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The problem of convective transport in a 2 - 0  incompressible nonstationary flow is discussed. 
Particular attention is focused on the low-frequency asymptotic limit, when the frequency w with 
which velocity field changes is much lower than the frequency of particle motion in the flow. Thus 
arises the problem of the statistical properties of the isolines of random functions, which is treated 
with the aid ofpercolation theory. The asymptotic forms of the turbulent diffusion coefficient 
D, -w3/10 and the growth rate y, -o"~ ofthe stochastic instability are obtained analytically. 
With allowance for small molecular diffusion D, an interpolation formula for D, is derived that 
includes both effects, and the mixing length is determined. 

1. INTRODUCTION a rot v/at=rot [ v  rot v ] ,  

The turbulent diffusion problem is one of the classical whence it follows that the characteristic pulsation frequency 
ones and has important applications in hydrodynamics and w is expressed in order of magnitude in terms of the ampli- 
plasma physics.'-3 In its most general form, it is formulated tude of the velocity v and characteristic spatial scale A by 
as follows. Consider a given flow v(r,t) having certain prop- o =: v/A. It is evident from dimensional considerations that 
erties of randomness ("turbulence"), determine the distri- in this case, the turbulent diffusion coefficient (if diffusion 
bution, asymptotic in time, of an ensemble of points satisfy- indeed takes place) is estimated from 
ing the equation 

DTxhv. (3) 
dr/dt=v(r, t ) ,  (1)  

i.e., moving together with the flow. In the limit 
(r2 ( t )  )/t - const for t - co , one speaks of turbulent diffusion 
with the appropriate coefficient, and the averaging is carried 
out over an ensemble of flows, or, more transparently, over 
the initial conditions. 

Another approach to this problem consists in carrying 
out the corresponding averaging in the equation of transport 
of a passive impurity 

where n  is the density of the impurity, the temperature, or 
some other scalar field, and D  is the coefficient of the bare 
(molecular or Coulombic) diffusion, to which would corre- 
spond a random Langevin force on the right-hand side of Eq. 
( 1). In the majority of cases of practical importance, the 
diffusion term is small compared to the convective term in 
Eq. (2) ,  but in some cases it may be f~ndamental .~ In the 
remainder of this section of the article we assume D  = 0. 

In the majority of cases, the flow is assumed to be in- 
compressible, div v = 0, and the present work is confined to 
this case. In addition, it will be assumed that on average, the 
fluid is at rest, (v) = 0. 

By the average (2 )  is meant a transition to the equation 
for the average density of the impurity, 

a (n)/at = D T A ( n ) ,  

which holds on spatial scales over which the averaging is 
carried out, R % a T ,  where a .  is the turbulent mixing length, 
defined below. 

The dependence of the flow velocity v on the position 
and time is determined by appropriate hydrodynamic or oth- 
er equations, depending on the model. In the case of hydro- 
dynamic turbulence of an ideal fluid, we have the equation 
for the frozen-in condition of a vortex 

The majority of studies deal precisely with this case and pro- 
pose more accurate expressions which define D ,  in terms of 
the turbulence parameters. 

The more complicated models, for example, in plasma 
physics, deal with flows whose frequency is a free parameter. 
Examples are problems of random electric drifts in a strong 
magnetic diffusion of the lines of force of a stochastic 
magnetic field,6 or conductivity of three-dimensionally in- 
homogeneous Hall media.' All these problems reduce to that 
of 2 - 0  turbulent diffusion. 

An estimate of turbulent diffusion in the high-frequen- 
cy case wsv/A is not difficult. During a correlation time 
w - I ,  the particle is displaced over a distance r=:v/w, and 
successive displacements are independent; this yields 

Of greatest conceptual and methodological interest is 
the low-frequency limit w <u/A, for which the asymptotic 
form of the turbulent diffusion coefficient is by no means 
trivial, since this form is determined by long streamlines of 
the flow under consideration and requires the use of methods 
of percolation t h e ~ r ~ . ~ - ' O  In contrast to the results (3)  and 
(4), the solution to the transport problem in the low-fre- 
quency limit depends on the number d of spatial dimensions. 
The index g in  the asymptotic expression 

is a function of d: 

E = E  ( 4 .  

