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abstract: Understanding the dynamics of wildfire regimes is crucial
for both regional forest management and predicting global inter-
actions between fire regimes and climate. Accordingly, spatially ex-
plicit modeling of forest fire ecosystems is a very active field of
research, including both generic and highly specific models. There
is, however, a second field in which wildfire has served as a metaphor
for more than 20 years: statistical physics. So far, there has been only
limited interaction between these two fields of wildfire modeling.
Here we show that two typical generic wildfire models from ecology
are structurally equivalent to the most commonly used model from
statistical physics. All three models can be unified to a single model
in which they appear as special cases of regrowth-dependent flam-
mability. This local “ecological memory” of former fire events is key
to self-organization in wildfire ecosystems. The unified model is able
to reproduce three different patterns observed in real boreal forests:
fire size distributions, fire shapes, and a hump-shaped relationship
between disturbance intensity (average annual area burned) and di-
versity of succession stages. The unification enables us to bring to-
gether insights from both disciplines in a novel way and to identify
limitations that provide starting points for further research.

Keywords: wildfire models, landscape ecology, statistical physics, self-
organization, ecological memory, pattern-oriented modeling.

Introduction

Wildfire regimes shape many ecosystems. The interaction
between fire, vegetation composition and structure, other
landscape features, and climatic conditions is a major de-
terminant of these ecosystems’ spatiotemporal dynamics
and function (Clark 1993; Swetnam 2003). Understanding
and predicting these interactions is crucial both on the
scale of local and regional management—for example, of
boreal forests—and on a global scale because climate is
believed to affect and be affected by wildfire regimes
(Pueyo 2007).

Empirical studies of wildfire regimes are invaluable, but
fieldwork is usually limited to spatial and temporal scales
much smaller than those on which fire ecosystems develop.
Remote sensing is used to capture patterns at larger scales,
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but the mechanisms causing these patterns are not im-
mediately evident. Simulation models are therefore widely
used for exploring wildfire regimes (Baker 1999; Mladenoff
and Baker 1999; Keane and Finney 2003). For example,
there are more than 40 landscape fire succession models
that “simulate the dynamic interaction of fire, vegetation,
and often climate” (Keane et al. 2004, p. 4). They cover
a wide range of ecosystems, geographic areas, and scales.
Most of them are quite specific, addressing small scales,
but some are more generic, addressing larger scales.

There is, however, a second field of research in which
the development and discussion of simulation models of
fire regimes have been ongoing during the past 20 years
or so: statistical physics. Here, the models reflect a systems
theory perspective and have become an important meta-
phor in complex-systems science. In these models, vege-
tation recovery and fire spread are represented in a highly
abstract manner. They are used to reproduce and explain
observed fire size distributions that resemble power laws
(Clar et al. 1996). These models are usually discussed in
the context of general theories such as self-organized crit-
icality (SOC; Bak et al. 1988) or, more recently, highly
optimized tolerance (Carlson and Doyle 1999). Most of
these models are related to forests but not to any specific
type of forest or geographic region.

So far, there has been only limited direct interaction
between these two fields of wildfire modeling. One notable
exception is Malamud et al. (1998), who use a model from
statistical physics (Henley 1989; Drossel and Schwabl
1992) not only to explain the frequency-area distributions
of actual wildfires but also to make inferences about recent
fire history in the Yellowstone National Park. However, it
seems that this work has not yet been acknowledged by
many landscape and fire ecologists.

This limited interaction of wildfire modeling in ecology
and statistical physics reflects limitations on both sides:
ecological wildfire models are often so detailed or tailored
to specific regions that they hardly allow the identification
of general principles and predictions, for example, how
climate change would affect the frequency of large fires
(Meyn et al. 2007). On the other hand, wildfire models
from statistical physics are so abstract that they hardly
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relate to any of those factors known to be important in
fire ecology. In particular, a process considered essential
in landscape fire models seems to be completely ignored:
vegetation succession. Thus, it remains unclear whether
theories such as SOC have any bearings in real fire eco-
systems. Linking these two types of models would further
understanding by the integration of insights gained in both
fields and would overcome their mutual limitations.

Here, we systematically compare two generic and par-
simonious ecological wildfire models (Ratz 1995; Peterson
2002) with the most widely used model from statistical
physics, the Drossel-Schwabl (1992) model (hereafter
DSM). Further, we include a dynamic percolation model
(Stauffer and Aharony 1992) as a theoretical reference.

The Ratz (1995) model (hereafter RM) is a grid-based
landscape fire model that considers succession, represented
by a sequence of characteristic species communities ap-
pearing after disturbance, that is, after a grid cell burned.
The Peterson (2002) model (hereafter PM) is also grid
based and focuses on spatiotemporal correlations in veg-
etation caused by fire. It was designed to study local eco-
logical memory, that is, the effect of former fires on current
fires due to the time needed for regrowth of fuel. However,
it does not consider landscape succession.

The RM and PM, representative of several generic eco-
logical fire models, and the DSM appear to be very dif-
ferent and even contradictory. In the RM and PM, fire
spread is modeled as a stochastic process in which the
flammability of a grid cell depends on the time since its
last fire. In the DSM, fire spread itself is deterministic. It
immediately consumes the entire cluster of connected fuel
cells. Further, although the DSM includes a stochastic re-
covery process of fuel, it does not explicitly address suc-
cession. The RM, on the other hand, considers succession
yet does not include an explicit spatial regrowth process
from which it emerges. Is there, therefore, any chance of
unifying these seemingly very different models from ecol-
ogy and statistical physics?

