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PERCOLATION PROCESSES
I. CRYSTALS AND MAZES

BY S. R. BROADBENT AND J. M. HAMMERSLEY

Received 15 August 1956

ABSTRACT. The paper studies, in a general way, how the random properties of a 'medium'
influence the percolation of a ' fluid' through it. The treatment differs from conventional diffu-
sion theory, in which it is the random properties of the fluid that matter. Fluid and medium
bear general interpretations: for example, solute diffusing through solvent, electrons migrating
over an atomic lattice, molecules penetrating a porous solid, disease infecting a community, etc.

1. Introduction. There are many physical phenomena in which a fluid spreads
randomly through a medium. Here fluid and medium bear general interpretations:
we may be concerned with a solute diffusing through a solvent, electrons migrating
over an atomic lattice, molecules penetrating a porous solid, or disease infecting a
community. Besides the random mechanism, external forces may govern the process,
as with water percolating through limestone under gravity. According to the nature
of the problem, it may be natural to ascribe the random mechanism either to the fluid
or to the medium. Most mathematical analyses are confined to the former alternative,
for which we retain the usual name of diffusion process: in contrast, there is (as far
as we know) little published work on the latter alternative, which we shall call a
percolation process. The present paper is a preliminary exploration of percolation
processes; and, although our conclusions are somewhat scanty, we hope we may
encourage others to investigate this terrain, which has both pure mathematical
fascinations and many practical applications.

Some examples will clarify the distinction between diffusion and percolation
processes.

Example 1. The simplest example of a diffusion process is the one-dimensional
P61ya walk. In this, a particle (the fluid) takes steps of unit length along a straight
line (the medium) starting from the origin. After any number of steps, the particle
has, independently of its previous history, equal probabilities (each \) of taking its
next step to the right or to the left. As is well known, the position of the particle after
n steps is then a linear transformation of a binomial variate and has a distribution
with zero mean and variance n. When n is infinite, the particle visits every point of
the medium infinitely often with probability 1.

Example 2. In the percolation process which is analogous to Example 1, fluid and
medium are the same as before; but the stochastic mechanism resides in the medium
rather than in the particle. Specifically, each point of the medium has, independently
of the other points, equal probabilities (each £) of being a 'right-sense' or a 'left-
sense ' point. The particle starts from the origin and takes steps of unit length, the
direction of any step being that of the sense of the point from which that step starts.
Thus the state of the medium entirely determines the motion of the particle, which
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moves steadily in one direction until it encounters successive points of opposite sense,
whereupon it oscillates between them. The distribution of terminal position is nothing
like binomial, and it has zero mean and variance ^(81 - ( — l)n-(3n + 5) (£)n~4)
after n steps. When n is infinite, there is probability 1 that the particle will visit only
finitely many points.

Some physical situations may be regarded either as diffusion or as percolation
processes, as in Example 3. Other situations may demand one model to the exclusion
of the other.

Example 3. Suppose each individual in a branching (or cascade) process has, in-
dependently of the other individuals, respective probabilities q2, 2pq, p2 of giving
birth to 0, 1, 2 descendants in the next generation. We may visualize this as a diffusion
process by thinking of a branching fluid advancing from generation to generation:
any one branch of the fluid at any generation carries with it a random mechanism
that decides whether it provides 0, 1 or 2 branches of fluid in the next generation.
But equally, we may think of a system of channels leading from the original ancestor
such that each channel divides into precisely two channels at each generation. Each
of these channels has, independently of the other channels, a probability q of being
dammed. This random set of dams in the channels (the medium) will determine how
fluid introduced at the ancestor will spread; this description is now a percolation
process. It is a well known result that, if p < \, only finitely many channels will be
wetted by the fluid with probability 1, and that the corresponding probability of
ultimate extinction is q2\p2 when p exceeds the critical value \. Critical probabilities
play similar roles in more general percolation processes, as we shall see later.