In the 3 - 0  case ( d  = 3 ) ,  the lines of an incompressible 
field can densely fill whole regions, and the property of sto- 
chastic instability of the trajectories is typical (structurally 
stable) for such fields." It can be assumed that the measure 
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of trajectories receding diffusively to infinity is positive. 
Then we have D, -Av; effective diffusion is possible in the 
stationary case; the index f is expressed c( 3) = 0. However, 
it is not known whether the fundamental assumption that 
the measure of trajectories receding to infinity is finite is 
valid. An indication of its validity was obtained in numerical 
calculations. l2 

In the 2-0 case 

which is the main topic of the present study, the streamlines 
$ = const do not posses stochasticity themselves, since a 2-0 
region cannot be filled with a smooth, nonself-intersecting 
curve. It follows that for 2 -0  turbulent diffusion the time- 
dependence of the flow (or the bare diffusion) is fundamen- 
tal, i.e., DT vanishes for w = 0, so that f (2)  > 0. A lower 
estimate of D, can be obtained by virtue of the fact that in a 
time w - I, the particle is displaced by at least A, and hence 
we have DT>A 'w. 

Thus for d = 2 we have 0 < {( 1 and, as will be shown 
below; the second inequality is also strict [ f (2)  = 3/10]. At 
the same time, the results of several studies contradict this 
conclusion. For example, in a discussion of the low-frequen- 
cy asymptotic limit in a 2-0 problem, Refs. 4 and 6 proposed 
results which in our notation correspond to the index f = 0. 
Outside the dependence on the number of spatial dimen- 
sions, Ref. 13 obtained the result f = 0 (for non-Gaussian 
turbulence) and f = 1 (in the opposite case). 

The inaccuracy of these results is due to the inexactness 
of the closure of the moment  equation^,^.^ or to the superfi- 
cial analysis of the integral equation in Ref. 13. In a specified 
sense, a general reason for this type of discrepancy is the use 
of standard perturbation series, which in low-frequency lim- 
its and also in the case of small molecular diffusion coeffi- 
cient are outside their radius of convergence. This situation 
is typical of percolation problems having long-range correla- 
tions, in particular, the mixing length a, %A. Note that the 
relationship between the problem of diffusion of lines of 
magnetic force and percolation theory was pointed out in 
Ref. 6. 

The first section of the present article investigates the 
statistical properties of the contours of constant random 
stream function qb(x,y,t). In particular, we discuss the re- 
duction of the problem to the standard percolation formula- 
tion using a periodic grid, for which several exact results 
exist,I4 and also estimate the lifetime of long streamlines, 
allowing for the time-dependence of the flow. The second 

section estimates the turbulent diffusion coefficient. The 
method of investigation is similar to the approach developed 
in Ref. 3, which solved the problem of effective diffusion in a 
stationary random 2-0  incompressible flow in the presence 
of a small diffusion coefficient D<Av. The third section 
deals with the relationship between turbulent diffusion and 
the stochastic instability of particle motion. Finally, we for- 
mulate our conclusions. All calculations and reasoning of 
any degree of complexity are consigned to Appendices. 

1. GEOMETRY OF RANDOM 2-0 FLOW 

This section discusses the statistical properties of ran- 
dom flow streamlines which are the level lines of a random 
stream function qb. Concerning the latter, the following is 
postulated: $(x,y,t) is bounded, has a single characteristic 
spatial scale A, characteristic amplitude $zAv, and charac- 
teristic variation frequency w < v/A; $(n,y,t) is not periodic 
in either space or time; the spatial average is ($) = 0 for any 
t. The randomness (at a "general location") also assumes 
that at almost all t no two of the countable set of singular 
points (saddle points or extrema) have the same height, the 
mean density of singular points of each type per unit area 
being of the order of A - '. 

