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Basics of Turbulence I:

A Look at Homogeneous Systems



• Highly Pedagogic

Approach

Turbulence

Homogeneous Problems I
- Cascade
- Spectra
- Wave Interactions
...

Inhomogeneous Problems II
- Mixing length, profiles
- Pipe, wake flow
- ‘Turbulence spreading’
- Avalanches
...

• Focus on simplest problems

scale space



• Basic Ideas

• K41 and Beyond

• Turbulence in Flatland – 2D Fluid Turbulence

• First Look at MHD Turbulence

Outline



• Unless otherwise noted:

𝜌𝜌
𝜕𝜕𝑣⃗𝑣
𝜕𝜕𝜕𝜕

+ 𝑣⃗𝑣 ⋅ 𝛻𝛻𝑣⃗𝑣 − 𝜈𝜈𝛻𝛻2𝑣⃗𝑣 = −𝛻𝛻𝑃𝑃 + 𝑓𝑓

𝛻𝛻 ⋅ 𝑣⃗𝑣 = 0

– Finite domain, closed, periodic

– 𝑅𝑅𝑅𝑅 = 𝑣𝑣 ⋅ 𝛻𝛻𝑣𝑣 /𝜈𝜈𝛻𝛻2𝑣𝑣 ∼ 𝑉𝑉𝑉𝑉/𝜈𝜈 ;   𝑅𝑅𝑅𝑅 ≫ 1

• Variants:

– 2D, QG

– Compressible flow

– Pipe flow – inhomogeneity 

....

Model

Random forcing
(usually large scale)



• Spatio-temporal “disorder”

• Broad range of space-time scales

• Power transfer / flux thru broad range of scales *

• Energy dissipation and irreversibility as 𝑅𝑅𝑅𝑅 → ∞ *

And:

• Decay of large scales

• Irreversible mixing

• Intermittency / burstiness

What is turbulence?

Leonardo

Ma Yuan



• Power transfer dominant

• Irreversibility for 𝜈𝜈 → 0

• Noisey thermal equilibrium:  (ala’ Test Particle Model)

Emission <-> absorption balance, locally

• Turbulence:

What is difference between turbulence and 
noise/equilibrium fluctuations?

Fluctuation-Dissipation Theorem
applies

Flux ~ emission – absorption

Flux dominant for most scales 
~ cascade



A) Planes, trains, automobiles…

DRAG

• Recall:  𝐹𝐹𝑑𝑑 ∼ 𝑐𝑐𝐷𝐷𝜌𝜌𝜌𝜌𝑉𝑉2

• 𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐷𝐷(𝑅𝑅𝑅𝑅) drag coefficient

Why broad range scales? 
What motivates cascade concept?



• The Point:

- Energy dissipation is finite, and due to viscosity, yet does not depend explicitly    

on viscosity  ANOMALY

- ‘Irreversibility persists as symmetry breaking factors vanish’ 

i.e.  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∼ 𝐹𝐹𝑑𝑑 𝑉𝑉 ∼ 𝐶𝐶𝐷𝐷𝜌𝜌𝜌𝜌𝑉𝑉3

𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑
∼ 𝑉𝑉3

𝑙𝑙0
≡ 𝜖𝜖  dissipation rate

• Where does the energy go?

Steady state 𝜈𝜈 𝛻𝛻𝑣⃗𝑣 2 = 𝑓𝑓 ⋅ 𝑣⃗𝑣 = 𝜖𝜖

𝑙𝑙0 macro length scale



• So  𝜖𝜖 = 𝜈𝜈 𝛻𝛻𝛻 2  independent of 𝜈𝜈

• 𝛻𝛻𝑣𝑣 𝑟𝑟𝑟𝑟𝑟𝑟 ~ 1
𝜈𝜈1/2  suggests  singular velocity gradients (small 

scale)

∴

• Flat 𝐶𝐶𝐷𝐷 in 𝑅𝑅𝑅𝑅  turbulence must access small scales as 𝑅𝑅𝑅𝑅 → ∞

• Obviously consistent with broad spectrum, via nonlinear coupling



B) … and balloons

• Study of ‘test particles’ in turbulence:

• Anecdotal:

Titus Lucretius Caro: 99-55 BC

“De rerum Nature” cf. section V, line 500

• Systematic:

L.F. Richardson:

