolationlatticesweredone alreadytwenty yearsago [65];for the
cluster numbersn, the extensivetablesof Dean and Bird [66]played, after a long time lag, an
importantrole in the developmentand testingof scalingtheories[67—70]andbecameobsoleteonly
quite recently [62,71, 72, 26]. The methodhasbeenusedto calculateclusternumbers,perimeters,
radii andenergies.(The energyis thenumberof occupied—emptybondsfor thecluster.)

2.2.2. Growth of onecluster
Leath’s method [73]divides the lattice into concentricshells with the thicknessof a nearest-

neighbordistance.Starting with the innermostsite occupied,all lattice sites in the next shell are
randomlyeitheroccupiedwith probabilityp or left empty with probability i—p. It is testedwhich of
thesenewly occupiedsites are connectedwith the clusterin the inner shells.Thenthe nextshell is
filled randomly,and the processis repeated.It stopswhenin onenew shell no siteswere occupied
which are connectedwith theclusterformedearlier in the innershells.This methodproducesclusters
of sizes with aprobability s n,, i.e.with theprobability that theorigin belongsto an s-cluster.In the
methodof section2.2.1 the formationprobability is proportionalto n, instead.ThusLeath’s method
enhancesthe statisticsfor the largeclustersneededfor a scalinganalysis.Also thereareno “finite
size”effectsin Leath’smethodsinceL is infinite. But themethodrequiresacutoff Smax in thecluster
size,takenasabout i03, and thus could not give resultslike fig. 1 where5m~was near106. And since
this methodis inefficient abovep~the resultssofar [71—73]wererestrictedto p ~PC. Detailedtablesof
cluster numberswere madeavailable in ref. [72].The method has beenusedto calculatecluster
numbers,perimetersandradii.

2.2.3. Shape fluctuations for one cluster
If oneis interestednot in thenumbern~of clustersbut in otherpropertieslike-clusterradil etc.,

onecanstartwith a typical shapeof a largeclusterand try randomlyany changesin theclustershape
which do not changethe clustersize s and do not separatethe cluster into severalparts. If these
attemptedrandomchangesare adoptedwith a probability (1 — ~ where t~tis the changein the
perimetert producedby agiven changeof the clustershape,thenoneapproximatesin this way the
true distribution of cluster shapesaccording to eq.(7) at fixed s. (Here one has to wait for
nonequilibriumeffectsdue to the initial configurationto die out.) In this way, analogousto an early
Ising model study [74],Stauffer[75]looked attheaverageperimeterandradii for s near102; density
profileswereanalyzedin ref. [76].No informationon n, canbegainedin this way, but themethodcan
beapplied to largeclustersfar awayfrom Pc wheretheotherMonte Carlomethodsfail. In particular,
the “animal” limit p =0 canalsobetreatedwith this algorithm.
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2.3. Renormalization group

Only since 1975 has percolation been investigated [68] with Wilson’s renormalizationgroup
techniquewhich proved so useful for thermalphasetransitions(vol. 6 of ref. [11]).Basically two
variantsof that methodhave beenusedfor percolation:The epsilonexpansionand the real space -:

renormalization.Only the secondmethod is explainedhere fully, and only a few papersare cited. -:

Kirkpatrick [7]reviews renormalizationtechniquein greaterdetail. -:

The basicideabehindrenormalizationis theassumption,eq. (6e),thatnearp~thecoherencelength
~ diverges.If we look at any clustersof diameter1, with I much larger than the nearest-neighbor
distanceof the lattice, thenwe have in generalto distinguishbetweenI <~ and I > ~. But right atPc
we have~ = ~, andall finite lengthslike clusterdiameteraremuchsmallerthan ~. Thus it should not
matteratPc on what a lengthscalewe areinvestigatingthesystem;apartfrom simple scalefactorsthe
systemlooks similar whetherwe look at it with the eye, with a magnifyingglass,or with an optical
microscope(assumingthe nearest-neighbordistanceto be lAngstrom, visible in an electronmicro-
scopeonly). Thus we may“renormalize” thesystemby not looking at eachlattice siteseparatelybut
by averagingover regions ‘~ which have a diameterof b lattice constants.Then we may average
againover theseaveragedregions,with thesamelength factorb, etc.At p = Pc the averagedregions
are still muchsmaller thanthecoherencelength evenafter numeroussuchaveragingiterations;and
nothingdrasticshouldhavechangeddue to this renormalization.In this sensethecritical pointPc is a
mathematicalfixed point of the renormalizationtransformation.If this transformationis doneon the
lattice itself it is calledrealspacerenormalization;if it is donein Fourier spaceit leadsto theepsilon
expansion.Scaling is built in both approaches;and themain sucesseshavebeenwith thecalculation
of critical exponentslike ii.

2.3.1. Realspacerenormalization
The above ideas have been made quantitative in many papers [7]; our presentationhere

follows ref. [77] for the triangular lattice. (We thank P.J. Reynolds for his patiencein explaining
this sectionto us.) Imagine that all lattice sites are put together into triangles in sucha way
that each site belongs to only one triangle. The center of each triangle is replacedby a new
“supersite”0 which representstheaverage(in therenormalizationsense)overthe threeoriginal sites.
The whole latticethenlooks like fig. 4, where the small triangularA symbolsshowthe “super-super-
sites”, i.e. theaveragesover threesupersites0. We seethat thesupersites0 and thesuper-supersites
A in that figure form eacha new triangularlattice, similar to but larger than the original triangular
lattice formed by the dots .. We can continueby representingeachseparatetriangle of A by a new
symbol *, these starswould againform triangles,etc. For simplicity thesehigher ordersof the
renormalizationtransformationare not shown in fig 4. In every casethe lattice constantof the new
lattice equalsthe lattice constantof theold lattice multiplied with a factorb = 3hI2~

If p is close to but not identical to PC we have a large but finite correlationlength ~ which,
expressedin centimeters,is thesamein theoriginal lattice and the renormalizedsuperlattices.In the
original lattice we have~= ~p — pcI” where~ is of theorderof thenearest-neighbordistance.Thus
in the superlatticeafterone renormalizationstep we have~= ~p’ — P~V,~ = b . ~, where~ is of
the order of the enlargednearest-neighbordistancein the superlattice.The differencebetweenthe
renormalizedp’ and the original p takes into accountthat only at p = p’ = Pc the two latticesare
completelysimilar to eachother.Equatingthe two expressionsfor ~weget b IP’ — PcI~= IP — PcI

0,, or
v = log(b)/log[(p’ — p~)/(p— Pc)]. (8)
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Fig. 4. Real spacerenormalizationon a triangular lattice. At eachiteration, threesites are combinedinto one supersite,denotedhereby a
different symbol.This picture wasproducedby S. Kirkpatrick on hiscomputerizedtypewriter [7].

How do we defineif the renormalizedsupersitein the triangle a . is occupied?If all threesites of
theoriginal triangleareoccupied(empty)thenalso thesupersiterepresentingtheaverageof thethree
sites is occupied(empty). If only two sitesare occupied,we define the supersite as occupied,but if
only oneoriginal site is occupied,thesupersiteis definedasempty. Our diagramsshowschematically
the correspondencebetweenoccupied () and empty (x) sites in the original lattice and the
superlattice:

X X
—. . =.. X • X.
— ‘ . X ‘ X ‘ XX

This correspondencegives the relation betweenthe concentrationp of occupiedsitesin the original
lattice, and the probability p’ that a supersiteis occupied. For example,two occupiedsites can
producean occupiedsupersitein threeways: . . X • ; eachpossibility occurs with
probabilityp2(1 — p). Thusin total theprobability p’for a supersiteto be occupiedis

p’=p3+3p2(l—p).

Thefixed point p” is determinedby thenontrivial (p � 0, p � 1) conditionp = p’ = p* andagreeswith

thecritical point Pc

Pc~

sincethenp’ = ~+ 3 ~ = = p. Expandingfor small p ~~Pc we getp’ —p,~= ~(p~Pc). Thuseq. (8) with
b = 31/2 gives

v = log(3112)/log(~)= 1.354755 65. (9)

This exampleshowedrathereasilyhow critical exponentsare calculatedby renormalizationtech-
nique.Actually in this examplenotonly is p, = ~thedesiredexactresultbutalsotheexponentv in eq.
(9) is hopedto be exact[25]. This resultof Klein Ct al. [25] (seealsoReynoldset al. [22]) would bethe
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first exactly calculatedpercolationexponent,if their argumentcould be maderigorous. At least it

agreeswithin afew percentorbetterwith resultsderivedfrom othermethods,as cited in ref. [25].
Similar methodscanbe applied,althoughlesssuccessfully,to otherlattices.One may alsoaverage

over cells larger than the triangles with only 3 sites discussedabove. Very accurateresultswere
derivedby calculationsfor very large cells (upto b = 500) of the renormalizationtransformationwith
thehelp of Monte Carlomethodsby Reynoldsetal. [78].Theycheckedif the~cell containedone large
cluster extending from one side to the oppositesite, and then called the supersitefor that cell
occupied.Similar to the pure Monte Carlo resultsof theprecedingsubsection,theserenormalization
results were then extrapolatedto b —*~, giving e.g. v = 1.356±0.015,in e*cellent agreementwith
eq. (9) andwith an accuracycomparablewith or betterthanseriesexpansions[18].Furtherwork with
this combinationof Monte Carlo andrenormalizationmethodsis in progress.

Thesemethodsgavepropertiesof thepercolationlattice asa whole but notdirectly on clustersasa
functionof clustersize. A first attemptin that directionwas madeby Kunz andPayandeh[79]and,
morequantitatively,by Kinzel [80].Kinzel [80]calculatedtheclusternumbe~sfor all p betweenzero
and Pc andthus showedthat realspacerenormalizationworks also far awayfrom thephasetransition.

2.3.2. Epsilonexpansion
Another renormalizationgroup method consists in expressingthe fluctuations in a systemby

Fouriercomponents.Then one sumsthem up over all wavevectorsiteratively, just as we averaged
iteratively over the real-spacetrianglesabove. An elementaryreview of that methodwas given by
Wilson[81].The summationover the wavevectorscannotbe doneexactly,andperturbationmethods
in terms of a small parameter� are used, similar to diagram techniquesin the field-theoretical
approachto quantummany-bodyproblems.

For percolation,the epsilon expansion[68]first transformedpercolationinto a thermal phase
transitionin thesocalledQ-statePotts model [21] for Q —* 1. Kasteleynand Fortuin [211,asreviewed
alreadyby Essam[2],derivedfor thepartition functionZp05~.of this Pottsmodel:

/ 2m,
L~Potts—

whereeachlattice site canbe in oneof Q different states.Here~m,= L m, is the sum over theactual
cluster numbersm, in a given configuration,and n, = (m,) is the average,clusternumber.These
averages(...) are defined over all random (bond) percolationconfiguration~,where temperatureT
and concentrationp are relatedby log(1 — p) or 1/T. For Q = 2 the result cc~rrespondsto the spin ~
Ising model of ferromagnets.We see easily that the limit Q —* 1 meanspercolation.For then we
expand Q~” = exp[ln(Q)~,m,] 1 +ln(Q)~,m, 1 + (Q — 1)~,m,;thus —Fp0555/kBT In(Z~0515)=
In(1 + (Q — l)~,m,) (Q — 1)).~,(m,), whereF~011,is calledthe freeenergy:

F~011,——k8T(Q—1)~n,for Q—~l.

In this sensethe sum over all clusternumbersin eq. (6a)correspondsto thelimit of a Pottsmodel free
energy(suitably normalized).Thusa solutionof the thermalphasetransition~in the Pottsmodel also
gives a solutionfor the probabilisticphasetransitionof percolation.(The linüt Q —~ 0 correspondsto
treespercolatingon a lattice [21,82].)

With thesemethodsthe perturbationexpansionto order � and �2 with � 6— d >0 gives in d
dimensions[83]:
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p = 1 —�17—(61/12348)e2+.. • (lOa)
y = 1 + �17+ (565/12348)�2+.~ (lOb)

with theotherexponentsfollowing from the scalinglawsgiven later in section3.1.
The crucial step was hiddenbeforeeq. (lOa): Our perturbationparameterbasicallyis the dimen-

sionality d. Whatsensedoesit maketo usein this waynon-integraldimensionalitieslike d = 5.9where
eq. (10) shouldbe a good approximation?(Later we will mentionwhy six dimensionsplay a special
role for percolation[84].)Obviously what we really need are results in three, and perhapstwo,
dimensions.But numerically alreadythe rather short series in eq. (10) give reasonableresults if
appliedto threedimensions(�= 3, p = 0.53, y = 1.84),exponentswhicharewrong by 0.1 to 0.2 only.
More importantly, later we will make scaling assumptionswhich are assertedto be valid for all
dimensions(below 6). If one canprovesuchan assumptionto be wrong in theepsilonexpansionof
eq. (10), then there is little reasonto believe it is valid generally or in three dimensions.The
introductionof non-integraldimensionsby Wilson and Fisher [85] is a new mathematicaltool to
describereality,just as the introductionof irrationaland imaginarynumberswassucha newconcept
many centuries or millenia ago. We simply have become accustomedto these “imaginations”.
Certainly,if L” is thevolume of hypercubesin d dimensionsfor all integer d, thenL” is a plausible
definition for thevolume in generalnonintegraldimensionalitiesd. Only applicationsof that concept
to realproblemscanshowif it is useful; andnow we givetwo examplesof suchapplications:

(i) In polymer physics it was long assumedthat excludedvolume effects for self-avoidingwalks
were describedby the Flory formula: averagepolymer radius or (length)0, for large polymers,with
v = 3/(d +2) = ~+ ~(4— d) +.... But de Gennes[86] showed that the epsilon expansiongives v =

+ ~(4— d) +... proving that theFlory formulacannotbe exactin general.
(ii) For percolation,in some expressionscorrection factors of the form I + O(s2~T_1)with o =

1/(13 + ‘y) only slightly smallerthan~were derived,eq.(34). If for all clusterpropertiessuchcorrection
factorswith ~200_1 would exist as “correctionsto scaling”, then it would be nearlyimpossibleto get
accurateexponentsfrom finite clustersizess, sincethecorrectionswould evenfor moderatelylarges
not be negligible. Thesefears turned out to be not justified: Epsilon expansionshowed[87] the
exponentfor s in the leadingcorrectionto be~(6— d)+~ , whereas1 — 2o variesas(6— d)2. Thus the
two exponentsarenot thesame,and theextrapolationof thecorrectionexponentto threedimensions
gave a large valuenearunity [87].
Thus the conceptof nonintegraldimensionsandof epsilonexpansionshasbeenof practicalusefor
our understandingof three-dimensionalsystems.

2.4. Inequalities

The latest method for the study of large percolation clusters are exact inequalities [88—91]
introducedby Schwartz[88].In particularthe resultsof Kunz and Souillard [90]stimulated further
research.We give herea simplified nonrigorouspresentationof theserigorousresults.

Assumethat for sufficiently large s, at fixed p, the cluster numbersn~decayas log(n,) or —

asymptotically[70].This exponent~= ~(p) is not a critical exponentin the usual sensesince it is
definedfor all p, not only closeto Pc. Above Pc all available information suggeststhat the n,(p)
decreasewith increasingp atfixed s, as one canseealreadyfrom the concentrationsof single sites
andpairsmentionedaftereq. (7). For p nearunity, only themostcompactconfigurations[47]with the
smallestperimetertmjn(5) survive in the sum of eq. (7). This minimum perimetervaries as ~ for
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larges; exactformulasfor all s weregivenin ref. [92]for sometwo- and three-dimensionallattices.
Eq. (7) givesfor p nearunity: n, = g,10,,,.p’(l_p)t~~= g,t~j,(1_p)tm~, or log(n,) cx tmjfl 511/d Thus

~p~1)i1/d. (ha)

If for any Pt betweenPc and unity theexponent~would be largerthan 1 — 1/d it would meanthat
clusternumbers n, for sucha P’ would decayquicker with size than for p near unity. Thus for
sufficiently larges wewould haven,(p1) to besmallerthann, forp nearunity; andsuchaneffectwas
excludedby our initial statement.Thus we madeplausible[90]

~(p>pc)~11/d. (llb)

In facttheequalityholds in expression(1ib) for a small intervalnearp = 1 accordingto ref. [90].
Below Pc we usethenumericalresult from series[42,93] that the total nwhber~ g,~of “animals”

increasesfor larges ass°A’,with e.g. in thetriangularlattice A 5.183 and 0 1.00. (Seeref. [94]for
inequalitieson A.) Forp closeto zeroall animalsin eq. [7]getequalweightsincethen(1 —p)

t canbe
approximatedby unity: n,(p—~O)= ~~g,

1p’(l—p)
t = p’ ~ or s°(pA)’,or

(12a)

For generalp thesameconsiderationgivesanupperbound: n,(p)~ const s (pA)’ for larges andall
p. A lower boundis obtainedalso,sincen, is alwayslargerthantheaveragenumberof chainshaving
themaximumperimetertmax; for example,in the triangularlattice we havetmax/s= 2 for larges. With
thisasymptoticratio of 2 (which may be replacedby anyotherconstant)wefind n~to belargerthan
pS(l ...p)tm~ = [p(l —p)2]’. Wethus havefor large clusters[88]

p(1_p)2~<(n,Y’i~~~pA. (12b)

Therefore,aslong aspA <1, weneed~= 1 to agreewith eq. (12b); otherwiseeithertheupperbound

or the lower bound would be violated:

~(p<1/A)=l. (12c)

Furthermorerefs. [88,89,91] derived

(g,i)’~”~(a + 1)”~1/a”; a = t/s (13a)

if t and s go to infinity at constantratio a. [Proof: Eq. (7) gives for t~= as at arbitrary a: n, =

~ ~S~P(I — p)t ~ g,~.[p(1 — p)a ]~.This expressioncannotincreaseexponentiallywith s, and thus we
need(g,~,)’~”p(1— p)” ~ 1 for arbitrarya andp. If weusep = 1/(1 + a)or a = (1— p)/p in that inequality
we get (g,~,)”a”/(i+ a)~~ 1, which giveseq. (13a).] Usingthis result,Reichand Leath[89]derived

~(P<PA)=l, (13b)

wherePA IS determinedby aA = (1 ~PA)/PAand (aA + i)~’/a~= A. In the triangularlattice theabove
datafor A give a,, = 1.429 and thusP~= 0.412; for thesquarelattice a,, = 1.023 andP~= 0.494.These
valuesfor P~arealreadyquite closeto Pc = 0.50 and0.59, respectively,suggóstingwhat we will find
later, that ~= 1 for all p belowPc.

Thus theasymptotic“decayexponent”~ equals1 — lid abovePc and 1 belOw Pc, at leastfar away
from thecritical point.Theseinequalitiesdo not yet excludethepossibility that thereexistsasecond
and third critical point P2 andp~belowandabovePc, respectively,suchthatC(P <P2) = 1, ~‘(p> p~)=
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— lid, but ~ different and unknownfor p betweenP2 andp~.In that caseno drasticchangesare
allowedin the clusternumbersattheseadditionalcritical points,if the “free energy”L n,(p)hasonly
one critical point Pc where it is not analytic [95]. Our next sectionwill show from Monte Carlo
methodsthat at leastin two dimensionsno such complicationseemsto exist and that the decay
exponent~ equalsunity for all p below Pc and equals I — lid for all p above Pc, evencloseto the
critical point.

3. Clusternumbers

This sectionis themainpart of our reviewanddealswith a simple formula,eq. (15), to describethe
averagenumberof large s-clusterscloseto thepercolationthresholdPc, asafunctionof s and P — Pc.

Numericaltestsarepresentedwhich confirmroughly that scalingformula.Exceptif statedotherwise
our resultshereapply only to large s and small P — Pc.

3.1. Scalingtheory

This subsectionsuggestsa scalingassumptionwith two freeexponentsif and T, which arefitted on
“experiment”.All theothercritical exponentsthenare derivedfrom thesetwo. In this sensea scaling
theory is phenomenological,i.e. it merely relatesdifferent measurablequantitieswithout calculating
any of themdirectly. In contrast,the “microscopic” numericaltechniquesof section2 predictsuch
measurablequantitiesdirectly from first principles.The samedistinctionbetweenphenomenological
andmicroscopicapproachesappliesto thermalphasetransitions[10,11] andotherproblems.After we
haveexplainedexponentswe alsogive a table summarizingthepresentnumericalestimatesfor them
asa functionof dimensionality.

3.1.1. Thebasic assumption
The critical behaviornearPc is characterizedby the factthat thetypical clustersizebecomesvery

large nearthe phasetransitionand divergesat Pc; otherwisethe typical clusterradius ~ of eq. (6e)
would not diverge. One may define the “typical clustersize” Sg as that size which gives the main
contributionto the singularparts of L s2n~,~, s3n

5 or of any other sum appearingin eq. (6). (This
typical clustersizeis not identicalto anotherexpressionwhich in the literatureis unfortunatelycalled
the meanclustersize: S ~ s

2n,/~.~ n~,a wordingwhich we will avoid here.)We assumethat all
thesedefinitionsgive thesametypical size s~apartfrom numericalconstants,i.e. that thedifferent s~
all divergewith the samepower of I~— pCI. This exponentof p — Pc is sometimescalled the gap
exponent;we denoteit hereby 1/if. Thusour basicpostulateis:

We assumethat the critical behaviorof percolation is dominatedby clusters of size s~or

— ~ wheredifferently definedtypical clustersizes Sg all divergewith thesameexponent.
(14a)

In short,we assumean essentiallyuniquetypical clustersize. “Critical behavior” in assumption(14a)
refers to the singular parts, as defined in section1.2. For example,s~is the size dominatingin
~ S ‘Is ]sing, but not in ~. s n

5 singularitiescomefrom typical clusters,analytic backgroundterms
arisefrom muchsmallerclusters.