For simplicity, dimensionless variables in which $=A 
z u =  l , w < l , D < l  areusedbelow. 

Among the contours $ = const there are lines covering 
an arbitrarily large area; this is particularly clear from the 
"contour-dressing" procedure shown in Fig. 1. The size dis- 
tribution function of the contours is conveniently intro- 
duced in the form of the two-index probability P(i, j )  that 
the separatrix passing through a saddle point selected at ran- 
dom contains i extrema in one of the loops, and j extrema in 
the other (Fig. 1) .  As shown in Appendix 1, the asymptotic 
form of the probability P(i, j) for i, j% 1 is as follows: 

Since each contour $ = const is included between a pair of 
closest separatrices, the distribution (6) gives the size distri- 
bution function of the contours [see expression (7)  1 .  

The relationship of the size of the isolines to the level h 
of the cross section $ = h and their fractal properties can be 
determined from the universality of the indices of contin- 
uous and grid percolation for a given dimensionality of the 
problem.'5 In Appendix 2, the relationship between con- 
tours and lattice clusters is obtained by perturbating a peri- 
odic function, and this leads to the following results. 

The distribution function of the contours $ = h (h < 1 ) 
with respect to the transverse size a is 

where a, is the maximum diameter for a given h: 

(see Ref. 13). For a > a,, the function f, ( a )  decreases ex- 
ponentially." By f, ( a )  is meant the probability that a point 
for which $ (x ,y )  = h belongs to a contour with a cross sec- 
tion of order a (for example, from a/2 to a ) .  

FIG. 1. Separatrices (solid line) and nonsingular isoline (dashed line) of The distribution function ( 7 )  integrated with respect to 
a random function. h is the size distribution of all the contours 
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F (a) -a-', (9)  

which is defined as the probability (fraction of area) of hit- 
ting a contour with a size of order a. 

Each contour of probability 1 is closed. There exists 
exactly one open contour, and it is located at the level $ = 0. 

Long contours (a>) 1 ) have self-similar fractal proper- 
ties. They are highly sinuous, and as a result, their length L 
substantially exceeds the diameter 

L (a) =adh, (10) 

where d ,  = 1 + l/v = 7/4 (see Ref. 14) is the fractal di- 
mensionality of long contours. Thanks to the absence of self- 
intersections and hence, effective self-repulsion, d ,  is less 
than 2, the number of dimensions of a Brownian trajectory 
permitting self- intersection^.^ 

Having obtained an idea of the static picture, let us con- 
sider the kinematics of the contours as $ changes with time. 
The picture is transformed beyond recognition in a time 
w - ' , but for each t the distribution (7)  remains valid. Since 
for a given h,  short contours are more probable, almost every 
long contour becomes shorter when it reconnects. 

Further discussion requires an estimate of the lifetime 
rh (of the halving of the transverse size) of the contour 
t+b = h < 1 with a size of order a,. Since in some places such a 
curve comes very close (a distance much shorter than unity) 
to itself, this lifetime is appreciably shorter than the charac- 
teristic time w - ' . As shown in Appendix 3, the following 
estimate applies: 

2. ESTIMATE OFTURBULENT DIFFUSION 

To determine the turbulent diffusion coefficient, to the 
kinematic picture presented above it is necessary to add dy- 
namic considerations on the nature of particle motion in the 
flow discussed. 

As noted above, for w < 1 the main contribution to the 
transfer is due to a relatively small number of long stream- 
lines, along which the particles manage to be coherently dis- 
placed to a large distance a,>) 1. This distance (mixing 
length) is limited by two processes: the finite lifetime r, of 
long trajectories $ = h and the departure of the particles 
from the given level h due to the time-dependence of the 
flow. To determine which of these effects predominates, it is 
necessary to compare the times of these processes. Let us 
find the time rp at which a particle leaves the level $ = h .  

