SCALING THEORY OF
PERCOLATION CLUSTERS

D. STAUFFER

Institut ‘fiir Theoretische Physik, Universitit zu Koln, 5000 Koln 41, W. Germany

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM



PHYSICS REPORTS (Review Section of Physics Letters) 54, No. 1 (1979) 1-74. NORTH-HOLLAND PUBLISHING COMPANY

SCALING THEORY OF PERCOLATION CLUSTERS

D. STAUFFER

Institut fiir Theoretische Physik, Universitdt zu Kéin, 5000 Koin 41, W. Germany

Contents:

1. Introduction
1.1. What is percolation?
1.2. Critical exponents

2. Numericai methods
2.1. Series expansions
2.2. Monte Carlo simulation
2.3. Renormalization group
2.4. Inequalities

3. Cluster numbers
3.1. Scaling theory
3.2. Tests of scaling

4. Cluster structure
4.1. Cluster perimeter and internal structure

11
11
13
15
18
20
20
27
35
36

Received December 1978

4.2. Radius and density profile

4.3. Droplets, ramification, and fractal dimensionality
5. Lattice animals

5.1. Scaling close to critical point

5.2. Exponents away from the critical point
6. Other percolation problems

6.1. Random resistor networks

6.2. Modifications of percolation
7. Conclusions
Appendix 1. Evaluation of sums
Appendix 2. One-dimensional percolation
References

2
47
51
52
55
57
57
59
62
64
68
70

Single orders for this issue

accompanied by check.

Single issue price Dfl. 29.00, postage included.

PHYSICS REPORTS (Review Section of Physics Letters) 54, No. 1 (1979) 1-74.

Copies of this issue may be obtained at the price given below. All orders should be sent directly to the Publisher. Orders must be




D. Stauffer, Scaling theory of percolation clusters 3

Abstracts:

For beginners: This review tries to explain percolation through the cluster properties; it can also be used as an introduction to critical phenomena
at other phase transitions for readers not familiar with scaling theory. In percolation each site of a periodic fattice is randomly occupied with
probability p or empty with probability 1 — p. An s-cluster is a group of s occupied sites connected by nearest-ieighbor distances; the number of
empty nearest neighbors of cluster sites is the perimeter ¢. For p above p. also one infinite cluster percolates through the lattice. How do the
properties of s-clusters depend on s, and how do they feel the influence of the phase transition at p = p.?

The answers to these questions are given by various methods (in particular computer simulations) and are interpreted by the so-called scaling
theory of phase transitions. The results presented here suggest a qualitative difference of cluster structures above and below p.: Above p. some
cluster properties suggest the existence of a cluster surface varying as s** in three dimensions, but below p. these “surface” contributions are
proportional to 5. We suggest therefore that very large clusters above p. (but not at and below p.) behave like large clusters of Swiss cheese:
Inspite of many internal holes the overall cluster shape is roughly spherical, similar to raindrops. :
Forexperts: Scaling theory suggests for large clusters near the percolation threshold p. that the average cluster:numbers n; vary as s"f(z), with
z=(p - pJ)s°. Analogously the average cluster perimeter is ¢, = s - (1 - p)/p + s” - §(2), the average cluster radius R, varies as s - R(z), and
the density profile D,(r), which depends also on the distance r from the cluster center, varies as s "2 - Dy(rs ™, z). These assumptions relate the
seven critical exponents a, 8, v, 8, v, 0, 7 in d dimensions through the well-known five scaling laws 2~a=y+28=88+8=dv=8+1/o=
(1 — 1)/o, leaving only two exponents as independent variables to be fitted by “experiment” and not predicted by scaling theory. For the lattice
“animals”, i.e. the number g, of geometrically different cluster configurations, 2 modified scaling assumption is derived: g.s*t"/(s +1)**" «
§772. f(2), with z « (@ — #/5)s° and a. = (1 - p.)/p.. All these expressions are variants of the general scaling idea for second-order phase transitions
that a function g(x, y) of two critical variables takes the homogeneous form x°G(x/y®) near the critical point, with two free exponents b and ¢ and a
scaling function G of a single variable.

These assumptions, which may be regarded as generalizations of the Fisher droplet model, are tested “¢xperimentally” by Monte Carlo
simulation, series expansion, renormalization group technique, and exact inequalities. In particular, detailed Monte Carlo evidence of Hoshen et
al. and Leath and Reich is presented for the scaling of cluster numbers in two and three dimensions. If the cluster size s goes to infinity at fixed
concentration p, not necessarily close to p., three additional exponents ¢, 6, p are defined by: cluster numbers ¢ s~ ®exp(—const - §°) and cluster
radii = s°. These exponents are different on both sides of the phase transition; for example {(p <p.)=1and {(p > p.) = 1 - 1/d was found from
inequalities, series and Monte Carlo data. The behavior of 8 and of p(p <p.) remains to be explained by scaling theory.

This article does not cover experimental applications, correlation functions and “classical” (mean field, Bethe lattice, effective medium)
theories. For the reader to whom this abstract is too short and the whole article is too long we recommend sections 1 and 3.

1. Introduction

1.1. What is percolation?

What is percolation? Figure 1 gives a first answer: Percolation is a very fashionable field. The
number of papers published each year has gone up by a factor of 10 in ten years, due in part to the
increased interest in disordered systems generally. The greater part of the pronounced peak in fig. 1
for the percolation publication rate could not be covered in the earlier reviews of Shante and
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Fig. 1. Variation with time of the number of articles published each year which carry the word percolation, percélating etc. in the title. Tabulated
from the Permuterm Subject Index of the Science Citation Index and the Weekly Subject Index of Current iContents, Institute of Scientific
Information, Philadelphia, PA, USA. The critical exponent describing this curve has not yet been determined.
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Kirkpatrick [1], Essam [2], and Kirkpatrick [3]. Among shorter reviews written since then we mention
a more mathematical presentation [4], a simple description of applications [5], and a lecture mainly on
random resistor networks [6]. Kirkpatrick [7] recently gave a rather detailed review together with new
numerical data. About simultaneously with the present review other reviews are being prepared by
Essam [8] and by Pfeuty and Guyon [9], the latter emphasizing applications, which are largely ignored
in the present article.

These reviews usually emphasize the “bulk behavior of the percolation system as a whole. The
present article reviews the scaling theory of percolation clusters, i.e. it concentrates on the often
neglected question of how these “bulk” properties can be explained by clusters, and how the cluster
properties depend on the cluster size. Taken together with refs. [7-9] the reader will, we hope, get a
balanced view of percolation. (Our list of references is an incomplete and subjective selection of
percolation papers.) Instead, if the reader does not have the time to read the present article fully we
recommend that he restricts himself to our long introduction and to section 3 only. Then he is
informed on those cluster properties which at present seem no more controversial. De Gennes’s
review [5] is suggested for an elementary introduction into percolation theory and its applications.

What else is percolation? This review tries to show that, besides being fashionable, percolation is
also a very simple problem. It is easily defined (see below), and the methods of numerical solution are
also easy to understand in principle. In this sense the phase transition behavior of percolation, i.e. the
“scaling” properties, can be used as an introduction to more complicated phase transitions and critical
phenomena [10, 11]. In order to understand percolation it is not necessary to know what properties a
spin has or what a free energy is. In short, one does not have to study physics in order to understand
what is going on in this review. Basically, only the concept of probability and the purely geometrical
counting of “cluster” configurations is necessary; and usually we do this here on two-dimensional
lattices like large chessboards. The most complicated mathematical methods used here (only sel-
domly) are Taylor expansions, the definition of the Gamma function I'(x) = f¢’ y*'e ™ dy for real
argument x, and the related knowledge of [~ exp(—y?) dy = V7. In fact, a simple percolation game,
which can be finished during one lecture, has been used repeatedly to give students an active
experience of what a critical exponent and a Monte Carlo experiment are [12]. Of course, not
everything connected with percolation is simple: So far none of the critical exponents like 8 etc.,
which we will discuss later at the end of this introduction, has been calculated rigorously and exactly
for two or three dimensions, although for the two-dimensional Ising model of magnetism such exact
exponents are known since many years {10, 11]. Our review here will simply try to avoid the
complicated problems and concentrate on the simpler concepts.

What is the definition of percolation? Imagine a very large quadratic lattice like a huge chessboard.
Assume that every single square on this lattice can be in either one of two states, which we call
“occupied” and “empty”. Moreover, each square is occupied or empty entirely randomly, in-
dependent of whether its neighbors are occupied or empty. Thus the whole problem is defined, for a
given lattice type, by a single parameter p, where p is the probability (the same for each square) to be
occupied. Fig. 2 shows an example how a 20 by 20 chessboard is slowly filled up from p =0.1 to
p =0.9. If our lattice is not a chessboard (square lattice) we call its units the lattice sites; they are

either occupied or empty. In the triangular lattice, for example, these units are the
dots shown schematically in this diagram; in the simple cubic lattice they are cubes.
Numerous such lattices have been studied [1, 2]; the presently widespread belief in
“universality” asserts that it does not make much difference which lattice we
choose.
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Fig. 2. Examples for percolation on a 20 x 20 square lattice, for p = 0.1, 0.2, ...0.9. Occupied sites are shown as dots, empty sites are not shown.
The overlapping crosses at 60 percent probability give the largest “percolating” cluster.

In this percolation problem the occupied sites are either isolated from each other or they form
small groups of neighbors. These groups are called clusters:

A cluster is defined as a group of occupied lattice sites
connected by nearest-neighbor distances.

1)

In fig. 2 the largest cluster at p = 0.6 was symbolized by overlapping crosses +, which distinguish it
clearly from the smaller clusters also present there. Isolated sites are regarded as clusters of size
unity; and generally we call any cluster consisting of s occupied connected sites an s-cluster.

In a large lattice there will be more clusters than in a small lattice; thus it is convenient to divide the
number of clusters by the number of lattice sites in the whole lattice. This ratio is called the number n;
of s-clusters if it is an average over many different distributions of occupied sites among the lattice
sites:

n, is the average number (per lattice site) of s-clusters and depends on concentration p. )

Egs. (1) and (2) define the two most important concepts used in this report, the s-cluster and the
number of s-clusters.

If p is close to zero, most occupied sites will be isolated, with only a few pairs and triplets present
(fig. 2 with p = 10%). If, on the other hand, p is close to unity then nearly all occupied sites are
connected to each other and form one large cluster extending from one end of the lattice to the other
(fig. 2 with p = 90%). According to present knowledge [1], in a sufficiently large lattice there is either
one or none, but never two or more such “infinite” clusters or *“networks”. This infinite cluster
percolates through the lattice just as water is percolating through wet sand along the network of wet
pores. Our examples at p = 70% and 80% also show that besides this percolating network many finite
clusters exist, too. A clear distinction thus exists for large lattices: Either an “‘infinite” cluster exists,
or it does not exist. Therefore it is plausible that for an infinite lattice a sharply defined percolation
threshold p. exists, i.e. a critical point, where for the first time an infinite network percolates through
the lattice with finite probability. Thus p. indicates a phase transition such that:
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For p above p. one percolating network exists;
for p below p. no percolating network exists. 3)

In this sense percolation is a phase transition [10,11] which generally can be defined as the
phenomenon that a system exhibits a qualitative change at one sharply defined parameter value, if that
parameter is changed continuously. Only in an infinite system (““thermodynamic limit”’) do we observe
a true phase transition in this sense. For example, in our finite system of fig. 2, we do not know
precisely whether p =0.6 is above or below the percolation threshold p.; for the large cluster
percolates horizontally but not vertically. Such accidental differences between horizontal and vertical
directions become less and less probable if the lattice size increases. Thus p. is defined uniquely in an
infinite system. (Of course, even for p -0 we can produce an infinite cluster by filling merely one row
of our lattice with occupied sites. However, such a configuration has an extremely low probability for
a large lattice in a truly random distribution of occupied sites. And we require above p. to have an
infinite network in an infinite system with probability one.)

More quantitatively, we call the percolation probability P. the fraction of occupied sites belonging
to the infinite percolating network. Then P.. vanishes below p. and is nonzero above p.; close to p. we
can define a “critical exponent” 8 by postulating P.. x (p —p.)® for p slightly above p.. The behavior
of the infinite network and of large finite clusters, for p very close to p., is called the critical behavior
of percolation theory; the region of parameters where it applies is called the scaling region.

In general, every lattice site has three choices: It can be empty, with probability 1—p; it can be
part of the infinite network of occupied sites, with probability p - P.; or it can be part of one of the
many finite clusters including single sites, with probability p(1 — P.). Since each s-cluster contains
exactly s sites, the probability of any lattice site to belong to an s-cluster is P, = s - n, (remember that
ns was defined as the number of s-clusters divided by the total number of lattice sites). The sum of all
these probabilities equals unity:

1-p+pP.+> s-n,=1 @)

where T, denotes the sum over all finite cluster sizes, s = 1,2,.... Thus, if we know all the cluster
numbers n,, then we can calculate from eq. (4) the strength P.. of the infinite network. We see already
here that the cluster numbers n, are the basic quantities for our discussion.

To study percolation experimentally with simple methods one can flip coins in a classroom
experiment [12] to produce easily a probability p =3 for a site to be occupied. More efficiently, one
can ask a computer to do that, and for readers interested in Fortran programming a simple example of
such a “Monte Carlo” method is shown in table 1. A computer program similar to the one in
table 1 produced the results for fig. 2; our example might be used for teaching Monte
Carlo methods since the execution time was smaller than the compilation time. (If computer
experts ask for money to make such Monte Carlo computer simulations they in general
will not (at least not officially) use that money on the roulette tables of that Mediterranean
town in order to produce a series of random numbers needed for percolation. Instead, the computer
has built in methods to generate pseudorandom numbers by multiplying large numbers and dropping
the leading digits. For the CDC computer used here, this aim is achieved by the function RANF(n)
which gives, for arbitrary n, a real number distributed randomly between zero and unity. The program
compares this random number with the concentration p to decide whether the lattice site is occupied
or empty.)
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Table 1
A simple Fortran computer program to produce a percolation exam-.
ple on a 20 x 20 square lattice. The function RANF for this computer
produces random numbers distributed evenly between 0 and 1.
Empty places are stored as zeros, occupied sites as ones.

DIMENSION 1S(2p,20)
P=p.
N =1
DO11=1,2p
DO 1J=1,20
I1S(1,d) = §
1 IF(RANF(N).LT.P) IS(I,d) =1
D02 1=1,20
2 WRITE(6,3) (I1S(1,d),d=1,20)
3 FORMAT (1X,2012)
STOP
END

Besides such computer experiments, also real experiments can be done to study percolation.
Imagine for example that each occupied square on the chessboard is electrically conducting, whereas
empty sites are insulators. A current can flow from one conducting square to the other if both squares
share one line as common border. This means that an electric current can flow only within one cluster,
and not from one cluster to the other. Only if a percolating network is present, i.e. for p above the
percolation threshold p., has the lattice a nonzero bulk conductivity. In this form the percolation
problem is known as the random resistor network; we may also interpret it as oil or water flowing
through porous rock or wet sand. By coating candy dragees or plastic bullets from toy guns with
copper, the Marseille group [13] studied the conductivity above p.. Random mixtures of these spheres
with equal size but two different colours arrange themselves into a triangular lattice if shaken softly
on a flat surface; then clusters and the infinite network can be seen easily. Unfortunately, as
quantitative experiments these methods are too complicated [13] for teaching purposes. Earlier simple
experiments included the punching of random holes into conducting paper by Last and Thouless [14],
and the random cutting of wires in a steel-wire mesh, bought in a local hardware store, by Watson and
Leath [15]. But in the present review we will be satisfied with regarding percolation as a mathematic-
ally well-defined and simple problem; the difficulties of approximating realistic disordered systems in
nature by percolation models and the problems of conducting experiments with real materials are left
to other reviews [5, 9].

Readers who insist that everything is explained to them in the language of the spin 7 Ising model for
ferromagnets at finite temperature T in a magnetic field H can also be satisfied now; other readers
may go ahead to section 1.2. Imagine that in a lattice, magnetic atoms and nonmagnetic atoms are
mixed randomly and then cooled down (“‘quenched”) to very low temperatures. Then the magnetic
atoms form clusters according to percolation theory, with p = mole fraction of the magnetic spins.
Each spin has a magnetic moment p pointing either up or down. Nearest-neighbor exchange forces
force the magnetic moments of neighboring atoms to be parallel since the thermal energy at these low
temperatures is too low to break up these exchange bonds. Thus all moments within one cluster are
parallel. (We neglect any dipole—dipole interaction between the spins.) The whole cluster therefore
acts as if it would be one large isolated (‘“‘superparamagnetic”) spin. An isolated single spin has in
thermal equilibrium a magnetization of tanh(uH/ksT) in units of the saturation magnetization. Thus
for a superparamagnetic cluster the argument of the tanh is replaced simply by s - uH/ksT since its
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magnetic moment is su. The contribution of clusters to the total magnetization moreover contains a
factor s since a large cluster contributes more than a small cluster. Finally, the contribution of all
s-clusters is proportional to the cluster numbers n,. Therefore, the total magnetization contribution
from finite clusters is (1/p)- Z, s - n, tanh(suH/ksT) in units of the saturation magnetization. The
infinite network contains the fraction P.. of all spins and is oriented either fully up or fully down. Thus
the whole equation of state M = M(p, T, H) for the magnetization M (units of the saturation
magnetization) is given by

M= +P.+(1/p)- > s - n, tanh(suH/ksT)
or, with the use of eq. (4):
pM =+ (p - E 5 n )+ 2 s - n, tanh(suH/ kg T). &)

In this way for low enough temperatures the magnetization in this “dilute” ferro-magnet is related
directly to the cluster numbers. For p below p. no infinite network is present, and for H = 0 the finite
clusters give zero magnetization, corresponding to the paramagnetic state. But for p above p. the
infinite network gives a “spontaneous” magnetization P.., i.e. a “remanence” even for zero magnetic
field. Eq. (5) looks as if it is a direct experimental realization of the percolation problem; but actually
experiments as a function of p are quite difficult [16], and not much information has been gained so far
from such experiments on the cluster numbers. The time-dependent behavior of this model [61] is not
discussed here. [Experts on metastable systems may notice that the * sign in eq. (5) gives above p. a
unique and smooth but nonanalytic continuation of the stable branch, M parallel to H, into the
unstable branch, M antiparallel to H. There are no van der Waals loops and no spinodal lines with
dM]3H = » in this expression for p above p..]

These remarks conclude our qualitative description of percolation; we now turn to the quantitative
description of the scaling region by critical exponents.

1.2. Critical exponents

The behavior of systems close to a phase transition [10, 11], also for percolation, is usually
described by critical exponents a, B, v, . . . (except for first order phase transitions). For our review we
need only the definitions

[2 ns(p)]sing < |p —pof (6a)
TE s ns(p)]m «(p -p.)° (6b)
(2 52"‘(”)]si.,g «|p—p™ (6¢)
S noe], 6

&p) «|p—pd™. (6e)

All five equations are supposed to be valid only for p near p. or & near zero. For simplicity we assume
that the same exponent describes the behavior above and below p., when appropriate. The subscript
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sing denotes the leading nonanalytic part of the subscripted quantity and does not necessarily mean
that that quantity goes to infinity; for example, if close to p. a quantity A varies as A=
Aot Afp —po)+ Ax(p — D) > + As(p — p.)'** + Ap — p.)’, then the “singular” (or critical) part
Aqing is the term A,(p —p.)'>>, whereas Ao+ A((p — pc) + A«p — p)’ are denoted as the “analytic
background” and A;(p —p.)"** as a “correction to scaling”. This review will concentrate on the
singular parts only. (According to this definition we have [Z; s - 1] © P- in eq. (6b), since the
concentration p which also appears in eq. (4) contributes only to the analytic background etc.) The
real number & in eq. (6d) is merely a dummy variable to calculate a sum and approaches zero; the
background of that sum is its value at h =0 which is ;s - n,(p.) = p., from eq. (4). Finally, ¢ is the
coherence length (or correlation length, connectivity length) and corresponds to the average radius of
a typical percolation cluster, as will be discussed later. We neglect here the possibility that logarithmic
factors appear besides powers of p —p.; in six dimensions such factors are important where e.g.
[24 %1 Jsing * (P — p) " '[log(p. — )" according to Essam et al. [17]. (Another exponent n =2— y/» is
not needed here [18].)

So far eqs. (6) are merely definitions of exponents by various moments of the cluster size
distribution n,. But these definitions are indeed analogous to what is usually defined at other phase
transitions where T.— T replaces p — p. as the distance from the critical point. In eq. (20) we will see
later that 2, n, corresponds to a free energy, which at thermal phase transitions is assumed to vary as
(T - T.)* in its singular part, in order that the specific heat diverges as (T — T.)"*. Moreover, the
percolation probability P. corresponds to the spontaneous magnetization « (T.— T)?, similar to our
remarks after eq. (5) for dilute ferromagnets. We also see from eq. (5) that the susceptibility
x = dMJH is connected with =, s’n,, and at thermal phase transitions this susceptibility diverges as
(T-T.) " as a generalization of the Curie-Weiss law. At the critical temperature T = T. the
magnetization is usually assumed to vary as H'® analogous to eq. (6d); indeed the factor ™ in eq.
(6d), basically introduced by Gaunt and Sykes [19], can be interpreted as a “‘ghost” field (with e™”
replaced by 1—h), a magical trick avoided in this review but used elsewhere [20-23]. Another
interpretation of ¢ is given in ref. [24] in connection with semiconductors. Also a coherence length
can be defined at thermal phase transitions to describe the decay of correlations over long distances,
diverging as |T — T.|™" similar to eq. (6e). Since about ten years this exponent notation is standard for
phase transitions and has been adopted consistently in the literature also for percolation. Of course, a
reader not familiar with thermal phase transitions may simply overlook the above analogies.

A complete understanding of percolation would require to calculate these exponents exactly and
rigorously. This aim has not yet been accomplished, even in general not for other phase transitions.
(Ref. [25] gives reasons to hope for an exact result in two dimensions: » = log(3""%)/log(3).) The aim of
a scaling theory as reviewed here, is more modest than complete understanding: We want merely to
derive relations between critical exponents. And since this review deals mainly with the scaling theory
of clusters, we want to understand how the above exponents like 8 can be calculated from cluster
properties and cluster exponents.

For even in the cluster properties some s1mple power laws are found. Fig. 3 gives Monte Carlo
results for the cluster numbers n, at p =p.=3 in the triangular lattice. The data in this double
logarithmic plot follow a straight line with slope —7= -2, i.e. log n, =const—7-logs, or n, «x s "
What relations exist between this new exponent 7 and the other critical exponents defined in eq. (6).
Does a single exponent like 7 suffice to describe the cluster numbers in the scaling region? These are
the questions our review tries to answer. Of course, to test these scaling theomes we will have to use
the numerical methods and results for finding critical exponents, as described in greater detail in
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Fig. 3. Computer simulation [26] of cluster numbers in a 4000 x 4000 triangular lattice at the percolation threshold. The straight line shows
n(p)x s, =2

section 2 and as evident already in this example of fig. 3. After we have explained in section 3.1 the
scaling theory of percolation clusters we will list there the present estimates for the exponents and
also for the percolation thresholds p.. We merely mention here that for two dimensions, we have
roughly

a=-07, B=014, y=24, =18, v=135,

results which are expected according to the universality hypothesis to be valid for (nearly) all
two-dimensional percolation problems, independent e.g. of the lattice type. On the other hand, p.
depends on the lattice and equals 0.50 for the triangular and 0.59 for the square lattice.

[One exactly solved problem is percolation on the Bethe lattice, also known as Cayley tree [27-30],
where a = -1, B=1, y=1, § =2. We refer to refs. [2,30] for a discussion of Bethe lattices and
restrict ourselves here to the not yet exactly solved cases where the exponents are not integers.]

In this sense the percolation problem can serve as an introduction to the scaling theory of phase
transitions and critical phenomena: the critical exponents are defined by mathematically simple
expressions in eq. (6); and later in section 3.1 we will derive relations between them [31], using a
simple scaling ansatz for the cluster numbers n,. As promised before one does not have to know
concepts like “free energy” of “magnetic moment” to understand the definitions (6), contrary to most
other phase transitions [10].

But besides being perhaps the simplest not exactly solved phase transition, percolation theory also
serves as an introduction to cluster approximations of collective phenomena. In statistical physics,
systems with interactions between the units (molecules, spins,...) in general cannot be calculated
exactly, whereas most systems without interaction are easy to solve. Thus an often-used ap-
proximation is the cluster (or droplet) approximation which tries to transform the problem of
interacting units into the approximation of non-interacting clusters. For example, to describe the
equation of state and the condensation process (nucleation) in a real gas, one may group the gas
molecules into clusters of neighboring molecules (*liquid droplets™) such that interactions between
different groups can be neglected. Interactions within the same group are taken into account either
exactly (for very small clusters) or by simple approximations containing only a few free parameters
like surface tension etc. If the critical point of a fluid is described [30] by such a “droplet” model, it is
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characterized by the appearance of very large clusters leading to critical opalascence in light
scattering. Such cluster models exist not only for fluids but also for magnets, polymers, structural
transitions, semiconductors. For early references see Domb [32].