The surprising answer is yes. To demonstrate this, we
first present the four models (including the percolation
model) in a more formal way. Analyzing the structure of
the models leads to the surprising insight that the DSM,
RM, and PM actually are based on the same conceptu-
alization of wildfire systems. We show that the differences
between the models lie solely in the assumptions made
about ecological memory, that is, susceptibility to distur-
bance as a function of recovery since the last fire. In the
RM and PM, this relationship is imposed (Railsback 2001;
Grimm and Railsback 2005); that is, a certain functional
relationship is assumed. In contrast, in the DSM ecological
memory emerges from a spatial stochastic process.

Finally, we investigate the effect of the different memory
functions on the large-scale patterns presented in figure

1: fire shape properties, the relation between the diversity
of succession stages and the average annual area burned,
and fire size distributions. Surprisingly, the capability of
the three models to reproduce the observed patterns is
largely independent of the details of their functions rep-
resenting ecological memory. This robustness in producing
observed patterns suggests that the unified model indeed
captures some essential aspects of wildfire ecosystems.

The Models

Ecology: The RM and PM

The fire spread processes represented in the RM and PM
are very similar: every grid cell keeps track of the time
since its last fire. Fires are initiated by sparks that hit the
landscape at random locations. Whether a spark starts a
fire depends on the local conditions, which, in turn, are
tied to the time since the last fire at this location. The
success of fire spread, going from a cell to its direct four
neighbors, is determined by the same property. Only one
fire burns at a time. (A very similar model is used by
Pueyo [2007].)

The main simulation loop used by Ratz (1995) and
Peterson (2002) consists of the following rules (see fig. 2).

Rule 1. Execute rule 2 n times. Then increase the age a
of all cells by a fixed time interval (10 years for RM, 1
year for PM).

Rule 2. Choose a site at random. Ignite if susceptible;
that is, with probability Pri(a), set its age to 0 and execute
rule 3.

Rule 3. For all four direct neighbors of the burned site:
burn with the local Pri(a). Set the age of all ignited neigh-
bors to 0 and execute rule 3 for each of them.

To calculate Pri(a) of a certain cell, Ratz (1995) assumed
a function that increases quadratically with time since fire,
or age a:

2

a
f(a) p i � c ,a≤500 ( )10

with parameters i and c and assuming a cutoff age at
such that . The probability ofa p 500 f(a) p f(500)1a 500

ignition is thus

f(a) 0 ≤ f(a) ≤ 1
Pr (a) p 1 f(a) 1 1 . (1)i {0 f(a) ! 0

Peterson (2002) uses the following ignition function:

a(a/t )max(1 � Pr ) � 1 a ! tmax maxPr (a) p , (2)i {Pr otherwisemax
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Figure 1: Patterns that emerge in fire-disturbed boreal forests on landscape scales. The average geometrical properties of area burned in a fire (burn
scars) were studied by Eberhart and Woodard (1987) in Alberta (left). After an empirical study in Ontario, Suffling et al. (1988) concluded that the
intermediate disturbance hypothesis (IDH) is valid for fire-disturbed boreal forests (middle). The frequency-area distribution of wildfires is heavy
tailed. A histogram of all fires in the Canadian large-fire database is plotted on a log-log scale (right). The table provides information as to where
these patterns were tested for the four models. All patterns were tested again in this article. DSM p Drossel-Schwabl model.

where a again is the time since last fire at the cell consid-
ered, tmax is the maximum time considered to still have an
increasing effect on Pri(a), and Prmax is the maximum prob-
ability of fire spread. The advantage of this function is that
it can be tailored to just about any shape that smoothly
approaches the maximum probability, mainly by adjusting
the parameter a.

The RM is linked to succession by assuming a typical
sequence of species communities, or succession stages, af-
ter a fire. Each type of community, or stage, is characterized
by a certain transition time, after which it is followed by
the next type of community. Succession is assumed to
reach a climax stage that does not change any more after
500 years.

Statistical Physics: The DSM and Dynamic Percolation

In the original DSM, each grid cell can take one of the
three states: burning, empty, or tree. Contrary to the RM,
an occupied cell is not considered to contain a forest stand.
Rather, it refers to a single “tree,” where the only aspect
of real trees represented is their flammability. Fire destroys
a tree completely, leaving the cell empty. Trees pop up
spontaneously on empty sites. Fire spreads among direct

neighbors; only cells occupied by a tree can burn. The
simulation loop is outlined below (fig. 2).

Rule 1. Effect of burning: a site with a burning tree
turns into an empty site.

Rule 2. Tree growth: a new tree is established with prob-
ability p in an empty cell.

Rule 3. Fire initiation: a site with a tree burns sponta-
neously with probability f.

Rule 4. Fire spread: a site with a tree will burn if at least
one of its four direct neighbors is burning.

The behavior of the DSM depends on the spontaneous
ignition probability f and the recovery parameter p. Only
if the timescales of recovery and fire initiation by sparks
are separated such that as will the modelp/f r � p r 0
produce clusters of a wide range of sizes (Clar et al. 1996).
The first condition, , guarantees that the rate ofp/f r �
regrowth is a lot faster than that of sparking. The second
condition, , leads to a recovery rate that, althoughp r 0
faster than the sparking rate, is still lower than the speed
at which fires burn. Together, both conditions assure that
there are fuel clusters of all sizes. We provide a short de-
scription as to how the parameter p can be estimated from
data on average annual area burned in appendix D.