How can we put eq. (14a) into a quantitativeform? All singular clusterpropertiesmustdepend



D. Stauffer, Scaling theory of percolation clusters 21

mainly on the singleratio s/sg sincethe typical clustersizewasassumedto beunique.If insteadthey
would dependon two variabless/sg, and s/se,we would havemorethanone typical clustersizes~,in
contradictionto eq. (l4a). But theassumptionn~(p)= f(slsg)would be too simple,sincethenatP = Pc,
wheres~= ~, theclusternumberswould beconstant,in contradictionto fig. 3. It seemsplausible,just
as we expressedthe clustersize by the ratio S/Sg,to calculatealso the clusternumbersthrough the
ratio n5In~and to assumethat this ratio dependsonly on the ratio s/sg:

n5fn~= F(s/s~). (14b)

Sincethe typical clustersizeis definedonly up to numericalfactors,this assumption(14b)is not very
practical(exceptfor onedimension:appendix2) andwe replacetheratio n5/n5~by ns/ns(pc).(The final
result(15) is the same.)Thus:

We assumethat the ratio v3(p) = n5(p)/n,(p~)and similar ratiosof otherclusterpropertiesarea
functionof the ratio s/se only: v5(p)= F(s/s~). (14c)

Equations(l4b, c) explain why theoriesof this kind arecalled scalingtheories:If weplot n~versuss
for different p — Pc and if we scalethe clustersize s by dividing through Sg and the clusternumbers
n,(p) by dividing through n,(pc) or ~ then in thesescaledvariablesthe pkts are independentof
P Pc

We havealreadyseenin fig. 3 that at p = Pc theclusternumbersns(pc)decaywith asimple power
law: n5(p~)or s~.And now we understandwhy: Any more complicateddecaylaw, like ns(pc)or

s~exp(—s/so),would meanthat at Pc thereexists a finite typical clustersize s0. Since s~(p= Pc) is
infinite that resultwould meanthat more thanone typical clustersizeexists, in contradictionto our
basicassumption.Thus eq. (14c) reads:n~(p)or s~F(s/sg).Since s/sgor I(~ pc)soIhbo,we may sum-
marizeour assumptionin its final form:

or ns(p)or s
Tf(z)

with z (p Pc)5~and f(0) = 1. (15)

The normalizationf(0) = 1 comesfrom the trivial requirementVsQ~c)= 1. This assumption(15) is the
basis of our interpretationof cluster numbers;we will determinethe exponentsg and r and the
scalingfunction f(z) from microscopicmethodslater, sincethey are not predictedby the present
phenomenologicalscalingtheory.

Eq. (15) was first mentionedby Stauffer [67]as a generalizationof theFisher dropletmodel [34];
for thermalphasetransitionsanalogousgeneralizationsweremadeearlier[96]~(Seealso refs. [18,97,
98] for relatedassumptions.)This Fisher model [34]simply assumesn

5 cc ~ exp(—const z) for p
abovePc, which is clearly a specialcaseof eq. (15). Although this Fisherformulafinally turnedout to
be quantitativelyinaccurate,as we will seelater in fig. 7, it givesa rathergoo4approximationfor the
“ferromagnetic”side of the phasetransitionandplayedan importantrole in the developmentof the
scalingtheory for percolationclusters.Many of the qualitativediscussionsof this sectionand of
appendix1 canbefollowed easierif the readerworks with this simple Fisher formula insteadof with
the generalscalingassumption(15). We may also regard eq. (15) as a geneitalizationof the Bethe
lattice result[30]where n5 cc ~5I2 exp(—const.z

2), ~ = ~, i =

[For finite s the cluster numbersn, are a polynomial in p, eq. (7), without any singularitiesat
p = Pc. Thus we expectalso the limit functionf(z)= n,/n,(pc)to remainregu’arat p = Pc, i.e. z = 0.
The scalingfunction1(z) is thereforeassumedto be analyticin its argumentz f~rall z including z = 0.
For large z, the scalingfunction f must decaysufficiently rapidly to makeall the sums in eq. (6)
converge.]
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3.1.2. Relation to critical exponents
Now we relate the clusterexponentsif and T to the other critical exponentsa, /3, y, ~ definedin

eq. (6). In orderto evaluatethesingularpart of any moment~, s”n~qualitatively, i.e. in order to get its
critical exponentcorrectly, we may replacein the sum eachfactor s by the typical size s~andthe
clusternumbers n~by the numbersof typical clusters n5~cc s

Tf(const)or s~.Moreover the sum-
mationover all clustersizess givesan additionalfactorsc: [~s Sk~

5]sing cc 5~+k~ Since sE or — Pc~~
by definition, we thus have[18]

[~skn~(p)] or p — pcI(Tl_~~~. (16)
sing

A morerigorousderivationof this exponent,togetherwith evaluationsof theproportionality factor,is
givenin appendix1. A readerwho mistrustsour simple approximationaboveanddoesnot wantto go
through the details of that appendix may check eq. (16) by simply using the Fisher formula,

or s~exp(—const~z), and by evaluatingthe higher momentslike k = 2, 3,. . . only. The integrals
thencanbe expressedby gammafunctions[99].

Eq. (16)givesus immediatelythevarious exponentsof eq. (6); wemerelytakek = 0 for thenumber
of clusters (eq. (6a)), k = 1 for the percolation probability (eq. (6b)), k = 2 for the susceptibility
(eq. (6c)) to geta, /3, y as [34]:

2 — a = (T — 1)/if, /3 = (T — 2)/if, —y = (T —

3)/if. (17a)

Right atp = Pc, the sum in eq. (6d) defining theexponent~ arisesmainly from clustersizess nearh/h.
Thus thenonanalyticpart of ~, . fls(pc)C~ variesash’h~h~= h~2,asappendix1 againwill show
in detail; andwe thereforehave

1/6—T2. (17b)

We may solve thesefour equationsto get theclusterexponentsasa functionof theotherexponents
and to derivetwo relationsbetweenthe latterexponents:

T=2+1/eS; o~=1//3~=1/(y+f3) (18a)

2—a y+2/3/3(~+1)[dv]. (18b)

The last relation, wherethe dimensionalityd enters,will be derivedlater in eq. (37c). Thesefamous
scalinglaws (18b) are known since many years,also for other phasetransitions [10,11, 30]. If we
would not havegotten them, we would haveto changeour scalingassumption(15), not the scaling
laws.Again eq. (18) comesas no surprisesincethesamerelationswere knownfrom theFisher model
[34];in fact their first derivationfor thermalphasetransitions by Essamand Fisher [31]usedthis
clustermodel.

In this sensewe fulfilled ourpromiseto usepercolationasa simple introductionto scalinglaws: By
a plausible assumption(15) on the cluster numberswe could derive the desiredrelationsbetween
critical exponents,eq. (18). Of course,it is no greatrevelationthat we found four relationsbetween
six exponents,whenwe madean assumptionwhich containsonly two exponentsas free parameters.

Our assumption(15) is completelyanalogousto experiencemadewith otherphasetransitions.That
experiencehasshown: Any “singular” functiong dependingon two “critical” variablesg(x,y) can,
for small x and y, be written in generalin the form g(x, y) = f G(y/x”) with two free exponentsb
and c. Our scalingassumption(15) is merely a special caseof this general “scaling homogeneity”
assumption [100].(It is noteasyto write downanexplicit expressionfor g(x,y) whichdoesnotreduce



D. Stauffer, Scaling theory of percolation clusters 23

to that simple homogeneousform for small x and small y.) For our percolationclusterswe simply
identified x with 1/s and y with p ~Pc, and gave special names to the two exponentsto get

= sTG((p~Pc)5~) in agreementwith eq. (15). Percolationclustersfollow what canbe learnedfrom
other phasetransitionsand haveno intentionto learnnew tricks. For somereadersthat might make
assumption(15) more likable sinceit now hasthe form: “PercolationclusterSarelazy and invent no
newwaysto deal with critical phenomena”.For the readerwhois also lazyanddoesnotwant to read
aboutequationof stateor universalitywe recommendto go directlyto tables2 and 3 attheendofthis
subsection3.1.

3.1.3. Dilute ferromagnetsandghostfields
The equationof stateof thedilute low-temperatureferromagnetsmentionedin section1.1 canalso

bebroughtinto the scaling-homogeneityform mentionedaboveas customaryfor critical phenomena.
The mathematicsis simplified if welook atthesusceptibilityx aM!

13H since~thenthe singularpart is
identical with the leading divergence,and the analytic backgrounddoes not disturb us. At thermal
phasetransitions one has x or ITO— T~X(hIIT~—TI’~

6)with the abbreviatiØnh —p~H/kBTfor the
reducedmagneticfield. The scalingfunctionX mustbe a symmetricfunctionof its argument,leading
to ~(—h)= ~(h),since thebehaviorof a magnetis independentof the directiOnwhich we choosefor
the coordinateaxes.For the dilute magnet,eq. (5), we find by differentiatiOn, using d(tanhy)/dy =

cosh2(y)andz = (p —p~)s~

x pkBT/~=p aM/ah = ~ s2n
5(p)cosh

2(sh)cc J 52_Tf[(p ~

= ~ IP _pc!(T3~~J IzI ST)/cTf(z)cosh2(lzJ”°h/Ippcj~k~)dzf

cc I~—p~L”JIzV~f(z) cosh2(Izl~~h/Ip —p~I~)dz (19a)

with the z-integrationrunning from 0 to +~ for p > Pc and from 0 to —~ for p <Pc. Thus our
susceptibilityobeysthe simple homogeneityform postulatedabove,but with p — Pc replacingTc —

x = Lo —p~I~’X(h/Ip .p~~B0). (19b)

Eq. (19) givesan explicit scalingexpression,in termsof a clusterscalingfunctionf to be determined
later, for the susceptibility;it hasthe full symmetry,homogeneityandanalytkity propertiesrequired
generallynearcritical points.For thermalphasetransitionsthat problemis muchmore complicated;
the simple Fisher model, for example,violates the symmetryrequirement[34]. No explicit formulas
haveto ourknowledgebeenproposedfor critical phenomenain othercases,~~vhichdo fulfill all these
requirements.As promised,percolationis a particularly simple phasetransition; it merely requires
substitutionof integrationvariablesas mathematicaltool so far.

For the magnetizationM in eq. (5) and the free energyF = — fM dH analogousscaling-homo-
geneousexpressionscan be derivedfrom eq. (15). The sameis true for the generatingfunction or
ghost-field free energy[~,n

5(,p)~_lt5]~j~gand similar expressionsfor the highe~moments.In fact, the
result

n, e_h5] . = I~~ P(hfIp —p~I~) (20)
5 sIng
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hasbeenpostulatedby Essamand Gwilym [30]in the first scalingtheoryof percolation,long before
clusterscaling was suggested[67].Nakanishiand Stanley [23]recently confirmed that assumption
numericallyby Monte Carlo computersimulations.It is ratherobviousthata scalingassumption(15)
with two free exponentsfor theclusternumbersn5 leadsto a two-exponentscalingexpressionfor the
momentsor generatingfunctions,as in eq. (20). But the reverseis not true,seeappendix1: One can
invent expressionsfor the clusternumbersn~with threefree exponents,which leadto only two free
exponentsin thescalingexpressionfor thesesumsover clusternumbers.Thustheassumption(20) of
EssamandGwilym [30]is a consequenceof our assumption(15) but is not equivalentto it; andmore
datathan thoseof NakanishiandStanley [23]areneededto confirmeq. (15).

Therefore eq. (15) hasto be testeddirectly since scalinglawsalonedo not proveit. In fact, also
alternativesto eq. (15) havebeenproposedwhich do not employ just two freeexponentsbut moreor
less. In the first scalingtheoryfor clusternumbersn5(~p),Domb [101]suggestedto take ~ = ~and to
useonly one free exponentr. And later Leath[73]madean assumptionwhich correspondsin many
applicationsto a scalingansatzwith threefree exponentsr, 4, ~!i.But later work [54,71, 83, 102]
showedif <~and q5 = ~‘i, leavingus againwith two free exponents.Very recentlyKunzandPayandeh
[79]showedhow renormalizationgroup makesassumption(15) plausible.Thus at the time of this
writing eq. (15) seems to be the only viable scaling assumptionstill floating around, and we
concentrateon that assumptionwhenwe presentnumericaltestsin subsection3.2.

3.1.4. The universalityconcept
The “universality” concept [11,103] for thermal critical phenomena is a semi-empirical

classificationof different systemsinto few universalityclasses.It assertsthat critical exponentsand
otherqualitativepropertieslike theshapeof thescalingfunctionsareindependentof detailslike range
of interactionor structureof the lattice.Only thedimensionis importantenoughto changeexponents.
A precursorof this universalityassumptionis the law of correspondingstatesfor fluids. Universality
in this naive senseturnsout to be valid in mostbut not all cases.Thus for the majority of thermal
phase transitions one can predict rather reliably which different systems belong to the same
universalityclass.Thenonecanpredictcritical exponentswithout havingto solve in detail thecritical
behaviorof thesesystems.This universalityconceptthus savesa lot of work if one can trust it;
roughly speakingall three-dimensionalsystemsthenhavethe sameexponents,etc.

For percolation,we postulatesimilarly [50]that exponentsand the shapeof the scalingfunction
f(z) in eq. (15) do not changeif we change“minor” details like the lattice structure; only the
dimensionality is important since, after all, it appearsexplicitely in the scaling laws (18). More
quantitativelywe maygeneralizethescalingassumption(15) for one lattice, n5 cc s~f[(p—p~)s°i,to a
universalityassumptionfor all lattices of the samedimensionality d [103]by introducing lattice-
dependentscalefactorsq0 andq1 besidesthe lattice-independentexponentsif and r. Also we denotea
lattice-independentscalingfunctionby f~,where u standsfor universal,andrequire

n5 =q0s~f~[(qi(p—p~)s°]; f~(0)°~1. (21)

This universalityassumption(21) meansthat for agivenp the shapeof the size distribution n5 is
thesamefor different latticesof thesamedimensionalityd; only the two scalesfor the n5-axis and the
s-axisare different. For example,if in the triangularlattice for largeclustersthe maximumvalueof
n,(p)(asa functionof p. at fixed s) is five times largerthann5(p~),thenalso in the squarelattice the
maximumis five times higherthanthecritical valuefor theclusternumbers.But for threedimensions
this ratio can be lower. Similarly, if one calculates the ratio of “susceptibilities” ~ s

2n
5(p<
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pJ/~5s
2n

5(p> p~)for equaldistances~p— p~jfrom thecritical point,thenscalingrequirestheratio to
be independentof p — p~for one lattice structure,and universality requiresit to be the samefor
different latticesof the samedimensionality d. (How this ratio dependson d is not yet known in
general[26].)More quantitatively,the ratio canbe expressedby integralsinvolving only theuniversal
1~~~where the latticedependentfactorsq0 and q1 havecancelledout:

~ s
2n

5(p<~~)/~s
2n

5(p> p~)= f y”’f~(—y)dy/f y~f~(+y)dy

with y = q1(p— pc)sU,as can be checkedeasily with the methodsusedalready in eq. (19). (Onemay
also postulaterelations betweenthe coherencelength ~ and the “free energy” >~n5 analogousto
thermalphasetransitions [104];but little is known on that subject,which would be anyhowoutside
thescopeof the presentreview.)

Marro [105]madeseveralnumericaltestsinvolving similar ratiosand foundthemindeeduniversal
as desired.The critical exponentsare universal,within small error bars,in two and threedimensions
when various latticesare compared[54].With largererror bars,exponentsseemunchanged[24]if
clustersin percolationare defined not just as nearest-neighborconnectedgroupsbut if also longer
distanceswere allowed to connect the sites; but from now on we will again deal only with
nearest-neighborconnectedclusters.For the cluster size distributions,the universality assumption
(21) wasconfirmedquite directly in both two and threedimensionsfor selectedlattices[26,71]. Thus
it seemslegitimate to regard critical exponentsas a function of dimens~onalityd; our table 2,
following Stanley [106]and more recent sources[107—110,7, 26, 60, 71, 93], compiles averaged
numericalestimatesfor manyexponentsasafunctionof dimensionalityd.

We seethat thescalinglaws (18) areconfirmedreasonablywell in two and threedimensions,just as
theyareknown to be valid in thermalproblems.In the three-dimensionalIsing magnetnearits Curie
temperature,thereis a problemwith the latest scalinglaw dv = 2— a; but accordingto ref. [111]the
two errorbarsoverlap.Similarly for two-dimensionalpercolationtheestimate2— a = 2.668±0.004 of

Tab’e 2
Numerical estimatesof directly determinedcritical exponents.If one believes in
scaling laws,eq. (18), one can fill in the empty spaces.The exponentsU and ~sfor
animalsand conductivity aredefinedlater, eqs.(27—49). Ourvaluesareaveragesover
differentmethods,if available;theerror bar is seldomlymorethanoneunit of the last
decimal. Perhapsv(d = 2) = 1.355 is exact,eq.(9). Referencesaregiven in Stanley’s
table [106];see alsorefs.[7, 17, 60, 107]. Data for theexponents0, p. 0’ and r from
refs.[26,71, 93, 108, 109]. One-dimensionalpercolation is discussedin appendix 1.
Infinite dimensionalitycorrespondsto “classical” results[27—30,114, 149], they are

expectedto be valid alreadyabovesix dimensions.

d a $ y S v iT ~ 0 p

1 1 0 1 ~ 1 1 2 0 —

2 —0.67 0.14 2.43 18 1.35 0.39 2.0 1.00 1.2
3 0.4 1.7 5 0.84 0.4~ 2.1, 1.5 1.7
4 0.5 1.5 3.~ 0.7 1.9 2.4

5 0.7 1.2 2.~ 0.6 2.2 2.7
6 1.0 1.06 2 0.5 2.4 3.0

7 1.0 2 2.4
~ —1 I I 2 1 1 1 1 3
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ref. [56]disagreeswith dv if ii = 1.355 is exact,eq.(9). The estimatefor 2—a alsodoesnotagreewell
with other series estimates[107,110] y = 2.425±0.005 and /3 = 0.139±0.003and the scaling law
2— a = y +2/3. In theother casesno suchproblemsoccurat present.

Onevery importantnon-universalparameter,whichmoreoveris not predictedby any of theabove
scalingtheories,is thepositionp~of thecritical point.Scalinganduniversalitytell us somethingabout
what is happeningnearp~,but tell us nothing aboutwherePc is. Table 3 lists numericalestimatesand
exact resultsfor various latticesand various dimensions;no reliable connectionexists at present
betweenp~and the critical exponents.In the triangular “site” percolationproblemand the square
“bond” percolationproblem we havep~= ~, presumablyexactly [24];moreoverPc = 2~sin(~ih8)=
0.34729for triangularbond percolationandp~.= 1 — 2~sin(~r/18)= 0.65271 for bond percolationin the
honeycomblattice.Clearly universalitycannotassertthat p~is the samefor all lattices.

Returningto theuniversal(?) exponents,we unfortunatelyhave to mentionthe resultsof Klein et
al. [112]that in one dimensionthe percolationexponentsdependon the rangeof interaction, in
contrastto higher dimensions[24].This clear violation of law and order is discussedin detail in
appendix2; clearly the naive universality picture as suggestedhere is not valid in all cases.The
specialstatusof one-dimensionalpercolationis alsoevident from table2, whered = I doesnot seem
to follow for someexponentsthe trends evident from d = 2, 3,~. . [133]even when only nearest-
neighborconnectionsare used.On the other hand the behaviorfor largerdimensionalitiesis rather
smoothandagreesquite well with theepsilonexpansion,eq. (10), eventhoughonly the first two terms
of an expansionin � 6— d are used.This agreementis seenclearerin fig. .5 where /3 and y are
plottedfor one to sevendimensions.

We concludefrom the informationpresentedherethat the scalinglaws for the critical exponents
like /3 areconfirmedratherwell, that thesescalinglawscanbe explainedby a simple assumptionon

Table 3
Numerical estimates(three digits) and
(presumably) exact results (four
digits) for the percolation threshold

p~. TR = triangular, SQ = square,
HC = honeycomb,D = diamond, SC=

simple cubic, BCC = body-centered
cubic, FCC = face-centered cubic.
Resultsfor higher dimensionsrefer to
hypercubic lattices.From refs.[7, 26,

44, 45, 54, 55, 60, 107].

Lattice site bond

HC 0.698 0.6527
SQ 0.593 0.5000
TR 0.5000 0.3473

D 0.428 0.388
SC 0.311 0.249

BCC 0.245 0.178,
FCC 0.198 0.199
d=4 0.197 0.161

d=5 0.141 0.118
d=6 0.108 0.094
d = 7 0.089 0.078
d—6= p~=1/(2d— 1)
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Fig. 5. Plot of thetwo independentexponents$ and y asa function of dimensiond. The curvesrepresenteq.(10), theepsilon expansion.Data
for y aredirectlyfrom table2; datafor $ alsoemploy thescalinglaws $ = ~(8 — 1)= 1(dv— y) andrepresentaverageestimates:$= 0.41,0.58,0.76,

1.00 in 3,4,5,6dimensions.In two dimensions,$ = 0.139±0.003[110].

the cluster numbers,and that we haveto test this scalingassumptiondirectly. This is done in the
following subsection.

3.2. Testsof scaling

Only for two and threedimensionsare clusterstatisticsknown to us which havebeenanalyzedin
termsof scaling,eq. (15); the polynomialsin refs. [45,107] are still waiting fOr a “lover” to study n5
for generald. And Monte Carlo work in morethanthreedimensionshasnot yet beendoneon n5. (In
5.99 dimensions, epsilon expansion results of Stephen [114]were consistent with eq. (15).) Werestrict
ourselvesheremainly to recent Monte Carlo work of high accuracyby St~lland Domb [62,115],
LeathandReich[71,72] andHoshenet al. [26],eachbasedon manymillions of Monte Carlo step for
eachconcentration.We mentionedalreadybefore that the Monte Carlo Work of Nakanishi and
Stanley [23] for the “equation of state” gives an indirect confirmation of the cluster scaling
assumption(15).

The variousregionsto be investigatedcanbe seenratherelementaryif we look atthenumbern2(p)
of pairs in the squarelattice: Eachpair consistsof two occupiedsites sutroundedby six empty
neighbors,and it can be oriented either horizontally or vertically. Thus we have n2 = 2p

2(h — p)6
exactly.This functionhasa maximumat p = 0.25, far belowp~= 0.593; for largerclusterstheposition
of themaximumshifts closerto p~,and thepeakbecomesmore narrow.Thus generallywe may look
at what happensat p~,abovep~,near the maximum below p~,and asymptotically in the wings
relatively far away from themaximumwhere n

5 becomesextremelysmall. The latterquestionswill
alsobe discussedoutsidethe scalingregion,i.e. with p not very closeto p~.

3.2.1. At thepercolationthreshold
Right at Pc the scalingassumption(15) assertsn, s~.We needT > 2 sincethe total numberof

occupiedsites,~ s n5 = p~,from eq. (4), must remainfinite evenat thepercolationthreshold.Figure
3 in theintroductionalreadyshowedtwo-dimensionalresults,right attheexactp~= ~of the triangular
lattice,giving sucha simple powerlaw. An analogousplot for threedimension~is given in fig. 6. These
two computersimulationsusedthelargestlattice knownto us for Monte Carlowork, 4000x 4000 sites
in two and400 x 400x 400 in three dimensions. The solid line in figs. 3 and 6 ~snot the best fit on the
Monte Carlo databut thepredictionfrom seriesexpansions,n5 cc ~2II8 with both theexponentand
the proportionality factor calculated from refs. [19,55]. (If n5(p~)varies as s~for large s,
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Fig. 6. MonteCarlo cluster numbers[261at p = p. = 0.311 in thesimple cubic lattice, togetherwith theseriesprediction[55].

then the relation r = 2 + ho is exact and does not require the validity of eq. (15). Thus figs.
3 and 6 constituteonly a weak test of the specific scalingassumptionusedhere.)The agreementof
Monte Carlo and seriesresults is excellenton the scaleof figs. 3 and6.