Noted: 𝛿𝛿𝑙𝑙2 ∼ 𝑡𝑡3  super-diffusive

- not ~ t,  ala’ diffusion, noise

- not exponential, ala’ smooth chaotic flow

- probed atmospheric turbulence by study of balloon separation

𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿 𝑡𝑡



𝛿𝛿𝛿𝛿 𝑙𝑙 = 𝑣⃗𝑣 𝑟𝑟 + 𝑙𝑙 − 𝑣⃗𝑣 𝑟𝑟 ⋅ 𝑙𝑙
𝑙𝑙
 structure function

Then: 𝛿𝛿𝛿𝛿 ∼ 𝑙𝑙𝛼𝛼

so,  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∼ 𝑙𝑙𝛼𝛼  growth of separation

 𝑙𝑙2 ∼ 𝑡𝑡
2

1−𝛼𝛼 ∼ 𝑡𝑡3

 𝛼𝛼 = 1
3

so 𝛿𝛿𝛿𝛿 𝑙𝑙 ∼ 𝑙𝑙1/3, 𝛿𝛿𝑙𝑙2 ∼ 𝑡𝑡3

 Points: 

– large eddys have more energy, so rate of separation increases with scale 

– Relative separation is excellent diagnostic of flow dynamics

cf: tetrads: Siggia and Shraiman

Upshot:

 velocity differential 
across scale



N.B. turbulence is spatially “rough”, i.e. 𝛿𝛿𝛿𝛿 𝑙𝑙 ∼ 𝜖𝜖1/3 𝑙𝑙1/3

lim
𝑙𝑙→0

𝑉𝑉 𝑟𝑟 + 𝑙𝑙 − 𝑉𝑉(𝑟𝑟)
𝑙𝑙

= lim
𝑙𝑙→0

𝛿𝛿𝛿𝛿 𝑙𝑙
𝑙𝑙

= 𝜖𝜖1/3 / 𝑙𝑙2/3

- strain rate increases on smaller scales

- turbulence develops progressively rougher structure on smaller 

scales

Roughness:



• Where are we?

– turbulence develop singular gradients to maintain 

𝐶𝐶𝐷𝐷 indep. 𝑅𝑅𝑅𝑅

– turbulent flow structure exhibits 

• super-diffusive separation of test particles

• power law scaling of 𝛿𝛿𝛿𝛿 𝑙𝑙



• Cascade model – K41



K41 Model (Phenomenological)
• Cascade  hierarchical fragmentation

• Broad range of scales, no gaps

• Described by structure function  

• 〈𝛿𝛿𝛿𝛿 𝑙𝑙 2〉, …. 𝛿𝛿𝛿𝛿 𝑙𝑙 𝑛𝑛 , …
Related to energy distribution

 greatest interest

𝑙𝑙0

𝑙𝑙1
𝑙𝑙2

- 𝛿𝛿𝛿𝛿 𝑙𝑙 2 ↔ energy, 
of great interest

- higher moments
more challenging



• Input:

• 2/3 law (empirical)

𝑆𝑆2 𝑙𝑙 ∼ 𝑙𝑙2/3

• 4/5 law (Rigorous) - TBD

𝛿𝛿𝛿𝛿 𝑙𝑙 3 = −4
5
𝜖𝜖𝜖𝜖

 Ideas:

• Flux of energy in scale space from 𝑙𝑙0 (input/integral scale) to 𝑙𝑙𝑑𝑑 (dissipation) scale 

– set by 𝜈𝜈

• Energy flux is same at all scales between 𝑙𝑙0, 𝑙𝑙𝑑𝑑 <-> self-similarity

real scale (b)



And

• Energy dissipation – set as 𝜈𝜈 → 0 but not at 𝜈𝜈 = 0

• * Asymmetry of breaking or stirring etc. lost in cascade: symmetry 

restoration

• N.B. intermittency <-> ‘memory’ of stirring, etc

• Ingredients  / Players

– Exciton eddy (not a wave / eigenmode!)