To put such cluster models for general phase transitions onto a more rigorous basis one can study
simplified models, instead of real water droplets, to look directly at the microscopic clusters and their
impact on macroscopic quantities like susceptibility etc. In order to be useful such a model should
have five properties:

(1) it can be used in three dimensions
(i) for every configuration there is an unambigous and unartificial separation of units into clusters
(iii) the definition of clusters according to (ii) is simple enough for computer handling
(iv) at least some macroscopic quantities can be calculated reliably from the cluster properties
(v) the system has a critical point; there and only there large clusters appear.

Some years ago there was reason to hope that the Ising magnet (lattice gas model) fulfilled all the
above requirements, since in two dimensions computer simulations [33] agreed well with the Fisher
droplet model [31,34], if a “cluster” is defined as a group of overturned spins connected by
nearest-neighbor exchange forces. Unfortunately later work [35] showed that condition (v) is violated
in three dimensions. Thus the cluster situation in this Ising model is rather complicated [36], and
percolation seems right now to be the only problem where all the above requirements are fulfilled.
Thus percolation can be used as a guide to clustering phenomena at other phqse transitions. Of course
there is no guarantee that other phase transitions will have the same cluster properties as the simple
percolation problem; but it seems plausible that a complete understanding of simple clusters (i.e.
percolation) is helpful for a better understanding of more complicated clusters (e.g. fluids, magnets). It
should be noted, however, that the above difficulties with clusters at other phase transitions arise
mainly near the critical point; far below the critical temperature of a fluid, for example, an often
experienced example of quite well-defined clusters are raindrops; they are nothing but grown-up
stages of those clusters relevant for the liquid-gas phase transition in a supersaturated vapor [37, 38].
The possible similarity of percolation clusters with raindrops will therefore be discussed in detalil, see
section 4.3.1.

2. Numerical methods

This section describes shortly the main methods used so far to calculate percolation quantities
approximately. It is not necessary to read this section in order to understand (we hope) the later
scaling theories, where the results of these numerical methods are reported and interpreted.

2.1. Series expansions

The average number n, of small clusters can be calculated exactly. Take, for example, a pair in the
square lattice, i.e. an s-cluster with s =2. It consists of two occupied squares surrounded by six
empty neighbor squares. Moreover it can be oriented either horizontally or vertically in the lattice.
Thus the average number of pairs is n, = 2p*(1 — p)® since in percolation each of the squares involved
is either occupied (with probability p) or empty (with probability 1— p) entirely independently of the
other squares. Generally we denote as the perimeter ¢ the number of empty lattice sites which are
nearest neighbors of occupied cluster sites, and as g,, the number of geometrically different cluster
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configurations of s sites with perimeter ¢. (The g,, are also called the number of “animals”; see section
5; if two configurations are identical apart from a rotation they are counted as different; if they are
identical apart from a translation they are counted as the same configuration.) Then we have exactly

ny(p) = Z g (1-p). 7

The following diagrams show small clusters on a square lattice together with the resulting expressions
for n,; the cluster sites are denoted by dots, the perimeter sites by crosses:

X X X X X X X X
X X X X ¢ X X X X X X o .
X+ X X+ eX XX X oo X X + x-.

X X X X X X X X X

X
. X X e o X X« X X ¢ X
x X X X X

XX X

X
ny=p(l-p); n=2p(1-p)%; ny=2p°(1-p)y+4p°(1-p).

This method of exact cluster counting was already used twenty years ago [39-41}. The above
diagrams show that for larger cluster sizes more possibilities and thus more difficulties arise. The
exact result for s = 14 in the triangular lattice, with ¢ = 1 - p, is [42]

n(p) =p"(3q'* +168q" + 1524 '® + 100299 ° + 46119¢°° + 1852209°" + 60576697 + 17309436
+4287699q% + 91319499 + 16871550 + 26571525q%" + 350613999 + 3796541q*°
+321989284 + 19012074q>' + 5812482¢™),

a result which illustrates convincingly that the counting is done best on a computer [43]. Even then the
n, are known only up to § = §yax, With $,.x usually of order ten. For example we have s,,., = 17 in the
square lattice, $.nax = 11 in the simple cubic lattice, and s,.x = 7 for the hypercubic lattice in arbitrarily
large dimensionality [44, 45). For applications, a table of n,(p) in two and three dimensions calculated
from these polynomials was given in ref. [46].

For the triangular lattice, besides the full range of g, at fixed s up to s..x = 14, exact g, for fixed ¢
were given in ref. [47] up to f,.x =22. Duarte [48] analyzed in detail the behavior of averages at
constant perimeter ¢, in particular the deviations from a Gaussian distribution. We will not use this
information here since we will look at the distribution of perimeters ¢ at fixed size s instead.

These exact results of Sykes et al. [42, 47] have the advantage that they can be used even far away
from p. where the cluster numbers n, become very small. That region, for example, is important for
nucleation applications [38, 49]. Moreover they give not only the cluster numbers but also the average
perimeter t, of s-clusters: t, =3t -g.p'(1—p)/2, g«p°(1—p). Their main disadvantage is their
restriction to small and intermediate cluster sizes s. So far most extrapolations to s -« [46, 50, 51]
employed rather simple methods: If a quantity A, is expected to have a finite limit A. for s =, then
A, is plotted against 1/s. If one is lucky these data follow a straight line for large s; the intercept
(1/s = 0) of this line gives A.. If instead a clear curvature is seen, one plots A, against some other
power of 1/s until the points fit a straight line; again the intercept of that line gives the extrapolated
A.. Particularly accurate results were given in ref. [52]. Usually the resulting extrapolations are about
as accurate as those from Monte Carlo results, as can be seen by comparing the corresponding results
of refs. [26, 51} or [53, 52].

Better methods of extrapolation exist to calculate the critical exponents for the various moments of
the cluster size distribution, e.g. the exponent y for 3, s’n, x (p.—p)~” below p., eq. (6¢c). Instead of
first extrapolating for large s the cluster numbers n,, one deals directly with this sum and expands it
into a power series in p by using the exact expressions for n,(p) and by collecting the appropriate
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powers of p arising from p°(1—p)' in eq. (7): 3, s’n,(p) = I, axp*. Since n, varies as p* apart from
higher powers in p, exact knowledge of n; up to s = sn.x also gives the exact expansion coefficients a;
up to k = Smax; additional tricks [42] gave ai for k = 5.+ 1 and smax +2. These series expansions in
powers of p etc. have given this subsection its name; for simplicity we will refer to all results derived
from the exact n,(p) as “series” results even if no power series in p was used. The analysis of such
power series in terms of critical exponents is a standard method of phase transition theory and is
reviewed in vol. 3 of ref. [11]; usually exponents estimated in this way are more reliable than those
estimated by other methods. A rather simple way of series analysis is the “ratio” method: if 3, ap” is
supposed to diverge as (p.—p) " and if the ratios a,../a; are plotted against 1/(k + 1), then the data
should follow a straight line for large k, with intercept 1/p. and slope (y — 1)/p., as the reader can
check by himself, employing the Taylor series f(p)=Z; [d*f/dp*],-op*/k! More complicated but
usually more accurate are the Padé approximations (particulary when the ratio plots oscillate), where
the power series is approximated by the ratio of two polynomials in p [19, 44, 54, 55]. The accuracy
sometimes can be increased further by suitable transformations of variables [36]. Practical experience
with such series methods has accumulated over many years of experience with other phase transitions
[11].

An important difference between percolation and other phase transitions is, however, that no exact
expressions so far have been published for the cluster numbers n,(T) in, say, the Ising model of
magnets. Only power series of thermo dynamic quantities like susceptibility etc. as a function of 1/T
or exp(—2uH/ksT) have been derived and analyzed, e.g. in ref. [57]. As mentioned above, percolation
is the simplest phase transition as far as clusters are concerned.

2.2. Monte Carlo simulation

Examples of Monte Carlo computer simulations were already given in the Introduction, figs. 2, 3
and table 1. Similar to series expansions, the quality of the data is limited by tbe number of computer
hours available (and also by limitations in the computer memory). But whereas “series” give exact
expressions if s is near 10, Monte Carlo results are available for much largenjr clusters, s ~ 10°, with
finite error bars. (See ref. [58] for a theory of Monte Carlo fluctuations in the cluster numbers.)
Therefore it is seldomly necessary to extrapolate Monte Carlo results to s -, since s = 10%- - - 10° is
usually close enough to infinity, if the finite error bars of the computer experiment are taken into
account. If possible, a combination in one plot of exact series results for small s and approximate
Monte Carlo data for large s gives a good impression of the accuracy and limitations of both
approaches. (We refer to Binder’s book [59] for reviews of thermal Monte Carlo methods.)

An advantage of percolation compared with other phase transition is that non-equlhbrlum difficul-
ties do not appear in most percolation studies: If a whole lattice is filled once W1th sites, the resulting
clusters can already be used for the statistics of cluster numbers etc. But for thprmal phase transitions
one first has to simulate perhaps thousands of Monte Carlo steps per site until the system has come
close enough to thermal equilibrium in order that the averaging procedure can start.

Our presentation here is restricted to three different methods: Simulations of the whole lattlce
growth of one cluster; and shape fluctuations for one cluster.

2.2.1. Simulations of the whole lattice

Table 1 gives the usual method of filling a lattice of N = L sites in d dlm‘bnsmns randomly with

PN occupied sites. In a thorough study one should vary the length L of the lattice and extrapolate the
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results to L = o [60, 61]. So far the largest systems studied seem to be L = 4000 in two and L = 400 in
three dimensions [26, 61]; care with the computer memory is essential for such large systems. Each of
these lattices can be simulated once or several times; ref. [62] simulated a 110X 110 lattice forty
thousand times. “Finite size” effects due to the limited size L can be annoying and might be reduced
by employing periodic boundary conditions where layer number L +1 in a cube is identified with the
first layer to give a quasi-infinite lattice. The really complicated programming problem is the counting
of clusters; orders of magnitude in computer time can be saved by efficient algorithms. We refer the
reader to refs. [7, 63, 64] for these details.

Monte Carlo simulation of percolation lattices were done already twenty years ago [65]; for the
cluster numbers n, the extensive tables of Dean and Bird [66] played, after a long time lag, an
important role in the development and testing of scaling theories [67-70] and became obsolete only
quite recently [62, 71, 72, 26]. The method has been used to calculate cluster numbers, perimeters,
radii and energies. (The energy is the number of occupied-empty bonds for the cluster.)

2.2.2. Growth of one cluster

Leath’s method [73] divides the lattice into concentric shells with the thickness of a nearest-
neighbor distance. Starting with the innermost site occupied, all lattice sites in the next shell are
randomly either occupied with probability p or left empty with probability 1— p. It is tested which of
these newly occupied sites are connected with the cluster in the inner shells. Then the next shell is
filled randomly, and the process is repeated. It stops when in one new shell no sites were occupied
which are connected with the cluster formed earlier in the inner shells. This method produces clusters
of size s with a probability s - n,, i.e. with the probability that the origin belongs to an s-cluster. In the
method of section 2.2.1 the formation probability is proportional to n, instead. Thus Leath’s method
enhances the statistics for the large clusters needed for a scaling analysis. Also there are no “finite
size” effects in Leath’s method since L is infinite. But the method requires a cutoff s...x in the cluster
size, taken as about 10°, and thus could not give results like fig. 1 where smax Was near 10°. And since
this method is inefficient above p. the results so far [71-73] were restricted to p < p.. Detailed tables of
cluster numbers were made available in ref. [72]. The method has been used to calculate cluster
numbers, perimeters and radii.

2.2.3. Shape fluctuations for one cluster

If one is interested not in the number n, of clusters but in other properties like cluster radii etc.,
one can start with a typical shape of a large cluster and try randomly any changes in the cluster shape
which do not change the cluster size s and do not separate the cluster into several parts. If these
attempted random changes are adopted with a probability (1—p)*, where At is the change in the
perimeter ¢ produced by a given change of the cluster shape, then one approximates in this way the
true distribution of cluster shapes according to eq.(7) at fixed s. (Here one has to wait for
nonequilibrium effects due to the initial configuration to die out.) In this way, analogous to an early
Ising model study [74], Stauffer [75] looked at the average perimeter and radii for s near 10%; density
profiles were analyzed in ref. [76]. No information on n, can be gained in this way, but the method can
be applied to large clusters far away from p. where the other Monte Carlo methods fail. In particular,
the “animal” limit p = 0 can also be treated with this algorithm.
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2.3. Renormalization group

Only since 1975 has percolation been investigated [68] with Wilson’s renormalization group
technique which proved so useful for thermal phase transitions (vol. 6 of ref. [11]). Basically two
variants of that method have been used for percolation: The epsilon expansion and the real space
renormalization. Only the second method is explained here fully, and only a few papers are cited.
Kirkpatrick [7] reviews renormalization technique in greater detail.

The basic idea behind renormalization is the assumption, eq. (6¢), that near p.. the coherence length
¢ diverges. If we look at any clusters of diameter /, with | much larger than the nearest-neighbor
distance of the lattice, then we have in general to distinguish between I < ¢ and [ > ¢ But right at p,
we have ¢ =, and all finite lengths like cluster diameter are much smaller than £ Thus it should not
matter at p. on what a length scale we are investigating the system; apart from simple scale factors the
system looks similar whether we look at it with the eye, with a magnifying glass, or with an optical
microscope (assuming the nearest-neighbor distance to be 1Angstrom, visible in an electron micro-
scope only). Thus we may “renormalize” the system by not looking at each lattice site separately but
by averaging over regions <¢ which have a diameter of b lattice constants. Then we may average
again over these averaged regions, with the same length factor b, etc. At p = p. the averaged regions
are still much smaller than the coherence length even after numerous such averaging iterations; and
nothing drastic should have changed due to this renormalization. In this sense the critical point p. is a
mathematical fixed point of the renormalization transformation. If this transformation is done on the
lattice itself it is called real space renormalization; if it is done in Fourier space it leads to the epsilon
expansion. Scaling is built in both approaches; and the main sucesses have been with the calculation
of critical exponents like v.

2.3.1. Real space renormalization

The above ideas have been made quantitative in many papers [7]; our presentation here
follows ref. [77] for the triangular lattice. (We thank P.J. Reynolds for his patience in explaining
this section to us.) Imagine that all lattice sites are put together into triangles . . in such a way
that each site belongs to only one triangle. The center of each triangle is replaced by a new
“supersite” O which represents the average (in the renormalization sense) over the three original sites.
The whole lattice then looks like fig. 4, where the small triangular A symbols show the “super-super-
sites”, i.e. the averages over three supersites O. We see that the supersites O and the super-supersites
A in that figure form each a new triangular lattice, similar to but larger than the original triangular
lattice formed by the dots -. We can continue by representing each separate triangle of A by a new
symbol %, these stars would again form triangles, etc. For simplicity these higher orders of the
renormalization transformation are not shown in fig 4. In every case the lattice constant of the new
lattice equals the lattice constant of the old lattice multiplied with a factor b =37,

If p is close to but not identical to p. we have a large but finite correlation length ¢ which,
expressed in centimeters, is the same in the original lattice and the renormalized superlattices. In the
original lattice we have ¢ = &|p — p.|™ where & is of the order of the nearest-neighbor distance. Thus
in the superlattice after one renormalization step we have £ = &l|p'—pc|™, &= Db - &, where & is of
the order of the enlarged nearest-neighbor distance in the superlattice. The ?diﬂerence between the
renormalized p’' and the original p takes into account that only at p = p’ =p. the two lattices are
completely similar to each other. Equating the two expressions for £ we get blp’' —p.|™ =|p —p™, or

v= 1°g(b)/108[(P - Pc)/(P - pc)] ‘ (8)
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Fig. 4. Real space renormalization on a triangular lattice. At each iteration, three sites are combined into one supersite, denoted here by a
different symbol. This picture was produced by S. Kirkpatrick on his computerized typewriter [7].

How do we define if the renormalized supersite in the triangle o is occupied? If all three sites of
the original triangle are occupied (empty) then also the supersite representing the average of the three
sites is occupied (empty). If only two sites are occupied, we define the supers ite as occupied, but if
only one original site is occupied, the supersite is defined as empty. Our diagrams show schematically
the correspondence between occupied () and empty (X) sites in the original lattice and the
superlattice:

= , = . , = X , = X

. S . x T ° s X ! X X
This correspondence gives the relation between the concentration p of occupied sites in the original
lattice, and the probability p’' that a supersite 1s occupled For example, two occupied sites can

produce an occupled supersite in three ways: | x « ; each possibility occurs with
probability p°(1— p). Thus in total the probability p’ for a supers1te to be occupied is

p'=p’+3p*(1-p).

The fixed point p* is determined by the nontrivial (p # 0, p # 1) condition p = p’ = p* and agrees with
the critical point p.:

N —

Pe=
since then p’ =3+ 333 = 3= p. Expanding for small p — p. we get p'— p. = 3(p — p.). Thus eq. (8) with
b = 3" gives

v = log(3"?)/log(3) = 1.354 755 65. )

This example showed rather easily how critical exponents are calculated by renormalization tech-
nique. Actually in this example not only is p. = 3 the desired exact result but also the exponent v in eq.
(9) is hoped to be exact [25]. This result of Klein et al. [25] (see also Reynolds et al. [22]) would be the
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first exactly calculated percolation exponent, if their argument could be made rigorous. At least it
agrees within a few percent or better with results derived from other methods, as cited in ref. [25].

Similar methods can be applied, although less successfully, to other lattices. One may also average
over cells larger than the triangles with only 3 sites discussed above. Very accurate results were
derived by calculations for very large cells (up to b = 500) of the renormalization transformation with
the help of Monte Carlo methods by Reynolds et al. [78]. They checked if the cell contained one large
cluster extending from one side to the opposite site, and then called the supersite for that cell
occupied. Similar to the pure Monte Carlo results of the preceding subsectioh, these renormalization
results were then extrapolated to b —» o, giving e.g. v = 1.356£0.015, in excellent agreement with
eq. (9) and with an accuracy comparable with or better than series expansions [18]. Further work with
this combination of Monte Carlo and renormalization methods is in progress.

These methods gave properties of the percolation lattice as a whole but not directly on clusters as a
function of cluster size. A first attempt in that direction was made by Kunz and Payandeh [79] and,
more quantitatively, by Kinzel [80]. Kinzel [80] calculated the cluster numbers for all p between zero
and p. and thus showed that real space renormalization works also far away from the phase transition.

2.3.2. Epsilon expansion

Another renormalization group method consists in expressing the fluctuations in a system by
Fourier components. Then one sums them up over all wavevectors iteratively, just as we averaged
iteratively over the real-space triangles above. An elementary review of that method was given by
Wilson [81]. The summation over the wavevectors cannot be done exactly, and perturbation methods
in terms of a small parameter ¢ are used, similar to diagram techniques in the field-theoretical
approach to quantum many-body problems.

For percolation, the epsilon expansion [68] first transformed percolation into a thermal phase
transition in the socalled Q-state Potts model [21] for Q - 1. Kasteleyn and Fortuin [21], as reviewed
already by Essam [2], derived for the partition function Zp, of this Potts model:

ZPotts = <sz’)

where each lattice site can be in one of Q different states. Here 3m, = I, m; is the sum over the actual
cluster numbers m, in a given configuration, and n; = (m,) is the average cluster number. These
averages (- - +) are defined over all random (bond) percolation configurations, where temperature T
and concentration p are related by log(1—p) x 1/T. For Q =2 the result corresponds to the spin 3
Ising model of ferromagnets. We see easily that the limit Q> 1 means percolation. For then we
expand (22"1J = exp[ln(Q)zs ms] = 1 + ln(Q)zs mg = 1 + (Q - I)Esmsy thUS _FPotts/kBT = ln(ZPotts) =
In(1+(Q-1DZE;m,)=(Q~1)Z,{m,), where Fp. is called the free energy:

FPotts = _kBT(Q— 1)2 ng for Q—) 1.

In this sense the sum over all cluster numbers in eq. (6a) corresponds to the limit of a Potts model free
energy (suitably normalized). Thus a solution of the thermal phase transition in the Potts model also
gives a solution for the probabilistic phase transition of percolation. (The limit Q -0 corresponds to
trees percolating on a lattice [21, 82].)

With these methods the perturbation expansion to order € and €* with e =6—d >0 gives in d
dimensions [83]:
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B=1-¢/7—(61/12348)¢’ + - - - (10a)
v =1+¢/7+(565/12348)¢* + - - - (10b)

with the other exponents following from the scaling laws given later in section 3.1.

The crucial step was hidden before eq. (10a): Our perturbation parameter basically is the dimen-
sionality d. What sense does it make to use in this way non-integral dimensionalities like d = 5.9 where
eq. (10) should be a good approximation? (Later we will mention why six dimensions play a special
role for percolation [84].) Obviously what we really need are results in three, and perhaps two,
dimensions. But numerically already the rather short series in eq. (10) give reasonable results if
applied to three dimensions (e =3, B = 0.53, y = 1.84), exponents which are wrong by 0.1 to 0.2 only.
More importantly, later we will make scaling assumptions which are asserted to be valid for all
dimensions (below 6). If one can prove such an assumption to be wrong in the epsilon expansion of
eq. (10), then there is little reason to believe it is valid generally or in three dimensions. The
introduction of non-integral dimensions by Wilson and Fisher [85] is a new mathematical tool to
describe reality, just as the introduction of irrational and imaginary numbers was such a new concept
many centuries or millenia ago. We simply have become accustomed to these ‘“‘imaginations”.
Certainly, if L? is the volume of hypercubes in d dimensions for all integer d, then L? is a plausible
definition for the volume in general nonintegral dimensionalities d. Only applications of that concept
to real problems can show if it is useful; and now we give two examples of such applications:

(i) In polymer physics it was long assumed that excluded volume effects for self-avoiding walks
were described by the Flory formula: average polymer radius « (length)” for large polymers, with
v=3/(d+2)=3+&4—d)+.... But de Gennes [86] showed that the epsilon expansion gives v =
3+1(4—d)+... proving that the Flory formula cannot be exact in general.

(ii) For percolation, in some expressions correction factors of the form 1+0(s**~") with o =
1/(B + y) only slightly smaller than 3 were derived, eq. (34). If for all cluster properties such correction
factors with s2°~' would exist as “corrections to scaling”, then it would be nearly impossible to get
accurate exponents from finite cluster sizes s, since the corrections would even for moderately large s
not be negligible. These fears turned out to be not justified: Epsilon expansion showed [87] the
exponent for s in the leading correction to be 3(6 — d) + - - -, whereas 1 —2¢ varies as (6 — d). Thus the
two exponents are not the same, and the extrapolation of the correction exponent to three dimensions
gave a large value near unity [87].

Thus the concept of nonintegral dimensions and of epsilon expansions has been of practical use for
our understanding of three-dimensional systems.

2.4. Inequalities

The latest method for the study of large percolation clusters are exact inequalities [88-91]
introduced by Schwartz [88]. In particular the results of Kunz and Souillard {90] stimulated further
research. We give here a simplified nonrigorous presentation of these rigorous results.

Assume that for sufficiently large s, at fixed p, the cluster numbers n, decay as log(n,) x —s°
asymptotically [70]. This exponent { = {(p) is not a critical exponent in the usual sense since it is
defined for all p, not only close to p.. Above p. all available information suggests that the n,(p)
decrease with increasing p at fixed s, as one can see already from the concentrations of single sites
and pairs mentioned after eq. (7). For p near unity, only the most compact configurations [47] with the
smallest perimeter tni.(s) survive in the sum of eq. (7). This minimum perimeter varies as s' "¢ for
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large s; exact formulas for all s were given in ref. [92] for some two- and three-dimensional lattices.
Eq. (7) gives for p near unity: n, =g, p*(1—p)™ = g,...(1—p)™, or log(n) « tmin x s' "% Thus

{p->D=1-1/d. (11a)

If for any p; between p. and unity the exponent { would be larger than 1—1/d it would mean that
cluster numbers n, for such a p, would decay quicker with size than for p near unity. Thus for
sufficiently large s we would have n,(p,) to be smaller than n, for p near unity; and such an effect was
excluded by our initial statement. Thus we made plausible [90]

{p>p)<1-1/d. (11b)

In fact the equality holds in expression (11b) for a small interval near p = 1 according to ref. [90].