Closer inspection,however,showsproblems: The best fit for r from large s in figs. 3 and 6 is
T(d = 2) = 2.02 and r(d = 3) = 2.135, significantly lower than the series predictions [19,55] r =

2.055±0.002 and 2.2±0.03, respectively.(Monte Carlo data in ref. [71]give r = 1.97±0.05 in the
triangularlattice atPc, but T = 2.05±0.02 from scalingandall p.) Therearetwo reasons[26]for these
deviations,which wewill discussnow: Neithertheclustersizenorthe lattice sizearelargeenoughfor
the asymptoticscalingbehaviorto be exact in the computerexperiment;the true exponentsshould
showup only for s—~~ in anextremelylargelattice.Presentcomputertechnologyunfortunatelydoes
not allow an infinite numberof operationswith an infinite computermemoryduring a finite time at
small costs;thus Monte Carlo studiesare always experimentswith both systematicand statistical
errors.

More precisely,alreadyfor theexact clusternumbersn5 for small s from seriesexpansions[46]
one can seethat at PC themeasuredn~were below the extrapolatedclusternumbersrepresentedby
the solid lines in figs. 3 and 6. If we assumer 2.05, as requiredin two dimensions,then a much
betterfit over nearlythewhole rangeof s wasobtained[26]for the triangularlattice by

n, = 0.03 ~_2.O5 (1 — 1.2 ~_2~l3) (22)

where a first correctionterm to the simple asymptoticpowerlaw is used.This correction-to-scaling
exponent2/3 from Monte Carlo data agreesroughly with the analogousexponent3/4 found for
basicallythe samequantity from seriesexpansions[19]and is consistentwith theorder-of-magnitude
estimated[87] from the epsilon expansion[87]. If eq. (22) is correct, then the apparent slope

— d(log n5)/d(logs) in a log—log plot asin figs. 3 and 6 deviatesfrom the true (asymptotic)slope r
as r. = r — 2.2~~. ~213, and this deviationis, for s —~ 102, aboutas largeas the difference betweenthe
Monte Carlo and theseriesvaluefor r. Quite generally,it is difficult to get from MonteCarlo method
reliable valuesfor the seconddecimalafter thepoint in a critical exponent;and seriesextrapolations
usuallygivemoreaccurateexponents.

The influence of the finite lattice size can already be observedfor very small clusters.E.g. in
ref. [26]for isolated sites (s = 1) theactuallyobservedclusternumbersin theMonte Carlo experiment
were foundto belargerby about0.35 percent than the exactclusternumbersfor infinite lattices.This



D. Stauffer, Scaling theory of percolation clusters 29

deviation increaseswith increasingcluster size s and is responsiblefor the deviationsobservedin
fig. 3 for large s: theboundariesof thesystembreakup somevery largeclustersinto smallerclusters
and isolated sites. The use of periodic boundaryconditions(section2.2.1) reducesthese“finite size”
effects[69,62, 115]; in ref. [26]periodicboundaryconditionsmadethenumbersof small clustersagree
within statisticalerrorswith theexactresultsandshifted thefitted exponentr upwardsto 2.16, closer
to the seriesprediction2.2, inspite of the fact that the systemusedwassmallerthantheoneusedfor
fig. 6. (In Leath’smethod [71—73] thereis no disturbinginfluencefrom theboundaries.)Thus we took
r = 2.15 as thedirect Monte Carlo estimatein table 2, although the true value is presumablyslightly
higher.Clearly a directevaluationof r = 2+ 1/0 from Monte Carlo clusternumbersat p~,is not a very
accuratewayto determinetheexponent5; andseriesmethods[19,55] work betterhere.We now turn
to the regionp � Pc where seriesmethodsgaveonly rathercrudeextrapolations[51]for the cluster
numbers and their scaling function; here Monte Carlo methodscan be mOre reliable than series
extrapolations.(Also, in the following discussion we are satisfiedwith an accuracyof about 10
percent;all theaboveproblemsconcernonly thefine detailsof theseconddecimal.)

3.2.2. Abovethepercolationthreshold
The clusternumbersabovePC decaymonotonicallywith size. Figure 7 shpws logarithmically the

variationof the Monte Carlo ratio v5(p)= nS(p)!flS(pC)with the scalingvariable z= (p —p~)s~in the
triangularlattice. Here theexponenta’ wastakenfrom the aboveresultsas a’ = l!(y + /3) = 0.39 [54].
If assumption(15) is correctthenthevaluesfor differentp — PC shouldall follow thesamecurvesince
z is usedas a variable here.This is thebasicresultof scaling: By multiplyiflg the original variables
p — p~andn~with suitablepowersof s,or by similar rescalingof theaxes,theoriginal dataareshifted
suchthat different data(e.g. for different s) follow the samecurve. We see that in fig. 7 different
symbols, representingdifferent p — Pc in this case,follow the samecurve within the “experimental”
scattering.This figure thus confirms our basicassumption(15) for the cluster numbers.The curve
throughthepointsin fig. 7 is the extrapolationfrom seriesresults[51]andagreesremarkablywell with
the Monte Carlo data.For threedimensions,similar confirmationof scalingby Monte Carlo results
wasobtained,too [26].

The tangentto the origin in fig. 7 arisesfrom additional more accurateclusternumbersobtained
very closeto PC~Takentogether,fig. 7 showsconvincingly that thedatado nc~tfollow a straightline;

I I
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Fig.7. Scalingplot abovep~.Variation with z = (p — p~)s~of theratio v, = n,(p)In,(p~)on alogarithmic scale.Assumption(15) requiresdifferent
symbolsto follow thesamecurve. Monte Carlodatafrom 4000x 4000lattice. From Hoshenet al. [26).
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C [261.The cluster numbern,(p) reachesat fixed s a maximum at

Fig. 8. Variation with p of the fiaction P,. of occupied sites p = p,,,.~belowp~.The fitted line has slope —0.40 in this log—log
belonging to the “infinite” network in a 4000x4000 triangular plot; scaling,eq. (15), requirestheslopeto be —0.39. Data for very
lattice. p is shifted from p. to Pc + 0.00085 to offset someof the large s areunreliablebecauseof the finite sizeof the 4000X 4000
boundaryeffectsin theMonteCarlocalculation.From ref. [26]. triangular lattice.

theupwardcurvatureprovesthat log v. is not simply proportionalto —z = — (p — Pc)5. Thereforethe
simple Fisher dropletmodel abovePC,with n

5 cc s_re_z Const is notexactsinceit would give a straight
line in fig. 7. Instead,a straight line is obtainedratherwell [26,62, 115] if the datafor v5 are plotted
againstz~

2ainstead of z. Thus for not too small z we find n
5 or ~ exp(—const~\/s) in two

dimensions,for the triangularandsquarelattices[26,62,115] evenwhen somecorrelationsbetween
occupiedsitesaretakeninto account[115](seesection6.2.3).

If we definea decayexponent[70]~= ~(p)through

log n5 cc — ~ (s —~xat fixed p) (23)

then thesedatasuggest~= ~in two dimensions.Thus the scalingfunction f(z) in eq. (15) seemsto
decayas log f cc — zU

2~~already for rather small z values above 0.1, and not merely for z~ 1.
Therefore the simple formula n, cc s~exp(—const~Vs) fits most data quite accuratelyabovethe
percolation threshold; according to assumption(15) this constantin the exponentvanishes as
(p — p~)~2at thethreshold[115].

The percolation probability ~ cc (p — P~)~is particularly difficult to measureby Monte Carlo
experiment,sincein two dimensions/3 = 0.14 [110]is so small. In a finite latticewith free boundaries
onemay approximateP,~by thefraction of occupiedsitesbelongingto the largestcluster;usuallyin a
Monte Carlo experimentslightly above PC the largestcluster is clearly larger than all the other
clusters.The P~.determinedin this way [26]obeyswith surprisingaccuracythedesiredpower law;
the slope of the line fitted in fig. 8 through the datais 0.133, very close to the seriespredictionof
/3 = 0.139±0003[110].Also the proportionality factor agreeswell with the seriesprediction[26,54].
In three dimensions the exponent for the percolation probability is /3 0.4 [7,60, 110].

Overall, abovep~,no contradictionswere observedbetweendifferent Monte Carlo simulations,
seriesextrapolations,andscaling,assumptions;moreoverwe canfit the datawith log v

5 cc — \/s, i.e.
with ~= ~over mostof the rangefor d = 2.

3.2.3. Below thepercolationthreshold
Below Pc the cluster numbers n5(p)as a functionof p at fixed s show a maximum at P = Pmax,as

we discussedbefore in the simple caseof n5 = 2p
2(1— p)6, Pmax= 1/4. If assumption (15) is correct,
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this maximum correspondsto a maximumin the scalingfunction f(z) at some negative argument
Z = Zmax = (Prnax — p~)5G~(This quantityZmax is fixed for a given lattice,butdependson the lattice type.)
Fig. 9 shows [26]how Prnax approaches p. for large cluster sizes: Pmax — p~cc — s°,with an exponent
a 0.40 fitted on thesedata. Another scalingtest [26]usesd(n5)/dp and gi~’esa’ 0.38. Leath and
Reich[71],also from Monte Carlo studies,concludea’ = 0.394 ±0.003 for triar4gular and square lattice.
Thus our table 2 gives a’ = 0.39 as the directly determinedclusterexponent~This value happensto
agree with a = 1/(y+ /3) = 0.390 ±0.001 as predictedby scalingtheory and t1~elatest seriesestimates
for y [1071and 13 [110].In threedimensions[261direct Monte Carlo detern~inationsof o• were less
successful;valuesbetween0.4 and0.5 agreedwith thedata,leadingto our esdmate0.45 in table 2; the
scalingpredictionis a’ 0.48 from seriesexpansions[54,110].

Figure 10 shows that the scaling assumptionis confirmed by two-dimensionalMonte Carlo data
[26,721: As requiredby eq. (15), differentsymbolsrepresentingdifferentp — Pc follow thesamecurve,
just as they did in fig. 7. The short curve near the origin symbolizesnumerOusadditional data [261
measuredtherefor smaller valuesof the scalingvariable z; they also agreewith scaling,eq. (15).
Again thesedataroughly agreewith extrapolations[51]from seriesexpansior~s.

Figure 10 givesa maximumof v5(p)= f(z) at z= Zmax= — 0.41 ±0.03, with a heightfmax = f(Zmax) =

4.9; universality assertsthis fmax to be the same for all two-dimensional’lattices.If the scaling
assumption(15) is correct thenthis maximumin n5(p) or v5(p) asa function of p for fixed s must
correspondto a maximumin v5(p)or fn5(p) as a function of s at fixed p belowPc, sincev5(p) equals
f[(p — p~)s°].The positionof this maximumSmax(P) is at Smax (Zmax/(P — p~))~”.Indeed, the insert in
fig. 10 shows this maximumquite clearly,using dataof ReichandLeath[72]for the triangular lattice.
Similarly for the square lattice Stoll and Domb [115]also find such a maximum in v5 versuss,
compatiblewith Zmax —0.4. The heightof themaximum,i.e. the valueof ~ found from thedata
of ReichandLeath [72]is compatiblewith the aboveestimateof about4.9, a~indicatedby the error
barsin the insertof fig. 10. Stoll and Domb [115]quotefmax = 5.4 takenfrom their datafartheraway
from p~.An earlier extrapolationof series results [50]gave fmax = 4.5 for triangular, square,and
honeycomblattices.Thus we conclude
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Fig. 10. Variation with zI”~= (p,, — p)
08 s of the ratio v,(p) belowp

5. analogousto fig. 7 abovep5, in the triangular lattice [26].Scalingrequires
different symbolsto follow thesamecurve. The small dots for p = 0.45 arefrom Reichand Leath [72].The in~ertshowsthe variation of v,(p)

with a at fixed p. with datafrom ref. [72],giving a maximumroughlywhere predictedby scaling[261and fig. 9. (Seealsoref. [115].)
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fmax5 (d2)

asthecombinedestimatein two dimensions.
Leath and Reich [71] investigatedscalingtheoryby Monte Carlo simulationsof the triangularand

squarelattice and found eq. (15) to be valid for clusterscontaining morethan 85 sites. For smaller
clusters systematicdeviations were observedwhich are larger than but in the same order-of-
magnitude as thosegiven here in eq. (22). It would be interestingto see in future researchwhether
these deviations also follow a scaling form [116]like v5(p)= f(z) . (1 + ~_0.7f1(z)+ ~ asa general-
izationof eq. (22). But suchananalysiswould requirevery accurateMonte Carlo data.(Refs. [71,73]
also determined the cluster perimeter distribution which in turn wasusedto getmoreinformation on
cluster numbers. Werefer to section4.1 andref. [71]for details.)

For large values of the scaling variable z = (p — PC)S~the cluster numbersdecayrapidly with
increasing—z; this wing on the left sideof themaximumdeterminestheexponent~of eq. (23). The
straight line fitted in fig. 10 through thedatasuggestslog v5 cc — (—z)”’~= — (p,— p)fl&s cc — s. Thus the
exponent~is aboutunitybelow Pcand thereforedifferentfrom itsvalue~in twodimensionsabovePc.(The
first indicationof suchanasymmetrycamefrom Bakri [70].)Similarly, Müiler-KrumbhaarandStoll [37]
concluded~= 1.1 ±0.1 in the squarelattice at p = 0.50, rather far below Pc = 0.593.Leath andReich
[71]found that the choice ~= 1 fits their Monte Carlo databetter than the choice ~= 2a = 0.8. And
mostrecently,Kinzel [80]found~= 1 over sixty decadesin n5, usingrealspacerenormahizationin the
triangular lattice.Thus for sufficiently large valuesof IzI we havein two dimensionsratherreliably
establishedfor p belowp~:

~(p>p~)=~~~(p<p~)=1. (24)

When we combinedatafor the clusternumbersabove,at andbelow p~in one plot [26,51] they

follow roughly a Gaussiancurve,asfirst suggestedby Leath [73]:
v5(p)= f(z) cc exp[—const(z— Zma~)

2]. (25)

Of course,eqs.(24) and (25) contradicteachothersinceeq. (25)gives ~= 2cr 0.8, violating theexact
inequality ~ 1—lId of Kunz and Souillard [90] above p~,eq. (lib). Thus the Gaussianfit is a
reasonable approximation but not an exact solutionfor the scalingfunctionf(z). It may replacethe
Fisher model, f(z) = exp(—const z) abovePc, as asimplenumericalapproximation.JustastheFisher
model it doesnotwork asymptoticallyfor largez, but in contrastto theFishermodel it canbe usedon
both sidesof thephasetransition.

In three dimensions,Monte Carlo data [26]for the simple cubic and the body centeredcubic
lattices[26]couldbe fitted well by aGaussianapproximationas in eq. (25), with ZmaxIPC= — 0.8. An
example is shown in fig. 11, where again data for different p — Pc follow the samecurve sinceVs ~5

plotted logarithmically against z; thus the scaling assumption (15) again is confirmed. The solid line
thereis the parabolacorrespondingto the Gaussianapproximation(25) and fits very well; ref. [26]
does not determine the asymptoticdecayexponent~ The maximumvalueof the scalingfunctionwas
foundto be [261

fmaxl.6 (d3)

in these two lattices. In one dimension we will see in appendix 2 that fmax = oo. For infinite
dimensionality we expect the Bethe lattice solution frn&x = 1 [30]to be valid [45,84, 107, 114, 117].
Thus the above estimatesfmax(d= 2) = 5 and fmax(d = 3) = 1.6 fit nicely into the general trend asa
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Fig. II. Scalingplot in threedimensionson a simple cubic 100 x 100 x 100 lattice. Data for different p follow the samecurve,asrequiredby
eq. (15). Theparabolafollows eq. (25). From ref. [26].

functionof dimensionality.It is not clearwhatto expectfor fmaxand more generally for the shape of
thescalingfunction f(z) for finite dimensionahitiesabovesix.

Universality for the cluster size distribution has also been testedin two [71] and three [26]
dimensions.By adjustingthe two lattice-dependentparametersq0 and q1 in eq. (21a)LeathandReich
[71]could confirm excellentlythe similarity of triangularand squarelatticeswith respectto cluster
numbers,for s above85. And in threedimensions[26],bccand sc lattice alsoseemto havethesame
shapeof the scalingfunctionf, asrequiredby universality.Moreover,by usit~g(p — p~)Ip~insteadof
p — p~in thedefinition of thescalingvariablez, the two latticesevencould be described[26]by the
sameparameterq1, a particularlysimple form of universality(alsoperhapsnot exact).

In conclusion,scaling for the cluster numbersn5(p), eq. (15), seems to be confirmed well for
sufficiently large clusterscloseto p~in two and three dimensions. In two dimensions, different work
by different authorsusing Monte Carlo and series techniquesgives consistentresults; deviations
seldomlyamountto morethantenpercent.A comparisonof two latticesin twO and threedimensions
confirmed well the universality concept.Very little is publishedon clusternumbersfor more than
threedimensions[45].

3.2.4. Decayfar awayfrom p~,
In eqs. (23, 24) we noticed already that for p � p~the cluster numbers decay exponentially for large

s, with log n3 x — ~1/2 above p,~,and cc — s below Pc. That conclusion was bas~don Monte Carlo data
with concentrations between Pc — 0.05 andp~+ 0.05 rathercloseto the critical point. Away from the
critical point, the inequalities of section 2.4 give for this decay exponent: ~(p~-* 0) = 1 and ~(p-+ 1) =

1 — lid in d dimensions[90].Howis the situation for intermediate concentrations, say at p = ~ And
what about three dimensions?

Monte Carlo methods for the cluster numbers do not work well far away from Pc for large s since
only closeto Pc manylarge clustersappear.But sincethe typical clustersize sE cc Jp — p~’~’is very
large only close to p~’we now perhaps are no longer forced to go to very largó values of s to see the
asymptoticbehavior.Thus the exactclusternumbersof Sykeset al. [42,44] can be usedfor an
analysis.FarabovePc [46, 49, 50] the series data show, similarly to the Monte Carlo results of section
3.2.2, that a simple power law is quite good: log v, cc 511,d fits for d = 2 and •3~dimensions the cluster
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numbersfrom s = 1 to s = Smax -= 10 within afactor10 or better,evenif theclusternumbersvary over
twenty order-of-magnitude[49].This result may have implications for nucleationtheory [38,118] if
that experiencecan be generalizedto thermalphasetransitions.It meansthat in the clusternumbers
n5 a “surfaceterm” or s~’~can be extrapolateddown to very small s, evenpairs and single sites,
without giving a wrong order-of-magnitude for n,. One only has to fit the “microscopic surface
tension”,i.e. the factor in front of 51—I/d in log n,, on the trueclusternumbersin the sizerangeto be
investigated[49, 118, 119]. Thus above p. the result ~= 1 — 1/d is establishednot only by the
Kunz—Souillardtheorem[90],eq. (11), but alsoby numericaldatafor rathersmall clustersin two and
threedimensions[46,49, 50] and for largerclustersin two dimensions[26,62, 115].

Similarly below p~,seriesdatafor p sufficiently far below p~give log v., cc — s for not too small
clusters,i.e. ~= 1 [46,50, 70]. Sincerigorousor reliableinequalities,section2.4, coverthe rangefrom
p = 0 to p pA with their prediction~= 1, and sincePA is rather close to p, (e.g. pA = 0.41 in the
triangular lattice where PC = ~) theseolder data were obtained in a region where later inequalities
confirmed their result ~ 1 more reliably. But they show in addition that the asymptotic behavior can
alreadybe observedfor clustercontainingonly ten sites.

Summarizing the information reviewed here on the asymptotic decay of cluster numbers we found
from a variety of different methodsthat mostprobably

~(0<P <Pc) = 1 and ~(Pc <p <1)= 1 — lid. (26)

(Right at p~,the clusters decay no longer exponentially but with a power law: n~cc s~.)This result for
random percolation,eq. (26), agreesentirely with Binder’s suggestionfor (appropriately defined)
clusters at thermal phase transitions [36,120]. It is thereforea sign of hope thatStoll andDomb [115]
observedsimilar behavior above PC for correlatedpercolation, section 6.2.3 in two dimensions.
Perhapssomebetterunderstandingof clusteringfor thermalphasetransitions[25,36, 155] atleastin
two dimensionsis waiting in the nearfuture.

Theseresultsfor thedecayexponent~havesomeimplications which in the clusterliteratureare
discussedunderthe heading“essentialsingularities” [34, 36, 121, 122]. If we look at the generating
function or “free energy” F(h) = ~. n~e~”,we may ask if F(h) is analytic in h at h = Ot Or more
precisely:DoesaTaylor expansionof F(h) work with F(h) = ~kFkhk/k!for small positive fields h?
(Here F,. is the kth derivative d’~F/dh”at h = 0.) Obviously all field derivativesF,, are finite for all
~ � J3c sincethey aregivenby the moments~ s~n5and since the n. decayexponentiallyaccordingto
eq. (26). But what is the radius ~ of convergencefor this Taylor series?If it is finite then F(h) is
analytic; but if R~00~= 0 we call this situationanessentialsingularity,similar to what happenswith the
function F(h) = exp(— 1/h

2) at h =0.
The general ratio criterion for power series gives ~ asthe limiting ratioof IF,,/k!IiIFk±l/(k+ l)!I.

Thus in our case we have ~ = lim,,...4~.~ ~k+I,~ x (k + 1). Evaluationof thesemomentsfor
large k is easy [701sincethen only very large cluster sizes s are relevant,where we may usethe
asymptotic form log n~or — sC. Thuswe find ~ skn, f

5k exp(—const~s’) ds,where all p-dependent
factors are hidden in the constants. The maximum of log[s” exp(. . .)] is located at s =

[k/(~ const)}~’cc k
tt’; the value of s” exp(...) at this maximum is roughly s~cc k” since the

exponentialterm is then negligible. (Proof: log[s” exp(. . .)] = k~in(s) — const Sc = k . In(s)— k/~
ln(s’~).The readerwho mistruststhesetricks may evaluatethe integralsby gammafunctions.)Thus
the kth moment~. s”n~varies for k-+oo as k’~’:The smaller the exponent~ is the stronger is the
increaseof the higherderivativeswith the order of the derivative.Thus RCOflV equalsthe limit (for
large k) of (k + l)k”/(k + ~ = (k + l)’”(l + lIk)~” (k + l)’11’e~”cc k’(—1/k~’~’~for
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~‘= 1—l/d); thus [70]

= lim kl~I’c.
k-soc

Thus below the percolationthreshold,where ~= 1, the radius of convergenceis finite. But above
andatp~where ~< 1 for all finite dimensionalities,theTaylor serieshaszero radiusof convergence.
This somewhatunusualbehavioris called herean essentialsingularityande*ists thereforeabovebut
notbelow p~.(The readermayhaveguessedthat resultalreadyby noticingthat F(h) = ~ nse~may
convergefor negativeh only if log n, varies at leastas—s and not if it varies only as _~i~2,for
example.)