The fourth model in our analysis is based on the concept
of dynamic percolation (Stauffer and Aharony 1992). Fires
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Figure 2: Left, simulation loop used by Ratz (1996) and Peterson (2002) for their landscape fire models. After trying to ignite fires for a fixed
number of trials, the age of all cells is increased by a predefined amount. Once a fire ignites, it spreads via nearest-neighbor interaction in a
probabilistic manner. Right, illustration of the basic rules of the Drossel and Schwabl (1992) cellular automaton model. These rules are applied to
all cells as .t r t � 1

start at a random location on the grid and spread to neigh-
boring sites according to a flammability , assumedPr p pi b

to be constant and the same for all cells. Hence, it neglects
temporal correlations completely. This assumption is so
unrealistic that the percolation model serves as a kind of
null model in our analysis. Scaling laws emerge near the
critical value of . This value does not, however,p ≈ 0.59b

emerge via self-organization, as in SOC models (Drossel
and Schwabl 1992; Ratz 1996), but has to be set explicitly
by the modeler.

Devising a Unified Forest Fire Model

The connection between RM and PM is easy to see: they
just assume different functions for flammability Pri(a).
Ratz (1996) refers to this function as age-dependent flam-
mability, whereas Peterson (2002) calls it ecological mem-
ory. The challenge is to show that the DSM falls into the
same class of wildfire models as do RM and PM. The
solution lies in reformulating the DSM into a version that,
unlike the original version, incorporates cell age as time
since it burned the last time.

Provided that timescales of fire sparks and tree regrowth
are separated, the DSM’s dynamic is not determined by
parameters f and p separately but by their ratio v p p/f
(Clar et al. 1996). It can be shown that the average number
of trees regrowing between sparks is proportional to v

(Clar et al. 1996). On a conceptual level, v corresponds
to the number of grid cells that become susceptible, on
average, between two fires. This would link the parameter
p to the primary productivity of an ecoregion, while f is
related to the number of lightnings and other ignition
sources, such as arson. Because this ratio of controlsp/f
the models dynamics, it can be simulated using the rules
below (Grassberger 1993).

Rule 1. Choose a site at random. If empty, proceed with
rule 2. If occupied by a tree, determine the tree cluster
connected to it. Set all cluster sites to empty.

Rule 2. Choose sites at random and grow a tree atp/f
all of these sites that are empty. Employ rule 1.

This version of the DSM uses rule 1, which is essentially
a sparking event, as its main simulation timer. We now
derive an age-dependent flammability, Pri(a), for the DSM
by noting that the proportion of cells that regain suscep-
tibility to fire at any given time is , wherep(1 � p ) p ≈t t

is the average proportion of occupied cells in the0.41
quasi-stationary state (Grassberger 1993). This proportion
is constant in the time average over the entire range of
parameters when timescales are separated. The probability
of not turning susceptible is the opposite: .1 � p (1 � p )t
Hence, the probability of not having turned susceptible in
the time since the last fire, corresponding to a time steps,
is because each time step constitutes ana[1 � p(1 � p )]t

independent trial. The probability of ignition, Pri(a), which
emerges for a cell a years after it burned the last time, is
thus

aPr (a) p 1 � [1 � p(1 � p )] . (3)i t

Equation (3) allows simulating the DSM in a novel way.
The only information we need to store per cell is its time
since last fire, a, which is increased in every loop of the
simulation, that is, after each spark. The flammability of
a cell is then calculated using equation (3) and determines
fire spread. This allows us to formulate the common core
behind all four models (fig. 3).

Rule 1. Choose a grid cell at random. If susceptible,
ignite and set its age to 0 and execute rule 2.

Rule 2. For all four direct neighbors: burn if susceptible,
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Figure 3: Core abstraction of wildfire systems underlying both the Drossel-Schwabl model (DSM) from statistical physics (implicitly via the recovery
of trees; see eq. [3]) and the Ratz model (RM) and the Peterson model (PM) in landscape ecology (explicitly; see eqq. [1], [2]). The time step is
shifted to the time between sparks for all models; the necessary mapping is shown in the lower box (n refers to the number of fires). The main
iteration loop is defined by the sparks that start fires. These fires then spread among neighboring sites in a probabilistic fashion. The models differ
only in how they define this probability. The DSM, RM, and PM assume a dependence of flammability on the time since the last fire. The dynamic
percolation model does not make that assumption and serves as a null model.

that is, according to probability Pri(a). Set the age of all
ignited neighbors to 0 and execute rule 2 for each of them.

Rule 3. Increase the age of all cells by the average time
between sparks t.

This algorithm constitutes the unified model, which
contains the four models considered so far as special cases.
The four models are obtained by plugging in the corre-
sponding probability of ignition Pri(a) and time step into
the general model (fig. 4). The time step of the DSM
changed from that of fire spread and recovery per cell, as
in the original formulation, to that of the average time
between sparks on a lattice of length L.2t p 1/(fL )

Effect of Different Memory Functions on Patterns:
Methods and Data

Figure 1 shows three different patterns with which the RM
has been evaluated (Ratz 1995, 1996). In the following we
show how the patterns emerge in the unified model in a
boreal forest scenario, for which the data in figure 1 have
been gathered. The parameters used for the function Pri(a)
were chosen to reveal the effect of different assumptions
about ecological memory (fig. 4; for details see app. B).

Models were run on a square grid. We ran the300 # 300
models for at least 15,000 time steps on a random initial
landscape before taking samples. The details are discussed
separately for each pattern. Algorithms in pseudocode no-
tation describing the models and the corresponding source
code are provided in appendix F.

Frequency-Area Distributions of Fires and Fire Shapes

The frequency-area distributions of real wildfires have
been successfully fitted with power laws. The exponents
found lie between �1.2 and �1.9 (Malamud et al. 1998,
2005; Millington et al. 2006). We did the same fitting for
the four special cases of the unified model. We used a
sample of 3,000 fires for every flammability function. For
visualization, we used multiplicative binning (Pueyo and
Jovani 2006); to determine the exponent a of the power
law, we used the maximum likelihood estimator directly
from the sample data (Clauset et al. 2009; for details see
app. A).