For incompressible flow (5),  the equations of particle 
motion are 

Hence we find the change in $ for a given particle: 

where the symbols in Eq. ( 12) emphasize the random alter- 
nation of dt+b/dt with the characteristic correlation time 
At = 1, during which the particle is displaced by the charac- 
teristic spatial scale. Equation ( 12) signifies a diffusive walk 
of the particle along the $ coordinate with diffusion coeffi- 
cient DtLll "a2. When small bare diffusion D <  1 is taken into 

account, an additional departure of the particle arises from a 
given streamline, and hence, also from the height $. Since 
this process is not coherent with the one discussed above, the 
diffusion coefficients are summed: DtL, z w Z  + D. 

Hence we obtain an estimate for the time of departure of 
the particle from the level t+b = h (doubling time of the parti- 
cle level) : 

~~=h~/D,,--h' /(m~+D). (14) 

We now assume that the mixing length is limited by the 
lifetime rh of the streamlines, whereas the loss of particles 
from these lines is not fundamental (the scope of applicabili- 
ty of this assumption will be determined below). In a time 
T, , the particle travels a path L -- v r ,  = T, along the trajec- 
tory. If this path does not exceed L, = a, h, the particle 
does not have sufficient time to make a complete revolution; 
it executes many revolutions along a given streamline. In 
accordance with Eqs. ( 10) and ( 1 1 ), we have 

Hence, allowing for Eq. ( 8 )  we obtain the mixing length 

and the characteristic level h = w'"" + '' . 
Allowing for the fraction of particles (9)  which are lo- 

cated on the characteristic trajectories, we obtain the follow- 
ing estimate of the turbulent diffusion coefficient: 

The inequality in expression ( 16) determining the limits of 
applicability of the result was obtained from expressions 
( 1 1 ) and ( 14) as the requirement rh < rp . 

Actually, to estimate D, it would be necessary to carry 
out the summation over the trajectories of all the scales. 
Moreover, thanks to the exponential nature of all the rela- 
tions, the contributions of small ( a  <a, ) and large ( a  > a, ) 
streamlines are equal and agree with ( 16) in order of magni- 
tude. 

At higher values of the bare diffusion coefficient, 
D> w ' ~ " ~ ,  the time and length of coherence are determined 
by the departure of the particles from relatively long-lived 
long trajectories: rP < T, . In this case, the mixing length is 
determined by the condition L = r,, whence, allowing for 
expressions ( 10)and ( 14), we find 

Then the turbulent diffusion coefficient is 

which corresponds to the result of Ref. 3, obtained in a some- 
what different manner. 

Cases (15), (16) and (17), (18) can be combined by 
common interpolation for the coefficient of 2 -0  turbulent 
diffusion for w, D <  1: 

and for the turbulent mixing length 
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Changing to dimensional symbols and substituting the nu- 
merical value of the indices, we rewrite expressions ( 19) and 
(20) in the form 

3. STOCHASTIC INSTABILITY 1N 2-DNONSTATIONARY 
FLOW 

Usually, diffusion in Hamiltonian systems is attributed 
to the stochastic behavior of the phase trajectories. l6 One of 
the key manifestations of such behavior is the exponential 
dispersal of close trajectories (stochastic instability), char- 
acterized by the Kolmogorov entropy (growth rate) 

(6r ( t )  > 
y, = lim lim t - I  ln ----- . 

i - tw br(O)+O (0 )  
In Eq. (23), & ( t )  represents the distance in phase space at 
instant t between a pair of points whose coordinates satisfy 
the equations of motion, and the averaging is carried out 
over the initial conditions inside the stochasticity region. 

In the absence of molecular diffusion (D  = O), the 
equations of motion of a passive impurity ( 12) are Hamilto- 
nian. In the stationary case (w = 0), Hamiltonian motion 
with one degree of freedom (2-0 phase plane) is integrable, 
and the effective diffusion is zero [see ( 16) 1. Time depen- 
dence (w#O) is equivalent to the appearance of an addi- 
tional degree of freedom,16 and stochastic behavior1' is pos- 
sible in a 4-0 phase volume. 