– 𝑙𝑙: scale parameter, eddy scale

– 𝛿𝛿𝛿𝛿(𝑙𝑙): velocity increment.   Hereafter 𝑉𝑉(𝑙𝑙)



• 𝑉𝑉𝑜𝑜: rms eddy fluctuation (large scale dominated)

• 𝜏𝜏(𝑙𝑙):  eddy transfer / life-time / turn-over rate

•  characteristic scale of transfer in cascade step

• Self-similarity  constant flow-thru rate  𝜖𝜖 = 𝑉𝑉 𝑙𝑙 2/𝜏𝜏(𝑙𝑙)

• What is 𝜏𝜏(𝑙𝑙) ??   Consider…

𝜏𝜏 𝑙𝑙

𝑙𝑙



The possibilities:

• Dimensionally, 𝜏𝜏(𝑙𝑙) is ‘lifetime’ of structure of scale 𝑙𝑙, time to distort 

out of existence

So

• 𝑙𝑙′ > 𝑙𝑙

• 𝑙𝑙′ < 𝑙𝑙



• 𝜏𝜏 𝑙𝑙 ∼ 𝑙𝑙/𝑉𝑉(𝑙𝑙) ,   set  by 𝑙𝑙′ ∼ 𝑙𝑙

- Larger scales advect eddy but don’t distort it
- Physics can’t change under Galilean boost

cf: Rapid distortions, shearing

- Irrelevant  insufficient energy

𝑙𝑙′



So

 𝜖𝜖 ∼ 𝑉𝑉 𝑙𝑙 2/ 𝜏𝜏 𝑙𝑙 ∼ 𝑉𝑉 𝑙𝑙 3/ 𝑙𝑙  𝑉𝑉 𝑙𝑙 ∼ 𝜖𝜖𝜖𝜖 1/3 ;  1/ 𝜏𝜏 𝑙𝑙 ∼ 𝜖𝜖/𝑙𝑙2 1/3

𝑉𝑉 𝑙𝑙 2 ∼ 𝑉𝑉02 𝑙𝑙 / 𝑙𝑙0 2/3 (transfer rate increases as scale decreases)

And 

𝐸𝐸 𝑘𝑘 ∼ 𝜖𝜖2/3 𝑘𝑘−5/3 𝐸𝐸 = ∫ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑘𝑘)

Where does it end?

𝑙𝑙1
𝑙𝑙2

𝑙𝑙3

𝑙𝑙𝑛𝑛

not

exception:
Rapid Distortion Theory



• Dissipation scale

– cut-off at 1/𝜏𝜏 𝑙𝑙 ∼ 𝜈𝜈/𝑙𝑙2 i.e. 𝑅𝑅𝑅𝑅 𝑙𝑙 → 1

– 𝑙𝑙𝑑𝑑 ∼ 𝜈𝜈3/4 /𝜖𝜖1/4

• Degrees of freedom

#𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∼ 𝑙𝑙0
𝑙𝑙𝑑𝑑

3
∼ 𝑅𝑅𝑒𝑒9/4

For 𝑙𝑙𝑜𝑜 ∼ 1𝑘𝑘𝑘𝑘, 𝑙𝑙𝑑𝑑 ∼ 1𝑚𝑚𝑚𝑚 (PBL)

 𝑁𝑁 ∼ 1018



• Dynamics!
– How is the energy transferred?

– How are small scales generated?

– Where have the N.S. equations gone?

• Enter vorticity!

• 𝜔𝜔 = 𝛻𝛻 × 𝑣⃗𝑣 ;  𝜕𝜕𝑡𝑡𝑣⃗𝑣 = 𝛻𝛻 × 𝑣⃗𝑣 × 𝜔𝜔 + 𝜈𝜈𝛻𝛻2𝑣⃗𝑣

• Γ = ∫ ∮ 𝑣⃗𝑣 ⋅ 𝑑𝑑𝑙𝑙 ∼ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. to 𝜈𝜈 (Kelvin’s theorem)

So

• 𝜕𝜕𝜔𝜔
𝜕𝜕𝜕𝜕

+ 𝑣⃗𝑣 ⋅ 𝛻𝛻𝜔𝜔 = 𝜔𝜔 ⋅ 𝛻𝛻𝑣⃗𝑣 + 𝜈𝜈𝛻𝛻2𝜔𝜔 𝜔𝜔 ⋅ 𝑆𝑆

i.e.

...

Vortex tube stretching Strain tensor

 Anything missing here?