Below p. we use the numerical result from series [42, 93] that the total number 3, g, of “animals”
increases for large s as s "°A°, with e.g. in the triangular lattice A = 5.183 and 8 = 1.00. (See ref. [94] for
inequalities on A.) For p close to zero all animals in eq. [7] get equal weight since then (1—p)’ can be
approximated by unity: n,(p >0) =3, g.p (1-p) =p° Z: g« ® s °(pA)’, or

{p-0)=1 (12a)

For general p the same consideration gives an upper bound: n,(p) < const - s *(pA)* for large s and all
p. A lower bound is obtained also, since n, is always larger than the average number of chains having
the maximum perimeter t...x; for example, in the triangular lattice we have tna«/s = 2 for large s. With
this asymptotic ratio of 2 (which may be replaced by any other constant) we find n, to be larger than
p’(1-p)™ =[p(1-p)’)’. We thus have for large clusters [88]

p(1-py<(n,)" <pa. (12b)

Therefore, as long as pA <1, we need ¢ = 1 to agree with eq. (12b); otherwise either the upper bound
or the lower bound would be violated:

Lp<iA)=1. (12¢)
Furthermore refs. [88, 89, 91] derived

(8" <@+1)*""a*; a=tls (13a)

if t and s go to infinity at constant ratio a. [Proof: Eq. (7) gives for t, =as at arbitrary a:n, =
3, 8.0 (1-p) =g, [p(1-p)°). This expression cannot increase exponentially with s, and thus we
need (g,.,)"*p(1 — p)® <1 for arbitrary a and p. If we use p = 1/(1 + a) or a = (1~ p)/p in that inequality
we get (g.,,)"a®/(1+a)'** <1, which gives eq. (13a).] Using this result, Reich and Leath [89] derived

{p<p)=1, (13b)

where p, is determined by a, = (1—p,)/p, and (a, + 1)**'/a3* = A. In the triangular lattice the above
data for A give a, = 1.429 and thus p, = 0.412; for the square lattice a, = 1.023 and p, = 0.494. These
values for p, are already quite close to p. = 0.50 and 0.59, respectively, suggesting what we will find
later, that { =1 for all p below p.. ‘

Thus the asymptotic “decay exponent” { equals 1—1/d above p. and 1 below p., at least far away
from the critical point. These inequalities do not yet exclude the possibility tﬁat there exists a second
and third critical point p, and p; below and above p., respectively, such that {(p <p,)=1, {(p > p;) =
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1—1/d, but ¢ different and unknown for p between p, and p;. In that case no drastic changes are
allowed in the cluster numbers at these additional critical points, if the “free energy” X, n,(p) has only
one critical point p. where it is not analytic [95]. Our next section will show from Monte Carlo
methods that at least in two dimensions no such complication seems to exist and that the decay
exponent { equals unity for all p below p. and equals 1—1/d for all p above p., even close to the
critical point.

3. Cluster numbers

This section is the main part of our review and deals with a simple formula, eq. (15), to describe the
average number of large s-clusters close to the percolation threshold p., as a function of s and p — p..
Numerical tests are presented which confirm roughly that scaling formula. Except if stated otherwise
our resuits here apply only to large s and small p - p..

3.1. Scaling theory

This subsection suggests a scaling assumption with two free exponents ¢ and 7, which are fitted on
“experiment”. All the other critical exponents then are derived from these two. In this sense a scaling
theory is phenomenological, i.e. it merely relates different measurable quantities without calculating
any of them directly. In contrast, the “microscopic’’ numerical techniques of section 2 predict such
measurable quantities directly from first principles. The same distinction between phenomenological
and microscopic approaches applies to thermal phase transitions [10, 11] and other problems. After we
have explained exponents we also give a table summarizing the present numerical estimates for them
as a function of dimensionality.

3.1.1. The basic assumption

The critical behavior near p. is characterized by the fact that the typical cluster size becomes very
large near the phase transition and diverges at p.; otherwise the typical cluster radius £ of eq. (6e)
would not diverge. One may define the “typical cluster size” s, as that size which gives the main
contribution to the singular parts of = s’n,, 3, s’n, or of any other sum appearing in eq. (6). (This
typical cluster size is not identical to another expression which in the literature is unfortunately called
the mean cluster size: S =3, s°n,/3, s - n,, a wording which we will avoid here.) We assume that all
these definitions give the same typical size s, apart from numerical constants, i.e. that the different s,
all diverge with the same power of |p —p.. This exponent of p —p. is sometimes called the gap
exponent; we denote it here by 1/o. Thus our basic postulate is:

We assume that the critical behavior of percolation is dominated by clusters of size s, x
Ip — p|~"', where differently defined typical cluster sizes s, all diverge with the same exponent.
(14a)

In short, we assume an essentially unique typical cluster size. “Critical behavior” in assumption (14a)
refers to the singular parts, as defined in section 1.2. For example, s; is the size dominating in
[Zs s * n;)sing, bt not in Z; s - n,; singularities come from typical clusters, analytic background terms
arise from much smaller clusters.

How can we put eq. (14a) into a quantitative form? All singular cluster properties must depend
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mainly on the single ratio s/s. since the typical cluster size was assumed to be unique. If instead they
would depend on two variables s/s¢, and s/s,, we would have more than one typical cluster size s, in
contradiction to eq. (14a). But the assumption n,(p) = f(s/s.) would be too simple, since then at p = p.,
where s, = », the cluster numbers would be constant, in contradiction to fig. 3. It seems plausible, just
as we expressed the cluster size by the ratio s/s;, to calculate also the cluster numbers through the
ratio n,/n,, and to assume that this ratio depends only on the ratio s/s;:

nyng, = F(s/s¢). (14b)

Since the typical cluster size is defined only up to numerical factors, this assumption (14b) is not very
practical (except for one dimension: appendix 2) and we replace the ratio n,/n,, by ny/n,(p.). (The final
result (15) is the same.) Thus:

We assume that the ratio v,(p) = ns(p)/ns(pf) and similar ratios of other cluster properties are a
function of the ratio s/s. only: vs(p) = F(s/s;). (14¢)

Equations (14b, c) explain why theories of this kind are called scaling theories: If we plot n, versus s
for different p — p. and if we scale the cluster size s by dividing through s, and the cluster numbers
ns(p) by dividing through n,(p.) or n,, then in these scaled variables the plots are independent of
P~ De-

We have already seen in fig. 3 that at p = p.. the cluster numbers n,(p.) decay with a simple power
law: n,(pc) xs~". And now we understand why: Any more complicated decay law, like n,(p.)
s~ " exp(—s/so), would mean that at p. there exists a finite typical cluster size so. Since s.(p = p.) is
infinite that result would mean that more than one typical cluster size exists, in contradiction to our
basic assumption. Thus eq. (14c) reads: n,(p) « s "F(s/s). Since s/s; < |(p — pc)s°|"°, we may sum-
marize our assumption in its final form:

vs(p) = ny(p)/ns(pc) = f(2), or ns(p) x s7'f(2)

with 2z =(p —p.)s” and f(0) = 1. (15)
The normalization f(0) = 1 comes from the trivial requirement v,(p.) = 1. This assumption (15) is the
basis of our interpretation of cluster numbers; we will determine the exponents o and 7 and the
scaling function f(z) from microscopic methods later, since they are not predicted by the present
phenomenological scaling theory.

Eq. (15) was first mentioned by Stauffer [67] as a generalization of the Fisher droplet model [34];
for thermal phase transitions analogous generalizations were made earlier [96]. (See also refs. [18, 97,
98] for related assumptions.) This Fisher model [34] simply assumes n, < s~ exp(—const - z) for p
above p., which is clearly a special case of eq. (15). Although this Fisher formula finally turned out to
be quantitatively inaccurate, as we will see later in fig. 7, it gives a rather good approximation for the
“ferromagnetic” side of the phase transition and played an important role in the development of the
scaling theory for percolation clusters. Many of the qualitative discussions ﬁ‘of this section and of
appendix 1 can be followed easier if the reader works with this simple Fisher formula instead of with
the general scaling assumption (15). We may also regard eq (15) as a generalization of the Bethe
lattice result [30] where n, « s **exp(—const - z°), ¢ =3, 7 =3.

[For finite s the cluster numbers n, are a polynomial in p, eq. (7), without any singularities at
p = p.. Thus we expect also the limit function f(z) = n,/n;(p.) to remain regular at p = p., i.e. z=0.
The scaling function f(z) is therefore assumed to be analytic in its argument z fbr all z including z = 0.
For large z, the scaling function f must decay sufficiently rapidly to make all the sums in eq. (6)
converge.]
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3.1.2. Relation to critical exponents

Now we relate the cluster exponents o and 7 to the other critical exponents a, B, vy, 8 defined in
eq. (6). In order to evaluate the singular part of any moment 3, s“n, qualitatively, i.e. in order to get its
critical exponent correctly, we may replace in the sum each factor s by the typical size s, and the
cluster numbers n, by the numbers of typical clusters n,, x s "f(const) x s". Moreover the sum-
mation over all cluster sizes s gives an additional factor s;: [3, §*n,Jang < s£7™7". Since s « |p —pc|™""°
by definition, we thus have [18]

[Zsn@)] «lp-pdottr. (16)

sing

A more rigorous derivation of this exponent, together with evaluations of the proportionality factor, is
given in appendix 1. A reader who mistrusts our simple approximation above and does not want to go
through the details of that appendix may check eq.(16) by simply using the Fisher formula,
ns x s exp(—const - z), and by evaluating the higher moments like k =2,3,...only. The integrals
then can be expressed by gamma functions [99].

Eq. (16) gives us immediately the various exponents of eq. (6); we merely take k = 0 for the number
of clusters (eq. (6a)), k =1 for the percolation probability (eq. (6b)), k =2 for the susceptibility
(eq. (6¢c)) to get a, B, y as [34]:

2-a=(r-1o, B =(1—2)lo, —y =(r—13)/o. (172)

Right at p = p., the sum in eq. (6d) defining the exponent § arises mainly from cluster sizes s near 1/h.
Thus the nonanalytic part of =, s - n,(p.)e™™ varies as h'h"'h™ = h" %, as appendix 1 again will show
in detail; and we therefore have

1/6=1-2. (17b)

We may solve these four equations to get the cluster exponents as a function of the other exponents
and to derive two relations between the latter exponents:

T=2+1/8; o=1/88=1/(y+p) (182)
2—a=y+28 =BG +1)[=dvl. (18b)

The last relation, where the dimensionality d enters, will be derived later in eq. (37¢). These famous
scaling laws (18b) are known since many years, also for other phase transitions [10, 11, 30]. If we
would not have gotten them, we would have to change our scaling assumption (15), not the scaling
laws. Again eq. (18) comes as no surprise since the same relations were known from the Fisher model
[34]; in fact their first derivation for thermal phase transitions by Essam and Fisher [31] used this
cluster model.

In this sense we fulfilled our promise to use percolation as a simple introduction to scaling laws: By
a plausible assumption (15) on the cluster numbers we could derive the desired relations between
critical exponents, eq. (18). Of course, it is no great revelation that we found four relations between
six exponents, when we made an assumption which contains only two exponents as free parameters.

Our assumption (15) is completely analogous to experience made with other phase transitions. That
experience has shown: Any “singular” function g depending on two “‘critical’” variables g(x, y) can,
for small x and y, be written in general in the form g(x, y) = x° - G(y/x") with two free exponents b
and c¢. Our scaling assumption (15) is merely a special case of this general “scaling homogeneity”
assumption [100]. (It is not easy to write down an explicit expression for g(x, y) which does not reduce
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to that simple homogeneous form for small x and small y.) For our percolation clusters we simply
identified x with 1/s and y with p —p., and gave special names to the two exponents to get
n, = s "'G((p —p.)s”) in agreement with eq. (15). Percolation clusters follow what can be learned from
other phase transitions and have no intention to learn new tricks. For some readers that might make
assumption (15) more likable since it now has the form: “Percolation clusters are lazy and invent no
new ways to deal with critical phenomena”. For the reader who is also lazy and does not want to read
about equation of state or universality we recommend to go directly to tables 2 and 3 at the end of this
subsection 3.1.

3.1.3. Dilute ferromagnets and ghost fields

~ The equation of state of the dilute low-temperature ferromagnets mentioned in section 1.1 can also
be brought into the scaling-homogeneity form mentioned above as customary for critical phenomena.
The mathematics is simplified if we look at the susceptibility y = dM/6H since then the singular part is
identical with the leading divergence, and the analytic background does not disturb us. At thermal
phase transitions one has y « |T.— T|™” X(h/|T.— T|?*) with the abbreviation h = uH/kpT for the
reduced magnetic field. The scaling function X must be a symmetric function of its argument, leading
to x(—h) = x(h), since the behavior of a magnet is independent of the direction which we choose for
the coordinate axes. For the dilute magnet, eq. (5), we find by differentiation, using d(tanh y)/dy =
cosh™X(y) and z =(p — po)s’

E]

x - PksTln =p - 0M]oh = D, s’n,(p)cosh™*(sh) « f s> fl(p — po)s”] cosh *(sh) ds

0

= é lp —p| " f 2|7 f(z) cosh™*(|z|"“hllp — pc|"") |d2]
«|p—pc|™” f 2]~ f(z) cosh™*(|z|*® - hf|p — p[*®) dz (19a)

with the z-integration running from 0 to +c for p >p. and from 0 to —» for p <p.. Thus our
susceptibility obeys the simple homogeneity form postulated above, but with p — p. replacing T.~ T

x=1p—p  Xhllp —pf). (19b)

Eq. (19) gives an explicit scaling expression, in terms of a cluster scaling function f to be determined
later, for the susceptibility; it has the full symmetry, homogeneity and analytijcity properties required
generally near critical points. For thermal phase transitions that problem is much more complicated;
the simple Fisher model, for example, violates the symmetry requirement [34]. No explicit formulas
have to our knowledge been proposed for critical phenomena in other cases, which do fulfill all these
requirements. As promised, percolation is a particularly simple phase transition; it merely requires
substitution of integration variables as mathematical tool so far.

For the magnetization M in eq. (5) and the free energy F = — [ M dH analogous scaling-homo-
geneous expressions can be derived from eq. (15). The same is true for the generating function or
ghost-field free energy [, n,(p)e " lsing and similar expressions for the higher moments. In fact, the
result

[2 n, e""]m = |p —p|®*®- E(hllp — p*) (20)
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has been postulated by Essam and Gwilym [30] in the first scaling theory of percolation, long before
cluster scaling was suggested [67]. Nakanishi and Stanley [23] recently confirmed that assumption
numerically by Monte Carlo computer simulations. It is rather obvious that a scaling assumption (15)
with two free exponents for the cluster numbers n; leads to a two-exponent scaling expression for the
moments or generating functions, as in eq. (20). But the reverse is not true, see appendix 1: One can
invent expressions for the cluster numbers n, with three free exponents, which lead to only two free
exponents in the scaling expression for these sums over cluster numbers. Thus the assumption (20) of
Essam and Gwilym [30] is a consequence of our assumption (15) but is not equivalent to it; and more
data than those of Nakanishi and Stanley [23] are needed to confirm eq. (15).

Therefore eq. (15) has to be tested directly since scaling laws alone do not prove it. In fact, also
alternatives to eq. (15) have been proposed which do not employ just two free exponents but more or
less. In the first scaling theory for cluster numbers n,(p), Domb [101] suggested to take o =3 and to
use only one free exponent 7. And later Leath [73] made an assumption which corresponds in many
applications to a scaling ansatz with three free exponents 7, ¢, . But later work [54, 71, 83, 102]
showed o <3 and ¢ = ¢, leaving us again with two free exponents. Very recently Kunz and Payandeh
[79] showed how renormalization group makes assumption (15) plausible. Thus at the time of this
writing eq. (15) seems to be the only viable scaling assumption still floating around, and we
concentrate on that assumption when we present numerical tests in subsection 3.2.

3.1.4. The universality concept

The ‘“‘universality” concept [11,103] for thermal critical phenomena is a semi-empirical
classification of different systems into few universality classes. It asserts that critical exponents and
other qualitative properties like the shape of the scaling functions are independent of details like range
of interaction or structure of the lattice. Only the dimension is important enough to change exponents.
A precursor of this universality assumption is the law of corresponding states for fluids. Universality
in this naive sense turns out to be valid in most but not all cases. Thus for the majority of thermal
phase transitions one can predict rather reliably which different systems belong to the same
universality class. Then one can predict critical exponents without having to solve in detail the critical
behavior of these systems. This universality concept thus saves a lot of work if one can trust it;
roughly speaking all three-dimensional systems then have the same exponents, etc.

For percolation, we postulate similarly {50] that exponents and the shape of the scaling function
f(z) in eq. (15) do not change if we change “minor” details like the lattice structure; only the
dimensionality is important since, after all, it appears explicitely in the scaling laws (18). More
quantitatively we may generalize the scaling assumption (15) for one lattice, n, < s~ f[(p —p.)s°}, toa
universality assumption for all lattices of the same dimensionality d [103] by introducing lattice-
dependent scale factors go and q, besides the lattice-independent exponents ¢ and 7. Also we denote a
lattice-independent scaling function by f, where u stands for universal, and require

ne=qos  fullqi(p —p)s’l;  fu0)=1 (21

This universality assumption (21) means that for a given p the shape of the size distribution n, is
the same for different lattices of the same dimensionality d; only the two scales for the n,-axis and the
s-axis are different. For example, if in the triangular lattice for large clusters the maximum value of
n,(p) (as a function of p, at fixed s) is five times larger than n,(p.), then also in the square lattice the
maximum is five times higher than the critical value for the cluster numbers. But for three dimensions
this ratio can be lower. Similarly, if one calculates the ratio of “susceptibilities” =, s’n,(p <
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pJIZ, sn,(p > p.) for equal distances |[p — p.| from the critical point, then scaling requires the ratio to
be independent of p —p. for one lattice structure, and universality requires it to be the same for
different lattices of the same dimensionality d. (How this ratio depends on d is not yet known in
general [26].) More quantitatively, the ratio can be expressed by integrals involving only the universal
fu, where the lattice dependent factors g, and q, have cancelled out:

Es: s’ny(p <pc) / E s*n.(p > pe) = f Y ful=y)dy / f y 7 fu(+y) dy

with y = q/(p — p.)s°, as can be checked easily with the methods used already in eq. (19). (One may
also postulate relations between the coherence length ¢ and the “free energy” =, n, analogous to
thermal phase transitions [104]; but little is known on that subject, which would be anyhow outside
the scope of the present review.)

Marro [105] made several numerical tests involving similar ratios and found them indeed universal
as desired. The critical exponents are universal, within small error bars, in two and three dimensions
when various lattices are compared [54]. With larger error bars, exponents seem unchanged [24] if
clusters in percolation are defined not just as nearest-neighbor connected groups but if also longer
distances were allowed to connect the sites; but from now on we will again deal only with
nearest-neighbor connected clusters. For the cluster size distributions, the universality assumption
(21) was confirmed quite directly in both two and three dimensions for selected lattices [26, 71]. Thus
it seems legitimate to regard critical exponents as a function of dimensionality d; our table 2,
following Stanley [106] and more recent sources [107-110, 7, 26, 60, 71, 93], compiles averaged
numerical estimates for many exponents as a function of dimensionality d.

We see that the scaling laws (18) are confirmed reasonably well in two and three dimensions, just as
they are known to be valid in thermal problems. In the three-dimensional Ising magnet near its Curie
temperature, there is a problem with the latest scaling law dv = 2 — a; but according to ref. [111] the
two error bars overlap. Similarly for two-dimensional percolation the estimate 2 — a = 2.668 + 0.004 of

Table 2
Numerical estimates of directly determined critical exponents. If one believes in
scaling laws, eq. (18), one can fill in the empty spaces. The exponents 8 and u for
animals and conductivity are defined later, egs. (27-49). Our values are averages over
different methods, if available; the error bar is seldomly more than one unit of the last
decimal. Perhaps »(d =2) = 1.355 is exact, eq. (9). References are given in Stanley’s
table [106]; see also refs. (7, 17, 60, 107]. Data for the exponents 8, 4, o and 7 from
refs. [26, 71, 93, 108, 109). One-dimensional percolation is discussed in appendix 1.
Infinite dimensionality corresponds to “‘classical” results {27-30, 114, 149], they are
expected to be valid already above six dimensions.

d a B ¥ 8 v 4 T [’} u
1 1 0 1 © 1 1 2 0 -
2 -06, 0.14 243 18 1.3 0.39 20 1.00 1.2
3 0.4 1.7 5 0.8, 0.4 2.15 1.5 1.7
4 0.5 1.5 3, 0.7 1.9 24
5 0.7 1.2 2.5 0.6 22 27
6 1.0 1.0¢ 2 0.5 24 30
7 1.0 2 24

© -1 1 1 2 i 3 H 3 3
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ref. [56] disagrees with dv if v = 1.355 is exact, eq. (9). The estimate for 2 — a also does not agree well
with other series estimates [107, 110] y =2.425+0.005 and B8 =0.139+0.003 and the scaling law
2—a = y+28. In the other cases no such problems occur at present.

One very important non-universal parameter, which moreover is not predicted by any of the above
scaling theories, is the position p. of the critical point. Scaling and universality tell us something about
what is happening near p. but tell us nothing about where p. is. Table 3 lists numerical estimates and
exact results for various lattices and various dimensions; no reliable connection exists at present
between p. and the critical exponents. In the triangular “site” percolation problem and the square
“bond” percolation problem we have p. =3, presumably exactly [24]; moreover p.=2 - sin(/18) =
0.34729 for triangular bond percolation and p. = 1—2 - sin(#/18) = 0.65271 for bond percolation in the
honeycomb lattice. Clearly universality cannot assert that p. is the same for all lattices.

Returning to the universal (?) exponents, we unfortunately have to mention the results of Klein et
al. [112] that in one dimension the percolation exponents depend on the range of interaction, in
contrast to higher dimensions [24]. This clear violation of law and order is discussed in detail in
appendix 2; clearly the naive universality picture as suggested here is not valid in all cases. The
special status of one-dimensional percolation is also evident from table 2, where d = 1 does not seem
to follow for some exponents the trends evident from d =2,3,---[133] even when only nearest-
neighbor connections are used. On the other hand the behavior for larger dimensionalities is rather
smooth and agrees quite well with the epsilon expansion, eq. (10), even though only the first two terms
of an expansion in e =6—d are used. This agreement is seen clearer in fig..5 where 8 and y are
plotted for one to seven dimensions.

We conclude from the information presented here that the scaling laws for the critical exponents
like B are confirmed rather well, that these scaling laws can be explained by a simple assumption on

Table 3
Numerical estimates (three digits) and
(presumably) exact results (four
digits) for the percolation threshold
p.. TR =triangular, SQ = square,
HC = honeycomb, D = diamond, SC =
simple cubic, BCC = body-centered
cubic, FCC =face-centered cubic.
Results for higher dimensions refer to
hypercubic lattices. From refs. [7, 26,
44, 45, 54, 55, 60, 107).

Lattice site bond
HC 0.698 0.6527
SQ 0.593 0.5000
TR 0.5000 0.3473
D 0.428 0.388
SC 0.311 0.249
BCC 0.245 0.1785
FCC 0.198 0.199
d=4 0.197 0.161
d=5 0.141 0.118
d=6 0.108 0.094
d=1 0.089 0.078
dow p.=1Q2d-1)
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Fig. 5. Plot of the two independent exponents 8 and y as a function of dimension d. The curves represent eq. (10), the epsilon expansion. Data
for v are directly from table 2; data for 8 also employ the scaling laws B = y/(8 — 1) = }(dv ~ y) and represent average estimates: g = 0.41, 0.58, 0.76,
1.00 in 3, 4, 5, 6 dimensions. In two dimensions, 8 = 0.139+0.003 [110).

the cluster numbers, and that we have to test this scaling assumption directly. This is done in the
following subsection.

3.2. Tests of scaling

Only for two and three dimensions are cluster statistics known to us which have been analyzed in
terms of scaling, eq. (15); the polynomials in refs. [45, 107] are still waiting for a “lover” to study n,
for general d. And Monte Carlo work in more than three dimensions has not yet been done on a,. (In
5.99 dimensions, epsilon expansion results of Stephen [114] were consistent with eq. (15).) We restrict
ourselves here mainly to recent Monte Carlo work of high accuracy by Stoll and Domb [62, 115],
Leath and Reich [71, 72] and Hoshen et al. [26], each based on many millions of Monte Carlo step for
each concentration. We mentioned already before that the Monte Carlo work of Nakanishi and
Stanley [23] for the “equation of state” gives an indirect confirmation .of the cluster scaling
assumption (15).

The various regions to be investigated can be seen rather elementary if we look at the number n,(p)
of pairs in the square lattice: Each pair consists of two occupied sites surrounded by six empty
neighbors, and it can be oriented either horizontally or vertically. Thus we have n,=2p*(1-p)°
exactly. This function has a maximum at p = 0.25, far below p. = 0.593; for larger clusters the position
of the maximum shifts closer to p., and the peak becomes more narrow. Thus generally we may look
at what happens at p., above p., near the maximum below p., and asymptotically in the wings
relatively far away from the maximum where n, becomes extremely small. The latter questions will
also be discussed outside the scaling region, i.e. with p not very close to p..