This extremelyweak“essential”singularity haslong beensuggested[34,36, 121, 122] from cluster
modelsfor thermalphasetransitions(seeref. [123]for a renormalizationgroupapproach);the first
rigorousproof camefrom Kunz and Souillard for percolation[90].We seeits physicalsignificance
[122]mainly in the implications it hasfor the exponent~,i.e.for thebehaviorof very large clusters.
An essentialsingularity meansthat the clusternumberscannotdecayas a Simple exponential.The
behaviorof these large and very rare clustersis relevantfor nucleationtheory [38].(For dilute
ferromagnetsat finite temperatures,Schwartz[88]hasshown the Griffiths singularity [124]to be an
essentialsingularity in this senseasa functionof themagneticfield, if all momentsof thepercolation
clustersizedistributionexist, astheydo belowp~,[125].)

The exponent~in log n5 or — s~discussedso far describesonly the leadingtermin log n5 for large
s. More generallywe maketheansatz:In n, = — const~s~— 0 . ln s that mear~s[49,42]

or ~ exp(—const~Sc). (27)

Here,just as~ earlier,0 = 0(p) is a newexponentto be fitted on the data.For p -+0 we expectthis
exponentto agreewith the exponent0 for “animals”, section5, whosevalue is listed in table 2. Of
course,at p = p~we have 0 = r, ~= 0. Seriesanalysis [49]by a modified ratio methodgave in two
dimensionsfor intermediateclustersizesan effectiveexponent0(p). It increagedfrom 0(p -+0) = 1 to
0(p Pc) = r, first slowly, then rapidly. Above Pc it decreasedagain with increasingp, but the
extrapolation[49]becameerraticfor p closeto unity. The trend in theextrapolationsuggestpossibly
a simpler behaviorof the true (asymptotic)exponent0 for very largeclustersizes:Then 0(p) stays
fixed at its “animal” valueof table2 for all p betweenzero andp~and it jumpsto 0 = r atp = Pc. (In
six and moredimensionswe expect0 = r = ~everywhere.)We knowof no scalinglaws relatingthis
“prefactor exponent” 0 to the other critical exponentsor the dimensionality; neither is r — 0 a
constantnor is 0 = ~d in general.Apparentlyanew ideais neededhere!

With this remarkwe concludesection3 which we regardasthe main sectionof this review.The
resultsin sections4 and 5 areat the time of this writing lessreliableandmorecontroversialthanthose
in section3.

4. Clusterstructure

In theclusternumberswe sawin eq. (26) aclearasymmetrybetweenn, abØvep~,andn, belowp~.
Now we want to know if this asymmetryis reflectedin the structureof clusters.We first discussthe
clusterperimeterwhich can be deriveddirectly from the clusternumbers,without any newassump-
tions~.Thenwe look at otherpropertieslike clusterradii which requireadditioi~alscalingassumptions
beyondeq. (15).
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4.1. Clusterperimeterand internal structure

The averageperimetert. and the width & of the perimeterdistribution are discussedhere from
theclusternumberswith thehelpof exactrelations[71,90, 1261.

4.1.1. Exact relations
Let g,i be the numberof different cluster configurationsfor s sites with perimetert, where the

“perimeter” (not necessarilya “surface” in the usual sense)is the numberof empty neighborsof
clustersites, section2.2. Then n5, = g5,p

5(l—p)’ is the averagenumber [39—41]of s-clusterswith
perimetert, andn. = ~ n,~is theaveragetotal numberof s-clusters.We definean averageperimetert.
andwidth i~.for theperimeterdistributionfunctionn,jn, by

1/2

= ~ t . n
5jn,; ~ = [~~t — t,)2n~~/n5]. (28a)

(Onecould also defineaveragesby summingover s at fixed t; but little work hasbeendone in this
directionso far [48].)The evaluationof theexact n~,/n5showsa uniquepronouncedpeaknear t =

[42].
The averagesin eq. (28a)canbe expressedby derivativesof theclusternumbersn5(p), just as in

statisticalthermodynamicsone finds theaveragemagnetizationand its fluctuationfrom the first and
secondfield derivative of the logarithm of the partition function. Let Z~= n5p’ = ~, g,~q’ with
q = 1 — p bethe partitionfunctionfor s-clusters.Thenthe readercancheckeasily that the following
two relationsareexactin general,not only for largeclustersnearthecritical point [90,71]

t. =(8/a lnq)lnZ,; ~=(8/t9lnq)
2lnZ

5. (28b)

By differentiatingn5/p
5 we canrewritetheseresultsas

t~= (q/p)s— q(t91ap) ln n
5 (28c)

~= qp
2s+q2(o/ap)2lnn,—q(a/ap)lnn

5. (28d)

For large clustersand p Pc we have ln n~cc — ~ with aproportionality factor dependingon p

andan exponent~givenin eq.(26). Thus for all p exceptatPc we get for s -+ ~:

= (q/p)s+ O(s’) ~ = qp
2s+ O(s’). (29)

Accordingto Kunzand Souillard [90]theexponent~is rigorouslybelow unity for all p abovePC and

all finite dimensionalities;hence

urn t,/s = (1 — P)/p (p ~ PC). (30a)

Moreover,if ~= 1 — l/d abovep~,thenthe “correctionterm” cc ~ in eq. (29) varies as s’”~ above
Pc, i.e. as a cluster surfacearea.Since the perimeter t, counts internal holes as well as external
boundaries,its proportionality to s for large s is legitimate; seealso section4.3.2. (For p = PC the
validity of eq. (30a)will be shownin eq. (33).)

This relation (30a)hasa lively history sinceits simplederivation[90]waslong overlooked:Domb
[101]predictedt, to be proportionalto s for larges nearp~,andStauffer[98]suggestedthe factorof
proportionalityto be (1 — p~)/p~atp~.Leath[73]gavea muchsimpler but still notexactderivationof
that relation; moreoverhegavethe first Monte Carloconfirmation,albeit somewhatbelow Pc. Series
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(I — p)/p abovep

5 [90]. The Monte Carlo resultsof ref. [62],+, andof ref. [75],dots, and theseriesresultfrom ref. [52], x, refer to thesquare
lattice.

extrapolationsby Stauffer [50]and Domb [102](but much morepreciseby Duarte [52])agreedwith
eq. (30a)atp~.Forp slightly abovePc Stauffer[126]gavescalingargumentsfo~eq. (30a);accordingto
thatwork eq. (30a)is not valid belowp. A proof of eq. (30a)atPc wasgiven by ReichandLeath[89],
and for all p abovep~by Kunzand Souillard [90].An independentdifferent aigumentwaspresented
by Hankey[91]for theanalogousresult in the infinite network for all p abovep~.Stoll and Domb [62]
and Leath and Reich [71] confirmed eq. (30c) by Monte Carlo simulations~for p at and near p~
(ref. [62]also for the infinite network),andStauffer[75]addedtheMonte Carloconfirmationfor p far
abovep~.Below Pc deviationsfrom eq. (30a)wereobservedby Monte Carlo [62,75] and serieswork
([52] andDuarte,priv. comm.).

The correspondingresult for thewidth of theperimeterdistribution,

lim&/s = (l/p)p
2 (p ~ (30b).

has a much simpler history: It was investigatedtheoreticallyand experim~ntallyby the Rutgers
University group [71—73,89] whereasStauffer’s seriesextrapolations[50,alsO 46] turnedout to be
wrong [126].All this numericalwork wasrestrictedso far to two dimensions;fig. 12 summarizesthe
variationof the limiting ratio of perimeterto sizewith s. SeeNote addedin proof,Peterset al.

The partition function Z, = Y.~g,,q’ for an s-clustercorresponds,in statistical mechanics,to the
partition function Z= ~E g,~exp(—EIkBT). Here ~ is the numberof differer~tquantumstatesfor s
particleswith total energyE. We seethat theperimetert for percolationis theanalogof theenergyE
for thermalphenomena;and if eachbrokenbond betweennearestneighborscOntributesan energy2J
to the E, then we may identify in this analogy the quantity q = 1 — p with exp(—2J/kB)and the
perimetert with the numberof brokenbonds,suchthat theenergyE correspOndsto theproduct2:.!.
(Kasteleynand Fortuin [21]give a morerigorousformulationof this analogy.)Apart from the trivial
factor 2.!, the ratio lim(t,/s) = (1 — p)/p then correspondsto the thermal energyper particle, in the
thermodynamicallimit. Numericallythis analogyis quiteaccurate[98]:Forexa~nple,in percolationon
the triangularlattice we havep~= ~, lim t,/s = 1 at p~,i.e. to eachcritical clustersitebelongs,in the
average,oneperimetersite. Analogously,for ferromagnets(spin ~Ising, inter~ctionbetweennearest
neighborsonly) in the triangularlattice attheCurie pointtheaveragethermale~iergytells usthateach
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spin has,in theaverage,one of its six neighborsantiparallel[98].Thus thenumberof broken bonds
perspin approachesattheCurie pointthesamelimit asthenumberof perimeterneighborsper site at
the percolationthreshold, i.e. exactly one. Thus it is natural to expect[1011the perimeter t5 to be
proportionalto theclusterssize s, just as the thermalenergyis proportionalto the systemsizefor
mostproblemsin nature(providedsurfaceeffectsarenegligible).In particularalsoforthedropletsusedin
classicalnucleationtheory [38]or in the Fisher droplet model [34]the thermal energyand similar
quantities(like entropy) containa bulk term proportionalto the numberof moleculesin the liquid
“raindrop”. Brokenbondsin theinterior ofthematerialareresponsiblefor theseproportionalitiesto the
systemsize [50].

4.1.2. Scalingtheory
Let us restrict ourselvesnow againto largeclustersnearPC where scalingassumptions,eq. (15),

can be applied to calculate the derivativesof n, required in eq. (28). With n, cc s
Tf(z) and z =

(p —p~)s~we get

= (q/p)s+ s°i/
1(z); = qp

2s— s2°i/i2(z) (31)

with
= — q d(lnf)/dz; 1//2 = — q2d2(lnf)/dz2.

Thus the leadingterm cc s is very simple, but the higherorderterm containsa complicatedscaling
function. Wenow call the difference t~= t, — (q/p)s the “excessperimeter” [126]sinceabovep~this
excessperimeter ~ or

51-I/d seemsto come from a surface area. On the other hand, the “bulk
perimeter”(q/p)s may be interpretedas a volume effect.

More quantitatively, abovep~with ln f cc — = = (p — p~)P
8(I_l/d)x

51—l/d the excess
perimeter is t = s”çb~cc s~d(ln f)/dz= d(ln f)Idp or (~— ~) 1+$8(111d)51—l/d Eq. (37) will show uslater
that the volume V~of a very large s-clustervaries as (p —p~)~sabove p~[50]; then the excess
perimeter,expressedby theclustervolume,variesfor very large s as (p — p~’~”~ x ~ or

cc (p — p )(d_1)Pl ~ (p > PC) (32a)

where the scalinglaws (18b) havebeen used.Again we seequantitatively the analogy betweenour
perimeter and the energy for thermal critical phenomena:The excessperimeter has the same
dependenceon p — PC as the surfaceenergy of a fluid or the domain wall energy of an Ising
ferromagnethason T~— T. Thus we may identify

excessperimeter~ surfaceenergy (p > Pc). (32b)

(Disscussionof theexponent:The surfaceareaof a homogeneousliquid spheresurroundedby its
vaporvariesas (volume)l_L~~~in d dimensions.Its surfacefreeenergyis theproductof surfacetension
and surfacearea.The surfacetension,asreviewede.g. by B. Widom in vol. 2 of ref. [11]vanishesas
(T~— T)~1)c’ near the critical point; its temperaturederivativegives thesurfaceenergyper unit area
since E = — T

2a(F/T)/DTor — T~9F78T. Thus the surface energy per unit area varies as (T~—
T)~’~”~,which is thesameexponentas derivedin eq. (32a) for theexcessperimeter.)

Rightatp = p~,thederivatived(ln f)/dz is negative,ascanbe seene.g. from the logarithmicplot in
fig. 11. Its valueat z = 0 is estimated[261to be about—7.2 in the triangularlattice.Thuswe havefrom
eq. (3la) [98]:

ts(PC) = s(l — p~)/p.~+ const~
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wheretheconstantis about3.6 ando 0.39 in the triangularlattice.This relationis confirmedby both
Monte Carlo andseriesresults[52,71]; e.g. theMonte Carlo work gavet5 s + 3.43 ~O.4o±o.oI andthe
serieswork an exponentof 0.381 ±0.003, for the triangularlattice.

Belowp. we have~= 1 which means:No clearseparationis possiblebetweena surfacetermanda
bulk term in theclusterperimeter,sinceboth vary as s, as shown by eq. (29). Thusa surfacein the
usualsenseof dropletsurfacesseemsnot to exist below p~,but only abovePc. Only aboveP~canwe
interpretthe excessperimetert~as a “measure”of the surfaceareain theusual sense.Already at
P = PC this suggestedproportionality of excessperimeterand surfaceareabreaksdown, as pointed
out by Domb and Stoll [97]and in contrastto our first speculations[98]:Eq.~(32b) indicatesthat the
excessperimeterreally is a surfaceenergy, not a surfacearea.As long as the surfacetensionis
independentof clustersize,both surfaceareaand surfaceenergyvary as s

1”, eq. (32a). But right at
p~thepowersof (p — PC) appearingin thesurfacetensionabovePc are replacedby powersof s, and
thensurfacearea,surfacefree energy,andsurfaceenergyno longervary withthe samepowerof s. In
this sensetheexponento~is not a true surfaceexponent,although theterms°~fi

1(z)doesgiveabovep~
theanalogof thesurfaceenergy,eq. (32).

Also theexternalperimeter,which ignoresall holesin the interior of a cluster,hasbeensuggested
[50]as a measureof the surfaceareafor large clusters.However,Leath afld Reich [71]found for
p ~ p~mostof theperimetersitesto be external;fig. 13 showsone of their clusterswith 4741 sitesat
p = 0.48 in the triangularlattice. Many fjords connecttheperimetersites with theoutsideworld [71].
At p = Pc ref. [71]foundthe externalperimeterin the triangularlattice to indreaseas NO.9 for cluster
containingseveralhundredsites.This exponent0.9 is clearlydifferent from t$eexponento- = 0.4 for
the excessperimeterat Pc and also from the two-dimensionalsurfaceexponentI — l/d = ~. Thus at
leastatp~theexternalperimeteris not proportionalto theexcessperimeter,contraryto ahopein ref.
[126].Also far abovep~,[75] most of the perimeter sites are external. (Perhaps in the square lattice
[75]at p = 0.75 for s abovel0~the internal perimeterroughly equalsthe bu’k perimeter(q/p)s, and
thus the externalperimeterapproachesthe excessperimeter(surfaceenergy)’ for very largeclusters.
But sinceclusterswith morethan 1000 sites arevery difficult to producethis, resultwould still mean
that the external perimeter is not a practical tool to study cluster surfac~s.) In three and more
dimensionswe havep~,<~in general;thus nearPC aninfinite networkof holespercolatesthroughthe
large clusters of occupiedsites. Then the external perimetercompletely loses its meaning as a
surfacemeasure.

Thereforeatpresenttheexcessperimetert~= t5 — (q/p)s = solI,i(z) seemsto be abovep~the most
promisingmeasureof a surfaceareafor large clusters,eq. (32b). Monte CarlOdatahaveshown that
t~/s’~is indeedafunctionof z= (p — p~)s~alone;datafor differentp — p~fol1~wthesamecurve[71],
asin our scalingplots for theclusternumbers.The clustersizes hadto be largerthan85 to agreewith
scaling[71].Moreover,sinceeq. (28c) is exact,Monte Carlo datafor theexcessperimetert~can be
usedto find clusternumbersn0. In this way, andnot directly from then, in ~1g.10, Leathand Reich
foundtheir data[71]to support~= 1 against~= 2c for largeclustersabovej~.

The width & of theperimeterdistributionfunction is right atp, given by ~q.(3lb):

= (1 — p~)p~
2s— const

1~2cs + const2s°~ (34)

The correctionexponent2o’ here is about0.8 in two dimensionsand evenclØser to unity for higher
dimensionalities.Thus evenfor ratherlargeclustersthe leadingtermis not m~ichlargerthanthe first
correctionterm. For example,if o = 0.48 in threedimensions,then only foit s above10~sites per
clusterwould ~2o be less thantenpercentof s. Even if every humanbeing ~nearthwould have its
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own computerto store l0~sites [24]the combinedmemorywould be too small by many ordersof
magnitudeto handlesuchclusters.Thereforethe correction terms in eq. (34) cannotbe neglected.
Seriesexpansionanalysiswhichneglectedthecorrectiontermgavewrong exponents[46,50]. Evenin
two dimensions,wherethesituationis better,Monte Carlo data[71]showa strongdeviationfrom the
asymptoticlaw, eq. (30b) evenat s = 2000. However,with the two constantsin eq. (34) determined
from theclusternumbersin the triangularlattice [26]via eq. (28d),theMonte‘Carlo dataof Leathand
Reichfor thewidth [71]fit nicely with eq. (34) for larges.

Thus thewidth ~, of theperimeterdistributionfunction variesass112 themeanvaluet~as s, and
the excessperimeter t~as s°’multiplied with a scaling function ‘//~. Becauseof these different
exponentswe havehereanexamplewherescalingassumptionsdo not hold.To describethefunction
n,(p) of two variabless and p — p~we assumedn~cc sTf[(p — p)~U]The analogousassumptionfor
the threevariabless, p — Pc and t enteringtheperimeterdistribution would be

flst(P) or s~”f
1[(p — pc)Soc, ts°] (35)

with a new phenomenologicalexponentv. (u = ypsilon; not to be confusedwith v = nu for the
correlation length, eq. (6e).) (The prefactors~” is chosensuchthat summationover t gives the
desiredn,(p),eq. (15).)Suchan assumptionhasin fact beenmadefor theenergydistributionof Ising
model clusters[36]and the bonddistribution of percolationclusters[114].‘But it is wrong for the
perimeterof percolationclusters.To accomodate~, cc s, we need u = 1; to allow ~, cc ~h/2 we need
v = ~: Contradiction. If insteadwe postulate eq. (35) to be valid for the excessperimeter t~=

— (q/p)s cc s°,we would need v = o~to accomodatethis excessperimeter,but still v = ~ for the
width: The contradiction is not removed.Only closeto six dimensions,or in the classical regime
abovesix dimensions,thecontradictionvanishesfor theexcessperimeter,sincethencr = ~apartfrom
acorrectionof order (6— d)

2 below6 dimensions.Thuswe see,justas wewill seewith universalityin
appendix2, that scalingis valid in mostcasesbut not in all. The numericaltestsof section3.2 really
werenecessaryanddid not just prove atriviality.

4.1.3. Internal structure
Returningto bulk propertiesproportionalto theclustersizes, wefind besidesthe limit of t,/s also

otherquantitiescharacterizingthe internalstructureof largeclusters.Trivially theconcentrationp is
one of them.The “energy” e, canbe definedfor s-clustersasthe averagenumberof nearestneighbor
connectionsbetweenan occupiedcluster site and an empty perimetersite [48,60, 127]. The bond
numberb, in s-clustersis the averagenumberof nearestneighborconnectionsbetweenclustersites
[114].The cyclomatic numberc, is the averagenumberof cyclesformed by, the bondsin s-clusters
(i.e. by its nearest-neighborconnections);e.g. in a Bethelattice the cyclomatic numberof trees is
zero, for a polygonit is unity, and it is largestfor fully compactconfiguratioflswithout internalholes
[97,115]. The genusg, is the averagenumberof topologically separatedholes in the interior of
s-clusters[128].For everyconfiguration,andthus also for the averages,on~has[97]c, = b, — s + 1
ande, = (coordinationnumber)~s— 2b,. The compact4-cluster0 for examplehasa perimeterof 8, an
energyof 8, contains4 bonds,hascyclomaticnumberone,andgenuszero.FOr largeclustersall these
quantitiesvary as s; for examplelim,..,,.(g,/s)= 1/28 in a bcc lattice [128]at Pc. Refs. [115,97, 1291
give the monotonic variation of lim(c,/s) with p. BesidestheseMonte Ca~loresultsalso analytic
resultsareavailable,asreviewedby Domb [129]. Sofar no scalinganalysisi~itermsof exponentsor
functionsof z were given for the leadingterms or the first corrections;Su~et al. [60]remarkthat
e,= const

1 . s+ const2accordingto their Monte Carlodata.In that respectthó perimeteris atpresent
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betterunderstoodand investigated[71]than cyclomatic number,energy,bond numberor genusin
their scalingproperties.(Refs. [97, 115, 129] alsocomparethesebulk propertiesof percolationwith
thoseof ferro-andantiferromagnetsat finite temperatures.)

In conclusion,the internalstructureof largepercolationclustersin termsof perimeterpersite and
analogousquantitiesseemswell studiedby now. For the perimeteralso the leadingcorrectionterm
was studied in detail and found to agreewith scaling theory. A cleary asymmetryaboutp, was
observedin this excessperimetert,~— (qlp)s and is relatedto theasymmetryin theclusternumbers.

4.2. Radiusand densityprofile

4.2.1. Thebasicassumption
To describeparametersaffecting theexternal shapeof clusters,not their internal structure,new

quantitieslike densityor radiusseemnecessary.Theyaredefinedasstatisticalaveragesover a cluster
(and, of course,also as averagesover many clustersof the samesize) and thus do not give us
information on microscopic details like cyclomatic numbersetc. [115].To describetheir scaling
behaviora new “hyper”-scalingassumptionseemsnecessary.This assumptionthen will give us the
scalinglaw dv = 2— a postulatedin eq. (18b)but not yet derived.

Eq. (14) givesus a hint how a scalingassumptionsimilar to eq. (15)for n~may be constructedfor
the cluster radius R~:The ratio R5/~might just have the samescaling property as n~(p)/n5~ or
ns(p)/ns(pc), i.e. it may dependon the ratio s/seonly. Sinces/seor Z”~ with z= (p — p~)s~we thus
postulate

R,= . R(z) (36a)

where1~is asuitablescalingfunction to be fitted on experiment.We mayrewritethis assumptionas

R. = 5ocv1~(Z) (36b)

since~ cc p — ~ cc sr. In this form our assumption[130]hasthesamestructureaseq. (15).
We now assumein additionthat the internalstructureof a very largebut finite clusterabovep~is

the sameasthat of the infinite network. “Very large” meanshere:sIs~~‘ 1 or z ~‘ 1, that meansradii
muchlargerthanthe coherencelength. “Internal structure” refersto averagepropertieslike density,
visible over distancesmuchsmaller thanthe clusterradius.Thus we postulate:

By looking ataverageclusterpropertiesover distancesmuchsmallerthantheclusterradiuswe
cannotdistinguishbetweenvery largebut finite clustersandthe infinite network, if p isabovep~.