• Stretching:

– Small scales generated (𝛻𝛻 ⋅ 𝑣⃗𝑣 = 0)

– Energy transferred to small scale

• Enstrophy   Ω = 〈𝜔𝜔2〉

𝑑𝑑𝜔𝜔2

𝑑𝑑𝑑𝑑
= 𝜔𝜔 ⋅ 𝜔𝜔 ⋅ 𝛻𝛻𝑣⃗𝑣 + ⋯~ 𝜔𝜔3 + ⋯

– Enstrophy increases in 3D N-S turbulence

– Growth is strongly nonlinear

• Enstrophy production underpins forward energy cascade

𝑟𝑟1
𝑟𝑟2

𝜔𝜔1𝑟𝑟12 𝜔𝜔2𝑟𝑟22



• Where are we?

“Big whorls have little whorls that feed on 

their velocity. And little whorls have lesser 

whorls. An so on to viscosity.” – L.F. 

Richardson, 1920

After: “So naturalists observe a flea has 

smaller fleas that on him prey; And these 

have smaller yet to bite ’em, And so proceed 

ad infinitum. Thus every poet, in his kind, Is 

bit by him that comes behind.” – Jonathan 

Swift, “On Poetry, a Rhapsody”, 1793 real scale (b)



The Theoretical Problem
• “We don’t want to think anything, man. We want to know.” 

– Marsellus Wallace, in “Pulp Fiction” (Quentin Tarantino)

• What do we know?

– 4/5 Law (and not much else...)

𝑉𝑉 𝑙𝑙 3 = −4
5
𝜖𝜖𝜖𝜖  asymptotic for finite 𝑙𝑙, 𝜈𝜈 → 0

from: 𝜕𝜕𝑆𝑆2
𝜕𝜕𝜕𝜕

= − 1
3𝑙𝑙4

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑙𝑙4𝑆𝑆3 − 4
3
𝜖𝜖 + 2𝜈𝜈

𝑙𝑙4
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑙𝑙4 𝜕𝜕𝑆𝑆2
𝜕𝜕𝜕𝜕

(Karman-Howarth)

• Stationarity, 𝜈𝜈 → 0

𝑆𝑆2 = 𝛿𝛿𝑉𝑉 𝑙𝑙 2

𝑆𝑆3 = 𝛿𝛿𝑉𝑉 𝑙𝑙 3

flux in scale dissipation



• 𝑆𝑆3 𝑙𝑙 = −4
5
𝜖𝜖𝜖𝜖

• Energy thru-put balance  𝛿𝛿𝛿𝛿 𝑙𝑙 3 /𝑙𝑙 ↔ 𝜖𝜖

• Notable:

– Euler: 𝜕𝜕𝑡𝑡𝑣𝑣 + 𝑣𝑣 ⋅ 𝛻𝛻𝑣𝑣 + 𝛻𝛻𝑃𝑃/𝜌𝜌 = 0;       reversible; 𝑡𝑡 → −𝑡𝑡, 𝑣𝑣 → −𝑣𝑣

– N-S: 𝜕𝜕𝑡𝑡𝑣𝑣 + 𝑣𝑣 ⋅ 𝛻𝛻𝑣𝑣 + 𝛻𝛻𝑃𝑃/𝜌𝜌 = 𝜈𝜈𝛻𝛻2𝑣𝑣;   time reversal broken by viscosity

– 𝑆𝑆3(𝑙𝑙): 𝑆𝑆3 𝑙𝑙 = −4
5
𝜖𝜖𝜖𝜖;   reversibility breaking maintained as 𝜈𝜈 → 0

Anomaly

4/5 Law

- Asymptotically exact 𝜈𝜈 → 0, 𝑙𝑙 finite

- Unique, rigorous result



• Extensions:

MHD: Pouquet, Politano

2D: Celari, et. al. (inverse cascade, only)

What of so called ‘entropy cascade’ in Vlasov turbulence?



• N.B.: A little history; philosophy:

– ‘Anomaly’ in turbulence  Kolmogorov, 1941

– Anomaly in QFT  J. Schwinger, 1951 (regularization for vacuum 

polarization)

• Speaking of QFT, what of renormalized perturbation theory?