3.2.1. At the percolation threshold

Right at p. the scaling assumption (15) asserts n, < s~". We need 7> 2 since the total number of
occupied sites, X, s - n, = p. from eq. (4), must remain finite even at the percolation threshold. Figure
3 in the introduction already showed two-dimensional results, right at the exact p. = 3 of the triangular
lattice, giving such a simple power law. An analogous plot for three dimensioné is given in fig. 6. These
two computer simulations used the largest lattice known to us for Monte Carlg work, 4000 x 4000 sites
in two and 400 X 400 x 400 in three dimensions. The solid line in figs. 3 and 6 is not the best fit on the
Monte Carlo data but the prediction from series expansions, n, « s >/, with both the exponent and
the proportionality factor calculated from refs. [19,55]). (If n,(p.) varies as s * for large s,
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Fig. 6. Monte Carlo cluster numbers [26] at p = p. = 0.311 in the simple cubic lattice, together with the series prediction [55].

then the relation 7=2+1/8 is exact and does not require the validity of eq. (15). Thus figs.
3 and 6 constitute only a weak test of the specific scaling assumption used here.) The agreement of
Monte Carlo and series results is excellent on the scale of figs. 3 and 6.

Closer inspection, however, shows problems: The best fit for 7 from large s in figs. 3 and 6 is
(d=2)=2.02 and 7(d =3)=2.13;, significantly lower than the series predictions [19,55] 7=
2.055+0.002 and 2.2+0.03, respectively. (Monte Carlo data in ref. [71] give 7=1.97%0.05 in the
triangular lattice at p., but 7 = 2.05+0.02 from scaling and all p.) There are two reasons [26] for these
deviations, which we will discuss now: Neither the cluster size nor the lattice size are large enough for
the asymptotic scaling behavior to be exact in the computer experiment; the true exponents should
show up only for s - in an extremely large lattice. Present computer technology unfortunately does
not allow an infinite number of operations with an infinite computer memory during a finite time at
small costs; thus Monte Carlo studies are always experiments with both systematic and statistical
errors.

More precisely, already for the exact cluster numbers n, for small s from series expansions [46]
one can see that at p. the measured n, were below the extrapolated cluster numbers represented by
the solid lines in figs. 3 and 6. If we assume 7 =2.05, as required in two dimensions, then a much
better fit over nearly the whole range of s was obtained [26] for the triangular lattice by

n, =0.03s 2 (1-12s5" (22)

where a first correction term to the simple asymptotic power law is used. This correction-to-scaling
exponent 2/3 from Monte Carlo data agrees roughly with the analogous exponent 3/4 found for
basically the same quantity from series expansions [19] and is consistent with the order-of-magnitude
estimated [87] from the epsilon expansion [87]. If eq.(22) is correct, then the apparent slope
7, = —d(log n,)/d(log s) in a log-log plot as in figs. 3 and 6 deviates from the true (asymptotic) slope 7
as 7, =17—22-5- s and this deviation is, for s ~ 107, about as large as the difference between the
Monte Carlo and the series value for 7. Quite generally, it is difficult to get from Monte Carlo method
reliable values for the second decimal after the point in a critical exponent; and series extrapolations
usually give more accurate exponents.

The influence of the finite lattice size can already be observed for very small clusters. E.g. in
ref. [26] for isolated sites (s = 1) the actually observed cluster numbers in the Monte Carlo experiment
were found to be larger by about 0.35 percent than the exact cluster numbers for infinite lattices. This
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deviation increases with increasing cluster size s and is responsible for the deviations observed in
fig. 3 for large s: the boundaries of the system break up some very large clusters into smaller clusters
and isolated sites. The use of periodic boundary conditions (section 2.2.1) reduces these “finite size”
effects [69, 62, 115]; in ref. [26] periodic boundary conditions made the numbers of small clusters agree
within statistical errors with the exact results and shifted the fitted exponent = upwards to 2.16, closer
to the series prediction 2.2, inspite of the fact that the system used was smaller than the one used for
fig. 6. (In Leath’s method [71-73] there is no disturbing influence from the boundaries.) Thus we took
7=2.15 as the direct Monte Carlo estimate in table 2, although the true value is presumably slightly
higher. Clearly a direct evaluation of 7 =2+ 1/8 from Monte Carlo cluster numbers at p. is not a very
accurate way to determine the exponent §; and series methods [19, 55] work better here. We now turn
to the region p # p. where series methods gave only rather crude extrapolations [51] for the cluster
numbers and their scaling function; here Monte Carlo methods can be more reliable than series
extrapolations. (Also, in the following discussion we are satisfied with an accuracy of about 10
percent; all the above problems concern only the fine details of the second decimal.)

3.2.2. Above the percolation threshold

The cluster numbers above p. decay monotonically with size. Figure 7 shows logarithmically the
variation of the Monte Carlo ratio v,(p) = n,(p)/n,(p.) with the scaling variable z = (p — p.)s” in the
triangular lattice. Here the exponent o was taken from the above results as o = 1/(y + B) = 0.39 [54].
If assumption (15) is correct then the values for different p — p. should all follow the same curve since
z is used as a variable here. This is the basic resuit of scaling: By multiplying the original variables
p — p. and n, with suitable powers of s, or by similar rescaling of the axes, the original data are shifted
such that different data (e.g. for different s) follow the same curve. We see that in fig. 7 different
symbols, representing different p — p. in this case, follow the same curve within the “experimental”
scattering. This figure thus confirms our basic assumption (15) for the cluster numbers. The curve
through the points in fig. 7 is the extrapolation from series results [51] and agrees remarkably well with
the Monte Carlo data. For three dimensions, similar confirmation of scaling by Monte Carlo results
was obtained, too [26].

The tangent to the origin in fig. 7 arises from additional more accurate cluster numbers obtained
very close to p.. Taken together, fig. 7 shows convincingly that the data do not follow a straight line;
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Fig. 7. Scaling plot above p.. Variation with z = (p — p.)s” of the ratio v, = n,(p)/n,(p.) on a logarithmic scale. Assumption (15) requires different
symbols to follow the same curve. Monte Carlo data from 4000 x 4000 lattice. From Hoshen et al. {26).
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Fig. 8. Variation with p of the fraction P. of occupied sites
belonging to the “infinite” network in a 4000 x 4000 triangular
lattice. p{ is shifted from p. to p. +0.00085 to offset some of the
boundary effects in the Monte Carlo calculation. From ref. [26].
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Fig. 9. Variation of p,,, with cluster size s in the triangular lattice
[26]. The cluster number n,(p) reaches at fixed s a maximum at
P = Pmax below p.. The fitted line has slope —0.40 in this log-log
plot; scaling, eq. (15), requires the slope to be —0.39. Data for very
large s are unreliable because of the finite size of the 4000 x 4000
triangular lattice.

the upward curvature proves that log v, is not simply proportional to —z = —(p — p.)s°. Therefore the
simple Fisher droplet model above p., with n, « s77¢™*"“>™, is not exact since it would give a straight
line in fig. 7. Instead, a straight line is obtained rather well (26, 62, 115] if the data for v, are plotted
against z'*" instead of z Thus for not too small z we find n, «s " exp(—const- Vs) in two
dimensions, for the triangular and square lattices [26, 62, 115] even when some correlations between
occupied sites are taken into account [115] (see section 6.2.3).

If we define a decay exponent [70] { = {(p) through

logn, « —s¢ (s> at fixed p) (23)

then these data suggest ¢ =3 in two dimensions. Thus the scaling function f(z) in eq. (15) seems to
decay as log f « —z'*" already for rather small z values above 0.1, and not merely for z> .
Therefore the simple formula n, « s~ exp(—const - V's) fits most data quite accurately above the
percolation threshold; according to assumption (15) this constant in the exponent vanishes as
(p — pc)® at the threshold {115].

The percolation probability P.x (p —p.)® is particularly difficult to measure by Monte Carlo
experiment, since in two dimensions 8 = 0.14 [110] is so small. In a finite lattice with free boundaries
one may approximate P. by the fraction of occupied sites belonging to the largest cluster; usually in a
Monte Carlo experiment slightly above p. the largest cluster is clearly larger than all the other
clusters. The P. determined in this way [26] obeys with surprising accuracy the desired power law;
the slope of the line fitted in fig. 8 through the data is 0.133, very close to the series prediction of
B =0.139+0.003 {110]. Also the proportionality factor agrees well with the series prediction [26, 54].
In three dimensions the exponent for the percolation probability is 8 = 0.4 [7, 60, 110].

Overall, above p. no contradictions were observed between different Monte Carlo simulations,
series extrapolations, and scaling assumptions; moreover we can fit the data with log v, « — Vs, i.e.
with ¢ = 3 over most of the range for d = 2.

3.2.3. Below the percolation threshold
Below p. the cluster numbers n,(p) as a function of p at fixed s show a maximum at p = p.,, as
we discussed before in the simple case of n, = 2p*(1 — p)°, Pmax = 1/4. If assumption (15) is correct,
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this maximum corresponds to a maximum in the scaling function f(z) at some negative argument
2= Zmax = (Pmax — Pc)s°. (This quantity z,,,, is fixed for a given lattice, but depends on the lattice type.)
Fig. 9 shows [26] how p... approaches p. for large cluster sizes: pnax — p. * — 7, with an exponent
o =0.40 fitted on these data. Another scaling test [26] uses d(n,)/dp and gives o =0.38. Leath and
Reich [71], also from Monte Carlo studies, conclude o = 0.394 + 0.003 for triadgular and square lattice.
Thus our table 2 gives o =0.39 as the directly determined cluster exponent, This value happens to
agree with o = 1/(y + 8) =0.390 +0.001 as predicted by scaling theory and the latest series estimates
for y {107] and B [110]. In three dimensions [26] direct Monte Carlo deterrdinations of o were less
successful; values between 0.4 and 0.5 agreed with the data, leading to our estimate 0.45 in table 2; the
scaling prediction is o =0.48 from series expansions [54, 110]. ‘

Figure 10 shows that the scaling assumption is confirmed by two- dimensional Monte Carlo data
[26, 72]: As required by eq. (15), different symbols representing different p — p. follow the same curve,
just as they did in fig. 7. The short curve near the origin symbolizes numerous additional data [26]
measured there for smaller values of the scaling variable z; they also agree with scaling, eq. (15).
Again these data roughly agree with extrapolations [51] from series expansions.

Figure 10 gives a maximum of v,(p) = f(2) at z = Zpe, = — 0.41£0.03, with a height foax = f(Zmax) =
4.9; universality asserts this f... to be the same for all two-dimensional lattices. If the scaling
assumption (15) is correct then this maximum in n,(p) or v,(p) as a functlom of p for fixed s must
correspond to a maximum in v,(p) or s”n,(p) as a function of s at fixed p below D., since v.(p) equals
fl(p — pc)s°]. The position of this maximum §,ax(P) iS at Smax = (Zmax/ (P — pc))”" Indeed, the insert in
fig. 10 shows this maximum quite clearly, using data of Reich and Leath [72] for the trlangular lattice.
Similarly for the square lattice Stoll and Domb [115] also find such a maximum in v, versus s,
compatible with zy.x = —0.4. The height of the maximum, i.e. the value of fn.., found from the data
of Reich and Leath [72] is compatible with the above estimate of about 4.9, as indicated by the error
bars in the insert of fig. 10. Stoll and Domb [115] quote f..x = 5.4 taken from their data farther away
from p.. An earlier extrapolation of series results [50] gave fn.x =4.5 for triangular, square, and
honeycomb lattices. Thus we conclude
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Fig. 10. Variation with [z]'® = (p. — p)®®- s of the ratio v,(p) below p., analogous to fig. 7 above p., in the triangular lattice [26]. Scaling requires
different symbols to follow the same curve. The small dots for p = 0.45 are from Reich and Leath [72]. The mben shows the variation of v,(p)
with s at fixed p, with data from ref. [72], giving a maximum roughly where predicted by scaling [26] and fig. 9. (See also ref. [115).)
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foax=5 (d=12)

as the combined estimate in two dimensions.

Leath and Reich [71] investigated scaling theory by Monte Carlo simulations of the triangular and
square lattice and found eq. (15) to be valid for clusters containing more than 85 sites. For smaller
clusters systematic deviations were observed which are larger than but in the same order-of-
magnitude as those given here in eq. (22). It would be interesting to see in future research whether
these deviations also follow a scaling form [116] like v,(p) = f(z) - (1 +s~*" fi(z)+- - *) as a general-
ization of eq. (22). But such an analysis would require very accurate Monte Carlo data. (Refs. [71, 73]
also determined the cluster perimeter distribution which in turn was used to get more information on
cluster numbers. We refer to section 4.1 and ref. [71] for details.)

For large values of the scaling variable z =(p — p.)s” the cluster numbers decay rapidly with
increasing —z; this wing on the left side of the maximum determines the exponent { of eq. (23). The
straight line fitted in fig. 10 through the data suggests log v, « —(-2)""" = — (p.— p)®*s = — s. Thus the
exponent { is about unity below p. and therefore different from its value 3 in two dimensions above p... (The
first indication of such an asymmetry came from Bakri [70].) Similarly, Miiller-Krumbhaar and Stoll [37]
concluded ¢ =1.1+0.1 in the square lattice at p = 0.50, rather far below p. = 0.593. Leath and Reich
[71] found that the choice { =1 fits their Monte Carlo data better than the choice { =20 = 0.8. And
most recently, Kinzel [80] found { = 1 over sixty decades in n,, using real space renormalization in the
triangular lattice. Thus for sufficiently large values of |z| we have in two dimensions rather reliably
established for p below p.:

{p>p)=3 (p<p)=1. 4)

When we combine data for the cluster numbers above, at and below p. in one plot [26, 51] they
follow roughly a Gaussian curve, as first suggested by Leath [73]:

v,(p) = f(2) = exp[—const(z — Zmax)’)- (25)

Of course, egs. (24) and (25) contradict each other since eq. (25) gives { = 20 = 0.8, violating the exact
inequality ¢ <1-1/d of Kunz and Souillard [90] above p., eq. (11b). Thus the Gaussian fit is a
reasonable approximation but not an exact solution for the scaling function f(z). It may replace the
Fisher model, f(z) = exp(—const - z) above p., as a simple numerical approximation. Just as the Fisher
model it does not work asymptotically for large z, but in contrast to the Fisher model it can be used on
both sides of the phase transition.

In three dimensions, Monte Carlo data [26] for the simple cubic and the body centered cubic
lattices [26] could be fitted well by a Gaussian approximation as in eq. (25), with z.../p. = —0.8. An
example is shown in fig. 11, where again data for different p — p. follow the same curve since v, is
plotted logarithmically against z; thus the scaling assumption (15) again is confirmed. The solid line
there is the parabola corresponding to the Gaussian approximation (25) and fits very well; ref. [26]
does not determine the asymptotic decay exponent {. The maximum value of the scaling function was
found to be [26]

foax=16  (d=3)

in these two lattices. In one dimension we will see in appendix 2 that f..,=®. For infinite
dimensionality we expect the Bethe lattice solution f...=1 [30] to be valid [45, 84, 107, 114, 117].
Thus the above estimates fo.(d =2)=35 and fq..(d =3)= 1.6 fit nicely into the general trend as a
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Fig. 11. Scaling plot in three dimensions on a simple cubic 100x 100 x 100 lattice. Data for different p follow the same curve, as required by
€q. (15). The parabola follows eq. (25). From ref. [26]. ’

function of dimensionality. It is not clear what to expect for f..., and more generally for the shape of
the scaling function f(z) for finite dimensionalities above six.

Universality for the cluster size distribution has also been tested in two [71] and three [26]
dimensions. By adjusting the two lattice-dependent parameters g, and q; in eq. (21a) Leath and Reich
[71] could confirm excellently the similarity of triangular and square lattices with respect to cluster
numbers, for s above 85. And in three dimensions [26], bcc and sc lattice also seem to have the same
shape of the scaling function f, as required by universality. Moreover, by using (p — p.)/p. instead of
p — p. in the definition of the scaling variable z, the two lattices even could be described [26] by the
same parameter ¢,, a particularly simple form of universality (also perhaps not exact).

In conclusion, scaling for the cluster numbers n.(p), eq. (15), seems to be confirmed well for
sufficiently large clusters close to p. in two and three dimensions. In two dimensions, different work
by different authors using Monte Carlo and series techniques gives consistent results; deviations
seldomly amount to more than ten percent. A comparison of two lattices in two and three dimensions
confirmed well the universality concept. Very little is published on cluster numbers for more than
three dimensions [45].

3.2.4. Decay far away from p.

In egs. (23, 24) we noticed already that for p # p. the cluster numbers decay exponentially for large
s, with log n, x — 5" above p. and x — s below p.. That conclusion was based on Monte Carlo data
with concentrations between p.—0.05 and p.+ 0.05 rather close to the critical point. Away from the
critical point, the inequalities of section 2.4 give for this decay exponent: {(p~»0)=1and {(p->1)=
1-1/d in d dimensions [90]. How is the situation for intermediate concentrations, say at p = 3p.. And
what about three dimensions?

Monte Carlo methods for the cluster numbers do not work well far away from p. for large s since
only close to p. many large clusters appear. But since the typical cluster size s, « |p — p V" is very
large only close to p., we now perhaps are no longer forced to go to very larg¢ values of s to see the
asymptotic behavior. Thus the exact cluster numbers of Sykes et al. [42, 44] can be used for an
analysis. Far above p_ [46, 49, 50] the series data show, similarly to the Monte Carlo results of section
3.2.2, that a simple power law is quite good: log v, « '~ fits for d = 2 and 3/dimensions the cluster
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numbers from s = 1 to § = Smax ~ 10 within a factor 10 or better, even if the cluster numbers vary over
twenty order-of-magnitude [49]. This result may have implications for nucleation theory [38, 118] if
that experience can be generalized to thermal phase transitions. It means that in the cluster numbers
n, a “surface term” o« s' ¢ can be extrapolated down to very small s, even pairs and single sites,
without giving a wrong order-of-magnitude for n,. One only has to fit the “microscopic surface
tension”, i.e. the factor in front of s' "' in log n,, on the true cluster numbers in the size range to be
investigated [49, 118, 119]. Thus above p. the result {=1-1/d is established not only by the
Kunz-Souillard theorem [90], eq. (11), but also by numerical data for rather small clusters in two and
three dimensions [46, 49, 50] and for larger clusters in two dimensions {26, 62, 115].

Similarly below p., series data for p sufficiently far below p. give log v, * — s for not too small
clusters, i.e. { =1 [46, 50, 70]. Since rigorous or reliable inequalities, section 2.4, cover the range from
p =0 to p =p, with their prediction { = 1, and since p, is rather close to p. (e.g. p» =0.41 in the
triangular lattice where p.=3) these older data were obtained in a region where later inequalities
confirmed their result { = 1 more reliably. But they show in addition that the asymptotic behavior can
already be observed for cluster containing only ten sites.

Summarizing the information reviewed here on the asymptotic decay of cluster numbers we found
from a variety of different methods that most probably

{0<p<p)=1land {(p.<p<1)=1-1/d. ' (26)

(Right at p. the clusters decay no longer exponentially but with a power law: n, « s".) This result for
random percolation, eq. (26), agrees entirely with Binder’s suggestion for (appropriately defined)
clusters at thermal phase transitions [36, 120]. It is therefore a sign of hope that Stoll and Domb [115]
observed similar behavior above p. for correlated percolation, section 6.2.3 in two dimensions.
Perhaps some better understanding of clustering for thermal phase transitions [25, 36, 155] at least in
two dimensions is waiting in the near future.

These results for the decay exponent { have some implications which in the cluster literature are
discussed under the heading ‘‘essential singularities” [34, 36, 121, 122]. If we look at the generating
function or “free energy” F(h) ==, n,e”™, we may ask if F(h) is analytic in h at h=0*. Or more
precisely: Does a Taylor expansion of F(h) work with F(h) =3, F.h*/k! for small positive fields h?
(Here F; is the kth derivative d*F/dh* at h =0.) Obviously all field derivatives F, are finite for all
p # p. since they are given by the moments 2, s*n, and since the n, decay exponentially according to
eq. (26). But what is the radius R.... of convergence for this Taylor series? If it is finite then F(h) is
analytic; but if R ., = 0 we call this situation an essential singularity, similar to what happens with the
function F(h) = exp(—1/h®) at h =0.

The general ratio criterion for power series gives Rcony as the limiting ratio of |E/k!|/|Fe.1/(k + 1)!].
Thus in our case we have R.ony = limy_[Z, s*n/Z, s**'n,1 X (k + 1). Evaluation of these moments for
large k is easy [70] since then only very large cluster sizes s are relevant, where we may use the
asymptotic form log n, « — s%. Thus we find =, s*n, « [ s* exp(—const - s°) ds, where all p-dependent
factors are hidden in the constants. The maximum of log[s“exp(...)] is located at s=
[k/(¢ - const)]¢ « k'*; the value of s*exp(...) at this maximum is roughly s* < k*¢ since the
exponential term is then negligible. (Proof: log[s* exp(...)] = k - In(s)— const - s* = k - In(s) — k/{ =
In(s*). The reader who mistrusts these tricks may evaluate the integrals by gamma functions.) Thus
the kth moment =, s*n, varies for k- as k**: The smaller the exponent { is the stronger is the
increase of the higher derivatives with the order of the derivative. Thus R.,,, equals the limit (for
large k) of (k+ DKYJ(k+ )® = (k+ D)"Y + 1/k) ™ = (k+ 1) e " o k' M4(=1/k"“™ for
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{ = 1-1/d); thus [70]

Reon, = lim k"%,

k—>00

Thus below the percolation threshold, where ¢ = 1, the radius of convergence is finite. But above
and at p. where { <1 for all finite dimensionalities, the Taylor series has zero radius of convergence.
This somewhat unusual behavior is called here an essential singularity and exists therefore above but
not below p.. (The reader may have guessed that result already by noticing that F(h) =X, n,e™™ may
converge for negative h only if log n, varies at least as —s and not if it varies only as —s"? for
example.)

This extremely weak ‘“‘essential” singularity has long been suggested [34, 36, 121, 122] from cluster
models for thermal phase transitions (see ref. [123] for a renormalization group approach); the first
rigorous proof came from Kunz and Souillard for percolation [90]. We see its physical significance
[122] mainly in the implications it has for the exponent ¢, i.e. for the behavior of very large clusters.
An essential singularity means that the cluster numbers cannot decay as a simple exponential. The
behavior of these large and very rare clusters is relevant for nucleation theory [38]. (For dilute
ferromagnets at finite temperatures, Schwartz [88) has shown the Griffiths singularity [124] to be an
essential singularity in this sense as a function of the magnetic field, if all moments of the percolation
cluster size distribution exist, as they do below p. [125].)

The exponent ¢ in log n, « — s* discussed so far describes only the leading term in log n, for large
s. More generally we make the ansatz: In n, = — const - s° — @ - In s that means (49, 42]

n, « s~° exp(—const - 5°). v3))

Here, just as ¢ earlier, # = 8(p) is a new exponent to be fitted on the data. For p -0 we expect this
exponent to agree with the exponent 6 for “animals”, section 5, whose value is listed in table 2. Of
course, at p = p. we have 6 =1, / =0. Series analysis [49] by a modified ratio method gave in two
dimensions for intermediate cluster sizes an effective exponent 6(p). It increased from 8(p »0)=1to
6(p > p.) =, first slowly, then rapidly. Above p. it decreased again with increasing p, but the
extrapolation [49] became erratic for p close to unity. The trend in the extrapolation suggest possibly
a simpler behavior of the true (asymptotic) exponent § for very large cluster sizes: Then 6(p) stays
fixed at its “animal” value of table 2 for all p between zero and p.; and it jumps to § = r at p = p.. (In
six and more dimensions we expect § = 7 =3 everywhere.) We know of no scaling laws relating this
“prefactor exponent 6 to the other critical exponents or the dimensionality; neither is 7—6 a
constant nor is = 3d in general. Apparently a new idea is needed here!
With this remark we conclude section 3 which we regard as the main section of this review. The
results in sections 4 and 5 are at the time of this writing less reliable and more controversial than those
in section 3.

4. Cluster structure

In the cluster numbers we saw in eq. (26) a clear asymmetry between n, above p. and n, below p..
Now we want to know if this asymmetry is reflected in the structure of clusters. We first discuss the
cluster perimeter which can be derived directly from the cluster numbers, without any new assump-
tions. Then we look at other properties like cluster radii which require additional scaling assumptions
beyond eq. (15).
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4.1. Cluster perimeter and internal structure

The average perimeter ¢, and the width A, of the perimeter distribution are discussed here from
the cluster numbers with the help of exact relations [71, 90, 126].

4.1.1. Exact relations ‘

Let g, be the number of different cluster configurations for s sites with perimeter ¢, where the
“perimeter” (not necessarily a “surface” in the usual sense) is the number of empty neighbors of
cluster sites, section 2.2. Then n, = g,p°(1—p)' is the average number [39-41] of s-clusters with
perimeter ¢, and n, = Z, n, is the average total number of s-clusters. We define an average perimeter ¢,
and width A, for the perimeter distribution function n,/n, by

1/2
t=2 t ngdng; A= [Z(t - ts)zns,/ns] . (28a)

(One could also define averages by summing over s at fixed ¢; but little work has been done in this
direction so far {48].) The evaluation of the exact n,/n, shows a unique pronounced peak near ¢ =t,
[42].