Ratz (1995) found that his model reproduced the shape
of fires in boreal forests (Eberhart and Woodard 1987).
Here we used the same data to evaluate all four models.
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Figure 4: Flammability, that is, probability Pri(a) of a grid cell of age a
(i.e., the time since that cell last burned) to ignite if hit by lightning or
being adjacent to a burning cell, also referred to as ecological memory.
We derived the flammability that emerges in the Drossel-Schwabl model
(DSM; see eq. [3]). In the Ratz model and the Peterson model, flam-
mability is imposed. For the test of shape- and frequency-area distri-
bution, parameters for the increasing functions were chosen so that the
flammability is fairly high (10.8) after 30 years. This is the time it takes
for boreal forests to develop a critical bulk density.

Data were obtained by Eberhart and Woodard (1987) by
analyzing 68 fires that burned, without human interven-
tion, in the boreal forest of Alberta. The fires were grouped
in size classes of 20–40, 41–200, 201–400, 401–2,000, and
2,001–20,000 ha. Structural properties studied by Eberhart
and Woodard (1987) and Ratz (1995) were fire shape and
number and size of islands of unburned vegetation within
fires. We evaluated the same properties in the models,
using 2,000 fires for each size class (see app. C for details):
unburned area, shape index, edge index, and median island
size per fire. An island within a burned cluster of the forest
fire model was defined as a coherent area of grid cells
surrounded by cells that burned in the last fire event. The
area of a grid cell corresponded to 6 ha/cell, according to
a calibration done for the RM (Ratz 1995; Zinck and
Grimm 2008). Associating a cell with a forest stand rather
than a single tree in the DSM is useful in the interpretation
of Pri(a) (see “Discussion”). We chose a grid cell in the
PM and percolation model to represent the same area as
in the RM and DSM, 6 ha.

Disturbance-Diversity Relationship

For boreal forests of northwestern Ontario, Suffling et al.
(1988) used eight sample sites of 250 km2 each, selected
along a gradient transect of disturbance level, quantified

by the average annual area burned. Each site was divided
into 16 squares, the landscape diversity of which was as-
sessed regarding different succession stages and averaged
for the sample using the Shannon index. The obtained
data were best fitted by a hump-shaped curve, as suggested
by the intermediate disturbance hypothesis (IDH; Connell
1978).

In order to test the models for this pattern, we add a
succession aspect to the models. A succession stage is char-
acterized by a specific composition of species. Succession
is modeled as a chain of characteristic communities ap-
pearing after fire (table 1). It ends in a climax stage. Tran-
sitions take place in a characteristic sequence after the
average lifetime of a certain community has passed. In the
models studied here, the succession stage of a cell is iden-
tified via the time since its last disturbance. Every state
can be thrown back to the initial state by another fire.

We use four different succession scenarios from the lit-
erature to explore the effect of varying transition times
and the number of succession stages on the resulting land-
scape pattern (table 1). The succession scenarios were all
developed for actual forests. We use the same diversity
measure as did Suffling et al. (1988), the Shannon index:

SHX(S) p � s ln (s ),� i i
i�N

where S is the frequency distribution of N succession stages
and si the ith succession stage.

Samples for landscape patterns are taken at intervals of
10 time steps each, as by Ratz (1996). The landscape di-
versity was determined for every disturbance intensity (i.e.,
average annual area burned) by averaging 1,000 samples.
To systematically vary the disturbance level, we varied pa-
rameter p in the DSM from 0.0001 to 0.1 while keeping
the ratio constant at 200. To obtain the same effect inp/f
the RM, we varied parameter c from 0.0001 to 0.2 while
setting . In the percolation model we varied thei p 0.2
flammability from 0.31 to 0.57. The disturbance intensity
in the PM was increased by varying tmax from 1,700 to 10
years while setting the maximum flammability, Prmax, to
0.8 and using . Note that for the DSM, it is alsoa p 2
possible to calculate the diversity-disturbance relationship
analytically (Zinck et al. 2009; see app. E).

Results

The frequency-area statistics of all four models can be
fitted successfully with a power law (fig. 5). This has been
known to be so for the DSM and the RM for a large range
of parameters for both models. The constant scenario near
the percolation threshold produces power-law-like statis-
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Table 1: Transition times of the four succession models used in creating the disturbance-diversity curves

Forest type Transition times Reference

Mountain forest, Wyoming 10, 40, 150, 300, 600 Romme and Despain 1991
Coniferous forest, Montana 20, 50, 150, 300, 320, 350 Kessel 1980
Oak forest, Michigan 100, 150, 200, 350, 500 Shugart et al. 1973
Douglas-hemlock forest, British Columbia 6, 60, 150, 200, 300, 400 Otto 1994

tics, as expected (Stauffer and Aharony 1992), but with a
considerably smaller exponent. The exponent of the other
three models, including the PM, is very similar.

The statistical properties of fire shapes generally follow
the trend seen in the data by Eberhart and Woodard (1987)
for all models (fig. 6). The overall performance of all mod-
els is similar and depends more on the fire size than on
the model. The best fit is attained in size class 4, that is,
for fires of the size of 401–2,000 ha. The largest deviation
is seen for very large fires in size class 5 (2,001–20,000 ha)
in the edge index, shape index, and median island size.

The diversity-disturbance curves of all four models are
hump shaped, as predicted by the IDH (fig. 7; see also fig.
1). The exact shape varies with the succession scenario
(table 1). For all three models that include ecological mem-
ory, the maximum diversity is attained at lower values of
average annual area burned, as compared with the dy-
namic percolation model, which assumes constant flam-
mability. Further, the slight bimodality seen for the Wy-
oming scenario (Yellowstone National Park) does not
appear in the percolation model. Ecological memory in-
creases the diversity at lower disturbance levels. Simulation
results are supported by analytical calculations of the di-
versity-disturbance curves for the DSM (app. E; Zinck et
al. 2009).