– Renormalization gives some success to low order moments, identifies 

relevant scales

– Useful in complex problems (i.e. plasmas) and problems where 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 is not 

obvious

– Rather few fundamental insights have emerged from R.P.T 

Caveat Emptor



Turbulence in Flat Land
• 2D systems  1 dimension constrained

i.e. Atmospheric <-> rotation Ω0

Magnetized plasma <-> 𝐵𝐵0,  Ω𝑐𝑐

Solar interior <-> stratification,  𝜔𝜔𝐵𝐵−𝑉𝑉

• Simple 2D fluid:

𝑑𝑑𝜔𝜔
𝑑𝑑𝑑𝑑

= 𝜔𝜔 ⋅ 𝛻𝛻𝑣⃗𝑣 + 𝜈𝜈𝛻𝛻2𝜔𝜔



𝜕𝜕𝑡𝑡𝛻𝛻2𝜙𝜙 + 𝛻𝛻𝜙𝜙 × 𝑧̂𝑧 ⋅ 𝛻𝛻𝛻𝛻2𝜙𝜙 = 𝜈𝜈𝛻𝛻2𝛻𝛻2𝜙𝜙 + 𝑠̃𝑠

– 𝜔𝜔 constant along fluid trajectories, to 𝜈𝜈

– 𝜔𝜔 = 𝛻𝛻2𝜙𝜙 akin conserved phase space density

𝑉𝑉/𝐿𝐿 Ω𝑒𝑒𝑒𝑒𝑒𝑒 < 1

Low Rossby number

𝑣⃗𝑣 = 𝛻𝛻𝜙𝜙 × 𝑧̂𝑧
𝜔𝜔 = −𝛻𝛻2𝜙𝜙

forcing scale variable

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑞𝑞
𝑚𝑚
𝐸𝐸
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐶𝐶 𝑓𝑓



• The problem:

– Enstrophy now conserved: 𝜔𝜔 ⋅ 𝛻𝛻𝑣⃗𝑣 = 0

– Two inviscid invariants: 
• Enstrophy Ω = 𝛻𝛻2𝜙𝜙 2

• Energy  𝐸𝐸 = 𝛻𝛻𝜙𝜙 2

– Might ask:    Where do these want to go, in scale?

– Enstrophy:

+  turbulent flow  

Isovorticity contour Stretched contour, 〈 𝛻𝛻𝜔𝜔 2〉 ↑
 Enstrophy to small scale



• Energy

– Expect Δ𝑘𝑘 2 increases

– What of centroid 𝑘𝑘 ?

Δ𝑘𝑘 2 = 1
𝐸𝐸
∫ 𝑑𝑑𝑑𝑑 𝑘𝑘 − �𝑘𝑘 2𝐸𝐸 𝑘𝑘

�𝑘𝑘 = 1
𝐸𝐸
∫ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘

But

Δ𝑘𝑘 2 = 1
𝐸𝐸
∫ 𝑑𝑑𝑑𝑑 𝑘𝑘2 − 2𝑘𝑘�𝑘𝑘 + �𝑘𝑘2 𝐸𝐸 𝑘𝑘 = 1

Ω
Ω − �𝑘𝑘2

𝜕𝜕𝑡𝑡 Δ𝑘𝑘 2 > 0 𝜕𝜕𝑡𝑡 �𝑘𝑘 < 0 Ω conserved!

 energy should head toward large scale



• Dilemma:
– Energy seeks large scale

– Enstrophy seeks small scale

– How accommodate self-similar transfer – i.e. cascade – of both?

 Dual cascade (R.H. Kraichnan)

– Forward self-similar transfer of enstrophy

 toward small scale dissipation

– Inverse transfer of energy

 scale independent dissipation?

(Low 𝑘𝑘 sink)



• Spectra
– Enstrophy range: 

𝐸𝐸 𝑙𝑙 → 𝑘𝑘𝑘𝑘 𝑘𝑘

1/𝜏𝜏 𝑙𝑙 → 𝑘𝑘 𝑘𝑘𝑘𝑘 𝑘𝑘 1/2

 𝐸𝐸 𝑘𝑘 = 𝜂𝜂2/3 𝑘𝑘−3

– Energy range: ala’  K41; 𝐸𝐸 𝑘𝑘 = 𝜖𝜖2/3 𝑘𝑘−5/3

• Pair dispersion:
– Energy range: ala’ Richardson

– Enstrophy range: exponential divergence

• Scale independent dissipation critical to stationary state



Where do we stand now?