Example, 4. Gas molecules, adsorbed on the surface of a porous solid, move by sur-
face diffusion through all pores large enough to admit them; the problem is to deter-
mine the proportion of the interior of the solid reached by gas molecules. In the
percolation model we represent the solid (the medium) by a regular structure of inter-
connecting paths equivalent to the pore system, and assign to each path independently
a probability p of being wide enough to allow passage to gas molecules (the fluid).
We shall discover that when p is less than some critical value, there is effectively no
adsorption of gas in the interior.

Example, 5. The trees in a large orchard are to be planted at the intersections of a
square lattice, and the spacing between nearest neighbours is to be determined so
that, if a single tree becomes blighted, there is a negligible probability of the blight
spreading from tree to tree and infecting a large number of trees in the orchard. Thus
we must choose the spacing so that the probability p of infection between neighbouring
trees is less than the critical value of a square lattice.

Generally, the intrinsic and the random characteristics of the medium, together
with any external laws which may operate, completely determine the progress of the
fluid. The intrinsic characteristics of the medium consist in its interconnecting struc-
ture, for instance, the interconnecting structure of pores in Example 4 or the square
lattice in Example 5. We shall formulate this structure in abstract terms, since we do
not wish to limit the discussion to particular physical situations. We have in mind
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a structure, to be called an abstract crystal, which is homogeneous in the large though it
may possess local variations. Thus the structure might be that of an edge-centred
cubic atomic lattice, which is homogeneous in the large in the sense that all cells are
alike, although it has local variations inasmuch as atoms at the centre of an edge have
two nearest neighbours whereas atoms at the corner of a cube have six. All physical
crystalline lattices will be special cases of abstract crystals, and so will be many other
configurations (such as the branching process of Example 3). Despite this degree of
generality, there is in our definition of abstract crystals a preoccupation with a certain
strict regularity, the homogeneity in the large, which may prove restrictive in some
practical applications. Hammersley (2) gave definitions for an abstract crystal in
connexion with a Markovian diffusion process. As we are now dealing with percolation
processes, we employ somewhat different definitions, self contained and quite in-
dependent of (2). They are more general in being unbound by metric considerations,
but less general in being subject to rather stricter interconnexion postulates.

The random characteristics of the medium are introduced by randomly damming
some of its connexions. The resultant system will be called a random maze. Fluid
supplied at various points flows along all the undammed paths. Generally, we are
concerned with the spread of this fluid, which is determined by the permeability of
the medium. These vague terms will be made more precise later.

The fluid will be able to flow from one point to another if and only if there is a con-
nexion without dams between them, and this will be so if and only if there is an un-
dammed self-avoiding walk connecting them (i.e. a walk which visits no intermediate
point more than once). It is, therefore, appropriate to study the self-avoiding walks
in crystals. Hammersley and Morton (3) discussed these walks on a particular crystal:
more general results are stated in the next section.

In the third section the permeability of a random maze is considered from two aspects:
the probability that liquid spreading from a single point will wet only a finite number
of other points, and the probability that a given point in the interior of the medium
will be wet when liquid is introduced at a boundary. These two aspects, and the self-
avoiding walks in the medium, are all inter-related.

2. The connective constant of a crystal. We deal with abstract objects called atoms
and bonds (which in other language are the nodes and loops of an oriented linear graph).
A bond is a path between two atoms, and may either be two-way or may permit a walk
in one direction only. An n-stepped walk is an ordered connected path along n bonds,
each step being in a permitted direction along its bond and starting from the atom
reached by the previous step. Two walks are distinct if with due regard to the order of
their steps they do not traverse the same bonds. A walk is self-avoiding if it visits no
atom more than once. Notice that distinctness is in terms of bonds and self-avoidance
in terms of atoms. Let 8n(A) denote an ra-stepped self-avoiding walk starting from
the atom A. Two atoms A and B are outlike if for each n the number of distinct
Sn(A) equals the number of distinct Sn(B) ('out' emphasizes that the number
depends primarily on the number of bonds whose direction is away from each
atom). An outlike class is a (finite, countable or uncountable) set of pairwise outlike
atoms.
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A crystal is an infinite set of atoms and bonds satisfying the three postulates:
P 1 : Each atom of the crystal belongs to just one of a finite number of outlike