Discussion

The aim of this work was to unify simple models of forest
fire ecosystems from ecology and statistical physics that
have so far existed almost independently of each other.
The idea that a unification might be possible came about
gradually, on the basis of the following series of insights.
First, the DSM reproduced fire shapes just as well as the
RM (Zinck and Grimm 2008). To compare the DSM and
the RM, the size of a grid cell in the DSM had to be
rescaled so that it no longer corresponded to a single tree
but to a forest stand of about 6 ha.

Next, it turned out that the DSM, like the RM, was
capable of reproducing data to realistically describe the
relationship between disturbance level (average annual
area burned) and diversity of succession stages (Suffling
et al. 1988; Zinck et al. 2009). To test this, succession had
to be introduced in the DSM. This was achieved by de-

riving the flammability Pri(a) of a grid cell, which emerges
from its fuel-replenishing process.

The final step was to take into account the notion and
specific formulation of ecological memory introduced by
Peterson (2002). This led to further insights: to capture
key features of a real forest fire system, it appears that such
a memory function describing flammability as function of
the time since the last disturbance is needed. Further, by
setting tmax, the time after which flammability reaches its
maximum, to 30 years instead of 500 years, as in the RM,
a possible criticism in models including age-dependent
flammability is met: time since fire might not matter for
flammability for a wide range of stand ages, but it certainly
matters for the first few decades, and this is necessary and
sufficient to reproduce observed patterns without external
parameter fine-tuning, as in the percolation model.

Our unified model shows that three so far unrelated
models are indeed basically the same and that ecological
memory, that is, a susceptibility to fire dependent on the
time since the last fire, is the core feature of each of these
models. Ecological memory is the reason why the differ-
ence between imposing Pri(a) in the RM and PM and
letting it emerge in the DSM is superficial. In the DSM
with separation of timescales, fire spread is deterministic,
yet fuel patches emerge in a stochastic manner. In the RM
and PM, fuel patches emerge during fire spread. It is just
a question of when the fuel patch is determined: at the
time of fire spread or in between fires, as in the DSM. In
the end, the effect is the same because in both approaches
it is the time lag in reestablishing flammability that de-
termines Pri(a). This is an astonishing and nontrivial in-
sight. In the following we will discuss the benefits of our
synthesis.

Simple Theoretical Forest Fire Models Are
More Realistic than Anticipated

Most fire models developed for landscape and fire ecology
are more detailed than the four simple and generic models
that we explored here. The RM (Ratz 1995, 1996) was
designed for understanding generic patterns in forest fire
ecosystems but was corroborated by comparing its output
to data on fire shapes and landscape-level disturbance-
diversity relationships (the latter was published only in a
thesis and therefore was not generally known so far; Ratz
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Figure 5: Frequency-size distribution of fires fitted by a power law. The exponents of the Drossel-Schwabl (1992) model (DSM), the Ratz (1996)
model, and the Peterson (2002) model differ only marginally, although these models vary in their assumptions about flammability as a function of
time since last fire (standard error of estimation depends on sample size; see app. A). The parameters (see fig. 4) were not fine-tuned to this
exponent. The exponent obtained for the constant percolation scenario for the subcritical value of is, however, considerably lower.i p 0.57

1996). The RM therefore is acknowledged by landscape
and fire ecologists as being ecologically significant to some
degree, although it ignores virtually all details that are
discussed in more detailed forest fire models, for example,
topography, fuel and soil moisture, wind directions,
weather, species composition, and individual trees (Keane
et al. 2004).

In contrast, the PM (Peterson 2002) was designed to
explore the effect of ecological memory on the persistence
of patterns in the landscape. In this context, ecological
memory refers to the marks in the landscape left by pre-
vious fires. If the parameter tmax in the PM is, for example,
assumed to be 30 years, the memory of the landscape in
terms of flammability fades away after 30 years. Realism
was not a primary issue for the PM. The DSM has so far
been used rarely by landscape and fire ecologists (but see
Malamud et al. 1998) because the assumptions of the DSM
seem unrealistic, for example, trees “popping up” on
empty grid cells, and because succession was completely
ignored.

There was thus a wide gap between realistic forest fire
models and the three generic models explored here. Our
synthesis now shows that in fact these three models are
equivalent. Further, we were led to this synthesis by rec-

ognizing that all three models are capable of reproducing
three patterns observed in real forest fire ecosystems: fire
shapes, disturbance-diversity relationships, and power-
law-like fire size distributions. Thus, simple forest fire
models, which are stochastic cellular automata that ignore
virtually every detail in structure and process of real for-
ests, are much more realistic than anticipated (even by
their creators, as in the case of PM and DSM). “Realistic”
here means that these models capture key processes that
already explain a great deal of what is observed in real
systems on larger spatial and temporal scales. The key
processes are related to limitations to fire spread by the
fuel mosaic, which, in turn, has been shaped by both for-
mer fires and the fuel regeneration process. The memory
of previous fire events and the subsequent fuel mosaic are
thus more important than previously believed.