“Big whorls meet bigger whorls, And so it tends to 

go on. By merging they grow bigger yet, And bigger 

yet, and so on.”

- M. McIntyre, after L.F. Richardson



• Cautionary tale: coherent structures happen!

• Depending upon forcing, dynamics be cascade or coherent 

structure formation, or both:

• Need a non-statistical criterion, i.e. Okubo-Weiss

𝜌𝜌 = −𝛻𝛻2𝜙𝜙, 𝑆𝑆 = 𝜕𝜕2𝜙𝜙/ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  local flow shear

𝜕𝜕𝑡𝑡𝛻𝛻𝜌𝜌 = 𝑠𝑠2 − 𝜌𝜌2 1/2; criterion for “coherence”

 Gaussian curvature of stream function predicts stability

Decay experiment
 Isolated coherent vortices 

appear in turbulent flow

McWilliams, ‘84 et. seq.
Herring and McWilliams ‘85



• MHD turbulence - A First Look

– HUGE subject – includes small scale and mean field dynamo problems (c.f. 

Hughes lectures)

– Here, focus on Alfvenic turbulence i.e. (Kraichnan-Iroshnikov-Goldreich-

Sridhar …)  wave turbulence

• Strong mean 𝐵𝐵0

• 𝛿𝛿𝛿𝛿 < 𝐵𝐵0, 𝛻𝛻 ⋅ 𝑣⃗𝑣 = 0

• Shear-Alfven wave turbulence

– Best described by reduced MHD: (Ohm’s Law, 𝛻𝛻 ⋅ 𝐽𝐽 = 0)

𝜕𝜕𝐴𝐴∥
𝜕𝜕𝜕𝜕

+ 𝛻𝛻⊥𝜙𝜙 × 𝑧̂𝑧 ⋅ 𝛻𝛻⊥𝐴𝐴∥ = 𝐵𝐵0𝜕𝜕𝑧𝑧𝜙𝜙 + 𝜂𝜂𝛻𝛻2𝐴𝐴∥

𝜕𝜕
𝜕𝜕𝜕𝜕
𝛻𝛻2𝜙𝜙 + 𝛻𝛻⊥𝜙𝜙 × 𝑧̂𝑧 ⋅ 𝛻𝛻⊥𝛻𝛻2𝜙𝜙2 = 𝐵𝐵0𝜕𝜕𝑧𝑧𝛻𝛻2𝐴𝐴∥ + 𝛻𝛻⊥𝐴𝐴∥ × 𝑧̂𝑧 ⋅ 𝛻𝛻⊥𝛻𝛻2𝐴𝐴∥ + 𝜈𝜈𝛻𝛻2𝛻𝛻2𝜙𝜙 + 𝑆̃𝑆

𝐵𝐵0



• Observations:

– All nonlinear scattering is perpendicular

– Contrast N-S, eddys with 𝜔𝜔 = 0

Now: Alfven waves: 𝜔𝜔2 = 𝑘𝑘∥2𝑉𝑉𝐴𝐴2

– If uni-directional wave population:

i.e. 𝐴𝐴 = 𝑓𝑓 𝑧𝑧 − 𝑉𝑉𝐴𝐴𝑡𝑡 + 𝑔𝑔 𝑧𝑧 + 𝑉𝑉𝐴𝐴𝑡𝑡

then 𝑓𝑓 is exact solution of MHD

 Need counter-propagating populations to manifest nonlinear 

interaction

– See also resonance conditions  𝜔𝜔1 + 𝜔𝜔2 = 𝜔𝜔3
𝑘𝑘∥1 + 𝑘𝑘∥2 = 𝑘𝑘∥3



• For Alfven wave cascade:

𝜖𝜖 = 𝑇𝑇 𝑘𝑘 → 𝑘𝑘 + Δ𝑘𝑘 𝐸𝐸(𝑘𝑘) 𝐸𝐸 𝑘𝑘 /𝜏𝜏(𝑘𝑘)

• Recall Fermi Golden Rule:

𝑇𝑇𝑖𝑖;𝑗𝑗 ∼ 2𝜋𝜋
ℎ

< 𝑖𝑖 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖 𝑗𝑗 > 2 𝛿𝛿 𝐸𝐸𝑗𝑗 − 𝐸𝐸𝑖𝑖 − ℎ𝜔𝜔