The averages in eq. (28a) can be expressed by derivatives of the cluster numbers n,(p), just as in
statistical thermodynamics one finds the average magnetization and its fluctuation from the first and
second field derivative of the logarithm of the partition function. Let Z, =np™ =3,g.q" with
q = 1 - p be the partition function for s-clusters. Then the reader can check easily that the following
two relations are exact in general, not only for large clusters near the critical point [90, 71]

t,=@dlng)InZ,;; A}=(3/dIng)’nZ,. (28b)
By differentiating n,/p° we can rewrite these results as

t,=(qlp)s — q(d/ép) In n, (28¢)

A% =gp~’s+q%(8/9p)’ In n, — q(3/dp) In n,. ' (28d)

For large clusters and p # p. we have In n, « — s°, with a proportionality factor depending on p
and an exponent { given in eq. (26). Thus for all p except at p. we get for s > x:

t,=(glp)s +O(s%);  Al=gp%s +0(s%). (29)

According to Kunz and Souillard [90] the exponent { is rigorously below unity for all p above p. and
all finite dimensionalities; hence

limt/s=(01-p)lp (p=p.). (30a)

s—»00

Moreover, if { =1-1/d above p., then the “correction term” o« s° in eq. (29) varies as s' ¢ above

p., i.e. as a cluster surface area. Since the perimeter ¢, counts internal holes as well as external
boundaries, its proportionality to s for large s is legitimate; see also section 4.3.2. (For p = p. the
validity of eq. (30a) will be shown in eq. (33).)

This relation (30a) has a lively history since its simple derivation [90] was long overlooked: Domb
[101] predicted ¢, to be proportional to s for large s near p., and Stauffer [98) suggested the factor of
proportionality to be (1 - p.)/p. at p.. Leath [73] gave a much simpler but still not exact derivation of
that relation; moreover he gave the first Monte Carlo confirmation, albeit somewhat below p.. Series
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Fig. 12. Variation with concentration of the limiting perimeter-to-size ratio for large percolation clusters. The solid curve gives the exact result
(1-p)/p above p. [90]. The Monte Carlo results of ref. [62], +, and of ref. [75], dots, and the series result from ref. [52), X, refer to the square
lattice.

extrapolations by Stauffer [50] and Domb [102] (but much more precise by Duarte [52]) agreed with
eq. (30a) at p.. For p slightly above p. Stauffer [126] gave scaling arguments for eq. (30a); according to
that work eq. (30a) is not valid below p.. A proof of eq. (30a) at p. was given by Reich and Leath [89],
and for all p above p. by Kunz and Souillard [90). An independent different argument was presented
by Hankey [91] for the analogous result in the infinite network for all p above p.. Stoll and Domb [62]
and Leath and Reich [71] confirmed eq. (30c) by Monte Carlo simulations for p at and near p.
(ref. [62] also for the infinite network), and Stauffer [75] added the Monte Carlo confirmation for p far
above p.. Below p. deviations from eq. (30a) were observed by Monte Carlo [62, 75] and series work
([52] and Duarte, priv. comm.).
The corresponding result for the width of the perimeter distribution,

limAJ/s =(1/p)p™  (p=>pJ) (30b).
has a much simpler history: It was investigated theoretically and experimentally by the Rutgers
University group [71-73, 89] whereas Stauffer’s series extrapolations [50, also 46] turned out to be
wrong [126]. All this numerical work was restricted so far to two dimensions; fig. 12 summarizes the
variation of the limiting ratio of perimeter to size with s. See Note added in proof, Peters et al.

The partition function Z, =3, g.q" for an s-cluster corresponds, in statistical mechanics, to the
partition function Z = 2g g,r exp(—ElksT). Here g,g is the number of different quantum states for s
particles with total energy E. We see that the perimeter ¢ for percolation is the analog of the energy E
for thermal phenomena; and if each broken bond between nearest neighbors contributes an energy 2J
to the E, then we may identify in this analogy the quantity q =1—p with exp(—2J/ks) and the
perimeter ¢ with the number of broken bonds, such that the energy E correspdnds to the product 2tJ.
(Kasteleyn and Fortuin [21] give a more rigorous formulation of this analogy) Apart from the trivial
factor 2J, the ratio lim(t,/s)=(1—p)/p then corresponds to the thermal energy per particle, in the
thermodynamical limit. Numencally this analogy is quite accurate [98]: For example, in percolatlon on
the triangular lattice we have p. =3, lim t,/s =1 at p,, i.e. to each critical cluster site belongs, in the
average, one perimeter site. Analogously, for ferromagnets (spin ; Ising, interaction between nearest
neighbors only) in the triangular lattice at the Curie point the average thermal eiergy tells us that each
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spin has, in the average, one of its six neighbors antiparallel [98]. Thus the number of broken bonds
per spin approaches at the Curie point the same limit as the number of perimeter neighbors per site at
the percolation threshold, i.e. exactly one. Thus it is natural to expect [101] the perimeter ¢, to be
proportional to the clusters size s, just as the thermal energy is proportional to the system size for
most problems in nature (provided surface effects are negligible). In particular also for the droplets used in
classical nucleation theory [38] or in the Fisher droplet model [34] the therma! energy and similar
quantities (like entropy) contain a bulk term proportional to the number of molecules in the liquid
“raindrop”’. Broken bonds in the interior of the material are responsible for these proportionalities to the
system size [50].

4.1.2. Scaling theory
Let us restrict ourselves now again to large clusters near p. where scaling assumptions, eq. (15),
can be applied to calculate the derivatives of n, required in eq. (28). With n, x s7'f(z) and z =

(p— pc)s’ we get

t,=(qlp)s +s°Y(2);;  A3=gqp~s — s¥Y22) 31)
with

1=—-q-dinf)ldz; .= —q*d*(In f)/dZ>

Thus the leading term « s is very simple, but the higher order term contains a complicated scaling
function. We now call the difference £, = ¢, — (g/p)s the “excess perimeter” [126] since above p. this
excess perimeter f, x s'""¢ seems to come from a surface area. On the other hand, the “bulk
perimeter” (g/p)s may be interpreted as a volume effect.

More quantitatively, above p. with In f o« — 297 = 70 71DIe = (p — p YBEA-UD 5 (1-1d 4he excess
perimeter is £, = s, « s°d(In f)/dz = d(In f){dp x (p — po) "' B2 Eq (37) will show us later
that the volume V, of a very large s-cluster varies as (p — p.)™®s above p. [50]; then the excess
perimeter, expressed by the cluster volume, varies for very large s as (p — p.)®*PU1 x yi-td o

o (p-p)@ Vi (p>po) (32a)

where the scaling laws (18b) have been used. Again we see quantitatively the analogy between our
perimeter and the energy for thermal critical phenomena: The excess perimeter has the same
dependence on p —p. as the surface energy of a fluid or the domain wall energy of an Ising
ferromagnet has on T.— T. Thus we may identify

excess perimeter 2 surface energy (p > p.). (32b)

(Disscussion of the exponent: The surface area of a homogeneous liquid sphere surrounded by its
vapor varies as (volume)' ™" in d dimensions. Its surface free energy is the product of surface tension
and surface area. The surface tension, as reviewed e.g. by B. Widom in vol. 2 of ref. [11] vanishes as
(T.— T)“ " near the critical point; its temperature derivative gives the surface energy per unit area
since E= —T?3(FIT)/8T x — T - 9F/3T. Thus the surface energy per unit area varies as (T.—
T)“"""! which is the same exponent as derived in eq. (32a) for the excess perimeter.)

Right at p = p., the derivative d(In f)/dz is negative, as can be seen e.g. from the logarithmic plot in
fig. 11. Its value at z = 0 is estimated [26] to be about —7.2 in the triangular lattice. Thus we have from
eq. (31a) [98]:

ts(pc) = s(1-pc)p.+const- 57 (33)
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where the constant is about 3.6 and o = 0.39 in the triangular lattice. This relation is confirmed by both
Monte Carlo and series results [52, 71]; e.g. the Monte Carlo work gave t, = s +3.43 s%***%" and the
series work an exponent of 0.381 = 0.003, for the triangular lattice.

Below p. we have { = 1 which means: No clear separation is possible between a surface term and a
bulk term in the cluster perimeter, since both vary as s, as shown by eq. (29). Thus a surface in the
usual sense of droplet surfaces seems not to exist below p. but only above p.. Only above p. can we
interpret the excess perimeter £, as a “measure” of the surface area in the usual sense. Already at
P = p. this suggested proportionality of excess perimeter and surface area breaks down, as pointed
out by Domb and Stoll [97] and in contrast to our first speculations [98]: Eq. (32b) indicates that the
excess perimeter really is a surface energy, not a surface area. As long as the surface tension is
independent of cluster size, both surface area and surface energy vary as s' "% eq. (32a). But right at
p. the powers of (p — p.) appearing in the surface tension above p. are replaced by powers of s, and
then surface area, surface free energy, and surface energy no longer vary withﬁthe same power of s. In
this sense the exponent o is not a true surface exponent, although the term 5°y,(z) does give above p.
the analog of the surface energy, eq. (32).

Also the external perimeter, which ignores all holes in the interior of a cluster, has been suggested
[50] as a measure of the surface area for large clusters. However, Leath a:id Reich [71] found for
p < p. most of the perimeter sites to be external; fig. 13 shows one of their clusters with 4741 sites at
p =0.48 in the triangular lattice. Many fjords connect the perimeter sites with the outside world [71].
At p = p. ref. [71] found the external perimeter in the triangular lattice to increase as s°° for cluster
containing several hundred sites. This exponent 0.9 is clearly different from the exponent o = 0.4 for
the excess perimeter at p. and also from the two-dimensional surface expoﬂent 1-1/d =3. Thus at
least at p. the external perimeter is not proportional to the excess perimeter, cbntrary to a hope in ref.
[126]. Also far above p. [75] most of the perimeter sites are external. (Perhaps in the square lattice
[75] at p = 0.75 for s above 10’ the internal perimeter roughly equals the bulk perimeter (g/p)s, and
thus the external perimeter approaches the excess perimeter (surface energy) for very large clusters.
But since clusters with more than 1000 sites are very difficult to produce this result would still mean
that the external perimeter is not a practical tool to study cluster surfac¢s.) In three and more
dimensions we have p. <3 in general; thus near p. an infinite network of holes percolates through the
large clusters of occupied sites. Then the external perimeter completely loses its meaning as a
surface measure.

Therefore at present the excess perimeter ¢; = t, ~ (q/p)s = s°§(z) seems to be above p. the most
promising measure of a surface area for large clusters, eq. (32b). Monte Carlo data have shown that
t./s? is indeed a function of z = (p — p.)s” alone; data for different p — p. follow the same curve [71],
as in our scaling plots for the cluster numbers. The cluster size s had to be larger than 85 to agree with
scaling [71]. Moreover, since eq. (28¢) is exact, Monte Carlo data for the excess perimeter £, can be
used to find cluster numbers n,. In this way, and not directly from the n, in fig. 10, Leath and Reich
found their data [71] to support { = 1 against { = 2¢ for large clusters above p..

The width A, of the perimeter distribution function is right at p. given by eq. (31b):

A?=(1-p)p*s —const, s*° + const, s°. (34)

The correction exponent 2o here is about 0.8 in two dimensions and even closer to unity for higher
dimensionalities. Thus even for rather large clusters the leading term is not mjuch larger than the first
correction term. For example, if o = 0.48 in three dimensions, then only for s above 10* sites per
cluster would s> be less than ten percent of s. Even if every human being i)n earth would have its
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own computer to store 10° sites [24] the combined memory would be too small by many orders of
magnitude to handle such clusters. Therefore the correction terms in eq. (34) cannot be neglected.
Series expansion analysis which neglected the correction term gave wrong exponents [46, 50]. Even in
two dimensions, where the situation is better, Monte Carlo data [71] show a strong deviation from the
asymptotic law, eq. (30b) even at s = 2000. However, with the two constants in eq. (34) determined
from the cluster numbers in the triangular lattice [26] via eq. (28d), the Monte Carlo data of Leath and
Reich for the width [71] fit nicely with eq. (34) for large s. )

Thus the width A, of the perimeter distribution function varies as s'?, the mean value ¢, as s, and
the excess perimeter f; as s° multiplied with a scaling function ¢,. Because of these different
exponents we have here an example where scaling assumptions do not hold. To describe the function
n,(p) of two variables s and p — p. we assumed n, « s~ "f[(p — p.)s°]. The analogous assumption for
the three variables s, p — p. and ¢ entering the perimeter distribution would be

il(p—pe)s®, ts™"] (335)

with a new phenomenological exponent v. (v = ypsilon; not to be confused with » =nu for the
correlation length, eq. (6e).) (The prefactor s~ is chosen such that summation over t gives the
desired n,(p), eq. (15).) Such an assumption has in fact been made for the energy distribution of Ising
model clusters [36] and the bond distribution of percolation clusters [114]. But it is wrong for the
perimeter of percolation clusters. To accomodate f, x s, we need v = 1; to allow A, « 5" we need

=3: Contradiction. If instead we postulate eq.(35) to be valid for the excess perimeter ¢, =
t, —(qlp)s « s°, we would need v = to accomodate this excess perimeter, but still v =3 for the
width: The contradiction is not removed. Only close to six dimensions, or in the classical regime
above six dimensions, the contradiction vanishes for the excess perimeter, since then o = 5 apart from
a correction of order (6 — d)’ below 6 dimensions. Thus we see, just as we will see with universality in
appendix 2, that scaling is valid in most cases but not in all. The numerical tests of section 3.2 really
‘were necessary and did not just prove a triviality.

—T—D0

ny(p) x s

4.1.3. Internal structure

Returning to bulk properties proportional to the cluster size s, we find besides the limit of ¢,/s also
other quantities characterizing the internal structure of large clusters. Trivially the concentration p is
one of them. The “energy” e, can be defined for s-clusters as the average number of nearest neighbor
connections between an occupied cluster site and an empty perimeter site [48, 60, 127]. The bond
number b, in s-clusters is the average number of nearest neighbor connections between cluster sites
[114]. The cyclomatic number c, is the average number of cycles formed by the bonds in s-clusters
(i.e. by its nearest-neighbor connections); e.g. in a Bethe lattice the cyclomatic number of trees is
zero, for a polygon it is unity, and it is largest for fully compact configurations without internal holes
[97, 115]. The genus g, is the average number of topologically separated holes in the interior of
s-clusters [128]. For every configuration, and thus also for the averages, one has [97] ¢, = b, — s + 1
and e, = (coordination number) - s — 2b,. The compact 4-cluster [J for example has a perimeter of 8, an
energy of 8, contains 4 bonds, has cyclomatic number one, and genus zero. For large clusters all these
quantities vary as s; for example lim,...(g,/s) = 1/28 in a bcc lattice [128] at p.. Refs. [115, 97, 129]
give the monotonic variation of lim(c,/s) with p. Besides these Monte Carlo results also analytic
results are available, as reviewed by Domb [129). So far no scaling analysis in terms of exponents or
functions of z were given for the leading terms or the first corrections; Sur et al. [60] remark that
e, = const, - § + const, according to their Monte Carlo data. In that respect the perimeter is at present
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better understood and investigated [71] than cyclomatic number, energy, bond number or genus in
their scaling properties. (Refs. [97, 115, 129] also compare these bulk properties of percolation with
those of ferro- and antiferromagnets at finite temperatures.)

In conclusion, the internal structure of large percolation clusters in terms of perimeter per site and
analogous quantities seems well studied by now. For the perimeter also the leading correction term
was studied in detail and found to agree with scaling theory. A cleary asymmetry about p. was
observed in this excess perimeter ¢, —(q/p)s and is related to the asymmetry in the cluster numbers.

4.2. Radius and density profile

4.2.1. The basic assumption

To describe parameters affecting the external shape of clusters, not their internal structure, new
quantities like density or radius seem necessary. They are defined as statistical averages over a cluster
(and, of course, also as averages over many clusters of the same size) and thus do not give us
information on microscopic details like cyclomatic numbers etc. [115]. To describe their scaling
behavior a new “hyper”-scaling assumption seems necessary. This assumption then will give us the
scaling law dv = 2 — « postulated in eq. (18b) but not yet derived.

Eq. (14) gives us a hint how a scaling assumption similar to eq. (15) for n, may be constructed for
the cluster radius R,: The ratio R,/¢ might just have the same scaling property as n,(p)/n,, or
n(p)In,(p.), i.. it may depend on the ratio s/s, only. Since s/s, « z''” with z=(p — p.)s® we thus
postulate

R, =¢-R(2) (362)
where R is a suitable scaling function to be fitted on experiment. We may rewrite this assumption as
R, =s5"R\(2) (36b)

since £ |p — p.|™* « s¢". In this form our assumption [130] has the same structure as eq. (15).

We now assume in addition that the internal structure of a very large but finite cluster above p. is
the same as that of the infinite network. “Very large” means here: s/s; > 1 or z > 1, that means radii
much larger than the coherence length. “Internal structure” refers to average properties like density,
visible over distances much smaller than the cluster radius. Thus we postulate:

By looking at average cluster properties over distances much smaller than the cluster radius we
cannot distinguish between very large but finite clusters and the infinite network, if p is above p..
(36¢)

An example for the validity of assumption (36¢) is the ratio t,/s for very large clusters, which is
(1-p)Ip according to eq. (30a). In the infinite network, the corresponding ratio has the same value
[62, 91]. Thus by looking only at a finite fraction of a sample we cannot tell if the large set of
connected sites which we might observe there extends to infinity or belongs to a finite cluster.
Similarly if a man and a woman get along well for one evening they still might not make it together
through a long marriage. In that sense eq. (36¢) is compatible with numerous experiments. But it is
obviously constricted to concentrations p above p. since below p. there is no infinite network present
with which very large but finite clusters could be compared.
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4.2.2. Exponents for the radius

With this assumption we now get information on the limiting behavior of R, above p., i.e. on the
scaling function R(z) or R,(z) for z > . In every unit volume of their interior the very large clusters
thus should have the same fraction pP.. of sites connected to the cluster as has the infinite network. In
short, the average “density” inside very large clusters is the same as the density of the infinite
network. (The density is defined as the probability that a given lattice site belongs to a given cluster or
network.) If surface effects are negligible for these very large clusters, we can calculate the cluster
volume V, from the “mass” s and the density pP. through the well known relation: mass = volume
times density: '

s=VpP.; p>p.

This argument was called the “Swiss cheese” picture in ref. [50], since in spite of its many internal
holes a very large chunk of Swiss cheese still has a mass.s proportional to its volume V.. Close to p.,
where the percolation probability vanishes as P.. x (p — p.)?, we thus get

Vi,xs-(p—-p)® (s>s, P>po). (37a)

Note that neither the cluster radius R, nor the cluster volume V, were defined here quantitatively; for
example, one may use for R, the radius of gyration: R2 =3, r?/s where the sum runs over all cluster
sites, and r; is the distance of a site from the center-of-mass of the cluster. We assume that this and all
other “‘reasonable” definitions give the same critical exponents. We may define a cluster volume in
three dimensions through V, = (4#/3)R2, and in d dimensions we have V, « R?. Thus eq. (37a) leads
to

R, x(p- pJ) B g (37b)

for very large clusters above p..

If both egs. (36) and (37b) are assumed to be correct, then the function R(z) in eq. (36a) must vary
as 2" o ' for z > «, in order to make the radius proportional to s'¢in accord with eq. (37b). Now
we get from eq. (36a), for p slightly above p.:

Rs o f . (p _pc)lla'd . sl/d oc (p _pc)—v+l/o’d_ sl/d.

If we compare this exponent of p —p. with the exponent appearing in eq.(37b) we conclude
Bld =v—1/od,or dv= B +1/a = B(8 + 1). This is the desired scaling law of eq. (18b) whose derivation
was missing so far. Alternative derivations were given in refs. [18] and [109].

This scaling law dv =B(6+1)=2—a is also known from other phase transitions [10, 11]. It is
regarded as less reliable than the other scaling laws not involving d, but presul#lably [111] it is exact or
a good approximation for not too high dimensionalities d. For d >, on the other hand, one expects
classical exponents a = —1, 8=1, y =1, § =2, v = 3, as in mean field theorieb [114] or Bethe lattices
[27-30]. For all d above six, the above scaling law dv = 2 — a breaks down if these classical exponents
are used. Therefore Toulouse [84] suggested, as confirmed by later res¢lts [45, 68, 117}, that
“hyperscaling”, dv =2 - a, is valid only below six dimensions whereas classical exponents are valid
above six dimensions. Only at the marginal dimensionality d = 6, where the tv&{o regimes coalesce, are
both classical exponents and hyperscaling valid; but then logarithmic correction factors are important
[17]. This special status of six dimensions as the transition from the classical to the hyperscaling -
regime is the reason why the epsilon expansion of renormalization group is a perturbation expansion
about 6 — d. For thermal phase transitions the classical exponents are usuaﬂy B =3 and a =0 (and
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6 = 3); thus the same arguments as above give four dimensions as the marginal dimensionality above
which classical exponents are valid. From now on we restrict ourselves to dimensionalities below six
and assume that hyperscaling is valid, i.e. 2—a = dv.

So far we dealt with p above p. only; but the scaling assumption (35) should be valid for both sides
of the phase transition. Right at p. the average cluster radius R, is finite and thus cannot be
proportional to any power of p — p.. Thus in eq. (36b) we have R,(z—>0)—const, or R,(p.) « s”".
Since ov = dv/dBé = (1+1/8)/d = 2/(d + y/v) according to hyperscaling, eq. (18), we see that [50]

R.(p.) o s,y (p) o 512, (38)

A different derivation which does not use hyperscaling explicitely was given by Harrison et al. [109].
(De Gennes, private communication, pointed out that with the approximation y=2v the above
relation reads R, « s%“*? similar to Flory’s approximation R, « s*“*? for the radius of self-avoiding
walks [131].)

Harrison et al. [109] also gave the first and so far best confirmation of eq. (38). They concluded
s « R¥%**3 from three-dimensional Monte Carlo simulations, this exponent 2.66 is roughly com-
patible with the predicted value d/(1+ 1/8)=2.50+0.07, from eq. (38) and [55] & = 5.0 +0.8. Clearly
the exponent is not just equal to the dimensionality d. (For d =2 the numerical evidence is less
impressive since & is much larger there [75].) For thermal phase transitions eq. (38) has been proposed
much earlier [74, 132] but no direct confirmation seems to exist; again percolation turned out to be the
best-understood cluster problem.

Below p., if R, is assumed to vary for very large clusters as s° with a new exponent p, the scaling
assumption (36a) gives [130]

R, =|p-p. s°. (39a)

This result describes also very large clusters above p. and at p., if the above values for the exponent
p, €gs. (37b, 38) are used. It seems likely that the exponent p below p. is constant for all p between
zero and p., just as the exponent { was. If we call this constant », we can summarize our results for
the radius exponent as

R, x s* (s->x at fixed p) (39b)
pO<p<p)=vy pp)=1+1/8)d; plp.<p<D=1/d (3%)

Figure 14 summarizes Monte Carlo results for two-dimensional cluster radii. Above and at p. the
data are consistent with the predictions p = 3 and p = 0.53 = 3(1+ 1/8), shown there as horizontal lines.
Below p. we find the new exponent v, to be about 2/3, significantly lower than the “self-avoiding
walk” prediction [130] of 3/4. It seems that a better theory [133] is needed since percolation clusters
below p. do not behave similar to self-avoiding walks.

The data of fig. 14 do not give exponent values which are constant in certain intervals and jump
discontinuously at p.; instead the numerically determined exponents vary continuously with p. But we
see no real contradiction to the constant exponents predicted in eq. (39¢c). For these Monte Carlo data
are taken for clusters containing ten to thousand sites, whereas eq. (39) refers to very large clusters
only, s » . Only for clusters much larger in linear extension than the coherence length £ < |p — p.|™
can the simple power law (39a) be expected to hold. Thus particularly the data close to p. should not
be relied upon since there the scaling variable |p — p.|s” is not much larger than unity [130]. Therefore
only the data for p close to zero or unity. and for p = p. are reasonably reliable, whereas the
exponents at other concentrations are effective exponents and not yet close to the true asymptotic

lBSp—-v .
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Fig. 14. Variation with p of the effective exponent p for the cluster radius « s*. Monte Carlo data from ref. [75], -, ref. [73], x, ref. [109] and priv.
comm., +. The horizontal lines symbolize the expected results, which are discontinuous at p..

exponents predicted in eq. (39). Similar variation of effective exponents are known from thermal
phase transition; the analogy is particularly clear with self-avoiding walks with interaction [135].
Figure 15 tries to transform the above argument into a simple picture, analogous to dynamical
critical phenomena near Curie points. The asymptotic exponents of eq. (39c) are valid only in the
small sectors I, IT and III of that figure. In between these sectors the cluster radius is described by the
full scaling functions of eq. (35), which only in the asymptotic limits of the shadowed sectors become
simple power laws. Similar effects are expected for other exponents like ¢ and 6. Thus if we keep
s = 107 constant and move continuously from p =0 to p = 1, then we start in region III where p = »,,
¢ = 1. With increasing p we leave region III and move along the dotted line of fig. 15. Here the cluster
radii and cluster numbers are described by complicated scaling functions like egs. (35, 15) or even
more sophisticated expressions. Very close to p. we reach sector I where p = (1+1/8)/d and n, « s™".
Further increase of p along the dotted line brings us out of the sector I into the less understood
intermediate region, until we reach safer ground again for (p — p.)s” > 1 in region II, where p = 1/d,
{=1-1/d is valid. Nowhere along the dotted line is, for fixed finite cluster size s, a discontinuity in
the cluster numbers or the cluster radii, since only the asymptotic exponents depend discontinuously

Fig. 15. Various sectors of the s-p-plane in percolation scaling theory. The shadowed regions correspond to s <€ s, (sector I), s > s, above p. (sector II),
and s > s, below p (sector III). Only in these narrow sectors are the asymptotic exponents ¢, 8 and p directly observable for large clusters. (The three
sectors were drawn with an enlarged angle to make them better visible.)