(36c)

An examplefor the validity of assumption(36c) is the ratio t5/s for very large clusters,which is
(1 — p)/p according to eq. (30a). In the infinite network,the correspondingratio hasthe samevalue
[62,91]. Thus by looking only at a finite fraction of a samplewe cannottell if the large set of
connectedsites which we might observethere extendsto infinity or belongs to a finite cluster.
Similarly if a mananda woman getalongwell for one eveningthey still might not makeit together
through a long marriage.In that senseeq. (36c) is compatiblewith numerousexperiments.But it is
obviously constrictedto concentrationsp abovePc sincebelow Pc thereis no infinite networkpresent
with which very largebut finite clusterscouldbe compared.
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4.2.2. Exponentsfor the radius
With this assumptionwe now get informationon the limiting behaviorof R3 abovep~,i.e. on the

scalingfunctionR(z)or R1(z)for z—~oo. In everyunit volumeof their interior thevery largeclusters
thus shouldhavethesamefraction pP..of sitesconnectedto theclusterasha~the infinite network. In
short, the average“density” inside very large clusters is the sameasthe density of the infinite
network. (The densityis definedas theprobability thatagiven lattice site belOngsto a givenclusteror
network.) If surfaceeffectsare negligible for thesevery largeclusters,we cancalculatethe cluster
volume V5 from the “mass” s and thedensitypP.. through thewell knownrelation: mass= volume
times density:

s=V5pP..; p>p~.

This argumentwas called the “Swiss cheese”picture in ref. [50],since in spite of its manyinternal
holes avery largechunkof Swisscheesestill hasa mass.s proportionalto its volume V~.Closeto p~,
where thepercolationprobability vanishesasP.. cc (p — p~)

0,we thus get

V
5 s (p —p~)~ (s ~ s~, p >pj. (37a)

Notethat neithertheclusterradiusR5 nor theclustervolume V5 weredefinedherequantitatively;for
example,onemay usefor R. the radiusof gyration:R~= ~, r~/swherethesum runsover all cluster
sites,and r1 is thedistanceof asite from thecenter-of-massof thecluster.We assumethat this andall
other “reasonable”definitionsgive the samecritical exponents.We may de~1nea clustervolume in
threedimensionsthrough V11 = (4w/3)R~,and in d dimensionswe have V5 cc R~.Thuseq. (37a) leads
to

R5 or (p _p)O/d. (37b)
for very largeclustersabovep~.

If both eqs.(36) and(37b)areassumedto be correct,thenthe functionR(z)in eq. (36a)mustvary
aszlIb0’~I~ ~1Id for z—*x, in order to maketheradiusproportionalto slld,in accOrdwith eq. (37b).Now
we get from eq. (36a), for p slightly above p~:

cc ~. (p pc)u~~~f511d cc (p _p~)_v+lbad. 51id~

If we compare this exponentof p — p, with the exponentappearing in eq. (37b) we conclude
/3/d v — herd,or dv= /3 + 1/er= /3(8+ 1). This is thedesiredscalinglaw of eq,. (18b)whosederivation
wasmissingso far. Alternative derivationsweregiven in refs. [18]and[109].

This scaling law dv = /3(8 + 1)= 2— a is also known from other phasettansitions[10,111. It is
regardedaslessreliablethantheotherscalinglawsnot involving d, but presui~iably[111]it is exactor
agood approximationfor not toohigh dimensionalitiesd. For d -+ ~, on the Otherhand,one expects
classicalexponentsa = — 1, /3 = 1, y = 1, 8 = 2, v = ~, asin meanfield theorie~[114]or Bethelattices
[27—30].Forall d abovesix, theabovescalinglaw dv= 2— a breaksdown if theseclassicalexponents
are used. Therefore Toulouse [84] suggested,as confirmed by later resi~lts[45, 68, 117], that
“hyperscaling”,dv = 2— a, is valid only below six dimensionswhereasclassicalexponentsare valid
abovesix dimensions.Only at themarginaldimensionalityd =6, wherethet~oregimescoalesce,are
both classicalexponentsandhyperscalingvalid; but thenlogarithmiccorrecti4nfactorsareimportant
[17].This specialstatusof six dimensionsas the transition from the cIassi~alto the hyperscaling
regime is the reasonwhy theepsilonexpansionof renormalizationgroupis a perturbationexpansion
about6— d. For thermalphasetransitionsthe classicalexponentsare usual~y/3 = ~ and a = 0 (and
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o = 3); thus thesameargumentsas abovegive four dimensionsasthe marginaldimensionalityabove
which classicalexponentsarevalid. From nowon we restrictourselvesto dimensionalitiesbelow six
andassumethathyperscalingis valid, i.e. 2— a = dv.

Sofar we dealtwith p abovep. only; but thescalingassumption(35) shouldbe valid for both sides
of the phase transition. Right at p~the averagecluster radius R5 is finite and thus cannot be
proportionalto any powerof p — Pc. Thus in eq. (36b) we have R1(z—~0)—~const, or R5(p~)cc

Sinceerv = dv/d/’38= (1 + 1/6)/d= 2/(d + y/v) accordingto hyperscaling,eq. (18), we seethat [50]

R5(p~)cc 5(l+118)/d; V,(p~)cc (38)

A different derivationwhich doesnot usehyperscalingexplicitely wasgiven by Harrisonet al. [109].
(De Gennes,private communication,pointed out that with the approximation y 2v the above
relationreadsR5 cc ~2/(12~I.2) similar to Flory’s approximationR5 cc s3/(d+2) for the radiusof self-avoiding
walks [131].)

Harrisonet al. [109]also gavethe first and so far bestconfirmationof eq. (38). They concluded
s or R~~°’

3from three-dimensionalMonte Carlo simulations,this exponent2.66 is roughly com-
patible with the predictedvalue dI(1 + 1/8)= 2.50±0.07, from eq. (38) and [55]8 = 5.0±0.8. Clearly
the exponentis not just equal to the dimensionality d. (For d = 2 the numerical evidenceis less
impressivesince6 is muchlargerthere[75].)For thermalphasetransitionseq. (38)hasbeenproposed
much earlier [74,132] but no directconfirmationseemsto exist; againpercolationturnedout to be the
best-understood cluster problem.

Below PC,if R. is assumedto vary for very largeclustersas S” with a newexponentp, the scaling
assumption(36a) gives [130]

R. cc p ~ ~ (39a)

This result describesalsovery largeclustersabovep~andatp~,if theabovevaluesfor theexponent
p, eqs. (37b, 38) areused.It seemslikely that theexponentp belowp~is constantfor all p between
zeroandp~,just astheexponent~was. If wecall this constantv

0 we can summarizeour resultsfor
the radiusexponentas

R5ccs” (s_s.xatfixedp) (39b)

p(O<p <pc) = v0 p(p~)= (1 + 1/8)/d; P(PC<p <1)= lid. (39c)

Figure 14 summarizesMonte Carlo resultsfor two-dimensionalclusterradii. Aboveand at Pc the
dataareconsistentwith thepredictionsp = ~andp = 0.53= ~(l+ 1/6), shownthereashorizontallines.
Below PC we find the new exponentv~to be about2/3, significantly lower than the “self-avoiding
walk” prediction[130]of 3/4. It seemsthat a bettertheory [133]is neededsincepercolationclusters
belowp~do not behavesimilar to self-avoidingwalks.

The dataof fig. 14 do not give exponentvalueswhich are constantin certain intervals andjump
discontinuouslyat Pc; insteadthe numericallydeterminedexponentsvary continuouslywith p. But we
seeno realcontradictionto theconstantexponentspredictedin eq. (39c). For theseMonte Carlodata
aretakenfor clusterscontainingten to thousandsites,whereaseq.(39) refers to very largeclusters
only, s-* ~. Only for clustersmuchlargerin linear extensionthan thecoherencelength ~ or — ~
canthesimplepowerlaw (39a) be expectedto hold. Thusparticularly thedatacloseto p~shouldnot
berelied uponsincetherethescalingvariableI~— p~socis notmuchlargerthanunity [130].Therefore
only the data for p close to zero or unity. and for p = p are reasonablyreliable, whereasthe
exponentsat other concentrationsare effectiveexponentsand not yet closeto the true asymptotic
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Fig. 14. Variation with p of the effectiveexponentp for theclusterradius ?. MonteCarlodatafromref. [75],., ref. [73],x, ref. [109]andpriv.
comm.,+. The horizontallines symbolizetheexpectedresults,which arediscontinuousat p

5.

exponentspredictedin eq. (39). Similar variation of effective exponentsare known from thermal
phasetransition; theanalogyis particularlyclearwith self-avoidingwalkswith interaction[135].

Figure 15 tries to transformthe above argumentinto a simple picture, analogousto dynamical
critical phenomenanearCurie points. The asymptoticexponentsof eq. (39c~are valid only in the
small sectorsI, II and III of that figure. In betweenthesesectorstheclusterra~liusis describedby the
full scalingfunctionsof eq. (35), which only in theasymptoticlimits of theshadowedsectorsbecome
simple power laws. Similar effectsare expectedfor other exponentslike ~ and 0. Thus if we keep
s= 102 constantandmovecontinuouslyfrom p = 0 to p = 1, thenwe startin regionIII wherep =

~‘= 1. With increasingp we leave regionIII andmovealongthedottedline of fig. 15. Here thecluster
radii and cluster numbersare describedby complicatedscalingfunctions like eqs.(35, 15) or even
moresophisticatedexpressions.Very closeto p~wereachsectorI wherep = (1 + 1/6)Id and n11 cc

Further increaseof p along the dotted line brings us out of the sectorI into the less understood
intermediateregion, until we reachsafergroundagainfor (p — p~)s°~ 1 in region II, where p = l/d,
~= 1 — lid is valid. Nowherealongthedottedline is, for fixed finite clustersize s, a discontinuityin
theclusternumbersor theclusterradii, sinceonly theasymptoticexponentsdependdiscontinuously

Fig. 15. Variàussectorsof thes—p-planein percolationscalingtheory.The shadowedregionscorrespondto a ‘~s~(s~ctor1), s~se abovep5 (sectorII),
andsa~.5~belowp5 (sectorIII). Only in thesenarrowsectorsaretheasymptoticexponents~ 0 andp directlyobserl~ablefor largeclusters.(Thethree
sectorsweredrawnwith anenlargedangleto makethembettervisible.)



46 D. Stouffer, Scaling theory of percolation clusters

on p. A clearexampleof the similarity of small clustersaboveandbelow Pc is shown in ref. [115,
fig. 101; it contradictsin no wayour fig. 15 andeq. (39c)herewhich try to describethe limit s —~~ only.

In conclusionit seemsthat theclusterradii behaveroughlyasthey should.But higheraccuracyand
a bettertheoryfor v0 2/3 (for d = 2) areneeded.

4.2.3. Density profiles
In order to understandbetter the difference in the clusterradii and cluster numbersabove and

below p~it is useful to look at the densityprofile of clusters[75,130, 134]. Let the densityprofile
D5(r) of s-clustersbe theprobability that a lattice siteat distancer from the clustercenter-of-mass
belongsto that s-cluster.(Contrary to ref. [130]we do not requirethecenter-of-massto belongto that
cluster; thatdefinition would be neededfor correlationfunctionswhich arenot discussedhere.)This
densitythus is a“coarse-grained”average[115],similar to otherstatisticalconceptsin hydrodynamics
(density,velocity, pressure).It doesnot give us microscopicdetails on the structure of clusters;
insteadthedensityprofile describestheoverall shapeof a cluster.

As mentionedin the discussionafter assumption(36) we takethe density D5(r 4 R5) inside very
largeclustersabovep~,to bethe sameasthedensitypP.. of the infinite network,i.e.

lim D5(r) = pP.. (40a)

for fixed p abovep~,and fixed r. If wearenot in this simpleasymptoticlimit, thedensityprofile D5(r)
dependson threevariablesr, s and p. In the scalingregime of largeclustersnearPc we may again
postulateascaling-homogeneousform [130]reducingthe numberof independentvariablesfrom three
to two:

D5(r) = P..15(,l~,5/5~) (40b)

or equivalently,

135(r) = P..D2(rs°~,(p — p~)s°). (40c)

The interestedreadermay invent many other forms [130]of this assumption.Trivially we have
fD5(r) dr = s sincethe integral over the density gives the total masss. (Discussionsof correlation
functions suggest for r ~ R5 and s ~ s~the asymptotic decay laws log(D5)cc — r above p. and
log(D5)cc — r”°~’°~below p,. [1301.)Thus if eq. (40c) is rewritten asD5(r) = s_xJii(r/s~~~~,(p —p~)s°)
thenwe musthavex = dp — 1 in the threeshadowedregionsof fig. 15 [76].

This scaling assumptionformulatesmore precisely the assumptionmadeafter eq. (37a) that all
“reasonable”definitions of a clusterradiusgive thesameexponent.Eq. (40) meansthat for agiven s
andagiven p thereis only onecharacteristiclength R5 cc s°~for thecluster,andnot severalof them.
Any reasonabledefinition, like R~= f D5(r) r” this, then will give the same length, apart from
constantfactors.Leath [73]usedthisdefinition with k = 2 in the first study of clusterradii, andwas
followed in ref. [75].Harrisonet al. [109]usedinsteadof this “radius of gyration” thespanninglength
of the cluster,which corresponds,in some sense,to k = ~. As we saw in fig. 14 thesedifferent
definitionsgive roughly thesameexponentin Monte Carlo simulations.

A completetestof thescalingassumption(40) is notyet known to us.Herrmann[76]lookedatthe
densityprofiles [75]right at thepercolationthresholdp = Pc (andalso for the “animals”p = 0) where
eq. (40c) reducesto thesimpler form:

D5(r) = s”~153(,1R5). (41)
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Fig. 16. Plot [76]of the scaled density profile D,(r)/D,(R11) asa Fig. 17. MonteCarlodata[75]for thedensityprofile faraboveand
function of the scaleddistancerIR, at the percolationthreshold far below p5 (averagesovermore than l0~configurationsat fixed s
(solid line) and for “animals” (p =0, dashedline). Error bars in thesquarelattice). Thesedatasuggestadropletstructureabove
indicate statistical fluctuations as well as variationsfor different but not belowp5.
sizes s.

He found this similarity law for thecritical percolationclustersto be consistentwith two-dimensional
Monte Carlo data; in particularthe prefactorwas found [76]to vary as ~ -o.O5~±o.O25= ~ x confirming
well that x = dp — 1 = 1/6 0.054 accordingto eq. (38). Figure 16 summarizes~hescalingform of the
densityprofiles.Forp away from p~,fig. 17 showsthedensityprofilesof two la~geclusters;againdata
far away from ~ give the asymptoticbehaviorbetter than datacloser to Pc is s is fixed at some
intermediatesize.Theclusterdensityprofile abovep,~hasa plateauin theclusterinterior, with the
height nearpP.., anddecaysrapidly to zero outsidethe cluster.The interior ~mndexterior region are
separatedby arathernarrowinterface.(Presumablythe thicknessof this inte~faceis of theorderof
the coherencelength ~ [126];indeedalready at p = 0.75 the transition is much smootherthan at
p = 0.95.) Below p,, the cluster shapeis entirely different for very large chusters:The plateauis
replacedby a bell-shapedcurve [75,76] where the transition layerseparatinginterior from exterior
partsnow extendsoverthe whole cluster.Thus a “surface” layerin theusua’ senseexistsabovep~
but not below Pc, if s —* ~. We think that this differenceis the reasonfor theasymmetriesbetween
aboveand below Pc discussedearlier in the clusterradii (p = versusp = ~),the excessperimetert~
(cc ~1/2 versusccs),and theclusternumbers(~= versusc = 1).

In this waya coherentscalingpicturehasbeendevelopedandpartially tested.Theclusternumbers
n3, eq. (15); the excessperimetert~,eq (31); the radius R3, eq. (36b); andth~density profile D5(r),
eq. (40) are all expressedby “generalizedhomogeneousfunctions” [100],i~e.the number of in-
dependentvariablesis reducedby one:

cc s~f(z), ~ cc s°.fr1(z), R. cc s011~1~i(z),D5(r)cc s~aOi(,1s01l,z). (42)

And in additionto this mathematicalsimilarity, all four scalingfunctionsin eq~(42) seemto exhibit a
pronouncedasymmetryin their asymptoticbehaviorfor z-~±~, an asymmetrynot restrictedto p
closeto p~but missingin classicaltheories(Bethelattice).

4.3. Droplets, ramification, andfractal dimensionality

Headlinesin newspaperstry to inform the readerin a few words aboutthe main contentof the
news;of coursesometimestheyaremisleadingandoneneedsto readthe full text. Similarly concepts
like ramification [101]etc. are simple catchwordstrying to encompassas he~dlineswhat we have
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describedin greaterdetail in the precedingsections.And againthesesimpleconceptsmay leadto a

picture oversimplifyingwhat we saidbefore. (Thecontentsof this subsectionare not neededlater.)

4.3.1. The raindrop or Swisscheesemodel
Since the Fisher dropletmodel [34]of thermalcritical phenomenaand the raindropsof classical

nucleationtheory [38]long precededthecurrentinterestin percolationclusters,it seemsappropriate
to start with the question: Are percolationclusterssimilar to raindrops,as assumedin the Fisher
modelabovepc?

How doesa raindrop look before it is falling on your head?It consistsof s “liquid” water
moleculesinside,andis surroundedby watervaporoutside.The liquid interior is separatedfrom the
outside vapor by a narrow transition region or surfacelayer, with the ratio of layer thicknessto
droplet radius going to zero as the radius goesto infinity. In the interior, the density,entropyper
moleculeand thermal energyper moleculeare the sameas for bulk water if the droplet is large
enough.More precisely,thedensityetc. of the raindropinterior is the sameas that of bulk waterat
thesametemperatureandnot the sameasthat of a (hypothetical)T = 0 groundstate.In particular,at
anygiven momentthe liquid water hasdensity fluctuationswhich produceholes insidethe raindrop
just like holesin Swiss cheese.Only if weaverageover theseholeswegetahomogeneousdensity,for
both raindropsandSwiss cheese.

Figure 17 and other resultsof the precedingsectionsuggestthat percolationclusters are like
raindropsabovePc but not belowp�~.Justlike a Swiss cheese,theyhaveon both sidesof thephase
transitionanaveragedensitylower thanthe maximumpossibledensity;abovep,~theirinterior density
approachespP.. whereasit seemsto go to zero for largeclustersbelowp~and atp, [75,76]. Only
abovep,, a relatively narrow interfaceregion could be found. Of course,sincea water dropletof
0.1 mm radius containsabout1017 moleculesand the clustersin fig. 17 only 200 sites, the ratio of
interfacethicknessto clusterradiusis still quite largefor our percolationclustersin comparisonwith
raindrops.The readershouldalsokeepin mind that the roughly sphericaldensityprofile of raindrops
and percolationclustersarisesonly by averagingover many different configurations.For a single
configuration,the holes and surfaceroughnessof the Swiss cheesestructuregive a ratherdifferent
picturewhich evenabovep~is not dissimilarto fig. 13.

Insteadof this definition of “droplet-like” by the density profile one may also call a cluster
droplet-like if for s —*~at fixed p its surfacearea(measuredby R~’’or t~)variesas

5111d if its
radius varies as s”” or its volume as s, or finally if the logarithm of the clusternumbersvaries as
— ~ lid With all thesedefinitionswe still find thesameresult: Very largepercolationclusters(R5 ~‘ ~)
aredroplet-likeabovep. butnotatandbelow p~,asthe readercancheckhimself by goingthroughthe
precedingpartsof this review. If onelikes to usea word (different from “ramified”) to describethe

Fig.18. Hungryhydra(clustersbelowp~)eatsSwisscheese(clustersabovepj. Thecoherencelength ~isshownschematically.This reviewis basedon
the assumptionapparentfrom the figure.
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oppositeof droplet-like onemay try “hydra-like” [50]:The tentaclesof this monsterwill engulf the
scientistwho tries to apply the simpledropletpictureevenbelow Pc.

In this sense,percolationclusterslarger thanthecoherencelength seemto be droplet-like,similar
to a largesphereof Swisscheese,for p abovep~butnot atandbelowPc, aconclusionsummarizedin
fig. 18.

4.3.2. Ramification
Domb’s suggestion[32, 101] that percolationclustersare “ramified” startedthe developmentof

clusterscalingas presentedin this review.Clusterswerecalledramified if theit surfaceareaincreases
with size s —~ simply as 5; they were called compactif they increasedwitl a smaller powerof s.
What is the “surfacearea” for percolationclusters?If one takesthe total perimeterasameasureof
thesurfacearea[101]thenall clustersareramified; internal“surfaces”arein~ludedin that definition.
If theexternalperimeteronly is identifiedwith thesurfaceareathenthequestiOnoframificationis not
yet entirely solvedfor two dimensions.With theexcessperimetert~as ame~sureof thesurfacethe
clustersareramified below but not abovep~or at p~.Finally, with R~’as thedefinition of surface
areathe clustersare never ramified in two dimensions.Onemay also use the density profile and
thicknessof the surfacelayerascriteriafor ramifiedness;thenone is likely to endup with ramified
beingidentical to hydra-likeandcompactbeingthesameas droplet-like.As di$cussedabove,clusters
arein this senseramified belowand atPc butnot abovep~.(If R~’is takenasa surfacearea,it may
increaseevenfasterthan s with increasing5; e.g. in six dimensionswe expectR~cc ~S(I+I/8)/6 = p5/4

atp~.Such exponentslargerthanunity for thesurfaceareaarenothingunusual:The smallestsphere
enclosinga randomwalk with s stepson a lattice hasasurfaceareacc~~~

12in d dimensions.)
Later [97,115, 129] Domb definedramificationmoreasa quantitativethana qualitativeconceptby

regardingthecyclomatic numberper site,lim~...,,(c,/s),asa measureof compactnessfor largeclusters.
More precisely, c

5 was normalized[97]by the maximum cyclomatic number achievedin a fully
compactcluster,without holesor surfaceroughness.The degreeof ramificationis then equalto unity
minus thedegreeof compactnessin this normalization.This ramifiednessdecreasescontinuouslywith
increasingp, as shownby Monte Carlo data[115],withoutany dramaticchangeatp~.Ramifiednessin
this sensethereforeis drasticallydifferent from othercriteriawhich may changefrom “yes” to “no”
atPC, aslisted above.Clustersin the Ising model of ferromagnetsat theCurie point wereshown[129]
to be lessramified thanpercolationclustersatPc. If oneusesthe perimeterpe~site, lim~....(t~/s),asa
measureof ramification one arrives at the sameconclusion,fig. 12: Clustersbelow p. are more
ramified than abovep~,and at Pc they are more ramified than ferromagneticIsing clustersat T~
[62,75, 115]. (If the energy per site [32],lim(e,/s), is takenas a measureof ramification for Ising
ferromagnets,and theperimeterper site asmeasureof ramificationfor percola~ion,thenIsing clusters
are about as ramified as percolation clusters at their respectivecritical pdints [98].)Of course,
ramificationin this quantitativesense[9,7,115, 129] is notacompletelynewconceptbutmerelyoneof
manyquantitiesmeasuringinternal structureand disorder,similar to the therm~lenergyper molecule
or theentropypercubic centimeter.