 𝑇𝑇 ~ 𝑉𝑉 𝑙𝑙𝑑𝑑 2

𝑙𝑙2
𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙⊥

• 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙 = 1/ Δ𝑘𝑘∥ 𝑉𝑉𝐴𝐴

 Alfvenic transit time (Δ𝑘𝑘∥ ~ 𝑘𝑘∥)

Packet passage

𝑉𝑉 𝑙𝑙⊥ 2  scatter energy

1/𝑙𝑙2  𝑐𝑐𝑐𝑐 2

transition rate



Enter the Kubo number

𝑙𝑙∥𝑎𝑎𝑎𝑎
Δ⊥

𝛿𝛿𝛿𝛿
𝐵𝐵0

~
𝑉𝑉𝐴𝐴𝛿𝛿𝛿𝛿/𝐵𝐵
𝑙𝑙⊥

Δ𝑘𝑘∥ 𝑉𝑉𝐴𝐴

• Basically: 𝐵𝐵 ⋅ 𝛻𝛻  𝐵𝐵0𝜕𝜕𝑧𝑧 + �𝐵𝐵 ⋅ 𝛻𝛻⊥

 relative size

i.e.  K < 1  weak scattering, diffusion process

K > 1  strong scattering, ~ de-magnetization ~ percolation

K = 1  (critical) balance

Linear  𝐵𝐵0𝜕𝜕𝑧𝑧
Nonlinear �𝐵𝐵 ⋅ 𝛻𝛻⊥



Why Kubo?

• But… “It ain’t over till its over” 

- Eastern (division) philosopher

• As 𝑙𝑙⊥ drops,   𝑉𝑉 𝑙𝑙⊥ / 𝑙𝑙⊥ → Δ𝑘𝑘∥ 𝑉𝑉𝐴𝐴

 𝜏𝜏⊥ → 𝜏𝜏∥

• Critically balanced cascade, 𝐾𝐾𝐾𝐾 ~ 1

i.e.  𝑉𝑉 𝑙𝑙⊥
𝑙𝑙⊥

∼ 𝑉𝑉𝐴𝐴
𝛿𝛿𝛿𝛿 𝑙𝑙⊥
𝐵𝐵0

∼ Δ𝑘𝑘∥ 𝑉𝑉𝐴𝐴 ,  unavoidable at small scale

– Statement that transfer sets 𝐾𝐾 ≈ 1

– Attributed to G.-S. ‘95 but:

“the natural state of EM turbulence is K ~ 1” 

- Kadomtsev and Pogutse ‘78

𝐾𝐾𝐾𝐾 → 1

𝑘𝑘∥ = 𝑘𝑘∥(𝑙𝑙⊥)
defines anisotropy



• If now   1
𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙⊥

∼ 𝑉𝑉 𝑙𝑙⊥
𝑙𝑙⊥

– Recover K41 scaling in MHDT,   𝐹𝐹 𝑘𝑘⊥ ∼ 𝜖𝜖
2
3 𝑘𝑘⊥

−53

– “Great Power Law in the Sky”

• Eddy structure:

𝑘𝑘∥𝑉𝑉𝐴𝐴 ∼
𝑉𝑉 𝑙𝑙⊥
𝑙𝑙⊥

⇒ 𝑘𝑘∥ ∼ 𝑘𝑘⊥
2
3 𝜖𝜖

1
3 /𝑉𝑉𝐴𝐴  anisotropy increases as 𝑙𝑙⊥ ↓

• Many variants, extensions, comments, “we did it too’s”…



 Fate of Energy?

• End point is dissipation

• What is dissipative structure?

– Dimension < 3   fractal and multi-fractal intermittency models

– Structure: 
• Vortex sheet

• Current sheet

 Stability  micro-tearing, etc.

– Energy leak to kinetic scales?
• Electron vs ion heating

• Particle acceleration (2nd order Fermi)



Conclusion

• This lecture is not even the “end of the beginning”

• A few major omissions:

– pipe flow turbulence – Prandtl law of the wall

– spatial structures, mixing, spreading

– general theory of wave turbulence  - Qiu, P.D.

– MHDT + small scale dynamo - Hughes

– kinetic/Vlasov turbulence – Sarazin, Qiu, Dif-Pradalier

– Langmuir collapse …   - Kosuga

P.D.
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