The Role of Fuel Mosaics and Ecological Memory

The spread of wildfire is determined by a variety of factors
such as fuel moisture, topography, exposition, fuel con-
nectivity, and wind. Our unified model considers fuel con-
nectivity only. The role of fuel connectivity in fire spread
is controlled mainly by weather (Turner and Romme 1994;
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Figure 6: Characteristics of fire shapes as produced by the models and as observed by Eberhart and Woodard (1987) in Alberta, Canada. The size
classes are defined as (1) 20–40 ha, (2) 41–200 ha, (3) 201–400 ha, (4) 401–2,000 ha, and (5) 2,001–20,000 ha. All four models perform similarly;
the largest deviation is seen for the median island size. The best fit is obtained for fires of size class 4 for all indexes. The robustness of this pattern
is studied in detail for the Drossel-Schwabl model (DSM) by Zinck and Grimm (2008) and for the Ratz model by Ratz (1995). The goodness of
fit was assessed by comparing the standard deviation of the model and data for each size class. The data from Alberta are available only as summary
statistics. Error bars are not shown here to avoid clutter.

Turner 2005). Under poor burning conditions, that is,
when fuel is wet, fires tend to die out rapidly. Under good
burning conditions, fires spread, consuming the entire
cluster of connected fuel on which they were initiated
(Despain and Sellers 1977; Minnich 1983; Romme and
Despain 1989; Turner 2005). These conditions may exist
only for a few weeks in the year, yet they account for most
large fires during the burning season. Under extreme con-
ditions, fire spread is not restricted to the fuel mosaic, and
large areas can burn, irrespective of stand structure and
accumulated biomass (Moritz 1997). The role of weather
as an enabler is also stressed by Johnson et al. (2001), who
differentiate between poor and extreme burning condi-
tions in boreal forests. Our unified model thus implicitly
assumes that fires burn under good conditions.

Stand-replacing fires start and spread in forests where
a critical surface-fire intensity (kW/m; Van Wagner 1977)
is reached and that exhibit a structure that enables the fire
to reach and consume the crowns. A forest stand develops
this susceptibility, characterized by a critical crown height
and bulk density in closed canopy forests, at some time
during its maturation (Johnson et al. 2001). The time
needed for transition from nonsusceptible to susceptible
depends on conditions that differ locally because some
sites might have been affected more severely by a fire than
others or are more rapidly reclaimed. Dispersal or sprout-
ing, herbivores, and local climatic and soil conditions all
play a role (Whelan 1995). Our unified model aggregates
all these mechanisms into a function describing flam-
mability depending on stand age, or time since last fire.

It is surprising that the shape of this function (fig. 3) has
such a small effect on large-scale patterns. The largest effect
can be seen in the disturbance-diversity curve, which rises
to its maximum more rapidly with increasing ecological
memory (the sequence is percolation model, DSM, RM,
and PM) and appears to promote bimodality. The pro-
cesses of fire spread and subsequent vegetation recovery
shape the landscape and at the same time determine its
spatiotemporal susceptibility for future disturbances.

In fire ecology, there has been some controversy over
the role of age-dependent flammability. “Researchers
working in different locations have variously proposed that
the probability of fire spread is either independent of time
since fire (Bessie and Johnson 1995), or that it increases
with time since fire (Minnich 1983). These differences sug-
gest that some forests have little ecological memory,
whereas others have a significant amount” (Peterson 2002,
p. 330). Our unified model shows that this controversy
can be resolved to a large extent: “age dependent” does
not necessarily mean that flammability changes with stand
age for 100 years or more. A few decades, needed to build
up critical bulk density, are sufficient to reproduce ob-
served patterns, at least in boreal forests.

Theoretical Insights Have Bearings for
Real Forest Fire Ecosystems

So far, it has remained unclear whether the body of the-
oretical insights on wildfire systems gained in statistical
physics had any bearings for real forest fire ecosystems.
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Figure 7: Diversity-disturbance relationship for succession scenarios representing four different real forests (table 1). The hump-shaped curve
predicted by the intermediate disturbance hypothesis emerges for all scenarios (see also field study by Suffling et al. [1988]; fig. 1). The exact shape
depends on the assumptions of the models about flammability as a function of time since last disturbance. For all three models that include ecological
memory, the maximum diversity is attained at lower values of average annual area burned as compared with the dynamic percolation model, which
assumes constant flammability. All curves were obtained by simulation (no interpolation used). DSM p Drossel-Schwabl model.

Our synthesis shows that it does. Real fire ecosystems can
in fact be related to the ideas underlying the concept of
SOC (Bak et al. 1988). SOC of wildfire systems has been
discussed intensively in statistical physics (Grassberger
2002), and it seems clear by now that it is more appropriate
to speak of power-law-like fire-frequency distributions
rather than power laws (Reed and McKelvey 2002; Mill-
ington et al. 2006) and to assume that fire ecosystems are
not necessarily fulfilling all theoretical requirements of
SOC. Nevertheless, key elements of SOC seem to play a
role: self-organization driven by ecological memory, that
is, the feedback between a process (fire) and its effects
(landscape structure), is indeed a key driver of these sys-
tems. The point is not whether we have critical states in
the strict sense of phase transitions, as described in physics
(Pascual and Guichard 2005), but whether we have a self-
organized process that drives certain classes of systems,
for example, wildfire systems, into a preferred range of
states. This could explain the resilience of these states
(Gunderson 2000).

Our unification allows, with caution, the direct transfer

of insights from statistical physics to real systems, for ex-
ample, that an increase in the sparking rate leads to smaller
average fire size and that the average annual area burned
remains largely constant (see derivation in app. D). This
finding is important in the context of discussion on the
effects of increased natural and anthropogenic sparking
rates and of fire management in general. Furthermore,
many of the insights based on the DSM can be devised
analytically, allowing more rigorous and comprehensive
analyses than simulations. For example, the diversity-
disturbance curves, which we determined here via simu-
lation, can also be derived analytically (app. E; Zinck et
al. 2009).