4.3.3. Fractal dimensions
Mandelbrot[136] introduced the word “fractals” to describeobjects with fractal dimensionsd’

smaller thantheEuclideandimensionalityd of theunderlying lattice or space.This concept,which is
an applicationof the Hausdorif—Besicovichdimension,was appliedby Leath ~opercolationclusters
[73].Earlier,ReattoandRastelli[134]in adiscussionof thedensityprofile of Ising clusters,usedthe
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effectivedimensionalityd’ = i/o-i’ but did not call it by any special name. For general background on
fractalswe refer to Mandelbrot’sbooks[136];percolationclustersare discussedmoreexplicitely by
Stanley [106](seealso recently Mandeibrot [137]).Roughly speaking,if the mass(or size s) of a
systemvariesas(radius)’~’then d’ is the fractal or effectivedimensionalityand canbe different from
theEuclideandimensionalityd; in particulard’ neednotbe an integer.We nowreviewmanydifferent
definitions,someof which giving the sameresult,anddenotethem consecutivelyby d~,d~

Mandelbrot[136,p. 196] useda standardmethodfor estimatingthefractal dimension:He divided a
largesquarelattice into 62 equalsquares,countedthe numberN of thosethat areintersectedby the
largestcluster,anddeterminedd~throughN cc ~ (However,the value1.78 that he foundon p. 197
is presumablybiased:B.B. Mandeibrot,privatecommunication,November1978.)A secondstandard
method for estimatingd’ consistsin taking circles or spheresof increasingsizeand measuringtheir
contentsor “mass”. Forrestand Witten [138]estimatedin this way the fractal dimension d~of
two-dimensionalelectron-microscopepicturesof large smokeparticlesconsistingof many small iron
spheresof uniform size. They countedthenumberN, of small spheresin regionsof linear extent 1,
and found N, cc 11.6, giving a fractal dimension d~— 1.6 which is clearly smaller thanthe Euclidean
dimensionality d = 2. The latter would be found if the smoke particleswould be spatially homo-
geneousand “compact”. Thesedimensionsd~[136]andperhapsalsod~[138]arefractal dimensions,
determinedin away closeto themathematicaldefinition [136]of that concept.The otherdefinitions
listed below arelessdirectlyrelatedto thesemathematicalproceduresand arethus called “effective”
dimensionsin this review. Perhapswhen this paper is publishedthe relations betweenfractal and
effectivedimensionswill alreadybe clearerthanat the time of this writing.

ForpercolationclustersatPC theclusterdensityprofiles D3(r) areall similar to eachotheraccording
to eq. (41) anddependmainly on the ratio r/s°~,or equivalentlyon s/r”°”. This similarity law suggests
[134]to call i/o-v an effective dimensionalityd~,sincewe may regard s as the “mass” of a cluster.
Hyper-scaling,eq. (18), gives i/o-v = d — ~/v = d/(l + 1/6). Thus

d~(p~)= d/(1 + 1/6) (42a)

is the effectivedimensionalityat p = Pc as determinedfrom thedensityprofile. Also Harrisonet al.
[109],Kunz andPayandeh[79]andMandelbrot[137]usethis combinationof critical exponent6 and
lattice dimensionality d asthe effectivedimensionalityor fractaldimension.More generallywe may
translateour definition R. cc s”, eq. (39b), into s cc (R~)”

1wherethis effective d~(p)= i/p is definednot
only at or near the percolation threshold and differs in different regions for p:

d~(p> j,,~)= d; d~(p= p,~)= d/(i + 1/6); d~(p<pa) = 1/p
0 (42b)

accordingto eq.(39c); the lastexpressionis about3/2 in two dimensions[75].
In a different sense,Stanley[106]looks for a d’ relatingtheaverageclustersizeS with theaverage

clusterradius R through S cc Rd’ for p -~p~.(The abovedefinitions insteadwere basedon s-* ~ at
fixed p.) How shouldonedefinetheseaveragesover all clustersizes?(Seealsoappendix1.) If weuse
our “typical” cluster size sE and typical cluster radius R,~for S and R we get an effective
dimensionality identical to d~(,p~),eq. (42a). If instead we define these averagesthrough S=

~ sk+I,1j~ ?n~,R = ~ R3s~’n3/~~5k~ we first have to distinguishwhetherwe meanthe full sums
or only their nonanalyticparts. The singular partsgive S cc s~and R cc R3~= ~ and the resulting
effective dimensiond~with s cc R”~is the sameas d~(p~).If insteadwe do not subtractthe analytic
backgroundfrom thesums,thenwe getagainthesameresultfor k = 2, 3, 4,. . . (providedd is smaller
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than 8 + 1, which is the casefor d = 2, 3 and4). But for k = 0 and k = 1 different exponentsresult
(details of how to evaluate such sums are explained in appendix 1): Close to the percolation threshold
we havethen S= const,R= constfor k = 0, and S cc Ii’ — PCfl, R cc [P— PCI~~for k = I. Thuswith
k = 0 we cannotdefinean effectivedimensionality,andwith k = 1 weget d~= y/(v — f3) which equals2
for two dimensionsand about4 in three.Stanley [106]choosesk = 1 for the averageclustersize s,
which thus divergeswith theexponenty, but takesthe typical clusterradius1~ ~for R, which thus
divergeswith exponentii. Thus his effectivedimensiond~is

d~=y/v=d~~~. (43)

The sameresult is also obtainedby Forrestand Witten [138]from the correlationfunction; it was
also supportedby Mandelbrotin his earlier papers[136]but rejectedin his past work [137].In two
dimensions,eq. (42a)givesan effectivedimensionof about1.9, whereasStanl~y’seq. (43)givesabout
1.8. The difference increaseswith increasing dimensionality d; e.g. in si~dimensionswe have
d(p~)= 4 whereasd~(p~)= 2.

Finally, Kirkpatrick [7]defines an effective dimension d by requiringthat foi~p —~Pc themasswithin
a region of linear extent ~increases as ~. If onelooks attheinfinite networkfo~p slightly abovep,,the
numberof network sites in such a region is about P..~cc p — ~ cc ~cd_~iv; thus d = d — 13/v =

d/(i + 1/6) in this case,aresultwhich agreeswith d~(p~)in eq. (42a).But Kirkpatrick [7] also looksat
otherquantitiesX which vanishatthepercolationthresholdas(P — Pc)~The~reffectivedimensionis

= ci — f3~/i’ and thus in general different from d = d(p~).Forexample,his backboneof the infinite
cluster has a f3~of about~in two dimensions, giving an effective dimension of the backbone [7] as
about 1.6.

We thus have seenthat a variety of different definitions are possible,some of which leadto the
sameresultfor theeffectiveor fractal dimension.The choiceof eq. (42a),firs~suggestedby Harrison
etal. [109],

d’=d/(l+116)

seemsto us particularly plausiblefor critical percolationclusters;moreoverit is arrivedat by the
majority of definitions and authors [7, 79, 109, 134, 137]. The relations betweensome of these
definitions arewell understoodin termsof percolationscalingand critical exponents.It seemslikely
[76]that similarity laws like eq. (41) will turn out to be relevantfor a proof that themathematically
well defined[136]fractal dimensionin theHausdorff-Besicovichsenseagreeswith oneof theeffective
dimensionalitiesci’ discussedhere.

In conclusion,conceptslike the fractal dimension of droplet-like ramified clustersare useful
catchwordsif one knows what they mean in the given context. But they ~analso be misleading
headlineswhenthe realsituation is somewhatcomplicated.

5. Lattice animals

So far we discussedpropertiesof percolation clusters like the cluster numbers n3~p).These
numbersthengaveus otherquantitieslike the moments~ L s

2n, ~ jp — pcI~’,involving sumsover
all clustersizess. In this sensethe clusternumbersn, of section3 are mor~fundamentalthan the
momentslike x derivedfrom them.Now we go evenonestepfurtherdown to thebasicsandlook at
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eq. (7):

n,(p)= ~ g,,p’(1—p)’.

Obviously the numberg~of geometricallydifferent clusterconfigurations,which is independentof p,
is more fundamentalthan the p-dependentnumberof percolationclusters,sincethe latter can be
derivedfrom the formeraccordingto the aboveequation.Moreover, the numberg~is simpler than
the numbern,(p) since it does not involve the conceptof probability. Purely geometriccounting is
sufficient. In principle we thus reducedthe whole percolation cluster problem to kindergarten
mathematics:How canbe put togethers squarepiecesof adomino game?

The numberg,~is also calledthe numberof (lattice) animalssinceit refersto the question:How
manydifferent speciesof multicellular organismscanNatureform out of s single cells?(The word is
due to Harary[139].)Domb [1021reviewedthemathematicalbackgroundon theseanimals.The first
scalingtheory wasattemptedby Leath[73]whereasour scalingassumptionhere is takenfrom later
papers[71,89, 91, 126]. Foranimalnumbersin subsection5.1 we rely on refs.[42,45, 48, 93]; mostof
the material in subsection5.2 was not publishedbefore. We regret that in spite of the intrinsic
simplicity of the problem our description is more mathematicalhere than in the other sections.
Averagesbasedon the gst aloneare “animal” properties,whereaspercolationquantitiesuseg,5p’(l —

p)’ instead.

5.1. Scalingcloseto critical point

This part discusses the animal numbers g,~ for perimeter-to-size ratios t/s near and below the
critical point (1 — pJ/pC; the following subsection5.2 deals with those animals whose 1/s-ratio is near
themaximumof theperimeterdistribution function for animals.

First one could think that g~1again equals, for large s and t near IC = s(l — PC)/PC, a simple scaling
expression analogous to our other assumptions like eq. (15):

g,~cc ~ f~[(t — tC)5°1

But that assumptionwould be wrong as we will see now by deriving a presumably exact relation
betweeng, and n,(p),for all finite ratios I/s below (1 — p~)/p~.That result (45b) will be different from
the above speculation. Readers may proceed directly to that eq. (45b) if they dislike our formulas in
between.

Throughoutthis sectionwe denotethe ratio 1/s by a and the quantity (1 — p)/p by a,,. Thus
percolation clusters at the threshold have an average a neara~accordingto eq. (30a),andwe may use
our previous scaling results to get animal properties for a near aC a,,~.Let us define

g5, = A
5e~fl,, (44a)

where
A = A(a) = (a + i)~~/aa

is a function introducedby Leath [73],and

g =g(a)= iim[~ln(gs,A_3)]

is theexponentfor the leadingexponentialvariationof the ratio g~
1/A

5with size s, ref. [89].Thusthe
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remainingfactorfl~in eq. (44a) varies weakerwith sizes than the other factors: lim,...[(l/s) ln fL~]
= 0 forall a. (Theselimits aretakenatconstanta = t/s and areassumedto existandto dependon a only.)
For thenumbersn~(p)of largepercolationclusterswe now get

n5(p)= ~ Ases~~,,ps(l— p)’ = fexp{s[ln A + In p + a ln(1 — p)+ g(a)]}fTl,, dt. (44b)

For large s themaximumof the integrandis determinedby thebrackets~ sinceby definition the
factorCl,, is lessimportant.The expressionIn A(a)+ In p + a ln(l — p) hasamaximum,as afunction
of a, at ln(a+ 1)— ln(a)+ ln( I — p) 0, i.e. at a = a,, (1 — p)/p, as require4also by eq. (30a). The
valueof this expressionat the maximumis zero,asthe readercaneasilych~ckhimself. Thus if the
function g(a) vanishes[891we can calculate the above integral by expaOdingthe bracket [. .
quadraticallyin a — a,,:

lnA+ lnp + a~ln(l —p)=~(a— a,,)
2 [(a,,+ l~’—a’]= —~(a—a,,)2’sI~.

Our result ~/s = a,,(a,,+ 1) = (1 — p)/p2 againagreeswith eq. (29) for the width of the perimeter

distributionfunction. Eq.(44b)gives,with this assumptiong(a)= 0,

n,(p)= J exp[—~(a — a,,)2~~2/~] Cl,, dl

with I = a,,s. From eq. (44a),with e’~= 1, we thus find

= n,(p)A’/(2ith~)”2
A = (a + l)a~Iaa; ~ = s(i —p)/p2 a = 1/s (45a)

providedp is calculatedthrough t/s = (1 — p)/p and the function g(a) vanishes.Similar to a Laplace
transform,we thus calculatedg,, from n,(p).

When is this assumptiong(a)= 0 correct on which eq. (45a) depends so much? Wefound above
than In A + ln p + a ln(1 — p) + g(a) is zero at its maximum if g is zero. FOr nonzerog also this
maximum will have a finite value M Thentheaboveevaluationof n,(p)will read to a factoresM for
n,, apartfrom other factors varying weaker with s. Such a simple exponential decay of the cluster
numbers for large cluster sizes s is possibleonly belowPC and not above PC [~0],as eq. (1ib) shows.
Thus M must vanish for p above Pc, correspondingto zerog(a) for a belowq~= (1 — PC)/PC. (See ref.
[89]for more discussion of this point.) Thus we found eq. (45a) to be valid above p,, i.e. for a <at,
but not below p,~,i.e. not for a > a~.For a belowa~we find lim,....(g,,)U5 = A whereasin generalwe
merely have the inequality lim,....(g,,)”’ ~ A [88,89]. More discussion of lim(g~,)”~ is found in ref. [91]
which has been critized in ref. [140].

For a abovea~eq. (45a) cannotbe valid exactly sincefig. 12 hasshownus already that for large
clusters the ratio I/s no longer equals, in the average, a,, = (1 — p)/p. But for p closeto p~,i.e. for a
close to a~,thesedeviationsare quite small: lim,...(t,/s)—(1—p)/p cc (PC~P)~’ [126],as can be
derived from eq. (31). Thus in the scaling regime of large clusters near the critical point we still may
try eq. (45a) on both sides of a~,atleastfor ~ With n, cc s~f[(p—p~)s°]and ~, cc Vs weget [71,
73, 126]

g,, cc
5—r—1i2• AS . f(z) (45b)

where
z= (p _p~)sU= (a~— a)s°/(l+ a)(1 + a~)=(1 + aC)

2(aC— a)s~= p~(ac— 4)sa.
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Eq.(45b)is the scaling result for the animalnumberspromisedat the beginning.It differs by Leath’s
factor A’ from the speculation mentioned there. (Note that A’ can be rewritten in the symmetric form
(1+ s)t~’/t’s’.)Direct numericaltestsof eq. (45) aredifficult [73] but it may look more reliable if one
knows that it was first postulated [126]without this derivation and gave correct results for the
perimeterdistributionfunctionof percolationclusters,section4.1.

Thus we derived a presumablyexact expression(45a) for large animalswith 0< 1/s <aC and a
scaling assumption (45b) for I/s near aC. Only anexplicit result for I/s muchlargerthana~is missing.
Since in a triangular lattice a = I/s can vary betweenzeroand two for large clusters and since a,, = 1
there, one could first think that we solved more than half of the animal problem. But this is not so, as
one can see from fig. 19: Most of the animals have a ratio a = I/s neara

0 which is larger than a~.(We
can see this effect alreadyfrom fig. 12 where p = 0 correspondsto animals.)For example,in the
squarelatticewe havea0 = lim,....(I,/s)= 1.2 for animals [52,75] but a,, = lim,...(t,/s) = 0.7 for critical
percolationclusters,eq. (30a). Thus for large s thedifferencebetweenthe averageanimalperimeter
andthe averagepercolationperimeterat Pc is about0.5 s in the squarelattice (and about 0.6 s in the
triangular, 0.3 s in the honeycomblattices [52]). The width of the perimeterdistribution function
increasesonly as s’

12. Thus for increasing s the regionof I/s below a~coversonly an exponentially
decreasingsmall fraction of the wings of the animal distribution. Therefore the next subsection5.2
dealswith the behaviorneara

0 where mostanimalslive, notwith the few domesticatedanimalsnear
a~or below a,, which obeyeq. (45).

Why is theanimal problema percolationproblemat p = 0, asmentionedabove[52,75]? (Note that
we keep s fixed and look attheaverageI, over all perimeters.) The animal perimeter I, is definedas
Y~,I g,t/~t g,,, the percolationperimeteras

I, = ~ . n5t/~n,~= ~ I g,,p’(l —~)‘/~g,5p’(1 —p)’ = I g,,(l—~)‘/~g,~(1—p)’

accordingto eq. (28a). For p closeto zero the factor (1 — p)’ cancels out, provided various limits can
be interchanged.Indeed figs. 12 and 14 show that the limit p —*0 agrees with the result at p = 0, as
expected: At fixed size s the animals are the p —*0 limit of percolationclusters.In the method of
section 2.2.3 thus simply all “animal” configuration were taken as equally probable by putting p = 0 in
thepercolationcomputersimulation.

Figure 16 shows that the density profiles of large animals are similar to eachother, D,(r) =

s ~°~“~°°‘°~ D4(,1s°~°~°°°
7),analogously to eq. (41) but with different exponents [76].The perimeter I,

for animalsobeys I, = a~s+ const accordingto series [52]andMonte Carlo [75]results,compatible
with thebehaviorexpectedfor percolationclustersbelowp~,eq. (29).

c—it/s ‘

to as~i~

Fig. 19. Distributionof animalperimetersin thesquarelattice at s — 102. Critical percolationclustershave f/s neara

5 = (I — p5)/p, =0.7 whereas
mostanimalshavea largerperimeterwith f/s neara0= 1.2, ascan be seenfromfig. 12. (Schematic.)
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5.2. Exponentsawayfrom thecritical point

To getthenumberof animalsg,5 in the region1/s a0 abovea~we assumethat thedistributionsare
Gaussianpeakswith awidth increasingas s~’

2for larges:

= (c/2irs)”2exp[—~c(a— a
0)

2s] . g, (s..+co, a = t/s) (46a)

= g,,. (46b)

Herea
0 = lim,.,..(t,/s)and c are suitableconstantsto be determinedlater.First we will dealwith the

total numberg, of s-animals,eq. (46b).
Similar to our g,, cc s~~

2A(a~)’at the critical point a = a~,eq. (45b),Sykeset al. [42,45]assume
g, cc . A’ with two freeparameters0 and A. Following a suggestionof Domb [102],Guttmannand
Gaunt[93]fit thesameseriesresultsmoregenerallyfor larges by

cc . A’ exp(—const. s”) (46c)

with a third exponentw to be determinedby “experiment”also.(w is relatedbut not identical to the
exponentw in correction-to-scalingtheories[87].)If w would be negativethentheexponentialfactor
in eq. (46c) would be more important,for larges, thantheprefactors °, cas~ingdoubton the older
analysis [42,45]for 0 as well as on analogousassumptionslike eq. (27) ~orpercolation cluster
numbers.Fortunately a, turned out to be positive, whencewe may expa~idexp(—const.~05) =

I — const~s~’in eq. (46c).This correctionfactor is entirelyanalogousto eq. (~2)for n
3(p~).Eventhe

numericalvalueobtainedin two dimensions,w = 0.75 ±0.1, is consistentwith ~hecorrectionexponent
of about0.7 obtainedfor eq. (22) from MonteCarlo [261andseries[19]data.Thus thereis at present
no reasonto doubt the validity of g, cc s A’ for large enough s. The exponents9 and w are
supposed to be universal, i.e. to depend on the dimensionality d only. F~rexample, 0(d= 2) =

1.00±0.01 [93].For higher dimensionsthis exponent0 was listed alreadyin ref. [45,table II]; for
d = 3 we have [93] w = 0.65±0.2. The parameterA dependson the lattice type; we have [93]
A = 4.063±0.002, 5.183±0.001and 8.34±0.02for the square,triangular, an~.lsimple cubic lattice,
respectively.

In eq. (27) we haveusedthe sameexponent0 for percolationclustersbek~wPc asfor theanimal
numbersin eq. (46c), sinceagainthe animal 0 is the p = 0 limit of the percolation9(p): If the limits
p —*0, s —* ~ canbeinterchanged,then

n(p—*0)=~g,,p’(l—p)’=~g,,p’ cc s°(Ap)’.

Thus for sufficiently small p, thedisturbingfactor (1 — p)’ cancelsout, andthenumbersg, of animals
becomeidentical to theclusternumbersn,,

n,(p—*0)= g,p’[cc s°(pA)’for ~—*~] (46d),

apartfrom a simplefactorp
3. Therefore,for g, andn,(p —*0), also the two exponents0 agree.Indeed,

numericalanalysis[49]of seriesdata[42]gave0(P —*0) = 1.0 from thecIustei~numbersn
3(p), in full

agreementwith theexponentdeterminedfrom the animal numbersfor the s*me (triangular) lattice.
(Seealso ref. [80].)

Now we explain the value A = 4.06 in the square lattice, eq. (46c), by using our numerically
determinedpercolationperimetersof fig. 12. Let a~= a,~(p)be the averageperimeter-to-sizeratio
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lim(t,/s) for largeclustersbelow thepercolationthreshold,wherea.. = (1 — p)/p no longeris valid. We
abbreviatelim,...((1/s)ln n,) by g

1 = g1(p); this functionvanishesfor all p abovep~accordingto eq.
(I ib). For largeclusters,eq. (28c) givesa.. = (1 — p)/p— (1 — p)dg,/dp,that means

g1(p)= ln(plp,,)+ dp’.

On the otherhandfor p nearzero we have,as mentionedabove,n, cc s°(Ap)’,and thus g1(p —*0) =

In A + In p + 0(p). In thecomparisonof thesetwo resultsfor g1 thediverging termlog(p) cancelsout,
andwe get

lnA =ln(1/p,,)+J ~‘°~~‘~dp. (47a)

With theknowndatafor a~~(p),fig. 12, and thenumericalintegrationof eq. (47a) weget A = 4.1 ±0.1in
the squarelattice, only onepercentlargerthanthe true result4.06 from seriesapproximations[42].

With similar methodswe may even improveon the simple approximation(46a) to get the leading
s-dependenceof g,~for most ratios 1/5, not only near I/s = a0 and 1/s = a~,the “animal” and
“percolation” averages.(As beforewe assumethe limit of s and I goingto infinity at constantratio a
to exist and to be a smooth function of a.) Equation(44b) tells us that a..(p) is determinedby the
maximum of the function ln A + a ln(1 — p) + g(a), with p fixed and a as variable. Since the a-
derivativevanishesatthemaximum,we get — dg/da= ln[(i + 1/a..)(1— p)] as theconditionfor a = a...
Integrationgives

-g(a)= J ln[(1 + 1/a..)(l—p(a..))]da.. (47b)

where againthe relationbetweena.. andp e.g. from fig. 12 canbe used.(It doesnotmatterwhether
the integrationin eq. (47b) startsat zeroor at a~sincefor all a.. belowa~we havea.. = (1— p)/p, eq.
(30a). Thus the logarithm in eq. (47) and g(a) vanishthere.) Figure 20 plots semiquantitativelythis
functiong(a)for thesquarelattice.