classes, denoted by I\ , r2,..., Tk.
P2: The number of bonds leading from (but not necessarily to) any atom of the

crystal is finite.
P 3: If a subset of atoms either (a) contains only finitely many atoms, or (b) does not

contain any atoms of at least one outlike class, then this subset contains an atom from
which a bond leads to some atom not in the subset.

Of these postulates, P3 most essentially characterizes a crystal; it ensures no out-
like class is isolated and averts finite cul-de-sacs from which no walk can escape.
P I and P2 avoid theoretical complications unlikely to arise in practice; without
them Theorem 1 would be false, as shown in Examples 8 and 9.

Theorem 1 below shows that a connective constant, K, which gives information on
the number of distinct long self-avoiding walks, can be meaningfully denned. In a
certain sense K measures the richness of the connexions in a crystal. The proof of
Theorem 1 will be published separately (4), since the mathematics is not immediately
relevant to the stochastic processes which are the subject of this paper.

Let/^(TO, r) denote the number of distinct w-stepped walks starting from A, each
of which can be broken into r or less self-avoiding walks. In the special case r = 1
these walks are themselves self-avoiding, and P 1 and the definitions of an outlike
class permit the definition

/<(») =/*(». 1) (^ e I\, i = 1,2, ...,*).

We define (j>(n) = (l/n)log max

Then for a given crystal there corresponds a connective constant K defined by

K = inf <j)(n).

THEOREM 1. For any atom A of a crystal with connective constant K,

0 ^ K = inf <j>(n) = lim (ljn)\ogfA{n,r{n)) < oo,

provided that lim r(n)jn = 0.
7 1 - * CO

Hammersley and Morton (3) proved a special case of Theorem 1 with r = k = 1
and gave a Monte Carlo method of estimating K. In the more general case, the same
Monte Carlo method of estimating K holds with only trivial modifications; known
analytical bounds for K are less informative than such Monte Carlo estimates.

The special case r(n) = 1 is sufficiently important to warrant rephrasing:

COROLLAJBY 1. The number of distinct n-stepped self-avoiding walks starting from any
given atom of a crystal with connective constant K is

gKn+o(n)

as n-> oo.
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Example 6. Suppose a crystal consists of atoms numbered i (i = ..., — 1, 0, 1, ...)
and there are M (1 ^ M < oo) one-way bonds from atom i to atom (i + 1). Then K is
clearly log M.

Example 7. Suppose each atom in a branching process has M direct descendant
atoms to each of which there is a one-way bond. Here K is again log M; the number of
distinct ^(^4) is the same as in Example 6 for all n and A.

These values of K will be compared later with measures of the permeability of these
simple crystals. Meanwhile, two further examples show that Theorem 1 is not true
unless P 1 and P 2 are satisfied. Clearly P 3 must be satisfied if Theorem 1 is to hold;
for example, we might otherwise call two separate crystals with different K a single
crystal.

Example 8. Suppose the atoms i (i = 1,2,...) are joined by one one-way bond from
i to (i + 1) if the integer part of log2 i is even, and by two one-way bonds if the integer
part is odd. No two atoms are outlike and so P1 does not hold. Further,

liminf (l/njlog/^n) = ilog2, Iimsup(l/r2,)log/£(r2.) = flog 2.