46 D. Stauffer, Scaling theory of percolation clusters

on p. A clear example of the similarity of small clusters above and below p. is shown in ref. [115,
fig. 10]; it contradicts in no way our fig. 15 and eq. (39¢c) here which try to describe the limit s — « only.

In conclusion it seems that the cluster radii behave roughly as they should. But higher accuracy and
a better theory for v, =2/3 (for d = 2) are needed.

4.2.3. Density profiles

In order to understand better the difference in the cluster radii and cluster numbers above and
below p. it is useful to look at the density profile of clusters [75, 130, 134]. Let the density profile
D,(r) of s-clusters be the probability that a lattice site at distance r from the cluster center-of-mass
belongs to that s-cluster. (Contrary to ref. [130] we do not require the center-of-mass to belong to that
cluster; that definition would be needed for correlation functions which are not discussed here.) This
density thus is a “coarse-grained” average [115], similar to other statistical concepts in hydrodynamics
(density, velocity, pressure). It does not give us microscopic details on the structure of clusters;
instead the density profile describes the overall shape of a cluster.

As mentioned in the discussion after assumption (36) we take the density D,(r <R,) inside very
large clusters above p. to be the same as the density pP. of the infinite network, i.e.

lim D(r) = pP. (40a)

for fixed p above p. and fixed r. If we are not in this simple asymptotic limit, the density profile D,(r)
depends on three variables r, s and p. In the scaling regime of large clusters near p. we may again
postulate a scaling-homogeneous form [130] reducing the number of independent variables from three
to two:

D,(r) = P.. D(rl¢, sls) (40b)
or equivalently,
D,(r) = P.. Dy(rs™, (p — po)s°). (40c)

The interested reader may invent many other forms [130] of this assumption. Trivially we have
D,(r)dr = s since the integral over the density gives the total mass s. (Discussions of correlation
functions suggest for r> R, and s> s, the asymptotic decay laws log(D,) x —r above p. and
log(D,) x — r'’®=* below p. [130].) Thus if eq. (40c) is rewritten as D,(r)= s > Dy(rls**, (p — po)s®)
then we must have x = dp — 1 in the three shadowed regions of fig. 15 [76].

This scaling assumption formulates more precisely the assumption made after eq. (37a) that all
“reasonable’” definitions of a cluster radius give the same exponent. Eq. (40) means that for a given s
and a given p there is only one characteristic length R, « s°” for the cluster, and not several of them.
Any reasonable definition, like RY=[D,(r)r*drs, then will give the same length, apart from
constant factors. Leath [73] used this definition with k = 2 in the first study of cluster radii, and was
followed in ref. [75]. Harrison et al. [109] used instead of this “radius of gyration” the spanning length
of the cluster, which corresponds, in some sense, to k =x. As we saw in fig. 14 these different
definitions give roughly the same exponent in Monte Carlo simulations.

A complete test of the scaling assumption (40) is not yet known to us. Herrmann [76] looked at the
density profiles [75] right at the percolation threshold p = p. (and also for the “animals” p = 0) where
€q. (40c) reduces to the simpler form:

D.(r)= s~ Dy(rIR.). | @1
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Fig. 16. Plot [76] of the scaled density profile D,(r)/D.(R,) as a Fig. 17. Monte Carlo data [75] for the density profile far above and
function of the scaled distance r/R; at the percolation threshold far below p, (averages over more than 10° configurations at fixed s
(solid line) and for “animals” (p =0, dashed line). Error bars in the square lattice). These data suggest a droplet structure above
indicate statistical fluctuations as well as variations for different but not below p..

sizes s.

He found this similarity law for the critical percolation clusters to be consistent with two-dimensional
Monte Carlo data; in particular the prefactor was found [76] to vary as s °****% = ¢* confirming
well that x = dp — 1 = 1/8 = 0.054 according to eq. (38). Figure 16 summarizes the scaling form of the
density profiles. For p away from p., fig. 17 shows the density profiles of two large clusters; again data
far away from p. give the asymptotic behavior better than data closer to p, is s is fixed at some
intermediate size. The cluster density profile above p. has a plateau in the cluster interior, with the
height near pP., and decays rapidly to zero outside the cluster. The interior and exterior region are
separated by a rather narrow interface. (Presumably the thickness of this inteHace is of the order of
the coherence length £ [126]; indeed already at p =0.75 the transition is much smoother than at
p =0.95.) Below p. the cluster shape is entirely different for very large clusters: The plateau is
replaced by a bell-shaped curve [75, 76] where the transition layer separating interior from exterior
parts now extends over the whole cluster. Thus a “surface” layer in the usual sense exists above p.
but not below p., if s —>«. We think that this difference is the reason for the asymmetries between
above and below p. discussed earlier in the cluster radii (p = 3 versus p = J), the excess perimeter ¢/
(= s versus «s), and the cluster numbers ({ = versus ¢ = 1).

In this way a coherent scaling picture has been developed and partially tested. The cluster numbers
n,, eq. (15); the excess perimeter £, eq (31); the radius R,, eq. (36b); and the density profile D,(r),
eq. (40) are all expressed by “generalized homogeneous functions” [100], i.e. the number of in-
dependent variables is reduced by one:

n <57 f(2), txs gu(z), R, xs”Ri(z), Di(r)xs™" Di(rfs™, 2). 42)

And in addition to this mathematical similarity, all four scaling functions in eq. (42) seem to exhibit a
pronounced asymmetry in their asymptotic behavior for z—> * o, an asymmeltry not restricted to p
close to p. but missing in classical theories (Bethe lattice).

4.3. Droplets, ramification, and fractal dimensionality

Headlines in newspapers try to inform the reader in a few words about the main content of the
news; of course sometimes they are misleading and one needs to read the full text. Similarly concepts
like ramification [101] etc. are simple catchwords trying to encompass as headlines what we have
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described in greater detail in the preceding sections. And again these simple concepts may lead to a
picture oversimplifying what we said before. (The contents of this subsection are not needed later.)

4.3.1. The raindrop or Swiss cheese model

Since the Fisher droplet model [34] of thermal critical phenomena and the raindrops of classical
nucleation theory [38)] long preceded the current interest in percolation clusters, it seems appropriate
to start with the question: Are percolation clusters similar to raindrops, as assumed in the Fisher
mode] above p.?

How does a raindrop look before it is falling on your head? It consists of s “liquid” water
molecules inside, and is surrounded by water vapor outside. The liquid interior is separated from the
outside vapor by a narrow transition region or surface layer, with the ratio of layer thickness to
droplet radius going to zero as the radius goes to infinity. In the interior, the density, entropy per
molecule and thermal energy per molecule are the same as for bulk water if the droplet is large
enough. More precisely, the density etc. of the raindrop interior is the same as that of bulk water at
the same temperature and not the same as that of a (hypothetical )T = 0 groundstate. In particular, at
any given moment the liquid water has density fluctuations which produce holes inside the raindrop
just like holes in Swiss cheese. Only if we average over these holes we get a homogeneous density, for
both raindrops and Swiss cheese.

Figure 17 and other results of the preceding section suggest that percolation clusters are like
raindrops above p. but not below p.. Just like a Swiss cheese, they have on both sides of the phase
transition an average density lower than the maximum possible density; above p. their interior density
approaches pP. whereas it seems to go to zero for large clusters below p. and at p. 75, 76]. Only
above p. a relatively narrow interface region could be found. Of course, since a water droplet of
0.1 mm radius contains about 107 molecules and the clusters in fig. 17 only 200 sites, the ratio of
interface thickness to cluster radius is still quite large for our percolation clusters in comparison with
raindrops. The reader should also keep in mind that the roughly spherical density profile of raindrops
and percolation clusters arises only by averaging over many different configurations. For a single
configuration, the holes and surface roughness of the Swiss cheese structure give a rather different
picture which even above p. is not dissimilar to fig. 13.

Instead of this definition of ‘“‘droplet-like” by the density profile one may also call a cluster
droplet-like if for s > at fixed p its surface area (measured by R?™' or £,) varies as s' "¢, if its
radius varies as s'¢ or its volume as s, or finally if the logarithm of the cluster numbers varies as
~s'"" With all these definitions we still find the same result: Very large percolation clusters (R, > £)
are droplet-like above p. but not at and below p., as the reader can check himself by going through the
preceding parts of this review. If one likes to use a word (different from “‘ramified”’) to describe the

P-R P<R
05%
J o 60 \/

Fig. 18. Hungry hydra (clusters below p.) eats Swiss cheese (clusters above p.). The coherence length £ is shown schematically. This review is based on
the assumption apparent from the figure.
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opposite of droplet-like one may try ‘“hydra-like” [50): The tentacles of this monster will engulf the
scientist who tries to apply the simple droplet picture even below p..

In this sense, percolation clusters larger than the coherence length seem to be droplet-like, similar
to a large sphere of Swiss cheese, for p above p. but not at and below p., a cqnclusnon summarized in
fig. 18.

4.3.2. Ramification

Domb’s suggestion [32, 101] that percolation clusters are “ramified” started the development of
cluster scaling as presented in this review. Clusters were called ramified if their surface area increases
with size s - simply as s; they were called compact if they increased with a smaller power of s.
What is the “surface area” for percolation clusters? If one takes the total perimeter as a measure of
the surface area [101] then all clusters are ramified; internal “surfaces” are included in that definition.
If the external perimeter only is identified with the surface area then the question of ramification is not
yet entirely solved for two dimensions. With the excess perimeter f; as a measure of the surface the
clusters are ramified below but not above p. or at p.. Finally, with R{™" as the definition of surface
area the clusters are never ramified in two dimensions. One may also use the density profile and
thickness of the surface layer as criteria for ramifiedness; then one is likely to end up with ramified
being identical to hydra-like and compact being the same as droplet-like. As di#cussed above, clusters
are in this sense ramified below and at p. but not above p.. (If RZ™' is taken as a surface area, it may
increase even faster than s with increasing s; e.g. in six dimensions we expect R ™" oc g°*1/&/6 = g5/
at p.. Such exponents larger than unity for the surface area are nothing unusual: The smallest sphere
enclosing a random walk with s steps on a lattice has a surface area «s“ " jn d dimensions.)

Later [97, 115, 129] Domb defined ramification more as a quantitative than a qualitative concept by
regarding the cyclomatic number per site, lim,_...(c,/s), as a measure of compactness for large clusters.
More precisely, ¢, was normalized [97] by the maximum cyclomatic number achieved in a fully
compact cluster, without holes or surface roughness. The degree of ramification is then equal to unity
minus the degree of compactness in this normalization. This ramifiedness decreases continuously with
increasing p, as shown by Monte Carlo data [115], without any dramatic change at p.. Ramifiedness in
this sense therefore is drastically different from other criteria which may chanhe from “yes” to “no”
at p., as listed above. Clusters in the Ising model of ferromagnets at the Curie point were shown [129]
to be less ramified than percolation clusters at p.. If one uses the perimeter per site, lim,_.(t./s), as a
measure of ramification one arrives at the same conclusion, fig. 12: Clusters below p. are more
ramified than above p., and at p. they are more ramified than ferromagnetic Ising clusters at T,
[62, 75, 115]). (If the energy per site [32], lim(e,/s), is taken as a measure of ramification for Ising
ferromagnets, and the perimeter per site as measure of ramification for percolation, then Ising clusters
are about as ramified as percolation clusters at their respective critical points [98].) Of course,
ramification in this quantitative sense [97, 115, 129] is not a completely new conk:ept but merely one of
many quantities measuring internal structure and disorder, similar to the thermhl energy per molecule
or the entropy per cubic centimeter.

4.3.3. Fractal dimensions !

Mandelbrot[136] introduced the word ‘fractals” to describe objects with| fractal dimensions d’
smaller than the Euclidean dimensionality d of the underlying lattice or space. TI‘hls concept, which is
an application of the Hausdorff-Besicovich dimension, was applied by Leath to percolation clusters
[73). Earlier, Reatto and Rastelli [134] in a discussion of the density profile of Ising clusters, used the



50 D. Stauffer, Scaling theory of percolation clusters

effective dimensionality d’ = 1/ov but did not call it by any special name. For general background on
fractals we refer to Mandelbrot’s books [136]; percolation clusters are discussed more explicitely by
Stanley [106] (see also recently Mandelbrot [137]). Roughly speaking, if the mass (or size s) of a
system varies as (radius)® then d’ is the fractal or effective dimensionality and can be different from
the Euclidean dimensionality d; in particular d’ need not be an integer. We now review many different
definitions, some of which giving the same result, and denote them consecutively by dj, d;, . . ..

Mandelbrot [136, p. 196] used a standard method for estimating the fractal dimension: He divided a
large square lattice into G equal squares, counted the number N of those that are intersected by the
largest cluster, and determined d; through N « G*'. (However, the value 1.78 that he found on p. 197
is presumably biased: B.B. Mandelbrot, private communication, November 1978.) A second standard
method for estimating d’ consists in taking circles or spheres of increasing size and measuring their
contents or “mass”. Forrest and Witten [138] estimated in this way the fractal dimension d; of
two-dimensional electron-microscope pictures of large smoke particles consisting of many small iron
spheres of uniform size. They counted the number N, of small spheres in regions of linear extent /,
and found N, « I'®, giving a fractal dimension d}= 1.6 which is clearly smaller than the Euclidean
dimensionality d =2. The latter would be found if the smoke particles would be spatially homo-
geneous and “compact”. These dimensions di [136] and perhaps also d5 [138] are fractal dimensions,
determined in a way close to the mathematical definition [136] of that concept. The other definitions
listed below are less directly related to these mathematical procedures and are thus called “effective”
dimensions in this review. Perhaps when this paper is published the relations between fractal and
effective dimensions will already be clearer than at the time of this writing.

For percolation clusters at p. the cluster density profiles D,(r) are all similar to each other according
to eq. (41) and depend mainly on the ratio r/s°”, or equivalently on s/r"*”. This similarity law suggests
[134] to call 1/ov an effective dimensionality d3, since we may regard s as the “mass” of a cluster.
Hyper-scaling, eq. (18), gives 1/ov = d — B/v = d/(1+ 1/6). Thus

di(p.) = d|(1+1/8) (42a)

is the effective dimensionality at p = p. as determined from the density profile. Also Harrison et al.
[109], Kunz and Payandeh [79] and Mandelbrot [137] use this combination of critical exponent & and
lattice dimensionality d as the effective dimensionality or fractal dimension. More generally we may
translate our definition R, x s°, eq. (39b), into s « (R,)* where this effective di(p) = 1/p is defined not
only at or near the percolation threshold and differs in different regions for p:

dip>p)=d; dip=p)=dl(1+1/8); dip<p)=1/v, (42b)

according to eq. (39¢c); the last expression is about 3/2 in two dimensions [75].

In a different sense, Stanley [106] looks for a d’ relating the average cluster size S with the average
cluster radius R through S « R% for p - p.. (The above definitions instead were based on s > at
fixed p.) How should one define these averages over all cluster sizes? (See also appendix 1.) If we use
our “typical” cluster size s, and typical cluster radius R,, for S and R we get an effective
dimensionality identical to di(p.), eq.(42a). If instead we define these averages through S =
3, s5*'nf3, s*n, R = 3, Ris**'n,/2, s*n,, we first have to distinguish whether we mean the full sums
or only their nonanalytic parts. The singular parts give S x s, and R x R, = ¢; and the resulting
effective dimension d} with s < R% is the same as di(p.). If instead we do not subtract the analytic
background from the sums, then we get again the same result for k =2, 3, 4, - - - (provided d is smaller
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than & + 1, which is the case for d =2, 3 and 4). But for k=0 and k =1 different exponents result
(details of how to evaluate such sums are explained in appendix 1): Close to the percolation threshold
we have then S = const, R = const for k=0, and S x |p —p.|™", R« |p — p.|*”” for k = 1. Thus with
k = 0 we cannot define an effective dimensionality, and with k = 1 we get ds = ¥/(» — B) which equals 2
for two dimensions and about 4 in three. Stanley [106] chooses k = 1 for the average cluster size s,
which thus diverges with the exponent 7, but takes the typical cluster radius R‘xf = ¢ for R, which thus
diverges with exponent ». Thus his effective dimension d¢ is

1-1/8

=yv=d: 1+1/a

(43)
The same result is also obtained by Forrest and Witten [138] from the correlation function; it was
also supported by Mandelbrot in his earlier papers [136] but rejected in his iast work [137]. In two
dimensions, eq. (42a) glves an effective dimension of about 1.9, whereas Stanley’s eq. (43) gives about
1.8. The difference increases with increasing dimensionality d; e.g. in six dimensions we have
di(p.) = 4 whereas di(p.) = 2.

Fmally, Kirkpatrick [7] defines an eﬁectlve dimension d; by requiring that fot P > p. the mass within
aregion of linear extent ¢ increases as £€*’. If one looks at the infinite network for p slightly above p., the
number of network sites in such a region is about P.£* « |p —p [P¢* « £47#%; thus dj=d - Blv =
d/(1+ 1/8) in this case, a result which agrees with dj(p.) in eq. (42a). But Kirkpatrick [7] also looks at
other quantities X which vanish at the percolation threshold as (p — p.)™. Their effective dimension is
ds=d — B,/v and thus in general different from d; = di(p.). For example, his backbone of the infinite
cluster has a B, of about 3 in two dimensions, giving an effective dimension of the backbone [7] as
about 1.6.

We thus have seen that a variety of different definitions are possible, some of which lead to the

same result for the effective or fractal dimension. The choice of eq. (42a), first suggested by Harrison
et al. [109],

=dJ(1+1/8)

seems to us particularly plausible for critical percolation clusters; moreover it is arrived at by the
majority of definitions and authors [7, 79, 109, 134, 137]. The relations between some of these
definitions are well understood in terms of percolation scaling and critical exponents. It seems likely
[76] that similarity laws like eq. (41) will turn out to be relevant for a proof that the mathematically
well defined [136] fractal dimension in the Hausdorff-Besicovich sense agrees with one of the effective
dimensionalities d' discussed here.

In conclusion, concepts like the fractal dimension of droplet-like ramified clusters are useful
catchwords if one knows what they mean in the given context. But they can also be misleading
headlines when the real situation is somewhat complicated.

5. Lattice animals

So far we discussed properties of percolation clusters llke the cluster numbers n,(p). These
numbers then gave us other quantities like the moments y =2, s°n, < |p — PcI i involving sums over
all cluster sizes s. In this sense the cluster numbers n, of section 3 are mor¢ fundamental than the
moments like y derived from them. Now we go even one step further down to the basics and look at
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eq. (7):
n(p)= 2:, gp (1-p).

Obviously the number g,, of geometrically different cluster configurations, which is independent of p,
is more fundamental than the p-dependent number of percolation clusters, since the latter can be
derived from the former according to the above equation. Moreover, the number g, is simpler than
the number n,(p) since it does not involve the concept of probability. Purely geometric counting is
sufficient. In principle we thus reduced the whole percolation cluster problem to kindergarten
mathematics: How can be put together s square pieces of a domino game?

The number g, is also called the number of (lattice) animals since it refers to the question: How
many different species of multicellular organisms can Nature form out of s single cells? (The word is
due to Harary [139].) Domb [102] reviewed the mathematical background on these animals. The first
scaling theory was attempted by Leath [73] whereas our scaling assumption here is taken from later
papers [71, 89, 91, 126]. For animal numbers in subsection 5.1 we rely on refs. [42, 45, 48, 93]; most of
the material in subsection 5.2 was not published before. We regret that in spite of the intrinsic
simplicity of the problem our description is more mathematical here than in the other sections.
Averages based on the g, alone are “animal” properties, whereas percolation quantities use g,,p°(1 -
p)’ instead.

5.1. Scaling close to critical point

This part discusses the animal numbers g,, for perimeter-to-size ratios f/s near and below the
critical point (1 - p.)/p.; the following subsection 5.2 deals with those animals whose #/s-ratio is near
the maximum of the perimeter distribution function for animals.

First one could think that g, again equals, for large s and ¢t near ¢, = s(1 — p.)/p., a simple scaling
expression analogous to our other assumptions like eq. (15):

8st & S—T" fl[(t - tc)sm] .

But that assumption would be wrong as we will see now by deriving a presumably exact relation
between g., and n,(p), for all finite ratios t/s below (1 - p.)/p.. That result (45b) will be different from
the above speculation. Readers may proceed directly to that eq. (45b) if they dislike our formulas in
between.

Throughout this section we denote the ratio #/s by a and the quantity (1—p)/p by a,. Thus
percolation clusters at the threshold have an average a near a. according to eq. (30a), and we may use
our previous scaling results to get animal properties for a near a. = a, . Let us define

8 =A™, (44a)
where
A=Aa)=(a+1*""a"

is a function introduced by Leath [73], and
g =g(a)=lim E ln(g,,A")]

is the exponent for the leading exponential variation of the ratio g./A* with size s, ref. [89]. Thus the
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remaining factor ()., in eq. (44a) varies weaker with size s than the other factors: lim,_.[(1/s) In (,,]
= Ofor all a. (These limits are taken at constant a = #/s and are assumed to exist and to depend on a only.)
For the numbers n,(p) of large percolation clusters we now get

n(p)= Z Ae*Qup (1-p) = f exp{s[lnA+Inp+a-In(1-p)+g(a)l} Q, dt. (44b)

For large s the maximum of the integrand is determined by the brackets [- - -] since by definition the
factor (), is less important. The expression In A(a)+Inp +a-In(1-p) has a maximum, as a function
of a, at In(a+1)—In(a)+In(1-p)=0, i.e. at a =a, =(1—p)/p, as required also by eq. (30a). The
value of this expression at the maximum is zero, as the reader can easily check himself. Thus if the
function g(a) vanishes [89] we can calculate the above integral by expanding the bracket [- - -]
quadratically in a — a,:

InA+Inp+a-In(l-p)=3a-a,)[(a,+1)"'—a,"1=~-3a—a,)- s/AZ.

Our result A/s = a,(a, +1)=(1-p)/p* again agrees with eq. (29) for the width of the perimeter
distribution function. Eq. (44b) gives, with this assumption g(a) =0,

n,(p) = fexp[—% (a-a,)*- s*IAT) Qu dt = (2m)'"A,Q,
V]

with t = a,s. From eq. (44a), with ¢ = 1, we thus find

g = n(p)A*I2m A"
A=(@@+1)*a*,  Al=s(1-p)p% a=1ts (452)

provided p is calculated through t/s = (1 - p)/p and the function g(a) vanishes. Similar to a Laplace
transform, we thus calculated g, from n,(p).

When is this assumption g(a) =0 correct on which eq. (45a) depends so much? We found above
than InA+Inp+a-In(1-p)+g(a) is zero at its maximum if g is zero. For nonzero g also this
maximum will have a finite value M. Then the above evaluation of n,(p) will lead to a factor e*™ for
n,, apart from other factors varying weaker with s. Such a simple exponential decay of the cluster
numbers for large cluster sizes s is possible only below p. and not above p. [!90], as eq. (11b) shows.
Thus M must vanish for p above p., corresponding to zero g(a) for a below a. = (1 - p.)/p.. (See ref.
[89] for more discussion of this point.) Thus we found eq. (45a) to be valid above p., i.e. for a<a,,
but not below p., i.e. not for a > a.. For a below a. we find lim,_..(g,)"* = A whereas in general we
merely have the inequality lim,_.(g..)""* < A [88, 89]. More discussion of lim(g,,)"’* is found in ref. [91]
which has been critized in ref. [140].

For a above a. eq. (45a) cannot be valid exactly since fig. 12 has shown us already that for large
clusters the ratio #/s no longer equals, in the average, a, = (1 - p)/p. But for p close to p., i.e. for a
close to a., these deviations are quite small: lim,_..(t/s)—(1-p)/p  (p.—p)?*~' [126], as can be
derived from eq. (31). Thus in the scaling regime of large clusters near the critical point we still may
try eq. (45a) on both sides of a., at least for o <3. With n, « s™" f[(p — pc)s°] and A, = V's we get [71,
73, 126]

gaxs T2 A f(2) (45b)
where ‘
z=(p —po)s° =(a.—a)s’/(1+a)1+a.)=(1+a.) *(a.- a)s” = p*(a.—a)s".
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Eq.(45b) is the scaling result for the animal numbers promised at the beginning. It differs by Leath’s
factor A° from the speculation mentioned there. (Note that A° can be rewritten in the symmetric form
(t+5)'"*[t's")) Direct numerical tests of eq. (45) are difficult [73] but it may look more reliable if one
knows that it was first postulated [126] without this derivation and gave correct results for the
perimeter distribution function of percolation clusters, section 4.1.