Equation(44a)gives lim,....((1/s)ln g,,)= In A + g(a)with a = I/s; and for a —* a0 wehavefrom eqs.
(46,47a) lim,.....((1/s)In g,~)= InA. Comparisongives,with thehelpof eq. (47b):

A = A(a0) e~0); g(a0)=J ln[(1 + 1/a..)(1— p(a..))] da. (47c)

U08 g (a 0 -g I 0.8

0.06 ~~1;0.6

o.OL.
0.02 - 0.2

0 0.2 0.4 05 0.8 10 a

Fig. 20. Estimateof the(negative)function g(o) andits derivative,eq.(44a).
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Sincea0 = 1.2, fig. 12, andg(a0)= —0.1, fig. 20, for thesquarelattice we thus have

A = [(a0+~)ao+l/~ao}~~(ao) = 4.1,
againin excellentagreementwith thedesiredresult [42].We may alsodetermineg(a0) from a0 and A,
as given by Duarte[52]for the triangularand squarelattice, and againfind ~(a0)= —0.1. We seeno
reason,however,that this quantityshould be exactly universal.The numeriealagreementfoundfor
A 4.1 in the squarelattice seemsto be theonly testof this animaltheoryki~ownat present.

(The constantc in eq. (46a) is given [89]by c = a~’(1+ a01’ — g”(ao), which is about2.4 in the
squarelattice.An unexplainedexponentis the relation[48]s, cc t3~~2for animalswheretheperimetert
is fixed andonelooks at theaveragesizeof animalswhich havea given perimeter,)

Letus summarizeour animalresultshere:For the leading s-dependenceof theanimalnumbersg,,
wehavea generalresult(for 0< I/s ~ ao)

g,,—A’e’~ (A~(a+l)~~~/aa) (48a)
with a = t/s, and a functiong(a) given e.g. by fig. 20; g vanishesfor a below a,, = (1 — Pc)/Pc.Near
a = ac, the region relevant for percolationscaling, also the prefactorsneglectedin eq. (48a) are
importantand leadto eq. (45b):

cc ~_T_U2 . A’ . f[p
2,,(a,, — a)s°]. (48b)

The scalingfunction here is the sameas that for the percolationcluster numbersin eq. (15), since
rathergenerallytheclusternumbersandanimalnumbersarecloselyrelatedby eq. (45a),for p above
p,,. In this sensetheproblemof mostanimalnumbersseemssolvedin the asyihptoticlimit: In general
the function g(a) in eq. (48a) describesthe leading dependenceon s; and the additionalprefactors
neededfor percolationscalingaregivenin eq. (48b).

6. Otherpercolationproblems

6.1. Randomresistornetworks

Already in subsection1.1 wementionedthequestion:how doesan electric currentflow throughan
inhomogeneousmedium?Imaginethan eachelementarycell or small cubeOf a large simple-cubic
lattice is randomlyeithera pieceof electricallyconductingcopper(with probability p) or a piece of
insulator(with probability 1 — p). An electriccurrentis supposedto flow from~onecopperpieceto its
neighboronly if both cubeshaveone surfacein common;no electricalconbectionis madeby the
edgesor cornersalone.Then an electric current flows through the whole lattice only if an infinite
networkof copperpiecesis present,i.e. for p abovePC only. Let us for simplicity set the copper
conductivityequalto unity and the length of the lattice alsoequalto theunit length.The size of the
elementarycubeandthecoherencelength arethenmuchsmallerthanunity. A unit voltageis applied
to two opposingfaces(of unit area)of the lattice.The currentnow flowing throughthe lattice is called
theconductivity ~ = ~(p). We review this propertyonly shortly heresinceour reviewconcentrateson
percolationclusters.References[7, 13, 14, 15, 141—146]give realor computerexperiments,andrefs.
[7,146] reviewthescalingtheoryof conductivity.

Close to thepercolationthresholdp,~apositive exponent~ (alsocalled t) canbe definedthrough
[3]

(49)
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the conductivity is zero below p,,. Table 2 already listed numericalestimatesfor this exponent,but
theyarein generallessaccuratethan thosefor someotherexponent.For example,two-dimensional
Monte Carlo data[7] give p. = 1.10±0.05 whereasa seriesprediction[108]is p. 1.43. Our estimate
p. 1.2 in table 2 is thereforenot very accurate.How can werelatethis newexponentp. to our earlier
exponentslike o~and r?

Following Skal etal. [5, 141, 147] we imaginetheinfinite networkslightly abovep,, to consistmainly
of one-dimensionalchannelswith a few crosslinks,fig. 21. The distancebetweentwo nodesis of the
orderof thecoherencelength~cc I~— p,,J_V whereasthe length of thechainsconnectingthenodescan
be longerand is assumedto divergeas(p — p~Y”,with a newexponent~‘ (in the literatureour prime
is usually omitted).Of coursethis picture of one-dimensionalchannelsis only an approximation[3]
andrequiresthat weremoveall deadendsof chainswhich contributeto thepercolationprobability P..
but not to the conductivity I. Even then this “backbone” of the infinite network looks in reality
[7,148] quite different from theabovepicture,fig. 21. Sincemodificationsmakeit morecomplicated
withoutgiving a simple generallyacceptedresult[147]we still useherethe simple pictureof channels
to calculate~, eventhoughit may bewrong for d = 2.

Sincethe distancebetweentwo roughly parallel, current-carryingchannelsis of order~, the total
numberof suchpathsin our lattice is about l/~2in threeand l/~”’ in d dimensions.Eachpathleads
from the top to the bottom of the lattice and thus consistsof about l/~one-dimensionalchains
sectionsseparatedby nodes.Eachsectionbetweentwo nodeshasa length cc (p — p,,~’;and thus a
whole path leading from top to bottom hasa length cc(p—p,,)”~’ and a conductivity cc(p —p,,)’~.
Taking together all ~ cc (p _p,,)(d_I)~suchpathswe find their combined conductivity to vary as

cc (p ~ Thusthe conductivity exponentis [141]

(50)

It is temptingto assume[141]~‘= 1, i.e. p. = 1 + (d — 2)v. Then we havep. = 1 exactly,apartfrom
possiblelogarithmic correctionfactors[149],in two dimensions.This resultmay be compatiblewith
themost recentcomputersimulations[7] and agreeswith theepsilonexpansionnearsix dimensions
[108,147]. (In six dimensionswe have[149]p. = 3 and ~‘ = 1.) But in two dimensionsthis assumption

= 1 togetherwith p 1.35 makesthe abovepicture internally inconsistent:Thenthe length of the
chain segmentsconnectingtwo nodesat distance~ would have to be smaller, not larger, than this
distance ~if p is sufficiently closeto p,~.Perhapswehave~‘(d<4)� 1 but ~‘(d>4) = 1 [108,149]. For
example,~‘(d= 2) = v hasbeensuggested[150].Or perhapsthereis no simple relationbetweenthe
conductivity exponentp. and the clusterexponentslike o and r. Contrary to our understandingof

I H

Fig. 21. Approximationfor the structureof the infinite current-carryingnetwork of resistors.The true distancebetweenthe nodes is of order
~ (P — PcY”, whereasthelengthof thechainsegmentsconnectingthenodesdivergesas(p — pJ’, ~‘= 1, ref. [141].
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cluster numbers and other cluster properties, no drastic improvement seems to have occured for the
scalingtheoryof percolationconductivitysincetheolder reviews [3]werewritten.

More fruitful were scalingideasfor relations betweendifferent conductivities if good and bad
conductors are mixed, instead of conductors and insulators. Then the cond~ictivity at p = p,~is not
zero;it increasessmoothlywith increasingconcentrationp of goodconductots.Let RC0fld be the ratio
of the conductivity of “bad” conductorsto “good” conductors(set equalt~unity again). Now the
total conductivity > dependson the two variablesp — Pc and RCOfld. Referenc~s [146,150—152]makea
scalingassumptionof thesametype aswe haveseenit repeatedlyin this review:

Y.(p,R,,00d)= (R,,Ofld)’
4 4[(p — PC)(RCOfld)]. (Sla)

In this assumptionanalogouse.g. to eq. (15) a newexponentu and a new sealing function 4’ = 4(y)
areintroduced.For R,,Øfld= 0 we haveagaina mixture of conductorsand insOlatorsandmust recover
eq. (49). Thus thescalingfunction4i(y) variesfor large arguments y as y5’, and then R,,

0fld cancelsout
of theconductivity in eq. (5la). (More preciselywe constructedeq. (51a) sucththat R,,0fld cancelsout
for R,,0~d= 0, as requiredby eq. (49).) Right at p = p,, it is thedifferencep — p~which hasto cancel
out; thus 4i(0) has to remain finite, giving ~ cc (R~Ofld)

M.Finally, below p~for small RCO
0d the

conductivitymustbe proportionalto R,,0fld sincethenthebadconductors,not~thegood ones,givethe
main contributionto the resistivity. Thus 4’(y—*—~)cc(—y~~”,or cc RCOfld(pC—p)”~”. We now
summarizethesethreecasesy—*+~,y—*O, and y—*—x:

cc (p — p,,~ (RCOfld—*0 abovep,,)

cc (R,,0fld)
M (p =p~) (Sib)

cc (p,,—p)~~R~
0n~ (RCOfld—*0 belowPc).

(The positive exponentp./u — p. is called s by Straley[1461;the exponent u is called s by Efrosand
Shklovskii [151];and both papersdenoteour p. as t.) In the abovediscussiOnwe took the “good”
conductivityasunity and thebadoneasR,,Ofld; otherwiseall results in eq. (51b) mustbe multipliedby
the “good” conductivity. If we mix a superconductor(infinite conductivity)~ith anormalconductor,
this latter formulation has to be used; below p,, the conductivity then diverges as ~ — p)~L_fLlU

multipliedwith thenormal (“bad”) conductivityarisingfrom the factorRCOfld in eq. (Sib).
In two dimensionsduality arguments[151,153] give u = ~exactly, and thus p./u — p. = p.: The

conductivity of a metal-insulatormixture film vanishesabovePc with the sameexponentasthe
resistivity of a superconductor-metalfilm vanishesbelow Pc (Levinshtein[i2~]).In threedimensions
one has[146]u 0.7 andthus p.Iu — p. 0.7 whereasu = 1 in six dimensions.Furtherexponentsare
listed by Straley[146]and,for p. only, by our table 2.

Experimentally we mention the possibility [145]of varying p Pc very finely by using the
dependenceof thevolume fraction p on temperature,if the two materialsn~ixedtogetherhavetwo
different coefficientsof thermalexpansion;areasonableexponentp. 1.8 was found in this way for
threedimensions.For more experimentssee refs. [9, 143, 146]. Also the ~{alleffect in a resistor
networkand the influenceof randomcapacitorshavebeendiscussed[3, 154, 155].

6.2. Modificationsofpercolation

6.2.1. Miscellaneous
BOND PERCOLATION: What we discussedso far was mainly the sitep~rcolationproblemwith
nearest-neighborbonds. Onecan also look at “bondpercolation”whereeachlattice site is occupied
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and where each bond connecting two neighbors is randomly in one of two states.This bond
percolationproblem seemsto belong to the sameuniversality classas site percolation,e.g. it is
describedby the sameexponents[105,107]. Also for the resistor network, the bond percolation
problem refers to mixtures of conducting and insulating connections between lattice sites. Actually
someof thenumericalexponentsquotedearlierreferto thebond problem,not to site percolation.For
acombinationof site andbond percolationwerefer to ref. [156].In specialcases[2],bond percolation
is transformedexactlyinto site percolationin a different lattice.

LONG-RANGEINTERACTION: Most percolation studies define a cluster as a group of occupied
sites connectedby nearest-neighbordistances.Again theuniversalityconceptassertsthat the scaling
behavior(critical exponents;shapeof the scalingfunctions) doesnot changeif also next-nearest
neighborsaretakeninto accountas partsof the samecluster,or if even longerrangesof interaction
are used.Work on the bcc lattice with nearestand next-nearestneighborsshowedno peculiarities
[26,69]comparedwith simpler lattices;andevenlongerrangesof interactionshowedthesamecritical
exponents[24].

In the oppositedirection goes a recent attempt to describedilute magneticswhere the local
magneticmoment is formed only if sufficiently many magneticatomsare clusteredtogether.Thus
eachsite in a clusteris required[157]to haveat leastm occupiedsites asnearestneighbors.It is not
yet clear [157] if the scaling behavior of this model differs from the usual percolationproblem
(correspondingto m = 1).

POLYCHROMATIC PERCOLATION: If eachlatticehasnot onebut severalstatesit canbe in, the
lattice now is no longerjust blackand white. Little is known [158]on clusterpropertiesso far.

TREESON A LATTICE: If in bond percolationon a lattice theclustersarerestrictedto be tree-like,
with no cyclic bondsallowed (cyclomaticnumber= zero)thenthe scalingbehavioris different from
ordinary percolation. This problem corresponds [21,82] to the zero-state Potts model of section 2.3.2;
accordingto Wu [82]no phasetransition occurson thesquarelattice.

6.2.2. Continuouspercolation
A majorunsolvedproblemfor percolationscalingis thequestion: How importantis theexistence

of a lattice structure?Are theexponentsthesameif thesitesaredistributedrandomlyin a continuum
insteadof on a lattice?Computerslike to havethe siteson asquareor simplecubic lattice,but many
randomprocessesin naturehappenin a continuum, not on a periodic structure.The problem is
analogousto a questionin thermalphasetransitions:Are the critical exponents calculated in a lattice
gas (Ising) model of fluids the same as those observed at real liquid-gas critical points of, say, H2O?In
the latticegasthe moleculesarerestricted,similar to lattice percolation,to sites of aperiodic lattice
whereas in real water they can move more freely. Recent high-precision measurements and im-
provementsin the theoretical lattice-gaspredictions seem to allow the conclusionthat in three
dimensionsthe exponentsare (nearly) independentof the lattice [159]. For percolation,the renor-
malizationgroupapproachalsosuggeststhelattice to be unimportant.Monte Carlo clusternumbersof
Fremlin [160] for continuum percolationseemnot accurateenoughto give critical exponents.We
refer to Webmanet al. [161;seealso 145] for the exponentp. of random resistornetworksin a
continuum;earlierliteratureis cited there.More informationon continuumpercolationseemsneeded
to arrive atclearconclusions.
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623 Interactingpercolation
What happens if the probability of one site to be occupieddependson whetheror not its neighbors

are occupied? A simple model to incorporate such correlations,which are ignored in random
percolationdiscussedso far, is the Ising model of ferromagnets(or lattice g~asmodel for fluids) at
finite temperaturesT. Here probabilities are proportional to exp(— E/kBT) whei~eE is the energy of a
given configuration.In the Ising model we define

E=-J~~S~S1-H~S1S1=±I. (52)

The doublesum runsover all pairsof nearestneighborson a lattice. If the “spin” Si is positive we call
thesite i occupied;it is empty for negativeS1.The concentrationp = ~(1+ t~S1))of occupiedsites is
variedby the “field” H (chemicalpotential);the largerH is the largeris p. ((S1) is theaverageover
many configurations for one site i or, equivalently, the averageover all sites excluding those
influencedby the boundariesof the system.)Clustersof occupiedsites were investigatedwith this
model in two andthreedimensions,startingwith refs. [33,35]. In two dimensiQns one has Pc = ~ [162
with earlier refs.], which agreeswith the “Curie point” at T~for magnetic properties. (For H = 0 the
“magnetization”(S1) is nonzeroonly for T below T,,.) The second moment ~, s

2n, divergesfor H = 0
as (T — ~ y 1.91 in two dimensions[163];this exponentis smaller than the corresponding

2.43 for random percolation, table 2, but larger than the exponent 1.75 for the magnetic
susceptibilityd(S

5)/dH at H = 0.
In threedimensions,unfortunatelythe percolativeand the magneticphasetransition happenat

different critical points, i.e. the thresholdfor interactingpercolationis ataconcentrationp,,(T) smaller
than the concentration ~where the Curie point is located [35,162]. Thus if one wants to describe the
three-dimensional Curie point by a cluster model [34]one has to define “clusters” differently: No
longer are they just groups of parallel spins with nearest-neighbor connections, as assumed in the
Monte Carlo studies [35,37]. Instead they may representfluctuations in an averagedlocal mag-
netization [36,96, 120, 127]. But little progresshasbeenmadein puttingtheseideasinto a definition
simpleenoughfor computerhandling.

Recent progress in two dimensions makes the situation more hopeful there [25,115]. Since Curie
point and percolation threshold agree in two dimensions [162]we may still defin~ clusters as usual. At
H = 0 near T~the radius of typical percolation clusters diverges with the same exponent ii = 1 asthe
spatial range of magnetic correlations, ~ cc (T — T,,)”, ref. [25]. Forfixed temperatureT aboveT,, the
typical cluster radius diverges as (p,, — p)”, with the samev 1.35 as for random percolation [25].
Theclusternumbersat T = 2T,, obeyroughly a scalingrelation like eq. (15); bi* the scalingfunction
f[(p — pàs”] seemsto havea shapedifferentfrom thatobservedin randompercplation[115].Thus, in
spiteof theresultsof Klein etal. [25] for thecorrelationexponent,the interactingpercolationproblem
does not share the same universality class with the random percolation problem, not even in two
dimensions.

Randompercolationin this Ising model correspondsto infinite temperatureTand infinite field H at
finite ratio HIT. For then the interaction between neighboring sites, which influences the occupation
probabilities through the ratio f/kB T, is negligible. Thus percolation can be regarded as both the
infinite-T and the zero-T!.Iimit of suitable magnets.(An evenmore complicat~dsystem[1641,the
magneticalloy, has on eachlattice site one of two sortsof atoms;and eachi~tomhasa magnetic
moment which points either up or down.) Monte Carlo studies of these Is~ng clusters at finite
temperatures are not only relevant for percolation but also for other questions~ see ref. [165]for a
recent paper with earlier references.
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6.2.4. Dilute magnetsat finite temperatures
The influenceof finite temperaturesis also a major problemfor thedilute magnetsof section1.1,

which were discussedthereonly at T = 0. At nonzerotemperaturesthermalmotion can break the
exchangeinteractionbetweentwo magneticmomentswithin one clusterand makethem antiparallel.
Then the methods of section 1.1 break down. Better theories ha-ye to distinguish between isotropic
(Heisenberg)andanisotropic(Ising) magnets.

In theisotropic caseone maylook at “spin waves”as statisticallyindependentthermalexcitations;
these“magnons”areharmonicwavesin thedirectionof the local magnetization,just as soundwaves
are harmonicwavesin the local massdensity.It turns out [3,166] that the frequencyof thesespin
waves varies near p, as (p —p~)~’~/(wavelength)2,with the exponents$ and p. for percolation
probability and conductivity, respectively. With this spin-wave approximation the variation of TC(p)
near p,, and the dependenceof thermodynamic properties on temperature for T —*0 has been
estimated. For example, T~(p)approachesT~(p~)= 0 roughly linearly in p. We refer to Shender [167]
for details and earlier literature.

For anisotropic magnetsthephasetransition temperatureT,,(p) vanishesnearp~as 1/log(p— p,,).
The behavior near this trailsition is described by exponents which are in general neither those of the
puremagnetsnor thoseof percolation.We refer the.readerto Lubensky’srecentreview [168].

7. ConclusIons

This review centeredon the scalingtheory of percolationclusters: How do the propertiesof
clusters depend on the cluster size s, and how does the phase transition at p, entertheseproperties?
The answersto thesequestionswere describedby severalexponentso•, ‘r, 0, ~, p. Of thesefive
exponents,u and r (and thecritical exponentsa, ~, y, 8, p derivedfrom them)aredefinedonly near
thepercolationphasetransitionP = Pc,whereastheasymptoticbehaviorof clusternumbersandradii
for s—* ~ defines ~, 0, p both far awayandnearp~through eqs.(23, 27, 39b). Wesaw that the latter
exponentsweredifferent [70]aboveand belowp~for example,~‘(p<p~= 1 and ~(p> p~)= 1 — lid
in d dimensions,eq. (26). On theotherhand,thecritical exponentso~an4r arethesameon both sides
of thephasetransitionanddescribetheclusternumberstherethrougheq. (15),ageneralizationof the
Fisherdroplet model [34].Analogousexpressionswereproposed,as summarizedin eq. (42), for the
excessperimeter,the radius,and thedensityprofile of clusters.Such simplescalingassumptionsare
familiar from thermalphasetransitions.We alsosawtwo exampleswherescalingexpressionslike eq.
(42)areinvalid: For thenumberof animalsit is g

3jA
3,andnot g

3j itself, which follows a scalingform,
eq. (45b). And for the perimeterdistribution, no scaling assumptionlike eq. (35) is valid. The
universality concept states that exponents and the shape of scaling functions do not depend on
microscopicdetails like lattice structure.We saw this assumptionconfirmed in general,but an
exceptionwill be discussedin appendix2.

In this sensethepercolationclusterscanserveas a simple introductionto scalingtheoryof critical
phenomenaat phasetransitions [12].For percolationthe definition of the problemis particularly
simple. It requireslittle backgroundknowledgelike thermodynamics,magnetismetc.,for percolation
merely combinesgeometrywith probabilistic aspects.The more fundamental“animal” problemof
section5 evenavoidstheprobabilisticconcepts.Thustheanimalproblem,how to put togetheragiven
numberof dominoc squares,is definedon a kindergartenlevel. In high school we may ask for. the
averagenumberof percolationclustersobtained by flipping coins at concentrationp = ~. Different
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quantities are related to each other by scaling theory, which requires sometimescollege-level
mathematics.More complicated“graduate”work is requiredto producethesequantities (like cluster
numberson a computer,or exponentsin renormalizationtheory). Our review skipped over these
complicationsbutalsopointed outunsolvedproblems.

In order to bring this reviewup-to-datewe alsocoveredproblems,particularly in section4, where
no consensusis evidentfrom thepresentliterature.Only theclusternumber~of section3 havebeen
confirmedby differentauthorswith avariety of methods.Thus future researchmaynotonly putmore
emphasis on points neglected here;it may also invalidate someconclusionsparticularly in section4.
Figure 1 suggestedalreadyquite clearly that percolationis not yet solved entirely. As mentionedat
the beginning, the reader will get a more balanced view by reading other reviews, too [5—9].Wealso
refer to thesereviews for a discussionof experiments,like the famousspreadof diseasein orchards
[1—3].Such experiments have seldomly given information on the cluster properties emphasized here.

Further researchin the immediatefuture could centeron testing scalingassumptionsby Monte
Carlo work. The majority of present Monte Carlo studies is restricted to two dimensions. But three
dimensions are more relevant for applications, and higher dimensionalities are of theoretical interest
to study the transition to classical behavior at the phase transition. Continuum percolation is more
complicated but also more realistic than the lattice percolation emphasized here. A discussion of
cluster properties by renormalization group techniques has barely started [79,80,114]. What cluster
radii do series methods predict? Of course, should an exact solution [25]of percolation become
available, such approximate methods would be only of historic and didactic value.