Hence, lim (l/n)log/i(n) does not exist for any i.
n—>oo

Example 9. Suppose the atoms are the points (2i,j) and (2i — 1, 0) in the Euclidean
plane (i,j = 0,1,2,...). There is a one-way bond from every atom on the x axis to its
right-hand neighbour on the x axis; every atom not on the x axis is joined by a two-way
bond to the atom on the x axis with the same x coordinate. There are two outlike
classes: I \ consists of all atoms of the form (2i, 0) and F2 of the remaining atoms.
P 2 is violated at every atom of I \ .

fiin) = oo if n = i (mod 2),

ft(n) = 1 otherwise.

Hence, Mm (1/w) log/j(%) does not exist for any i.
n—>oo

3. Randommazes. 3-1. Suppose that in an infinite set of atoms joined by bonds some
(or all) of the bonds are dammed in a random manner. Fluid is supplied to a (finite,
countable or uncountable) subset of atoms called source atoms, and then percolates
the set in the following way. An atom of the set is said to be wet by the fluid either if it
is a source atom or if there exists a walk to the atom from a source atom, the walk
traversing undammed bonds only and in the permitted directions. All atoms not wet
are said to be dry. We are interested in the properties of the wet atoms, and these
naturally depend on the structure and connexions of the given set, on the manner
in which bonds are dammed, and on the source atoms.

In particular, there are two questions we discuss below. When there is only one
source atom, is the number of wet atoms finite or infinite? When the source atoms
form a boundary round a large subset of the maze (this idea is made precise below)
what proportion of atoms in the subset are wet? The definition of proportion involves
some limiting operation; in particular cases it will usually be clear what limit-
ing operation is appropriate. These two questions we show to be related, and the
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permeability, which the answers to these questions define, is also related to the con-
nective constant K of § 2.

We shall restrict the very general medium described above. A random maze or, more
briefly, a maze is such a medium which satisfies the two postulates P 4 and P 5 below.
However, before enunciating these two postulates, we remark that some crystals
have the property that, when the direction of each bond in the crystal is reversed, the

Fig. 1

resulting set of atoms and bonds is also a crystal. A crystal with this property is
called reversible, and the resulting crystal is called the reverse crystal. Example 6 is
a reversible crystal. The crystal in Example 10 is not reversible, since the reverse set
of atoms and bonds violates all three postulates P 1, P 2 and P 3.

Example 10 (see Fig. 1). Atoms at the integral points of the x and y axes of the
Euclidean plane are joined by one-way bonds as follows: (2i— 1, 0)is joined to (2i, O)by
one bond, and(2i, 0) to (2i + 1,0) by twobonds (i = 1, 2,...); (0,2i) is joined to (0, 2i - 1)
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by one bond and to (1,0) by another (i = 0, + 1, ...); (0,2i+ 1) is joined to (0, 2i) by
one bond. This crystal has two outlike classes, atoms with even coordinates and atoms
with an odd coordinate. I t will also be noticed that each atom (i, 0) {i = 1, 2,...)
has the following property, that there is no atom in the crystal from which the shortest
walk to the atom (i, 0) has (i + 2) or more steps.

Postulates P 4 and P 5 are as follows:
P 4. The set of atoms and bonds from which a maze is derived constitute a reversible

crystal.
P 5. Each bond of a maze has, independently of all other bonds, a fixed probability

q = 1 — p of being dammed.
A reverse maze is the maze obtained by reversing the directions of all bonds in the

original maze, leaving dammed bonds dammed during reversal and undammed
undammed. Atoms in the reverse crystal or maze are denoted by primes; e.g. an atom
A in the original crystal is denoted by A' in the reverse. Thus there will be an undammed
walk in the reverse maze from A' to B' if and only if there is an undammed walk from
B to A in the original maze.

At first sight it may seem that P 5 is a severe limit on the use of a random maze in
applications, since only one probability of damming a bond is allowed. However,
suitable choice of the number of bonds between atoms and of p will always be possible
in order to approximate as closely as desired to any finite number of distinct prob-
abilities for percolation between pairs of atoms.