Focusing on the Real Limitations
of Simple Forest Fire Models

The most important consequence of our synthesis might
be that it allows us to identify the most pressing gap in
current generic research on fire ecosystems. Our pattern
analysis showed that the three models containing ecolog-
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ical memory were well capable of reproducing fire shapes
and the diversity-disturbance relationship of succession
stage. However, the exponent of the power law part of the
frequency–fire size relation is consistently too large in all
three models; that is, these models produce too many large
fires. The DSM, for example, typically produces an ex-
ponent of around �1.16 (Grassberger 1993), whereas real
wildfires have an exponent of between �1.2 and �1.9
(Malamud et al. 2005; Millington et al. 2006).

The exponent of the unified model is extremely robust.
We tried many different features that would make the
model more realistic, for example, introducing spatial het-
erogeneity, spatially inhomogeneous spark distribution,
and wind, but all this had virtually no effect on the ex-
ponent (data not shown; listing in app. A). As yet, there
is only one known way to get the exponent right in cellular
automata fire models: the inclusion of stochastic effects of
weather (Pueyo 2007) by adding a value, drawn from a
weather distribution, to the flammability of all cells during
a fire (see also Ratz 1996). Such a value is drawn for each
fire and leads to frequency-area distributions of varying
steepness. Nevertheless, there is evidence of the existence
of nonlinear thresholds in environmental conditions, after
which weather effects can no longer be correlated to fire
size (Schoenberg et al. 2003). Hence, there is still consid-
erable work to be done in explaining the frequency-area
distributions of wildfires.

Conclusions

We showed here that linking theoretical models, which
focus on only one pattern observed in reality (power laws),

to further patterns (fire shapes, diversity-disturbance re-
lationships) broadens the view, allows the identification of
key mechanisms, and makes the models testable at dif-
ferent scales and hierarchical levels. This way of linking
the process of formulating and testing models to entire
sets of patterns, instead of to individual ones, has been
referred to as pattern-oriented modeling (Grimm et al.
1996, 2005; Wiegand et al. 2003; Grimm and Railsback
2005). The search for mechanisms generating the right
exponents suggests that we might need to include further
patterns, for example, in fire spread or in the relationship
between weather and fire sizes. It might even be possible
to check the many existing, more detailed, and well-tested
fire-succession models that focus on smaller scales for
these additional patterns. This could be an example of the
complimentary, unifying use of exploratory and predictive
modeling that recently has been recommended by Perry
and Millington (2008). In the future, therefore, perhaps
even generic and specific fire models might be unified to
provide general insights into what determines fire size dis-
tribution and to formulate specific management recom-
mendations.
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APPENDIX A

Fitting with Power Laws: Listing of What
We Tried to Change the Exponent

We used multiplicative binning, that is, bin sizes of 2, 4, 8, 16, …, to plot the frequency-area data on log-log scales
(Pueyo and Jovani 2006). The value for each bin was normalized by its size and plotted in the center of the bin. To
determine the exponent a of the power law, we used the maximum likelihood estimator directly from the n data
(without the need for binning):

�1
n

xi
a p 1 � n ln , (A1)�[ ( )]x � 0.5ip1 min

where the estimate of the associated statistical error is given by

a � 1
j p . (A2)�n

This approach appeared to be the most suitable because it allowed a good fitting of the distribution even at its tail
(Newman 2005; Clauset et al. 2009). The value xmin was set to the smallest value for which the power law behavior
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held. We cut off the first and last 10% of the sorted fire size data and plotted a power law with the determined exponent
into the figure as test of accuracy.

The exponents we obtained for the Ratz model and Peterson model were around the same as that of the Drossel-
Schwabl model (DSM). Fitting heavy-tailed distributions with power laws is prone to error, so we plotted the obtained
distributions against each other to confirm that the distributions are almost identical over a wide range of parameters
(see also the exponents documented by Ratz [1996] and the report of Pueyo [2007]). The challenge is to obtain
distributions that are steeper to better fit the data. With this aim, we tried to modify the DSM by (1) using two
different types of vegetation characterized by a different flammability (value of parameter p); (2) randomly adding
nonflammable cells to the landscape (up to 60%; we got the heavy tail of the distribution to break down in this way,
yet the steepness remained the same almost to the point of breakdown); (3) including a dominant direction of wind
such that the fire preferentially burns into one direction, leaving part of the fuel unburned; (4) introducing a time
lag in which burned cells do not regenerate after a fire (after this time lag, the cell can regenerate with probability p
per time step, as in the original model); and (5) using a spatially inhomogeneous spark distribution (highest probability
of lightning spark in the middle, exponential drop off from there).

All of these modifications had, at best, limited effects on the exponent. This is highly counterintuitive and nontrivial.
Pueyo (2007) attributes this effect to universality. To our knowledge, there is no more rigorous argument as yet.

APPENDIX B

Frequency-Area Distribution and
Fire Shapes: Parameters Used

In the Ratz model and the Peterson (2002) model (PM), the probability of ignition Pri(a) can be freely imposed,
whereas Pri(a) emerges in the Drossel-Schwabl model (DSM), depending on the regrowth parameter p (DSM rule 2;
eq. [3]). Ratz (1995) assumed a constant base flammability i, which we set to , and an age-dependent part,i p 0.2
for which we used (eq. [1]). In the PM (eq. [2]), we set , , and the maximal flammabilityc p 0.07 a p 2 t p 30max

to , considering the good burning conditions assumed for our scenario. We set the time to reach thePr p 0.8max

maximal flammability to 30 years because critical bulk density—which is associated with the development of crown
fires—is fairly stable in boreal forests after the first 2 decades (Rothermel 1972; Brown and Bevins 1986; Bessie and
Johnson 1995). For the percolation model, we used , which is close to the percolation threshold of aboutPr p 0.57i

0.59 (Stauffer and Aharony 1992). We chose for the DSM in order to get a steep increase in the emergingp p 0.08
flammability.