Even within the phenomenological scaling theory many questions are still open: Is the conductivity
exponentp. relatedto theclusterexponentso- and r? How can we explain the exponent 0 of eq. (27)
below p~,and what is its true value above p~?Why is the radius exponent v0 belowPc closeto ~in two
dimensions? What happens if clusters and animals are characterized by their perimeter t insteadof
their size s [48],particularlynearp = I? Which of the modifications of percolation mentioned shortly
in section 6 form a new universality class?

This review was a snapshot of the situation in December 1978, as seen by the author. Thus we
conclude, for the reader’s amusement, with a historical remark. During tbe nineteen-thirties J.E.
Mayer was one of the founders of cluster theory for collective phenomena, as developed here in detail
for percolationnear p~.In a review of his “Statistical Mechanics” textbook it was asserted quite
recently[169]that “the Mayer theoryis no longeranactive areaof researchin statisticalmechanics”.
Mayer, in his reply [151],admits that the clusterdevelopment “certainly is obsolete in treatments of
critical phenomena”.Throughoutmost of this review we explainedcritical phenomenaby clusters.
Thus we hopeto haveconvincedthe readerthat it is Mayer’srecentremarkaild nothis original ideas
which are “obsolete”. One merely has to selectthe right phasetransition to study clusters: The
percolationproblem.

Wethank numerous researchers in the field for helping us throughout man~’years with preprints,
discussionsandcriticism. K. Binder, J.A.M.S.Duarte,H.J. Herrmann,W. Kin~el,S. Kirkpatrick, B.B.
Mandelbrot,H. Miiller-Krumbhaar,S. Redner,the referee,and in greatestdetail P.J.ReynoldsandH.
Nakanishihelpedto improveearlierversionsof this paper.
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Appendix 1. Evaluationof sums

A.1.1. Derivations

How do we calculate the nonanalyticpartof sums over all clustersizes s, like [s,,s”ns]crjt in eq.
(16),if we assumethe scalingassumptionn~= q

0s
7f(z), z = (p — PC)SU to be valid, eq. (15). Basically

we replace the sum by an integral since only large clusters are responsible for singularities, and
evaluate the integral apart from numerical factors by a substitution of variables. For this purpose we
will oftenusedz/ds= crz/s at fixed p.

For example, we find for the kth moment of the cluster size distribution:

~ = J
5k~ ds = q0 J 5k_~f[(p— Pc)S°]ds = (qolcr) J s 1+k—7 z~’f(z)dz

= qof36~p ~ f ~ . z~f(z)dz

= I~ PcI
2”~ . q~3~ J IzI~5~3. f(z) Idz~. (53)

(In this appendix all integrals over z run from 0 to +~ abovePc and to —~ below.) Thus eq. (16) ~5

confirmed. (For the last equality we used the scaling laws (18).) Possible sign errors are easily
corrected at the end since both n~and f(z)arealwayspositive.Thuswe found the critical exponent
for the kth momentto be 2— a — kfJ6 providednoneof the following problemsinvalidatesthe above
“derivation”: By replacing n. with q

0 s
Tf(z) we made an error for small s, affecting additional

correction terms which are part of the analytic background. This background is unimportant if the
whole sum diverges or if only the “singular” part is investigated.Secondly, the prefactorqo may
depend smoothly on p, giving correction factors of the type I + O(p — Pc). Again this error is not
relevant for the leading nonanalytic part of the sum. Finally, of course, the integral on eq. (53) must
exist,andheresomecautionis needed.

For large ±zthescalingfunctionf(z)decaysexponentially,and thus for any finite k the integral in
eq. (53) has no problems at ±Qc.But for z —*0 we normalizedf(0) = 1, and the integral may diverge at
z = 0, which simply meanswe were not allowed to replace the sum by an integral right at the
beginning of eq. (53). In that case small clusters are more important than the typical clusters,
s -~5E~For example,to evaluate~, ii~we havek = 1 and jzI~8~”3= IzI~’,whencethe integral
diverges at its lower boundary z = 0 for positive f3. The reason is simple: In L n, the main
contribution comes from s = 1,2, 3,..., and the sum has to give p(1 — B(p — PC)~~ ~)accordingto
eq. (4), if P.. = B(p — Pc)~nearPc. Thus the nonanalyticpart we are interestedin is only a small
correctionto the leadinganalyticbackground.Suchproblemsoccurwheneverthe sum in eq. (53) does
not diverge,i.e. when2— a — kf36 is not negative.

But even in thesemorecomplicatedcaseseq. (53) is still correctif we look atthenonanalyticpart
[~s skns]singonly. Why? In our above example,L ,z~,we may look at thederivativewith respectto
p. For ~ between zero and unity, as we assume from now on [50],this derivative equals —f3pB(,p—

Pc)~+~.., and the analytic background term ~, . ns(pc)= PC hascancelledout. On the other hand,
with dnjdp = qos°~f’(z),1’ = df/dz,we get
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= qo J~ . f’(z) ds = (qo/ff) f IzI(2_T~. f’(z) jdzI

= q
01361p~Pcf~’ f z~- f’(z) IdzI.

(f’(O) is finite, and thus the integral converges at both boundaries.) The exponent thus agrees with the
conclusion from eq. (53) with k= 1. Moreover,a comparison of the two expressions for the derivative
gives for theamplitudeB abovepç:

B = —(q05/p~)Jz~ - f’(z) dz. (54a)

Generallyone may takethe mth derivative(d/dp)” ~, skn If this sum containsa nonanalyticity
cc — p~~Cand one wants to determine the nonintegral positive exponent x, then with any m larger
than x this mth derivative diverges as I~~ and can be evaluated as an integral:

(d/dp)
m ~ s5n, cc qo/38Ip_p~I(T_I_k_m~r)Iu f ~fm~I+(l+k~r)/.. . f(m)(z) IdzI

cc I~_p~I_m~_l_~ff.

Thus we confirmed eq. (53) for the critical part of the sum: x = (r — I — k)/cr = 2— a — kf3S. For
example, in the average number of clusters, k = 0, the third derivatives m = 3, finds out the
nonanalyticpart. (All derivatives~(rn) = dmf/dzm exist if we assumeas in section3.1 that f(z) is
analyticin its argument.)

An alternativeto this derivativetrick is to subtractthedisturbingbackground.Letus takeagainthe
sum L ps,, i.e. k = 1, and assume 0<~3<1. Right at the percolation threshold we have
~, - n,(p~)= Pc from eq. (4). Now we look abovePc at

pP..=p—~s ~1Zs(P)~”Pc~ s n~(p)=~s[ns(pc)—n,(.p)]

q
0 J s ~

T[f(0) —f(z)] ds = qof3ôIp— PcI~J lzI~~[f(0)—f(z)] IdzI. (54b)

This expressionequals pB(p pcf +-.-, and thus we have found for the amplitude B of the
percolation probability P..

B = (qof38/p~)J z~’[f(0)—f(z)]dz

above Pc. The integral convergesat the lower boundary since f(0) — f(z) vanishes there as z. And,
triumphof mathematics,partial integrationof eq. (54c) recoverseq. (54a).

For p below PC no infinite network is present,and L ~ n
5(p) = p withou~the correctionpB(p —

Pc)~.Thus the integral in eq. (54b) must vanish below Pc, as pointed out (iii a similar context) by
Reatto[1341:
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J z~[f (0)—f(—z)]dz=0 or J z~f’(—z)dz=0.

(For clarity we replacedthe integrationvariablez in eq. (54b) by —z in eq. (54d).) This “sum rule”
[50,67] restricts the choice of the scaling function f(z). In particularf(z)cannotbe symmetricabout
z = 0 since then the amplitude B would be the sameon both sides of the phase transition. Equation
(54d) also explains why there is a maximum in f(z) atnegativez: The derivativef’(z) cannot have the
same sign for all z below Pc since then the integrals in eq. (54d) cannot vanish. The simplest choice for
f(z) to obey the laws (54d) is to haveasingle maximum at negative z, and no maximum at positive z.
And this behavior is exactly what we observed in section 3.2. The Bethe lattice solution, with
logf(z)cc —z2, is thereforea highly special case, incompatible with our assumption [50]0</3 <1.
(Equation(54d)waschallengedin ref. [89]but confirmednumerically in two dimensions[51].)

A.1.2. Applications

With similar methodswe evaluatethe magnetizationM = M(H, T) in the low temperaturelimit of
dilute magnets, eq. (5):

M, M/~p— p~I~= ±B+ (qof3t5/p~)J IzI~’tanh(IzI~ . H,) . f(z) IdzI (54e)

with H, Hp./ksTIp~ Thus the “scaledmagnetization”is a function of the “scaled field” only:
M, = M,(H,), and p — Pc no longerappearsin this relation explicitly. This scalingfunctionM,(H,) ~5

given in eq. (54e) explicitly by an integral involving the cluster scaling function f(z). The amplitudeB
for thespontaneousmagnetization,B = M,(H, = 0), is thesameas in eq. (54a, c) and vanishes on the
paramagneticside, eq. (54d). As required,only the ferromagnethas a spontaneousmagnetization
M(H = 0)� 0. In the ferromagneticstate, i.e. abovePc, the ±Bterm in eq. (54e) gives +B in the
stablephaseand —B in themetastablephase,if H >0. For negative H the signs are reversed. The ±B

term in eq. (54e) arisesfrom the infinite network whereasthe integral is due to the many finite
clusters.Of course,just as with nearlyall otherformulas in this review,eq. (54) is valid only for p
closeto Pc-

In eq. (6d) theevaluationof ~, s - n,(pc)c_us is evensimpler mathematically:We merelysubstitute
y for hs and get

Pc — 5 - fl
5(p~)~ hs = S - n,(p~)(1— e_hs) q0 J ~ I_T(l — e_hs) ds

~qohT_
2J yl_T(1_e_Y)dy=q

0h~J~ - (1—e~~)dy=p~E~h~.

The amplitude E at p = Pc i5 therefore,after partial integration,givenby

E = (qoS/p~)J y~e~dy = (q06/p~)I’(1— 1/8) (55)

where the gammafunction of 1 — 1/8 is about1.04 in two and about 1.16 in three dimensions. In this
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way we calculated the prefactor q0 from the amplitudeE [19,55]in section3.2.1. SinceE is usually
close to unity and 8 is quite large one may also get a reasonable estimate for q0 from Pc =
Is 5 fls(Pc) -~q0 I, s~= qo~(l+ 1/8) with theRiemannzetafunction [170].

So far weintroducedtheamplitudesB andE. Also A and C maybe definedby the total numberof
clustersand the “susceptibility”, respectively(I

[~fls] =pAjp—p~j
2~ pP..=_[~ s .n

5]
sing sing

(56)[~~2fl,] =pC~p—pcI~ — [~ . fls(pc)eh~] =pE - huo.

sing sing

Table 4 presentsestimatesfor thesefour amplitudes;if two of them are knownthe othersmight be
calculatedby universalityassumptions[50,55, 105].

All thesecomplicatedintegralsarehiding somewhatthesimple featureof our scalingtheory:Only
one characteristic cluster size enters the calculations. For h = 0 nearPc this size is S~ IP Pct~
and when we work with e_~satPc thenthis characteristicclustersizecanbe takenas 1/h. Therefore
our sums can be evaluated by simple integrals. But even with more than one characteristic size, i.e.
when assumption (15) is violated, we may recover the scaling laws (18b) and similar results based on
sums over all cluster sizes. For example let us slightly modify an ansatz of Reátto [134]and use as an
alternative to eq. (15) an ansatz with three free exponents u, r and x:

ns(p) = q0s e_z - F,(z); Z = (p —Pc)S° F, = [1+ const~ exp(—(z + 1)Sx)]_I.

In the scalinglimit of largeclustersnearPc at fixed z we haveF,(z)= 0 for z below — 1, andF,(z)= I

for z above — 1, similar to the Fermi functionin quantum-statisticalphysics.(x and theconstantare
positive.)Any sum over all clustersizescanuse,for its nonanalyticpart, this ‘approximationof F,(z)
being eitherzero or unity, and thus the third exponentx cancelsout from t~iesesums.Neitherthe
equation-of-state,eq. (20), not thescalinglaws (18)dependon x. But this newexponentdoesenterthe
shapeof theclustersizedstributionbelow Pc and is not merelya correction-to~scalingexponentin the

Table 4
Seriesestimates[19,54—56] for the amplitudesA, B, C and E as definedin
eq. (56), for various two- and three-dimensionallattices.(Abbreviationsas in
table 2). Both site percolationandbond percolationare listed. The daggert
warns that a = - 2/3 was assumed[56];for the stars * Gaunt [55] gave
estimatesassuminguniversalityto be valid. ForC thevaluebelowp,, is listed;
MonteCarloresults[26]give C(p > p~)/C(p> pj—’ 180 in two and 11 in three
dimensions(butseealsorefs.[51,541).B referstop abovePc,E top atp~,andA

happensin thecalculatedcasesto be symmetricaboutp. [56].

Lattice: HC SQ TR FCC BCC SC D

A (site)
A (bond)
B (site) 1.53 1.53 1.56 4.2 * * *

B (bond) 1.53 1.55 1.60 * * * *
C (site) 0.140 0.147 0.128 0.101 0.142 0.185 0.26
C (bond) 0.145 0.134 0.084 0.041 0.074 0.122 0.222
E (site) 1.08 1.09 1.lO 1.37 1.33 1.32 1.31
E (bond) 1.09 1.10 1.10 1.32 1.33 1.35 1.38



68 D. Stouffer, Scaling theory of percolation clusters

senseof eq. (22). If s —*~ below Pc, —z becomesvery large,and log F5 thenvaries as (z+ l)sx

—IzIs’~cc _~0±X•Thus below Pc (but not abovePc) the new exponentx enterscrucially into the decay
exponent~= o• + x definedin eq. (23). In this sensetwo-exponentscaling,eq. (15), is violated for the
clusternumbersn, but it is still valid for thesumsover the clusternumbers.Fortunatelywe haveseen
in section3.2 thatthe additionalassumption(15) is confirmedratherwell: At presentthereis no need
to introduceathird exponentfor the cluster size distributionin the scaling limit.

So far we dealt only with the nonanalytic “singular” parts of the sums. If a sum diverges, its
leading singularity is alsothe singularpart, and we haveno problemsin the scaling regime.But e.g.

I~n, and I~s n5 remain finite at Pc, with the nonanalyticparts appearingonly as corrections
vanishingatPc. Thesefinite valuesatPc cannotbecalculatedfrom the presentscalingtheoryandare
expected,contraryto critical exponentsetc., to be different for everydifferent latticestructure.Such
non-divergingsums may lead to difficulties with averages.Let us assumethat A. is any cluster
property (like radiusR5) increasingfasterthan s ~ and slower than s ~ for I ~ s ~ s~and that it
obeysa scaling assumptionsimilar to eq. (42). The average(A)~is definedby

(A)re~5kflA/~ ~ (57)

with a suitablek. (Polymer scientistscall k = 0 the numberaverage,k = 1 the weight average,and
k = 2 the z-average.)For k = 2, 3,... both sums in eq. (57) diverge and thus get their main
contributionfrom s -~Sf; then (A) = A5~apartfrom numericalconstants,and the averagehas the
propertieswhichonewould like it to have.But for k = 1 (andevenworse for k= 0) therearesurprises
hidden in the innocenteq. (57). For the denominatorthereremainsfinite (and equalto p~)in the
scalingregion,andonly the numeratordiverges.Thus(A) =p~5000 s n5A, ds cc 5 s

2_Tz_lf(z)Asdz cc

AscIp — P~V~-Thus a perhapsundesiredfactor I~— p~I”~is the resultof this definition of averageswith
k = 1.

The differencesin the effectivedimensionalityof percolationclusters,section4.3.3,are dueto such
differencesin definitions [106].Anotherexampleis providedby the labyrinthine ant [5, 171]. Ass’ ‘c
than an ant is parachutinginto a two-dimensionallattice, filled randomly with sites below the
percolationthreshold.(Experimentaldetailson ant training were missingin ref. [171].)After landing
the antrunsawayrandomlybut is restrictedto the single clusterit hasjumpedinto. After a longtime
one measureshow far the ant hasrun away from its landing site, andrepeatsthe experimentmany
times. What is the averagedistance(R2) it hasrun away?Clearly that distanceis connectedwith the
averagecluster radius.We leave it as an exerciseto the readerto checkwhich of the two expressions
in ref. [171],(R2) cc (p~_py2vandcc(p~_p)~2”is the correctonefor the type of averagedefinedby
the jumping ant. In generalwe recommendto define averagesthrougheq. (57) with k = 2, not with
k = 1, sincethentheyhavenicerpropertiesin the scalingregion.For example,with A~= s we do not
recommendto call (s) with k= 1 a “mean cluster size”, as is often done. But with k = 2 eq. (57)
simply givesour typical clustersize sf for thataverage.

Appendix 2. One-dimensionalpercolation

In order to haveat least one exactly solvedproblem in this review, which otherwisemadeno
attempt to be rigorousin its “proofs”, we now look at the specialcaseof one dimension[112,113].

Percolationclustersin onedimensionare chainsof s occupiedplaces;the two endsof the chain



D. Stauffer, Scaling theory of percolation clusters 69

borderon empty sites.Thus the perimetert is always 2, independentof clustersize. Thereforethe
clusternumbersare

n5(p)=p’(l—p)
2. (58)

For no p below unity canan infinite clusterexist,sincealreadya singlegap in thechainbreaksit up
into two parts.At p = 1, of course,thewholelattice is one infinite cluster,in all dimensions.Thuswe
havePc = 1 for onedimension,andonly the “paramagnetic”regionbelowPc is accessible.For P~Pc
we rewriteeq. (58) with p = exp(lnp) = exp(p — 1) = exp(p — Pc) as

n
5(p)= pS(p~_p)

2= ~_2[(p Pc)S]2exp[(p —pc)s]=
z (PPc)S f(z)=z2ez.

Comparisonwith our basicassumption(15) shows that scaling is valid, with ~ = 1 and T = 2 exactly.
Equations(17, 18) thenlead to theotherexponents[113]a = 1, f3 = 0, y = 1, 6 = ~, v = 1, as already
listed in table 2. Unfortunatelytheseexponentsfor d = 1 arenot thelimits for d —* 1, astable2 shows,
particularly for ‘y andv: The limits p -~ Pc andd —* 1 cannotbe interchanged.

A surpriseis waiting [112]if the rangeof interactionis changed.Naive u4~iversalityassumptions,
section6.2.1,assertthat then the exponentsremainunchanged.But this is not so in one dimension
[112].Let us define a cluster as a groupof occupiedsites connectedby nearestor next-nearest
neighbordistances;thus our rangeof interactionis two lattice constantsinsteadof one. Again we
havePc = 1. Eachclusternow hasfourempty neighborsasexternalperimeter~text = 4. But in addition
it may havetint internalperimetersites,i.e. singleholes of oneempty site surroundedon bothsidesby

/s—l\ - ...atleastone occupiedsite. We haveg
5~= ~• ) possibilities to distribute tint holes amongthe s —

mt

bonds of an s-cluster.With a total perimeterof t = text + tint = 4 + ~ we thus get for the cluster
numbers:

s—I / 1~
t :5 1 5 ~ ~+

4 s s—I 4
n

5=~g51p(l—~)=~ t~ ;(1—p)” ~ (2p) (Jp)
t tj..t=0 \~int /

— (p~— p)
4 exp[— (p~— p)2s] = s 2z4exp(— z2) (59a)

where z =(p—pc)s”2. (We usedthe binomial law and ln[(2—p)p]=ln[I---(l—p)2]=—(l—p)2=
—(pc--p)2.) Thus scaling is valid again, with r = 2, but now with rr =~ instead of unity: The
universality assumptionis violated becauseone of the exponentshas changed.More generally,if
occupiedsites separatedby I lattice distancesare still regardedas partof one cluster,one has[112]
o~1/l,T=2, leadingtoa 2—i, f30, ‘yl, 8=oc,ii=l.

This failure of universalityin one-dimensionalpercolationcanbe hiddenif insteadof the scaling
variable—z= (Pc _p)~Uweusethescalingvariablez, ~(p. —p)’s°~For theusull caseI = 1 we nowget
nearPc:

n,(p)= s Tf(z,); T = 2; 1(z
1) = z,

2e~ (59b)

with o- = 1. But in this form (59b) the scalingresult obeysuniversalityfor general1 andno longer
dependson the rangeof interaction,as one canseefrom eq. (59a) for 1 = 2, and from the resultsof
Klein etal. [112]in general.

One-dimensionalIsing ferromagnetsaresimilar to one-dimensionalpercolationin that they havea
phasetransition,atT = T~= 0, whereonly theparamagneticsideT> T~is ac~essible.Wiethege[172]
looked at the specific heatof this magnetto find out if universality is violated also there,if longer
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rangesof interactionare takeninto account.If the energyneededto breakup a bond betweentwo
magneticmomentsat distance1 is J,, and if we defineK1 I, 2J,/kBT,K2 1,1 - J,/kBT,we canexpect
the specific heatto dependexponentiallyon K1 and K2 for T —* T~= 0. The calculation[172]showed
that for T near T~= 0 the specific heat varied as e_~’~1or e_K2, whatever was larger. Thus the
temperatureentersthe specific heatin a complicatedway, dependingstrongly on thechoice for the
interaction energy. Universality is violated much stronger than for percolation,where a simple
modification, eq. (59b),was sufficientto savetheuniversalityconcept.

Thesetwo one-dimensionalexamplesshowedthat simple and plausibleconceptslike universality
of critical phenomenaneed not always be true, even if they were confirmed for numerousother
examples.This conclusionis regrettablebut true.
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Noteadded in proof. After completionof this reviewwelearnedof additionalwork of interestfor the
scalingtheory of percolation.Someof thesepapersare listed below together with the sectionor
referencefor which they aremost relevant:

1. Roussenq,C. Mitescuand H. Ottavi, ComptesRendusAcad.Sc. Paris288 B (1979)49, on section3.2 andref. [23].
H.P. Peters,D. Stauffer,H.P. Hdltersand K. Loewenich,2. PhysikB, to bepublished,on ref. [75]in 3 dimensions,section4.
S. Rednen,preprint,on radiusof branchingpolymers[75,133], section4.2.2.
B. RockslohandD. Stauffer,preprint,on numberof animals[48],section5.2.
G. Shlifer, W. Klein, P.1.Reynoldsand H.E. Stanley,pnepnint,on backboneexponents[7, 148], section4.3.3.
J.P.Straley,prepnints,on ref. [82]andsection6.1.
P.G.De Gennes,1. Physique(Paris)40 (1979)L 197 on ref. [149]andsection6.1 and4.2.2.
S.RednerandH.E. Stanley,prepnint, on theoryfor anisotropicpercolation,section6.2.1.
L.N. Smith andC.J. Lobb,Bull. Am. Phys. Soc. 24 (1979)360andprepnint,on experimentfor anisotropicpercolation,section6.2.1.
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