3-2. Let d(A,p) denote the probability that only a finite number of atoms are
wet when A is the only source atom in a random maze. This has the value 1 at p = 0
and is a monotone decreasing function ofp; we define the critical probability pd(A) by

pd(A) = sup p.

THEOREM 2. If there is a finite walk from A to B and another {not necessarily distinct)
from B to A in a crystal then in the corresponding maze pd(A) = pd(B).

Proof. Suppose a shortest walk from A to B has n steps. Being shortest, it is self
avoiding. The probability that this walk is undammed in the maze is pn, and so

l-d(A,p)>pn[l-d(B,p)].

Hence d(A,p) = 1 implies d(B,p) = 1 and pd(A) < pd(B). The reversed inequality
may be proved similarly and the theorem follows.

In a large class of crystals, every atom is connected by at least one walk to every
other atom, and such a crystal is called interconnected. We derive immediately

COROLLARY 2. pd(A) is independent of A when the maze is derived from an inter-
connected crystal.

In some crystals d(A,p) can be calculated by elementary methods. The reader will
find it easy to show in Example 6 that d(A,p) = 1 for all p < 1, and hence that
pd(A) = 1, where A is any atom of the crystal. In Example 7 the total number of
descendants from any atom A in n generations is (1 — Mn+1)/{1— M). When A is a
source atom in the random maze the expected total of wet atoms in n generations is
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[1 — (Mp)n+1]l[l — Mp]. It is well known (see, for example, Good(D) that d(A,p) is
1 for p ^ l/M, and for larger p is the smaller positive root x of (q + px)M = x. It may
be noted that d(A,p) is 1 when p = 1/M although the expected total of wet atoms is
infinite; also that the expected proportion of the descendants wet in n generations
tends to zero as n -»• oo, for all p < 1, even though the expected number wet may be
infinite. Similar assertions can be made when there are N one-way bonds joining each
atom to each of its M descendants.

Example 11. Consider the crystal whose atoms are the points with integer co-
ordinates in the Euclidean plane. The atom (x, y) is joined by two-way bonds to its
neighbours (x— \,y) and (x+ l,y) in the same layer (i.e. with the same y coordinate).
It is also joined by one-way bonds from one of the atoms with y coordinate (y+l) and
to one of the atoms with y coordinate (y — 1). The latter bonds form a one-one corre-
spondence between the atoms of adjacent layers. Let this be a random correspondence
in the sense recently defined by Renyi, i.e. such that, given any finite subset of one
layer and any finite subset in an adjacent layer, every atom of the first subset is
(conditionally) equally likely to correspond with any atom of the second. From such
a crystal we obtain a maze called a redistribution maze, since the effect of the random
correspondence is as if any wet atoms in a layer were distributed at random before
the liquid percolates to the next layer. This ensures a certain independence between
neighbours, and allows us to obtain specific solutions. These solutions, besides exempli-
fying our theorems, may be used to provide bounds for other plane Euclidean mazes.

Let there be a single source atom. The probability that the liquid wets just r further
atoms in the same layer (r = 0,1,...) and then s atoms in the following layer

(r+l)prqH s

and hence the probability generating function for the number wet in the second layer
(before any spreading in this layer occurs) is

oo r+l /r i 1

F{x) = gSHl)/2

p*x)z. (1)

With probability one, the atoms wet in the second layer will be arbitrarily far apart
(due to the random correspondence between layers) and so will behave like s isolated
sources. Hence, with probability one the percolation process behaves like a branching
process with probability generating function (1). Using Steffensen's theorem (Good(i))
we deduce from (1) that

,IA s fi+ap-Mt+gp-3)* (p>p-i),
d(A,p) = <

3-3. Let the n-set to A denote the set of all atoms in a crystal from which the
shortest walk to the atom A has just n steps. We have already seen (Example 10)
that an n-set to A may be an empty set. However, for a reversible crystal this set has
at least one member for each n. In the corresponding maze let w(A, n,p) denote the
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probability that A is wet when every atom in the n-set to A is a source atom and no
other atom in the maze is a source atom. This is a monotone decreasing function of n
and, since it is bounded, tends to a limiting function w(A,p) as n -*• oo. This has the
value 0 at p = 0 and is a monotone increasing function of p; we define

pJA) = inf P-

This quantity pw(A) is a critical probability, just a.spd(A) was. The precise connexion
between these two critical probabilities will emerge in Theorem 5.