For the simplest Hamiltonians in the case of a small 
perturbation (w & v/A), the stochastic regions are usually 
concentrated in exponentially narrow layers near the separa- 
trices, where the adiabatic invariant of the particle motion 
breaks down. (The presence of an adiabatic invariant in the 
remaining regions, as well as the presence of any other inte- 
gral of motion, effectively reduces the number of degrees of 
freedom per unit and accordingly eliminates stochasticity. ) 
In the flow under consideration at a general location, one 
finds separatrices of arbitrarily large size, along which the 
reversal time is large, and therefore, the stochastic region is 
not exponentially small. 

The size a, of the trajectories on which the adiabatic 
invariant breaks down is given by the equality of the particle 
reversal time L(a, )/v and the reconnection time of two 
neighboring separatrices t, = [wL(a, )/A] - ' (see Appen- 
dix 3), whence we obtain 

As shown in Appendix 4, these and longer trajectories 
are precisely the ones that make the maximum contribution 
to the stochastic instability growth rate 

and after averaging over time, the entire ( x , y )  plane is the 
stochastic region. 

It is of interest to note that the stochasticity dimension 
(24) is appreciably smaller than the mixing length ( 15): 
a, <aT. Correspondingly, the relative area of the stochastic 
instability region F(a,) [see expression (9) ]  is much 

greater than the measure of the mixing region F ( a ,  ), and 
the zone of maximum stochasticity includes the mixing re- 
gion. It follows from this that the cause of the mixing and of 
the diffusion walk in the case under consideration is not the 
internal stochasticity of the Hamiltonian, but the external 
stochasticity, determined by the richness of its topological 
structure, which is time-dependent. Thus, turbulent diffu- 
sion is not a direct consequence of Hamiltonian stochasti- 
city. Rather, both effects are consequences of the time-de- 
pendence of the flow. 

With inclusion of an arbitrarily small molecular diffu- 
sion D, the impurity density gradients, which grow exponen- 
tially with time, will be "smeared" through several of the 
growth rates (25), but this in no way affects the effective 
transfer of the trace material when 

D < k u ( h o / ~ ) ' " ~ .  

From this point of view, the hypothesis of negative interfer- 
ence of molecular and turbulent diffusion (i.e., the decrease 
in turbulent diffusion DT for a small D # 0 in comparison to 
the case D = 0) (Ref. 17) appears to be improbable. 

CONCLUSION 

Thus, turbulent diffusion in the limit of low frequencies 
of the change in velocity field w<u/A and large Pkclet 
numbers Av/D) 1 is sensitive to the dimensionality of the 
problem and characterized by the presence of long-range 
percolation-type correlations. Such a problem cannot be 
solved on the basis of conventional methods of perturbation 
theory and requires an analysis of the topological properties 
of random flows by means of methods of percolation theory. 

In the 2 -0  case, there is a simple relationship between 
random incompressible flows and the lattice clusters of per- 
colation theory. This, as well as the presence of exact results 
in the theory of 2-0 percolation, makes it possible to find the 
appropriate exponents in the asymptotic form of the turbu- 
lent diffusion coefficient (2  1 ) and mixing length (22). 

In the stationary case, the estimate (21) was checked 
numerically in Ref. 3, which obtained a satisfactory agree- 
ment between the calculations and the analytic theory. I t  is 
difficult to carry out analogous calculations for a nonsta- 
tionary velocity field because of the appearance, caused by 
w #O, of stochastic instability of the trajectories in Eq. ( 1 ) . 

In the 3 - 0  case, there is no direct relationship between 
the topology of the flows and the sets of a level, and there- 
fore, the methods discussed in our work do not extend to this 
case. In the remark, which continues to hold, on the impor- 
tance of long-range correlations, the question of the low- 
frequency asymptotic forms of 3 - 0  turbulent diffusion re- 
mains open. 

The authors thank S. I. Krasheninnikov for discussions 
and useful critical comments. 