APPENDIX C

Indexes for Fire Shape

The following indexes were used in a field study by Eberhart and Woodard (1987). We provide the formal definition
here. The unburned area, UA, consists of unburned islands relative to the area ao enclosed by the outer perimeter of
the fire. Let ab be the area that was actually burned; then, the total unburned area is

abUA p 1 � . (C1)
ao

The shape index, SI, is the ratio of the outer perimeter po of the fire to the perimeter of a circle that encloses the
same area, ao:

poSI p . (C2)�2 pao

The edge index, EI, is the sum of the outer perimeter plus the perimeter of all enclosed islands, pw, compared with
the perimeter of a circle that encloses an area equal to the burned area, ab:
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pwEI p . (C3)�2 pab

APPENDIX D

Average Area Burned and Sparking Frequency
in the Drossel-Schwabl Model

The average area burned in the Drossel-Schwabl model (DSM) is equal to that which regrows on average c p
, where is the quasi-stationary state (Grassberger 1993) and is independent of p and f, as long asp(1 � p ) p p 0.41t t

and . This mean field equation enables us to calculate p directly from the average annual area burned, af K p p K 1
quantity commonly monitored by conservation agencies. An average area burned of 1%, for example, would indicate
a p value of . The sparking rate does not enter this equation and does not influence the average area0.01/0.59 p 0.016
burned, controlled by the regrowth parameter p. The average fire size is a function of both the regrowth parameter
p and the sparking rate f, such that (Clar et al. 1996)

p 1 � p cts p p . (D1)
f p fpt t

Increasing the sparking rate leads to smaller average fire size. In the DSM, the average annual area burned is not
affected because the average fuel load on the landscape, pt, remains at the same value.

APPENDIX E

Analytical Prediction of the Disturbance-Diversity Relationship

The age-class distribution is the basis for determining landscape diversity. The behavior of the age-class distribution
can be modeled using a one-dimensional drift equation (Sinko and Streifer 1967). The state of the model landscape
is characterized by the distribution of the age classes, s(a, t), which is the area with time since last fire a at time t.
The probability of perishing in a fire depends on the age class and the disturbance intensity of the system, which can
be quantified by the average annual area burned, c. The drift equation is

� �
s(a, t) � s(a, t) p �m(a, c)s(a, t), (E1)

�t �a

where m is mortality. The average number of sites with time since last fire a that are consumed by fire is (Zinck et
al. 2009)

c
m(a, C)s(a) p Pr (a)s(a). (E2)ipt

APPENDIX F

Pseudocode for Wildfire Models

In this appendix we provide a pseudocode that illustrates how the wildfire models and the unified model can be
implemented independently of the programming language. The actual source code used in the simulations is available
as a zip file. A sketch of the general fire model is provided in algorithm 1. The fire spread algorithm is provided in
recursive form in algorithm 2 and using a queue in algorithm 3. Algorithms 4, 5, and 6 provide the framework for
the model of Ratz (1996) and Peterson (2002), as well as that of Drossel and Schwabl (1992), respectively.
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Algorithm 1: The general wildfire model
1: s !p rectangular landscape grid
2: repeat
3: c !p s.getRandomCell()
4: if c.isSusceptible() then
5: FireSpread(c)
6: end if
7: for all cells c in the landscape do
8: c.increaseAgeBy(timeBetweenSparks)
9: end for
10: until Simulation is done

Algorithm 2: Recursive implementation of fire spread
1: procedure RecursiveFireSpread(cell c)
2: if ignites(c) then
3: c.setAge(0)
4: for all von Neumann neighbors n of c do
5: RecursiveFireSpread(n)
6: end for
7: end if
8: end procedure

Algorithm 3: Nonrecursive implementation of fire spread
Require: Cell c has been struck by lightning and ignited
1: procedure FireSpread(cell c)
2: c.setAge(0)
3: queue.add(c)
4: while queue is not empty do
5: c queue.poll()
6: for all von Neumann neighbors n of c with n not in queue do
7: if ignites(c) then
8: n.setAge(0)
9: queue.add(n)
10: end if
11: end for
12: end while
13: end procedure

Algorithm 4: The basic simulation loop of Ratz (1995) and Peterson (2002)
1: s !p rectangular landscape grid
2: repeat
3: for a fixed number n do
4: c !p s.getRandomCell()
5: if ignites(c) then FireSpread(c)
6: end if
7: end for
8: for all cells c in s do
9: c.increaseAgeByYears(timeStep)
10: end for
11: until Simulation is done
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Algorithm 5: The DSM cellular automaton
1: s !p rectangular landscape grid
2: repeat
3: for all cells c in s do
4: if c.isBurning() then c.nextState(‘empty’)
5: end if
6: if c.isTree() AND at least one direct neighbor is burning then
7: c.nextState(‘burning’)
8: end if
9: if c.isTree() AND random() ! f then c.nextState(‘burning’)
10: end if
11: if c.isEmpty() AND random() ! p then c.nextState(‘tree’)
12: end if
13: end for
14: for all cells c in s do
15: c.assumeNewState()
16: end for
17: until Simulation is done

Algorithm 6: DS-FFM after Grassberger (1993); Henley (1993)
1: s !p rectangular landscape grid
2: repeat
3: c !p s.getRandomCell()
4: if c.isTree() then FireSpread(c)
5: end if
6: for a number of v p p/f do
7: d !p s.getRandomCell()
8: if d.isEmpty() then d.setState(‘Tree’);
9: end if
10: end for
11: until Simulation is done
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