Corresponding to Theorem 2, we state (deferring the proof until later)

THEOREM 3. If there is a finite walk from A to B and another (not necessarily distinct)
from B to A in a crystal, then in the corresponding maze pw(A) = pw(B).

We say that two atoms A and B of a crystal are inlike if the probability that A is
wet when all atoms of the n-set to A are source atoms equals the corresponding prob-
ability for B, for each n = 1,2,...; the probability in this definition is to be taken as
zero whenever an n-set to A or to B is empty. When the crystal is reversible, so that
a maze may be derived from it, the definition of inlikeness amounts to

w(A,n,p) = w(B,n,p) ( n = l , 2 , . . . ) .

Fig. 2

An inlike class is a (finite, countable or uncountable) set of atoms every pair of
which are inlike. In Example 10 each atom on the y axis belongs to a single inlike
class (but to one of two outlike classes); no two atoms on the x axis are inlike. This
example shows that inlike atoms are not necessarily outlike and vice versa. However,
Example 10 is not a reversible crystal, and since outlikeness depends primarily on
paths from atoms, and inlikeness on paths to atoms, it is tempting to conjecture that
outlike atoms are inlike in the reverse (this is false, as Example 12 shows), or that
inlike atoms are outlike in reverse. The latter we have been unable to prove or disprove.

Example 12. The integer points in the Euclidean plane are joined by one-way bonds
as shown (Fig. 2). There is only one outlike class (from every atom there are two
possible steps and everywalk is self avoiding). 'Bntw(A, 2, p) is larger when A isablack
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atom than when A is a white atom. In the reverse black and white change properties.
A black and a white atom are therefore outlike, but not inlike in the reverse.

3-4. Let 93 be a given set of atoms in a crystal. The atom A is called an enclosed
atom of 93 if there exists an integer JV, perhaps depending on A and 93, such that every
SN(A) passes through at least one atom of 93. The interior of 93 is denned to be the
(perhaps empty) set of all enclosed atoms of 93 which do not belong to 93. A set of atoms
with a non-empty interior is called a boundary of that interior. An atom A is said to be
n steps away from a set of atoms 93 if some Sn(A), but no Sn_1(A), contains an atom
of 93.

THEOREM 4. If A is an atom in the interior of a boundary 93, and if A is at least n steps
away from 93, then the probability that A' becomes wet in the reverse maze having sources
throughout 93' lies between w(A,p) and w(A,n,p), both inclusive.

Proof. Since A and 93 are fixed, there exists a fixed integer JV such that the JV-set
to A' encloses 93', which in turn encloses the n-set to A'. Thus, if P is the probability
that A' is wet from 93',

w(A,p) < w(A,N,p) ^ P ^ w(A,n,p).

Theorem 4 has the following practical significance. Suppose that a lump of porous
material is placed in a bucket of water, and we wish to know how much of the interior
becomes wet. Suppose that we can represent the pore system of the material as a maze,
water (i.e. the fluid) being able to percolate along sufficiently large pores (i.e. undammed
bonds) to the interstices (i.e. atoms) of the interior. The physical boundary of the lump
becomes a boundary of source atoms. In ordinary circumstances, the pore system will
be microscopic, and the boundary will not be pathologically irregular; so that we may
say that there are a large number of atoms in the interior and that most of them lie
a large number of steps away from the boundary. Such atoms will have probabilities
of being wet almost equal to w(A,p), by Theorem 4. If there are only a small number
of inlike classes in the maze, there will only be the same small number of different
values of w(A,p); and (assuming a more or less equitable distribution of atoms in
these classes) there will be a large number of atoms in each class, and hence (with
probability effectively one), the proportion of wet atoms will be effectively the value
of w(A,p) for that class.