Thus we derived a presumably exact expression (45a) for large animals with 0 <t/s <a. and a
scaling assumption (45b) for #/s near a.. Only an explicit result for #/s much larger than a. is missing.
Since in a triangular lattice a = t/s can vary between zero and two for large clusters and since a. = 1
there, one could first think that we solved more than half of the animal problem. But this is not so, as
one can see from fig. 19: Most of the animals have a ratio a = t/s near a, which is larger than a.. (We
can see this effect already from fig. 12 where p =0 corresponds to animals.) For example, in the
square lattice we have a, = lim,_.(t,/s) = 1.2 for animals [52, 75] but a. = lim,_.(t,/s) = 0.7 for critical
percolation clusters, eq. (30a). Thus for large s the difference between the average animal perimeter
and the average percolation perimeter at p. is about 0.5 s in the square lattice (and about 0.6 s in the
triangular, 0.3 s in the honeycomb lattices [52]). The width of the perimeter distribution function
increases only as s"2 Thus for increasing s the region of #/s below a. covers only an exponentially
decreasing small fraction of the wings of the animal distribution. Therefore the next subsection 5.2
deals with the behavior near a, where most animals live, not with the few domesticated animals near
a. or below a. which obey eq. (45).

Why is the animal problem a percolation problem at p = 0, as mentioned above [52, 75]? (Note that
we keep s fixed and look at the average ¢, over all perimeters.) The animal perimeter ¢, is defined as
2.t 242, g, the percolation perimeter as

t, = Z t- ns,/z Ny = Z tgap°(l -p)'/z gwp'(1-p) = Z t-g.(l —p)‘/Et: g:(1-p)'

according to eq. (28a). For p close to zero the factor (1-p)' cancels out, provided various limits can
be interchanged. Indeed figs. 12 and 14 show that the limit p >0 agrees with the result at p =0, as
expected: At fixed size s the animals are the p -0 limit of percolation clusters. In the method of
section 2.2.3 thus simply all “animal” configuration were taken as equally probable by putting p =0 in
the percolation computer simulation.

Figure 16 shows that the density profiles of large animals are similar to each other, D,(r)=
§ 7033420010 | 15 (pf 06600007y "analogously to eq. (41) but with different exponents [76]. The perimeter ¢,
for animals obeys f, = aos + const according to series [52] and Monte Carlo [75] results, compatible
with the behavior expected for percolation clusters below p., eq. (29).

g, larbitrary units)
H

Fig. 19. Distribution of animal perimeters in the square lattice at 5 ~ 102, Critical percolation clusters have #/s near a. = (1 - p.)/p. = 0.7 whereas
most animals have a larger perimeter with f/s near a,= 1.2, as can be seen from fig. 12. (Schematic.)
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5.2. Exponents away from the critical point

To get the number of animals g, in the region ¢/s = a, above a. we assume that the distributions are
Gaussian peaks with a width increasing as s '’ for large s:

g = (c2ms) P exp[~3c(a - ap)’s] g (5%, a=1tls) (46a)
g = )_‘, - (46b)

Here a, = lim,_.(t,/s) and ¢ are suitable constants to be determined later. First we will deal with the
total number g, of s-animals, eq. (46b).

Similar to our g, « s~"""*A(a.)’ at the critical point a = a., eq. (45b), Sykes et al. [42, 45] assume
g = s+ A° with two free parameters @ and A. Following a suggestion of Domb [102], Guttmann and
Gaunt [93] fit the same series results more generally for large s by

]

g xs A -exp(—const:s ) ' (46¢)

with a third exponent o to be determined by “experiment” also. ( is related but not identical to the
exponent w in correction-to-scaling theories [87].) If @ would be negative then the exponential factor
in eq. (46c) would be more important, for large s, than the prefactor s~°, casking doubt on the older
analysis [42,45] for @ as well as on analogous assumptions like eq. (27) for percolation cluster
numbers. Fortunately » turned out to be positive, whence we may expand exp(—const-s )=
1—const- s~ in eq. (46c). This correction factor is entirely analogous to eq. (22) for n,(p.). Even the
numerical value obtained in two dimensions, @ = 0.75 +0.1, is consistent with the correction exponent
of about 0.7 obtained for eq. (22) from Monte Carlo [26] and series [19] data. Thus there is at present
no reason to doubt the validity of g, « s™°-A° for large enough s. The exponents 8 and w are
supposed to be universal, i.e. to depend on the dimensionality d only. For example, 6(d =2) =
1.00+0.01 [93]. For higher dimensions this exponent 6 was listed already in ref. [45, table II]; for
d=3 we have [93] @ =0.65+0.2. The parameter A depends on the lattice type; we have [93]
A =4.063+0.002, 5.183+0.001 and 8.34+0.02 for the square, triangular, and simple cubic lattice,
respectively. . |

In eq. (27) we have used the same exponent @ for percolation clusters beldw p. as for the animal
numbers in eq. (46¢), since again the animal @ is the p =0 limit of the percolation 8(p): If the limits
p >0, s > can be interchanged, then

n(p-0)= Z g.p'(1-p) = 2", gap’ * s~ °(Ap)".

Thus for sufficiently small p, the disturbing factor (1 - p)* cancels out, and the numbers g, of animals
become identical to the cluster numbers n,

n,(p =>0)=gp°[ s °(pr)” for s >] (46d),

apart from a simple factor p°. Therefore, for g, and n,(p = 0), also the two exponents 9 agree. Indeed,
numerical analysis [49] of series data [42] gave 6(p —»0) = 1.0 from the clustenj3 numbers n,(p), in full
agreement with the exponent determined from the animal numbers for the same (triangular) lattice.
(See also ref. [80].)

Now we explain the value A =4.06 in the square lattice, eq. (46c), by using our numerically
determined percolation perimeters of fig. 12. Let a.. = a.(p) be the average perimeter-to-size ratio



56 D. Stauffer, Scaling theory of percolation clusters

lim(t,/s) for large clusters below the percolation threshold, where a.. = (1 — p)/p no longer is valid. We
abbreviate lim,_..((1/s) In n,) by g, = g:(p); this function vanishes for all p above p. according to eq.
(11b). For large clusters, eq. (28¢c) gives a.. = (1-p)/p — (1 — p)dg,/dp, that means

Pec

gi(p) =In(p/p.) + f %—?dp'.

On the other hand for p near zero we have, as mentioned above, n, * s “°(Ap)’, and thus g,(p »0)=
In A +1n p + O(p). In the comparison of these two results for g, the diverging term log(p) cancels out,
and we get

InA =In(l/p.)+ J' ‘;L_(l;} dp. (47a)

With the known data for a..(p), fig. 12, and the numerical integration of eq. (47a) we get A =4.1+0.1in
the square lattice, only one percent larger than the true result 4.06 from series approximations [42].

With similar methods we may even improve on the simple approximation (46a) to get the leading
s-dependence of g, for most ratios /s, not only near t/s =a, and t/s =a., the “animal” and
“percolation” averages. (As before we assume the limit of s and ¢ going to infinity at constant ratio a
to exist and to be a smooth function of a.) Equation (44b) tells us that a.(p) is determined by the
maximum of the function InA+aln(l—p)+g(a), with p fixed and a as variable. Since the a-
derivative vanishes at the maximum, we get —dg/da = In[(1 + 1/a.)(1 — p)] as the condition for a = a...
Integration gives

~8(@ = [ {1+ t/a.)(1 - p(ay)] da 47b)

where again the relation between a.. and p e.g. from fig. 12 can be used. (It does not matter whether
the integration in eq. (47b) starts at zero or at a. since for all a.. below a. we have a..=(1-p)/p, eq.
(30a). Thus the logarithm in eq. (47) and g(a) vanish there.) Figure 20 plots semiquantitatively this
function g(a) for the square lattice.

Equation (44a) gives lim,_.((1/s) In g) =In A + g(a) with a = t/s; and for a - a, we have from eqgs.
(46, 47a) lim,_.((1/s) In g.,) = In A. Comparison gives, with the help of eq. (47b):

ap

A =Aay) - e¥“”;  g(ag)= I Inf(1+ 1/a.) (1 - p(a.))] da. 47¢)
0
-9
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008 - gla<a)=0
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Fig. 20. Estimate of the (negative) function g(a) and its derivative, eq. (44a).
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Since ao = 1.2, fig. 12, and g(ao) = —0.1, fig. 20, for the square lattice we thus have
A=[(ap+ 1)*agle* ™ =4.1,

again in excellent agreement with the desired result [42). We may also determine g(a,) from 4, and A,
as given by Duarte [52] for the triangular and square lattice, and again find g(ao) = —0.1. We see no
reason, however, that this quantity should be exactly universal. The numerlcal agreement found for
A =4.1in the square lattice seems to be the only test of this ammal theory known at present.

(The constant ¢ in eq. (46a) is given [89] by ¢ = a;'(1+ ap)”" —g"(ao), Wthh is about 2.4 in the
square lattice. An unexplained exponent is the relation [48] s, « t* for ammals where the perimeter ¢
is fixed and one looks at the average size of animals which have a given perimeter.)

Let us summarize our animal results here: For the leading s-dependence of the animal numbers g,
we have a general result (for 0 < t/s < a,)

ga~A'e*  (A=(a+1)"/a") ‘ (482)

with a = t/s, and a function g(a) given e.g. by fig. 20; g vanishes for a below a.= (1 - p.)/p.. Near
a = a., the region relevant for percolation scaling, also the prefactors neglected in eq. (48a) are
important and lead to eq. (45b):

g x 82 A flpka.— a)s®). (48b)

The scaling function here is the same as that for the percolation cluster numbers in eq. (15), since
rather generally the cluster numbers and animal numbers are closely related by eq. (45a), for p above
p.. In this sense the problem of most animal numbers seems solved in the asymptotic limit: In genera!
the function g(a) in eq. (48a) describes the leading dependence on s; and the additional prefactors
needed for percolation scaling are given in eq. (48b).

6. Other percolation problems

6.1. Random resistor networks

Already in subsection 1.1 we mentioned the question: how does an electric current flow through an
inhomogeneous medium? Imagine than each elementary cell or small cube of a large simple-cubic
lattice is randomly either a piece of electrically conducting copper (with probability p) or a piece of
insulator (with probability 1— p). An electric current is supposed to flow from% one copper piece to its
neighbor only if both cubes have one surface in common; no electrical connection is made by the
edges or corners alone. Then an electric current flows through the whole lattice only if an infinite
network of copper pieces is present, i.e. for p above p. only. Let us for simplicity set the copper
conductivity equal to unity and the length of the lattice also equal to the unit length. The size of the
elementary cube and the coherence length are then much smaller than unity. A unit voltage is applied
to two opposing faces (of unit area) of the lattice. The current now flowing through the lattice is called
the conductivity 3 = X(p). We review this property only shortly here since our review concentrates on
percolation clusters. References [7, 13, 14, 15, 141-146] give real or computer experiments, and refs.
[7, 146] review the scaling theory of conductivity.

Close to the percolation threshold p. a positive exponent u (also called ) can be defined through
3]

Sx(p~-p) (49)
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the conductivity is zero below p.. Table 2 already listed numerical estimates for this exponent, but
they are in general less accurate than those for some other exponent. For example, two-dimensional
Monte Carlo data [7] give u = 1.10+0.05 whereas a series prediction [108] is u = 1.43. Our estimate
p = 1.2 in table 2 is therefore not very accurate. How can we relate this new exponent u to our earlier
exponents like o and 7?

Following Skal et al. [5, 141, 147] we imagine the infinite network slightly above p. to consist mainly
of one-dimensional channels with a few crosslinks, fig. 21. The distance between two nodes is of the
order of the coherence length £ « |p — p.|™" whereas the length of the chains connecting the nodes can
be longer and is assumed to diverge as (p — p.) "¢, with a new exponent ¢’ (in the literature our prime
is usually omitted). Of course this picture of one-dimensional channels is only an approximation [3]
and requires that we remove all dead ends of chains which contribute to the percolation probability P..
but not to the conductivity . Even then this “backbone” of the infinite network looks in reality
[7, 148] quite different from the above picture, fig. 21. Since modifications make it more complicated
without giving a simple generally accepted result [147] we still use here the simple picture of channels
to calculate 3, even though it may be wrong for d = 2.

Since the distance between two roughly parallel, current-carrying channels is of order ¢, the total
number of such paths in our lattice is about 1/¢7 in three and 1/£“"" in d dimensions. Each path leads
from the top to the bottom of the lattice and thus consists of about 1/¢ one-dimensional chains
sections separated by nodes. Each section between two nodes has a length < (p — p.)~*; and thus a
whole path leading from top to bottom has a length «(p — p.)” ¢ and a conductivity < (p —p.)*~".
Taking together all £¢'¢ « (p — p.)'*™"” such paths we find their combined conductivity to vary as
S« (p—p) ¢ V"*¥7". Thus the conductivity exponent is [141]

w={+(d-2w (50)

It is tempting to assume [141] {'=1, i.e. uw = 1+(d —2)r. Then we have u = 1 exactly, apart from
possible logarithmic correction factors [149], in two dimensions. This result may be compatible with
the most recent computer simulations [7] and agrees with the epsilon expansion near six dimensions
[108, 147]. (In six dimensions we have [149] u =3 and {’' = 1.) But in two dimensions this assumption
{' =1 together with » = 1.35 makes the above picture internally inconsistent: Then the length of the
chain segments connecting two nodes at distance ¢ would have to be smaller, not larger, than this
distance ¢ if p is sufficiently close to p.. Perhaps we have ¢'(d <4) # 1 but {'(d > 4) = 1 [108, 149]. For
example, {'(d =2) = v has been suggested [150]. Or perhaps there is no simple relation between the
conductivity exponent p and the cluster exponents like o and 7. Contrary to our understanding of

E:

Fig. 21. Approximation for the structure of the infinite current-carrying network of resistors. The true distance between the nodes is of order
&= (p - p.)~", whereas the length of the chain segments connecting the nodes diverges as (p — p.)7¢, ¢’ = 1, ref. [141].



D. Stauffer, Scaling theory of percolation clusters 59

cluster numbers and other cluster properties, no drastic improvement seems to have occured for the
scaling theory of percolation conductivity since the older reviews [3] were written.

More fruitful were scaling ideas for relations between different conductivities if good and bad
conductors are mixed, instead of conductors and insulators. Then the conductivity at p = p. is not
zero, it increases smoothly with increasing concentration p of good conductors. Let R...q be the ratio
of the conductivity of “bad” conductors to “good” conductors (set equal to unity again). Now the
total conductivity 3 depends on the two variables p — p. and R...s. References [146, 150-152] make a
scaling assumption of the same type as we have seen it repeatedly in this review:

E(P’ Rcond) = (Rcond)u ' ¢[(P - pc)(Rcond)—u/“]- (51a)

In this assumption analogous e.g. to eq. (15) a new exponent # and a new scaling function ¢ = ¢(y)
are introduced. For R...a = 0 we have again a mixture of conductors and insulators and must recover
€q. (49). Thus the scaling function ¢(y) varies for large arguments y as y*, and then R...q cancels out
of the conductivity in eq. (51a). (More precisely we constructed eq. (51a) sud:h that R_..q cancels out
for R...a =0, as required by eq. (49).) Right at p = p. it is the difference p — p. which has to cancel
out; thus ¢(0) has to remain finite, giving 2 = (Rcona). Finally, below p. for small R.o.q the
conductivity must be proportional to R..nq4 since then the bad conductors, not the good ones, give the
main contribution to the resistivity. Thus ¢(y -~ ) « (=y)* ™™ or 3 « R oma(pc — p)* . We now
summarize these three cases y>+®, y—>0, and y > —:

Sx(p-p)* (Reona— 0 above p,)
3 « (Reond)” p=p) (51b)
2 o« (pc - p)y.~u/u * Rcond (Rcond"’o belOW Pc)-

(The positive exponent ufu — u is called s by Straley [146]; the exponent u is called s by Efros and
Shklovskii [151]; and both papers denote our ux as t.) In the above discussion we took the “good”
conductivity as unity and the bad one as Rconq; Otherwise all results in eq. (51b) must be multiplied by
the “good” conductivity. If we mix a superconductor (infinite conductivity) with a normal conductor,
this latter formulation has to be used; below p. the conductivity then diverges as (p.— p)* ™
multiplied with the normal (“bad”) conductivity arising from the factor R.,.q in €q. (51b).

In two dimensions duality arguments [151,153] give u =3 exactly, and thus u/u —p = u: The
conductivity of a metal-insulator mixture film vanishes above p. with the same exponent as the
resistivity of a superconductor-metal film vanishes below p. (Levinshtein [128]). In three dimensions
one has [146] 4 = 0.7 and thus p/u — p =0.7 whereas # = 1 in six dimensions. Further exponents are
listed by Straley [146] and, for x only, by our table 2.

Experimentally we mention the possibility [145] of varying p —p. very finely by using the
dependence of the volume fraction p on temperature, if the two materials mixed together have two
different coefficients of thermal expansion; a reasonable exponent u = 1.8 was found in this way for
three dimensions. For more experiments see refs. [9, 143, 146]. Also the Hall effect in a resistor
network and the influence of random capacitors have been discussed [3, 154, ;155].

6.2. Modifications of percolation

6.2.1. Miscellaneous ‘
BOND PERCOLATION: What we discussed so far was mainly the site percolation problem with
nearest-neighbor bonds. One can also look at “bond percolation” where each lattice site is occupied
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and where each bond connecting two neighbors is randomly in one of two states. This bond
percolation problem seems to belong to the same universality class as site percolation, e.g. it is
described by the same exponents [105, 107]. Also for the resistor network, the bond percolation
problem refers to mixtures of conducting and insulating connections between lattice sites. Actually
some of the numerical exponents quoted earlier refer to the bond problem, not to site percolation. For
a combination of site and bond percolation we refer to ref. [156]. In special cases [2], bond percolation
is transformed exactly into site percolation in a different lattice.

LONG-RANGE INTERACTION: Most percolation studies define a cluster as a group of occupied
sites connected by nearest-neighbor distances. Again the universality concept asserts that the scaling
behavior (critical exponents; shape of the scaling functions) does not change if also next-nearest
neighbors are taken into account as parts of the same cluster, or if even longer ranges of interaction
are used. Work on the bcc lattice with nearest and next-nearest neighbors showed no peculiarities
[26, 69] compared with simpler lattices; and even longer ranges of interaction showed the same critical
exponents [24].

In the opposite direction goes a recent attempt to describe dilute magnetics where the local
magnetic moment is formed only if sufficiently many magnetic atoms are clustered together. Thus
each site in a cluster is required [157] to have at least m occupied sites as nearest neighbors. It is not
yet clear [157] if the scaling behavior of this model differs from the usual percolation problem
(corresponding to m = 1).

POLYCHROMATIC PERCOLATION: If each lattice has not one but several states it can be in, the
lattice now is no longer just black and white. Little is known [158] on cluster properties so far.

TREES ON A LATTICE: If in bond percolation on a lattice the clusters are restricted to be tree-like,
with no cyclic bonds allowed (cyclomatic number = zero) then the scaling behavior is different from
ordinary percolation. This problem corresponds [21, 82] to the zero-state Potts model of section 2.3.2;
according to Wu [82] no phase transition occurs on the square lattice.

6.2.2. Continuous percolation

A major unsolved problem for percolation scaling is the question: How important is the existence
of a lattice structure? Are the exponents the same if the sites are distributed randomly in a continuum
instead of on a lattice? Computers like to have the sites on a square or simple cubic lattice, but many
random processes in nature happen in a continuum, not on a periodic structure. The problem is
analogous to a question in thermal phase transitions: Are the critical exponents calculated in a lattice
gas (Ising) model of fluids the same as those observed at real liquid-gas critical points of, say, H,0? In
the lattice gas the molecules are restricted, similar to lattice percolation, to sites of a periodic lattice
whereas in real water they can move more freely. Recent high-precision measurements and im-
provements in the theoretical lattice-gas predictions seem to allow the conclusion that in three
dimensions the exponents are (nearly) independent of the lattice [159]). For percolation, the renor-
malization group approach also suggests the lattice to be unimportant. Monte Carlo cluster numbers of
Fremlin [160] for continuum percolation seem not accurate enough to give critical exponents. We
refer to Webman et al. [161; see also 145] for the exponent x of random resistor networks in a
continuum; earlier literature is cited there. More information on continuum percolation seems needed
to arrive at clear conclusions.
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6.2.3. Interacting percolation

What happens if the probability of one site to be occupied depends on whether or not its neighbors
are occupied? A simple model to incorporate such correlations, which are ignored in random
percolation discussed so far, is the Ising model of ferromagnets (or lattice gas model for fluids) at
finite temperatures T. Here probabilities are proportional to exp(— E/ksT) where E is the energy of a
given configuration. In the Ising model we define

E=-J> Y S8§-HY S; S=x1 = (52)
i<j i

The double sum runs over all pairs of nearest neighbors on a lattice. If the “spin” S; is positive we call
the site i occupied; it is empty for negative S;. The concentration p = 3(1+(S;)) of occupied sites is
varied by the “field” H (chemical potential); the larger H is the larger is p. ((S;) is the average over
many configurations for one site i or, equivalently, the average over all sites excluding those
influenced by the boundaries of the system.) Clusters of occupied sites were investigated with this
model in two and three dimensions, starting with refs. [33, 35]. In two dimensions one has p. =3 [162
with earlier refs.], which agrees with the “Curie point” at T. for magnetic properties. (For H = 0 the
“magnetization” (S;) is nonzero only for T below T..) The second moment 2, s’n, diverges for H =0
as (T-T.)™”, y=191 in two dimensions [163]; this exponent is smaller than the corresponding
y=2.43 for random percolation, table 2, but larger than the exponent 1.75 for the magnetic
susceptibility d(S;)/dH at H = 0.

In three dimensions, unfortunately the percolative and the magnetic phase transition happen at
different critical points, i.¢. the threshold for interacting percolation is at a concentration p(T) smaller
than the concentration 3 where the Curie point is located [35, 162). Thus if one wants to describe the
three-dimensional Curie point by a cluster model [34] one has to define ‘‘clusters” differently: No
longer are they just groups of parallel spins with nearest-neighbor connections, as assumed in the
Monte Carlo studies [35,37]. Instead they may represent fluctuations in an averaged local mag-
netization [36, 96, 120, 127]. But little progress has been made in putting these ideas into a definition
simple enough for computer handling.

Recent progress in two dimensions makes the situation more hopeful there [25, 115]. Since Curie
point and percolation threshold agree in two dimensions [162) we may still define clusters as usual. At
H =0 near T, the radius of typical percolation clusters diverges with the same exponent v = 1 as the
spatial range of magnetic correlations, & « (T — T.)™", ref. [25]. For fixed temperature T above T, the
typical cluster radius diverges as (p.— p)~*, with the same v =1.35 as for random percolation [25].
The cluster numbers at T = 2T, obey roughly a scaling relation like eq. (15); but the scaling function
fl(p — pc)s”] seems to have a shape different from that observed in random percplation [115). Thus, in
spite of the results of Klein et al. [25] for the correlation exponent, the interacting percolation problem
does not share the same universality class with the random percolation problem, not even in two
dimensions.

Random percolation in this Ising model corresponds to infinite temperature T and infinite field H at
finite ratio H/T. For then the interaction between neighboring sites, which influences the occupation
probabilities through the ratio J/ksT, is negligible. Thus percolation can be regarded as both the
infinite-T and the zero-Tglimit of suitable magnets. (An even more complicated system [164], the
magnetic alloy, has on each lattice site one of two sorts of atoms; and each atom has a magnetic
moment which points either up or down.) Monte Carlo studies of these Ising clusters at finite
temperatures are not only relevant for percolation but also for other questions, see ref. [165] for a
recent paper with earlier references.
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6.2.4. Dilute magnets at finite temperatures

The influence of finite temperatures is also a major problem for the dilute magnets of section 1.1,
which were discussed there only at T-=0. At nonzero temperatures thermal motion can break the
exchange interaction between two magnetic moments within one cluster and make them antiparallel.
Then the methods of section 1.1 break down. Better theories have to distinguish between isotropic
(Heisenberg) and anisotropic (Ising) magnets.

In the isotropic case one may look at “‘spin waves” as statistically independent thermal excitations;
these “‘magnons’ are harmonic waves in the direction of the local magnetization, just as sound waves
are harmonic waves in the local mass density. It turns out [3, 166] that the frequency of these spin
waves varies near p. as (p — p.)* ?/(wavelength)’, with the exponents 8 and p for percolation
probability and conductivity, respectively. With this spin-wave approximation the variation of T.(p)
near p. and the dependence of thermodynamic properties on temperature for T—>0 has been
estimated. For example, T.(p) approaches T.(p.) = 0 roughly linearly in p. We refer to Shender [167]
for details and earlier literature.