APPENDIX 1 

STATISTICS OF RANDOM FUNCTION SEPARATRICES 

The values of $ at two different hyperbolic singular 
points (saddle points) differ with a probability of 1. There- 
fore, the separatrix closes on itself, dividing the plane into 
three parts - two bounded and one unbounded (Fig. 1 ). We 
introduce the index ( i  j )  of the saddle point, as the numbers 
of extrema in the two bounded parts of its separatrix. We 
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distinguish the order of i and j, assuming, for example, that 
the first index corresponds to the part located farther on the 
left. Let P ( i j )  be the fractions of saddle points with the cor- 
responding indices in a given realization of the field $(x,y). 
These fractions are not independent. Indeed, each separatrix 
with the index ( i j )  is surrounded by a separatrix with the 
index ( i  + j, I) or (I, i + j ) ,  so that 

Z P  (i, k-i) =2 P ( k ,  l )  . 

Introducing the characteristic function 

we rewrite Eq. (A 1.1 ) in the form 

f ( x ,  x )  =2f ( x ,  1) -x. (A1.2) 

The normalization condition f( 1,l) = 1 was taken into ac- 
count in Eq. (A1.2). The relation (A  1.2) is of course insuffi- 
cient to determinef. It may be assumed that for a random 
function the parts of the separatrices are independent, 
e . ,  F )  = P i  Then f can also be factored: 
f(x,y) =f(x)f(y), and Eq. (A1.2) gives 

m 

Expansion of Eq. (A1.3) gives 

It is clear that, in fact, the parts of the separatrices are 
not completely independent, since a large i means that the 
value of $ at the ( i j )  saddle point is close to zero (see Ap- 
pendix 2). This raises the chances o f j  also turning out to be 
large. However, the assumption that 

for i > j, where a>P,  with allowance for the dependence indi- 
cated above, leads first to a = 3/2, and then, as is evident 
from Appendix 3, also t o p  = 3/2. It will be shown here that 
a = 3/2. 

The probability that a point chosen at random will lie 
on a contour $ with a size of order a [see expression (9)  ] is 
F ( a )  =.a- I. Since the area enclosed between two successive . . 
separatrices is of order 1, this probability can be estimated as 
the probability that a randomly chosen separatrix contains 
saddle points of order N = a2: 

F (a )  = P (i, j )  
i>j 
1-N 

and hence, 

APPENDIX 2 

RELATlONSHlP BETWEEN RANDOM FUNCTION LEVEL 
LINES ANDTHE PERCOLATION PROBLEM 

In this section, we shall discuss in detail a method for 
reducing the problem of continuous flow to a lattice prob- 
lem, briefly mentioned in an earlier paper." 

We shall consider the function qb0(x,y) = sin x sin y 
whose separatrices constitute a (n-,n-) = periodic square lat- 
tice at the nodes of which there are saddle points, the size of 
all the nonsingular contours of this lattice being bounded 
from above. The idea of the method consists in modeling the 
random function $(x,y) by a small perturbation of the func- 
tion $" that eliminates the existing degeneracies (periodicity 
and coincidence of the level of all saddle points) : 

where $, z 1, E & 1, and the sign and magnitude of $, at the 
nodes of the unperturbed lattice are random. Perturbation 
changes the topology of the isolines $ = h in only a small 
range of heights I h I < E,  and the direction of uncoupling of 
the unperturbed node is uniquely determined by the sign of 
the expression E$, - h. In particular, for h -0, the bifurca- 
tion direction is random (see Fig. 2). 

Let us consider a square lattice, dual to the initial one, 
whose nodes are located at points where $,(x,y) = sign h. 
We make the convention to connect a pair of nearest-neigh- 
bor nodes if at the corresponding saddle point of the initial 
lattice h (E*, - h) > 0, i.e., if the relationship acts as a "mir- 
ror" for the level line $ = h (see Fig. 2).  Otherwise, no con- 
nection is drawn. Accordingly, the probability of establish- 
ing a connection on the dual lattice is 

and the topology of the contours q = h turns out to be 
uniquely related to the clusters of the percolation problem of 
the connections on the dual lattice with probability (A2.2). 