The foregoing paragraph is in vague terms because its detailed application will
depend upon the physical circumstances of any particular problem. Had we attempted
to frame a rigorous general description, we should have encountered difficulties: for
instance, some boundary surfaces are so irregular that almost all interior atoms are
near the boundary; and, worse still, certain crystals are so pathological that all their
finite boundaries are irregular. Thus, Example 13 describes a crystal in which more
than 99-99 % of the interior atoms of any finite boundary are only a single step from
that boundary, no matter what the size and shape of that boundary may be.

Example 13. Let M be a fixed integer not less than 104. Consider the crystal which
represents a branching process (infinite in both directions of time) such that every atom
has just one parent and just M children. All bonds are one way from parent to child.
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All atoms belong to a single inlike and a single outlike class. Let 33 be any finite
boundary in this crystal. A little reflexion shows that, for this crystal, the interior
of 93 must also be finite. Number the successive generations of the crystal i = ...,
— 1, 0,1, 2,... such that the generations i = 1 and i = m respectively, contain an
earliest and a latest atom of the union of 33 with its interior. In generation i, let
there be just 6̂  members of 93 and ct members of the interior of 93. We have

bi+i + ci+1> Mct (i= 1,2, . . . , m - l ) ; cm = 0;

for if these conditions are not satisfied there will be a walk which escapes from some
interior atom to the indefinite future without passing through an atom of 33. Writing
B = b1 + b2 + ... + bm and C = cx + c2+ ...+ cm_1 for the total number of atoms in 33
and the interior of 33 respectively, we find, by adding all the above inequalities to the
inequality b1 + c1 > 0, that B > (M—l)C. Now let D denote the total number of
atoms in the interior of 33 which are only one step from 93. Since each atom has only
M children, we have MD > B > (M-l)C. Thus D\C > l-M'1 > 0-9999; and this
is the required result.

3-5. We now return to Example 11. Suppose that in the redistribution maze a
proportion wt > 0 of the atoms with y coordinate i are source atoms, distributed within
this layer in any manner. Consider any atom in layer (i + 1), say (0, i + 1). The prob-
ability this atom is wet directly from a source atom is wtp. The probability that
(r, i + 1) (r = 1,2,...) is the first atom to the right of this atom to be wet directly from
a source atom, and that liquid reaches this atom via (r, i + 1) is

wiPi\~ '^iP)r~1 Pr-

Hence, the probability that (0, i + 1) is not wet via some atom on the right is

l-Wi 2 (l-wip)r-1pr+1 = qKq + WiP2).
r = l

Therefore, the probability that any atom in layer (i+ 1) is wet (either directly from
layer i or indirectly from the right or indirectly from the left or by more than one of
these ways) is

The last expression may be written wi+1, the expected proportion wet in layer (i + 1),
and we therefore have a recurrence relation describing the fall of liquid through
successive layers of the redistribution maze. Since ŵ  > 0 it is easy to deduce that in-
tends monotonely to a limit as i -> oo, say to w(p) given by

w(p)
l0

In particular, this is the probability that an atom is wet when every atom in the
layer infinitely far above it is a source atom. It is, therefore, the w function previously
defined, since clearly every atom in the maze is inlike.

It will be noted from §3-2 that in the redistribution maze d(A,p) = 1 —w(p). This
result is generally true and will be proved in the next section.



640 S. R. B R O A D B E N T AND J . M. HAMMERSLEY

3-6. THEOREM 5. w(A,p) + d(A',p) = 1; and hence d(A',p) is invariant for all A
in the same inlike class.