For anisotropic magnets the phase transition temperature T.(p) vanishes near p. as 1/log(p - p.).
The behavior near this transition is described by exponents which are in general neither those of the
pure magnets nor those of percolation. We refer the reader to Lubensky’s recent review [168].

7. Conclusions

This review centered on the scaling theory of percolation clusters: How do the properties of
clusters depend on the cluster size s, and how does the phase transition at p. enter these properties?
The answers to these questions were described by several exponents o, 7, 6, {, p. Of these five
exponents, o and 7 (and theé critical exponents a, B, vy, 8, v derived from them) are defined only near
the percolation phase transition p = p., whereas the asymptotic behavior of cluster numbers and radii
for s > o defines £, 6, p both far away-and near p. through egs. (23, 27, 39b). We saw that the latter
exponents were different [70] above and below p.; for example, {(p <p.)y=1and {(p >p.)=1-1/d
in d dimensions, eq. (26). On the other hand, the critical exponents o and 7 are the same on both sides
of the phase transition and describe the cluster numbers there through eq. (15), a generalization of the
Fisher droplet model [34]. Analogous expressions were proposed, as summarized in eq. (42), for the
excess perimeter, the radius, and the density profile of clusters. Such simple scaling assumptions are
familiar from thermal phase transitions. We also saw two examples where scaling expressions like eq.
(42) are invalid: For the number of animals it is g,/A°®, and not g,, itself, which follows a scaling form,
eq. (45b). And for the perimeter distribution, no scaling assumption like eq. (35) is valid. The
universality concept states that exponents and the shape of scaling functions do not depend on
microscopic details like lattice structure. We saw this assumption confirmed in general, but an
exception will be discussed in appendix 2.

In this sense the percolation clusters can serve as a simple introduction to scaling theory of critical
phenomena at phase transitions [12). For percolation the definition of the problem is particularly
simple. It requires little background knowledge like thermodynamics, magnetism etc., for percolation
merely combines geometry with probabilistic aspects. The more fundamental “animal” problem of
section 5 even avoids the probabilistic concepts. Thus the animal problem, how to put together a given
number of dominoe squares, is defined on a kindergarten level. In high school we may ask for. the
average number of percolation clusters obtained by flipping coins at concentration p = 3. Different
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quantities are related to each other by scaling theory, which requires sometimes college-level
mathematics. More complicated ‘“‘graduate” work is required to produce these quantities (like cluster
numbers on a computer, or exponents in renormalization theory). Our review skipped over these
complications but also pointed out unsolved problems.

In order to bring this review up-to-date we also covered problems, particularly in section 4, where
no consensus is evident from the present literature. Only the cluster numbers of section 3 have been
confirmed by different authors with a variety of methods. Thus future research may not only put more
emphasis on points neglected here; it may also invalidate some conclusions particularly in section 4.
Figure 1 suggested already quite clearly that percolation is not yet solved entirely. As mentioned at
the beginning, the reader will get a more balanced view by reading other reviews, too [5-9]. We also
refer to these reviews for a discussion of experiments, like the famous spread of disease in orchards
[1-3]. Such experiments have seldomly given information on the cluster properties emphasized here.

Further research in the immediate future could center on testing scaling assumptions by Monte
Carlo work. The majority of present Monte Carlo studies is restricted to two dimensions. But three
dimensions are more relevant for applications, and higher dimensionalities are of theoretical interest
to study the transition to classical behavior at the phase transition. Continuum percolation is more
complicated but also more realistic than the lattice percolation emphasized here. A discussion of
cluster properties by renormalization group techniques has barely started [79, 80, 114]. What cluster
radii do series methods predict? Of course, should an exact solution [25] of percolation become
available, such approximate methods would be only of historic and didactic value.

Even within the phenomenological scaling theory many questions are still open: Is the conductivity
exponent u related to the cluster exponents o and 7? How can we explain the exponent 8 of eq. (27)
below p., and what is its true value above p.? Why is the radius exponent v, below p. close to intwo
dimensions? What happens if clusters and animals are characterized by their perimeter ¢ instead of
their size s [48], particularly near p = 1? Which of the modifications of percolation mentioned shortly
in section 6 form a new universality class?

This review was a snapshot of the situation in December 1978, as seen by the author. Thus we
conclude, for the reader’s amusement, with a historical remark. During the nineteen-thirties J.E.
Mayer was one of the founders of cluster theory for collective phenomena, as developed here in detail
for percolation near p.. In a review of his “Statistical Mechanics™ textbook it was asserted quite
recently [169] that “the Mayer theory is no longer an active area of research in statistical mechanics”.
Mayer, in his reply [151], admits that the cluster development “certainly is obsolete in treatments of
critical phenomena”. Throughout most of this review we explained critical phenomena by clusters.
Thus we hope to have convinced the reader that it is Mayer’s recent remark arid not his original ideas
which are “obsolete”. One merely has to select the right phase transition to study clusters: The
percolation problem.

We thank numerous researchers in the field for helping us throughout many years with preprints,
discussions and criticism. K. Binder, J.A.M.S. Duarte, H.J. Herrmann, W. Kinzel, S. Kirkpatrick, B.B.
Mandelbrot, H. Miiller-Krumbhaar, S. Redner, the referee, and in greatest detail P.J. Reynolds and H.
Nakanishi helped to improve earlier versions of this paper. ‘
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Appendix 1. Evaluation of sums

A.l.1. Derivations

How do we calculate the nonanalytic part of sums over all cluster sizes s, like [ s*n,)cqe in eq.
(16), if we assume the scaling assumption n, = qos "f(2), z = (p — p.)s° to be valid, eq. (15). Basically
we replace the sum by an integral since only large clusters are responsible for singularities, and
evaluate the integral apart from numerical factors by a substitution of variables. For this purpose we
will often use dz/ds = oz/s at fixed p.

For example, we find for the kth moment of the cluster size distribution:

o0 o +oo

> s*n, =j s“ny ds = qo f s*7fl(p — po)s°1ds = (qolo) I s 27 f(2) dz

0 0

= qOlep _pcl(‘r‘l“k)/d j |z|(1+k—‘r)/0' . Z—lf(z) dz

- Ip _pcl2—a—k36 . qOBS . J’ |Z|k68+a—3 . f(Z) IdZ|- (53)

(In this appendix all integrals over z run from 0 to +> above p. and to —x below.) Thus eq. (16) is
confirmed. (For the last equality we used the scaling laws (18).) Possible sign errors are easily
corrected at the end since both n; and f(z) are always positive. Thus we found the critical exponent
for the kth moment to be 2 — a — kB6 provided none of the following problems invalidates the above
“derivation”: By replacing n, with qos ™" f(z) we made an error for small s, affecting additional
correction terms which are part of the analytic background. This background is unimportant if the
whole sum diverges or if only the “singular” part is investigated. Secondly, the prefactor qo may
depend smoothly on p, giving correction factors of the type 1+ O(p —p.). Again this error is not
relevant for the leading nonanalytic part of the sum. Finally, of course, the integral on eq. (53) must
exist, and here some caution is needed.

For large =z the scaling function f(z) decays exponentially, and thus for any finite k the integral in
eq. (53) has no problems at +«, But for z -0 we normalized f(0) = 1, and the integral may diverge at
z =0, which simply means we were not allowed to replace the sum by an integral right at the
beginning of eq. (53). In that case small clusters are more important than the typical clusters,
s ~ s¢. For example, to evaluate 2, s - n, we have k=1 and |z|*****™*=|z|™®"", whence the integral
diverges at its lower boundary z =0 for positive B. The reason is simple: In X, s - n, the main
contribution comes from s =1,2,3,..., and the sum has to give p(1- B(p — p.)® +- - -) according to
eq. (4), if P.= B(p—p.)® near p.. Thus the nonanalytic part we are interested in is only a small
correction to the leading analytic background. Such problems occur whenever the sum in eq. (53) does
not diverge, i.e. when 2 — a — kB8 is not negative.

But even in these more complicated cases eq. (53) is still correct if we look at the nonanalytic part
[Z; $*1, sing Only. Why? In our above example, =, s - n,, we may look at the derivative with respect to
p. For B between zero and unity, as we assume from now on [50], this derivative equals —~B8pB(p —
p.)® +- -+, and the analytic background term X, s - n,(p.) = p. has cancelled out. On the other hand,
with dn,/dp = qos” "f'(2), f' = df/dz, we get
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L)

a% ; §ns=qo I s 1+a—7 'f'(Z) ds = (qo/U) f IZI(Z—T)/U . fl(z) IdZI

= qobdlp —pd*™ [ Il £ 1zl

(f'(0) is finite, and thus the integral converges at both boundaries.) The exponent thus agrees with the
conclusion from eq. (53) with k = 1. Moreover, a comparison of the two expressions for the derivative
gives for the amplitude B above p.:

B = —(qob/p.) f z7 % f(2)dz (54a)

Generally one may take the mth derivative (d/dp)™ 2, s*n,. If this sum contains a nonanalyticity
x|p —p.[* and one wants to determine the nonintegral positive exponent x, then with any m larger
than x this mth derivative diverges as [p — p/*™™ and can be evaluated as an integral:

(@dp)" 3 stn, o qoBslp — p 71 [ [k £ ) g

%[p—pd e,
Thus we confirmed eq. (53) for the critical part of the sum: x =(r—1-k)/o =2—a —kBS. For
example, in the average number of clusters, k =0, the third derivative, m =3, finds out the
nonanalytic part. (All derivatives f™ =d™f/dz™ exist if we assume as in section 3.1 that f(z) is
analytic in its argument.)

An alternative to this derivative trick is to subtract the disturbing background. Let us take again the
sum 3Z,s-n, i.e. k=1, and assume 0<B <1. Right at the percolation threshold we have
Zs5 ' n(p.) = p. from eq. (4). Now we look above p. at

me=p—g s "s(P)"“Pc_g $ ns(p)=§ s[ns(pc)—ns(p)]

=do f s 7TIf(0) — f(2)1 ds = qoBSlp — p|® f |21 27" ) - f(2)] |dz]. (54b)

0

This expression equals pB(p —p.)? +---, and thus we have found for the amplitude B of the
percolation probability P.

B=@slpd) [ 2 O - f@) dz (54c)

above p.. The integral converges at the lower boundary since f(0)— f(z) vanishes there as z. And,
triumph of mathematics, partial integration of eq. (54c) recovers eq. (54a).

For p below p. no infinite network is present, and =,s - n,(p)=p without the correction pB(p —
p.)°. Thus the integral in eq. (54b) must vanish below p., as pointed out (in a similar context) by
Reatto [134]: |
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3 o

[ - f-2ndz=00r [ 27 f-2)dz =0, (54d)

0 0

(For clarity we replaced the integration variable z in eq. (54b) by —z in eq. (54d).) This ‘“‘sum rule”
[50, 67] restricts the choice of the scaling function f(z). In particular f(z) cannot be symmetric about
z =0 since then the amplitude B would be the same on both sides of the phase transition. Equation
(54d) also explains why there is a maximum in f(z) at negative z: The derivative f'(z) cannot have the
same sign for all z below p. since then the integrals in eq. (54d) cannot vanish. The simplest choice for
f(2) to obey the laws (54d) is to have a single maximum at negative z, and no maximum at positive z.
And this behavior is exactly what we observed in section 3.2. The Bethe lattice solution, with
log f(z) = —27, is therefore a highly special case, incompatible with our assumption [50] 0 <8 <1.
(Equation (54d) was challenged in ref. [89] but confirmed numerically in two dimensions [51].)

A.1.2. Applications

With similar methods we evaluate the magnetization M = M(H, T) in the low temperature limit of
dilute magnets, eq. (5):

M= Milp - p.° =+ B +(qoB5/p.) f |21 tanh(|z|** - Hy) - f(2) |dz] (54¢)

with H,= Hu/ksT|p — p.|®®. Thus the “scaled magnetization” is a function of the *“scaled field” only:
M, = M(H,), and p —p. no longer appears in this relation explicitly. This scaling function M(H,) is
given in eq. (54¢) explicitly by an integral involving the cluster scaling function f(z). The amplitude B
for the spontaneous magnetization, B = M (H, = 0), is the same as in eq. (54a, ¢) and vanishes on the
paramagnetic side, eq. (54d). As required, only the ferromagnet has a spontaneous magnetization
M(H =0)#0. In the ferromagnetic state, i.e. above p., the =B term in eq. (54¢) gives +B in the
stable phase and — B in the metastable phase, if H > 0. For negative H the signs are reversed. The =B
term in eq. (54e) arises from the infinite network whereas the integral is due to the many finite
clusters. Of course, just as with nearly all other formulas in this review, eq. (54) is valid only for p
close to p..

In eq. (6d) the evaluation of 3, s - n,(p.) e " is even simpler mathematically: We merely substitute
y for hs and get

@

pe=2 s n(p)e™ =2 s n(p) (1-e™)=qo f s'"TA—e ™) ds

0
=goh™’ f y' (1-e7)dy = qoh " f y . (1-e)dy=p.E-h".
0 0
The amplitude E at p = p. is therefore, after partial integration, given by
E =(qodlp.) I y " e™ dy = (qodlpIT(1—1/8) (55)
0 .

where the gamma function of 1—1/8 is about 1.04 in two and about 1.16 in three dimensions. In this
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way we calculated the prefactor g, from the amplitude E [19, 55] in section 3.2.1. Since E is usually
close to unity and 8§ is quite large one may also get a reasonable estimate for qo from p.=
38 n(P)~qoZs s = qol(1+ 1/8) with the Riemann zeta function [170].

So far we introduced the amplitudes B and E. Also A and C may be defined by the total number of
clusters and the “susceptibility”, respectively C =3,):

[2 ns]sing =pAlp—p/™*;  pPo=- [2 s ns]sing =pB(p -p.)’
5]

Table 4 presents estimates for these four amplitudes; if two of them are known the others might be
calculated by universality assumptions [50, 55, 105].

All these complicated integrals are hiding somewhat the simple feature of our scaling theory: Only
one characteristic cluster size enters the calculations. For h =0 near p. this size is s, ~ |p — pc|™°;
and when we work with e ™ at p. then this characteristic cluster size can be taken as 1/h. Therefore
our sums can be evaluated by simple integrals. But even with more than one characteristic size, i.e.
when assumption (15) is violated, we may recover the scaling laws (18b) and similar results based on
sums over all cluster sizes. For example let us slightly modify an ansatz of Reatto [134] and use as an
alternative to eq. (15) an ansatz with three free exponents o, + and x:

n(p)=qos "e Fiz); z=(@-pJ)s’; F,=[1+const-exp(—(z+1)s)]".

In the scaling limit of large clusters near p. at fixed z we have F;(z) = 0 for z below —1, and F,(z) =1
for z above —1, similar to the Fermi function in quantum-statistical physics. (x and the constant are
positive.) Any sum over all cluster sizes can use, for its nonanalytic part, this approximation of F,(z)
being either zero or unity, and thus the third exponent x cancels out from these sums. Neither the
equation-of-state, eq. (20), not the scaling laws (18) depend on x. But this new exponent does enter the
shape of the cluster size dstribution below p. and is not merely a correction-to-scaling exponent in the

(56)
=pC|p_.pc|—'Y; _[2 s .ns(pc)e—hs] =pE'h1/8.
ing

i sing

Table 4
Series estimates [19, 54-56] for the amplitudes A, B, C and E as defined in
eq. (56), for various two- and three-dimensional lattices. (Abbreviations as in
table 2). Both site percolation and bond percolation are listed. The dagger 1
warns that a = ~2/3 was assumed [56]; for the stars % Gaunt [55] gave
estimates assuming universality to be valid. For C the value below p. is listed;
Monte Carlo results [26] give C(p > p.)/C(p > p.) = 180 in two and =11 in three
dimensions (but see aiso refs. [51, 54]). B refers to p above p., Etop atp.,and A
happens in the calculated cases to be symmetric about p. [56].

Lattice: HC SQ TR FCC BCC SC D

A (site) 8.7

A (bond) 8.5

B (site) 153 153 156 42 * * *

B (bond) 153 155 160 * * *

C (site) 0.140 0.147 0.128 0101 0.142 0.18 026
C (bond) 0.145 0.134 0084 0041 0074 0122 0222
E (site) 108 109 L0 137 133 132 131

E (bond) 1.09 1.10 1.10 132 1.33 135 1.38
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sense of eq. (22). If s > below p., —z becomes very large, and log F, then varies as (z + 1)s™ ~
—|z|s* « —5°7*. Thus below p. (but not above p.) the new exponent x enters crucially into the decay
exponent { = o + x defined in eq. (23). In this sense two-exponent scaling, eq. (15), is violated for the
cluster numbers n, but it is still valid for the sums over the cluster numbers. Fortunately we have seen
in section 3.2 that the additional assumption (15) is confirmed rather well: At present there is no need
to introduce a third exponent for the cluster size distribution in the scaling limit.

So far we dealt only with the nonanalytic “‘singular” parts of the sums. If a sum diverges, its
leading singularity is also the singular part, and we have no problems in the scaling regime. But e.g.
Z,n, and 3,5 - n, remain finite at p., with the nonanalytic parts appearing only as corrections
vanishing at p.. These finite values at p. cannot be calculated from the present scaling theory and are
expected, contrary to critical exponents etc., to be different for every different lattice structure. Such
non-diverging sums may lead to difficulties with averages. Let us assume that A, is any cluster
property (like radius R;) increasing faster than s and slower than s'*"* for 1<s <+, and that it
obeys a scaling assumption similar to eq. (42). The average (A)is defined by

(Ay=2 s*n,A, / 2 s“ng, (57

with a suitable k. (Polymer scientists call k =0 the number average, k = 1 the weight average, and
k=2 the z-average.) For k=2,3,... both sums in eq. (57) diverge and thus get their main
contribution from s ~ s,; then (A) = A,, apart from numerical constants, and the average has the
properties which one would like it to have. But for k = 1 (and even worse for k = 0) there are surprises
hidden in the innocent eq. (57). For the denominator there remains finite (and equal to p.) in the
scaling region, and only the numerator diverges. Thus (A)=p:' [¢'s - n, A, ds « [ s>z 'f(2)A, dz
Ay lp — pcf’. Thus a perhaps undesired factor |p —p.|? is the result of this definition of averages with
k=1.

The differences in the effective dimensionality of percolation clusters, section 4.3.3, are due to such
differences in definitions [106]. Another example is provided by the labyrinthine ant [S5, 171]. Assr ~e
than an ant is parachuting into a two-dimensional lattice, filled randomly with sites below the
percolation thireshold. (Experimental details on ant training were missing in ref. [171].) After landing
the ant runs away randomly but is restricted to the single cluster it has jumped into. After a long time
one measures how far the ant has run away from its landing site, and repeats the experiment many
times. What is the average distance (R?) it has run away? Clearly that distance is connected with the
average cluster radius. We leave it as an exercise to the reader to check which of the two expressions
in ref. [171], (R® = (p.— p) > and x (p.—p)?~*" is the correct one for the type of average defined by
the jumping ant. In general we recommend to define averages through eq. (57) with k =2, not with
k = 1, since then they have nicer properties in the scaling region. For example, with A; = s we do not
recommend to call (s) with k =1 a “mean cluster size”, as is often done. But with k =2 eq. (57)
simply gives our typical cluster size s, for that average.

Appendix 2. One-dimensional percolation
In order to have at least one exactly solved problem in this review, which otherwise made no

attempt to be rigorous in its “proofs”, we now look at the special case of one dimension [112, 113].
Percolation clusters in one dimension are chains of s occupied places; the two ends of the chain
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border on empty sites. Thus the perimeter ¢ is always 2, independent of cluster size. Therefore the
cluster numbers are

ns(p)=p*(1-p). (58)

For no p below unity can an infinite cluster exist, since already a single gap in the chain breaks it up
into two parts. At p = 1, of course, the whole lattice is one infinite cluster, in all dimensions. Thus we
have p. =1 for one dimension, and only the “paramagnetic” region below p. is accessible. For p = p.
we rewrite eq. (58) with p = exp(In p) = exp(p — 1) = exp(p — p.) as

ns(p)=p*(p.—py =s[(p — pc)sT expl(p — p)sl=s 2 f(2);
z=(p-pJs; fl)=z2"¢"

Comparison with our basic assumption (15) shows that scaling is valid, with o = 1 and 7 = 2 exactly.
Equations (17, 18) then lead to the other exponents [113] a =1, 8=0, y=1, § =, v = 1, as already
listed in table 2. Unfortunately these exponents for d = 1 are not the limits for d - 1, as table 2 shows,
particularly for y and v: The limits p - p. and d — 1 cannot be interchanged.

A surprise is waiting [112] if the range of interaction is changed. Naive universality assumptions,
section 6.2.1, assert that then the exponents remain unchanged. But this is not so in one dimension
[112]. Let us define a cluster as a group of occupied sites connected by nearest or next-nearest
neighbor distances; thus our range of interaction is two lattice constants instead of one. Again we
have p. = 1. Each cluster now has four empty neighbors as external perimeter: .. = 4. But in addition
it may have ¢, internal perimeter sites, i.e. single holes of one empty site surrounded on both sides by

at least one occupied site. We have g, = (f B 1) possibilities to distribute t;; holes among the s —1
int

bonds of an s-cluster. With a total perimeter of t = tox;+ tin: = 4+ tine We thus get for the cluster
numbers:

=Sen'a-pr=p 3 (" a-pret=pra-pria-p

= (pc—p)* exp[~ (p— p)’s] = s 2" exp(-2?) (59a)

where z=(p —p.)s"?. (We used the binomial law and In[2-p)pl=In[1-(1~p)1=—-(1-p) =
—(p.—p)’.) Thus scaling is valid again, with =2, but now with o =3 instead of unity: The
universality assumption is violated because one of the exponents has changed. More generally, if
occupied sites separated by [ lattice distances are still regarded as part of one cluster, one has [112]
o=1/l,r=2leadingtoa =2-1,8=0,y=L =0, v=1

This failure of universality in one-dimensional percolation can be hidden if instead of the scaling
variable —z = (p. — p)s” we use the scaling variable z, = (p. — p)'s”. For the usual case / = 1 we now get
near p.:

n)=s"f(z); T=2, f@)=zie ™ (59b)

with o = 1. But in this form (59b) the scaling result obeys universality for general / and no longer
depends on the range of interaction, as one can see from eq. (59a) for | =2, and from the results of
Klein et al. [112] in general.

One-dimensional Ising ferromagnets are similar to one-dimensional percolatlon in that they have a
phase transition, at T = T. = 0, where only the paramagnetic side T > T. is accessible. Wiethege [172]
looked at the specific heat of this magnet to find out if universality is v1olated also there, if longer
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ranges of interaction are taken into account. If the energy needed to break up a bond between two
magnetic moments at distance ! is J,, and if we define K, =3, 2J)/ksT, K, =3, - J/kg T, we can expect
the specific heat to depend exponentially on K; and K, for T — T. = 0. The calculation [172] showed
that for T near T.=0 the specific heat varied as e ™' or e ™*, whatever was larger. Thus the
temperature enters the specific heat in a complicated way, depending strongly on the choice for the
interaction energy. Universality is violated much stronger than for percolation, where a simple
modification, eq. (59b), was sufficient to save the universality concept.

These two one-dimensional examples showed that simple and plausible concepts like universality
of critical phenomena need not always be true, even if they were confirmed for numerous other
examples. This conclusion is regrettable but true.
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Note added in proof. After completion of this review we learned of additional work of interest for the
scaling theory of percolation. Some of these papers are listed below together with the section or
reference for which they are most relevant:

J. Roussengq, C. Mitescu and H. Ottavi, Comptes Rendus Acad. Sc. Paris 288 B (1979) 49, on section 3.2 and ref. {23].

H.P. Peters, D. Stauffer, H.P. Hoiters and K. Loewenich, Z. Physik B, to be published, on ref. {75] in 3 dimensions, section 4.
S. Redner, preprint, on radius of branching polymers [75, 133], section 4.2.2.

B. Rocksloh and D. Stauffer, preprint, on number of animals [48}, section 5.2.

G. Shiifer, W. Klein, P.J. Reynolds and H.E. Stanley, preprint, on backbone exponents [7, 148], section 4.3.3.

J.P. Straley, preprints, on ref. [82) and section 6.1.

P.G. De Gennes, J. Physique (Paris) 40 (1979) L 197 on ref. [149] and section 6.1 and 4.2.2.

S. Redner and H.E. Stanley, preprint, on theory for anisotropic percolation, section 6.2.1.

L.N. Smith and C.J. Lobb, Bull. Am. Phys. Soc. 24 (1979) 360 and preprint, on experiment for anisotropic percolation, section 6.2.1.
L. Turban, J. Phys. C 12 (1979) L 191, on percolation with voids, section 6.2.1.

L. Turban and P. Guilmin, J. Phys. C 12 (1979) 961, on Reich and Leath [157], section 6.2.1.

H. Nakanishi and P.J. Reynolds, preprint, on site-bond percolation [156], section 6.2.1.

S.G. Whittington, G.M. Torrie and D.S. Gaunt, J. Phys. A 12 (1979) L 119, on Gaunt et al. {157], section 6.2.1.
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