As we know, the critical probability of percolation of 
the connections on a 2-0  square lattice is p, = 1/2 (Ref. 
10). Forp = p, on a plane, there is exactly one infinite clus- 
ter, and hence, among the contours $ = 0 there is one infi- 
nite one, which is the outer envelope of an infinite cluster on 
the dual lattice. "Flooding" considerations lead to a similar 
conclusion. 

When h #O (p  <p, ) , the dual clusters do not exceed the 
transverse correlation size 

a ( p )  = (p,-p)-'-- ( 1  hll8)-", v=V3 (A2.3) 

(see Ref. 13), in the sense that the probability of the opposite 
is exponentially small.I0 Thus, the same holds true for the 
corresponding contours. 

It follows from the method of construction of the dual 
lattice and of establishment of connections on it that the 
corresponding level is precisely the envelope of a dual clus- 
ter, for which, in the case of its large size in the theory of 2-0 
percolation, the fractal (self-similar) structure is known, 
and there is an exact result for the fractal dimensionality 
d = 1 + l/v = 7/4 (Ref. 13), relating the length and cross 
section of the shell [see Eq. ( 10) 1. 

The results obtained are accurate for I h / < E & 1, and the 
estimates (A2.3) and (9)  remain valid at the limit of appli- 
cability E = 1, when the perturbation is not small, the specif- 
ic properties of the unperturbed function $,,(x,y) are omit- 
ted, and only the essential features of a function of general 
position remain. 

To substantiate the estimates (7)  and (9) given in the 
text, let us note that thanks to the power law dependence 
( 8 ) ,  the width of a bundle isolines differing in the transverse 
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FIG. 2. Level lines 4 = h<& of the function (A2.1) and clusters corre- 
sponding to them. 0 - nodes of dual lattice. 

direction by a factor (2 is of order h, whence we obtain the 
fraction of area 

F ( a )  =L (a , )  h /~ ;=a , -~  (A2.4) 

in accordance with expression (9). Referring the probability 
(A2.4) to a unit interval of change in h, we obtain the distri- 
bution function ( 7 ) .  

APPENDIX 3 

ESTIMATE OFTHE LIFETIME OF NONSTATIONARY LEVEL 
LINES 

We shall consider a contour $ = h < 1 with a diameter 
on the order of the maximum one: a-a,. The distance S 
from this line to the nearest saddle point is determined by the 
fact that the density of the saddle points on a plane is of order 
unity: SL(a) -- 1. By virtue ofthe unit value of the character- 
istic gradient $, the same quantity S determines the differ- 
ence of the level of the nearest saddle point from h. As $ 
changes with time, the level of the saddle point changes at a 
rate of order w, and hence, it intersects the level h of the line 
under consideration in a time t, =: (L(a, )a) - I .  For such 
an intersection, the contour $ = h loses (although it can also 
acquire with lower probability) a j loop (i.e., a loop contain- 
ing j saddle points) with probability P ( i j )  [see (A1.5), 
(A1.6)], where i+ j=  N-a;. 

Let us now estimate the probability that in one such 
bifurcation, the contour will immediately be shortened by 
approximately one-half: 

Furthermore, the probability that such bifurcation will take 
place in a time t > t, is ( t  /t, )P ,,, . Equating the latter to 
unity, we obtain an upper estimate, for the desired lifetime 
T, since the loss of length could also accumulate sooner, 
through less catastrophic reconnections with j<N 

FIG. 3. Stretching of fluid curve. Dashes denote the separatrices. Fractal 
lines are straightened for clarity. 