Proof. Let E'n denote the event that A' in the reverse maze wets at least n atoms
when A' is the only source. Similarly, let E'^ denote the event that A' wets infinitely
many atoms. In the probability space concerned, E'n is a non-increasing sequence of
sets with E'm as the limit set; so that

lim prob.E^ =probJB'co = l -

the last step following from the definition of d(A',p).
Suppose now that A is wet when all atoms of the w-set to A are the only source atoms.

By definition, this event (call it En) has probability w(A, n,p). When En occurs there
is at least one undammed self-avoiding walk of n steps from the n-set to A; and hence,
in the reverse, A' wets all atoms on this path. Thus En implies E'n. Consequently

w(A,n,p) ^ -probE'n.

Since w(A, n,p) is a non-increasing function of n, we deduce

w(A,p)

Letting n -»• oo in this last relation, we deduce

On the other hand, suppose that E'a occurs. Then, in the original maze En occurs
for every given n. Hence,

l-d(A',p) = p r o b ^ < probjE^ = w(A,n,p).

Letting n -> oo, we have
l-d(A',p)^w(A,p);

and Theorem 5 follows.

THEOREM 6. pw(A) = pd(A') = po(A), say.
This follows immediately from Theorem 5, and enables us to write the common

critical probability pQ(A). Theorem 3 now follows from Theorem 2.
Theorem 5 also enables us to think of d(A, p) as the probability that, in the reverse,

when the atoms of the w-set to A' are source atoms, A' is dry when n -*• oo, whereas
w(A',p) is the probability A' is wet.

3-7. Our discussion of permeability is now concluded. Theorem 5 is our main result,
and shows how percolation from an atom is related to percolation to the atom in the
reverse. In applications we have the choice of calculating d( A, p) by studying the liquid
spreading from a single atom, or w(A,p) by choice of some suitable boundary system.

Finally, we relate our results to § 2 in which the connective constant of a crystal is
defined. We first show that the constant gives a lower bound to the critical probability.

THEOREM 7. po(A') #= e~K.
Proof. Write p(j, n) for the probability that just j of the Sn(A) are undammed. If

infinitely many atoms are wet from the source atom A, then at least one of these walks
is undammed for all n, and

0 < l-d(A,p) ^ 2 p(j,n) <
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The last expression is the expected number of distinct undammed Sn(A) and equals

p%(n), (AeTt).

Hence 0 «; l-d(A,p) ^ pnfi(n).

When p < e~K, and n ->• oo, the last expression tends to zero by Theorem 1 and it follows
pd(A) ^ e~K. Theorem 7 follows from Theorem 6.

We have been unable to decide whether d(A, e~K) is always 1.
Theorem 7 has been verified in Examples 6 and 7 (§§ 2, 3-2). In Example 6 we found

pd(A) = 1 and e~K = \jM (1 «S M < oo). Thus for M > 2 we have strict inequality in
Theorem 7. In Example 7 we found th.&tpd(A) and e~K were each \\M, and equality
in Theorem 7 is required. These examples also serve to prove:

THEOREM 8. The permeability of a crystal (i.e. d(A,p) and w(A,n,p)) cannot be
deduced from its connectivity (i.e. the number of Sn(A)).

Proof. The number of Sn(A) for all n and all A are the same in Examples 6 and 7,
but for M > 2 the values of pd(A) are different. A fortiori d(A,p) and w(A,n,p) are
different.

As a converse to Theorem 8, Example 6 has d(A,p) = 1 and Example 13 has
w(A,n,p) = pn, in each case independently of the value of M. Thus knowledge of
either one of these two functions does not provide knowledge of the connectivity.
We do not, however, possess a counter-example on the effect of knowing both functions.

This work was begun while the authors were participating in a symposium on
Monte Carlo methods sponsored by the United Kingdom Atomic Energy Research
Establishment during the autumn of 1954. One of us (S. R. B.) is also indebted to
the British Coal Utilisation Research Association, and the other (J. M. H.) to the
University of California, Berkeley, and the University of Princeton for support while
the paper was being written.
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