~ h < ~ b / ~ ' h = ~ f ' ~ - ' ' /  ( L  (ah) 0 )  <ah/ ( L  ( a h )  0 )  = h / 0 .  (A3.2) 

The final estimate for T, can be obtained by comparing 
the contours with lattice clusters. Supplementing the picture 
presented in Appendix 2 with the time dependence, we find 
that the nonstationary contours $ = h can be compart:d to 
the nonstationary problem of percolation with a fixed proba- 
bilityp(h) = 1/2 - Ih 1, but the probability tests themselves 
should be conducted again after a time w ' has elapsed. 
This corresponds to the fact that the number of connections 
on the dual lattice does not change, but in a time t < w - ' the 
fraction wt of randomly chosen connections is transferred to 
a different, free, randomly chosen location. If the process of 
reconnection is replaced by removal, to which corresponds 
the time-dependent probability 

then such a trial solution only accelerates the degradation of 
the clusters and their envelopes, i.e., $ = h contours. Thus 
from (A2.3) and (A3.3) we find the lower estimate for the 
lifetime of a contour: 

Comparing (A3.2) and (A3.4), we &rive at the result 
( 1 1 ) . We also note that the presence of equality in (A3.2) 
has been proven at the same time, i.e., B = 3/2, which con- 
firms the hypothesis that the large loops of separatrices are 
independent and the estimate (6)  resulting from it. 

APPENDIX 4 

STOCHASTIC INSTABILITY GROWTH RATE 

The average rate of divergence of close trajectories (23) 
can be calculated as the rate of elongation of a Lagrangian 
(fluid) curve, since any curve consists of close points. An 
arbitrary initial location of the curve guarantees the validity 
of the averaging. 

A characteristic feature of the evolution of the fluid 
curve is the fact that it catches the saddle points of the flow 
(see Fig. 3).  Let us consider in more detail the process of 
stretching of portions of the fluid curve along the long 
streamlines ( L  >A). 
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The time-dependence of the flow is manifested in two 
respects. First, the fluid elements do not retain their initial 
value of @ [see Eq. ( 13) 1. Second, the saddle points them- 
selves move at a velocity of order Aw. It is evident that the 
second process takes place considerably faster than the first, 
and therefore, it may be assumed that the fluid elements 
retain their value of $, but on the other hand, the separa- 
trices move and reconnect in a characteristic time 
t, = A /(wL) (see Appendix 3). 

The process is shown schematically in Fig. 3, where the 
points denote the saddle points $ together (as a rule) with 
small separatrix loops, the dashed lines denote the separa- 
trices, and an L-periodic boundary condition along the verti- 
cal direction is assumed. The stretching of the fluid curve is 
governed by the intersection of its saddle point (Fig. 3 b),  
which takes place after a time t, has elapsed. The length of 
the curve in the channel considered between adjacent separ- 
atrices increases by a factor of t, v/L. Obviously, the most 
effective elongation is reached in channels for which 
t,v/Lz2, i.e., on streamlines defined by the estimate (24), 
and the contribution of streamlines of smaller scale can soon 
be neglected al t~gether .~ '  The length Lf of the fluid curve 
varies exponentially with time: 

until the streamlines of characteristic size a,, which com- 
prise the beam of relevant channels of the same scale are 
destroyed. After the lifetime rh z h,/w = ( A  /a, ) '" /w B t, 
has elapsed, we obtain the length of the curve 

where the preceding result was multiplied by the number of 
channels (a,/A)*F(a, ) in the bundle. Then, instead of the 
disrupted bundle, at a distance of the order of a, from it, a 
new one is formed, and further evolution of each portion of 

the now twisted curve is repeated in similar fashion, whence 
we obtain the desired growth rate (25). 

In the literature, the phase space is occasionally constricted to a 3 - 0  
manifold of a constant Hamiltonian; this is associated with the so-called 
1 4  degrees of freedom. 

'' As for large-size channels, their contribution to the stretching is of the 
same order of magnitude as that of channels of size a, .  Because of the 
rapid intersection of the fluid curve by the saddle points, the latter man- 
ages to stretch along each channel only up to the scale of a, ,  i.e., as 
before, expression (24) remains the characteristic scale of stochasticity. 
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