Basics of Turbulence I: A Look at Homogeneous Systems

P.H. Diamond

UC San Diego and SWIP 1st Chengdu Theory Festival Aug. 2018

Approach

Highly Pedagogic

Focus on simplest problems

Outline

- Basic Ideas
- K41 and Beyond
- Turbulence in Flatland 2D Fluid Turbulence
- First Look at MHD Turbulence

Model

• Unless otherwise noted:

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} - \nu \nabla^2 \vec{v} \right) = -\nabla P + \tilde{f}$$

$$\nabla \cdot \vec{v} = 0$$
Random forcing
(usually large scale)

- Finite domain, closed, periodic
- $Re = v \cdot \nabla v / v \nabla^2 v \sim V L / v \quad ; \quad Re \gg 1$
- Variants:
 - 2D, QG
 - Compressible flow
 - Pipe flow inhomogeneity

What is turbulence?

- Spatio-temporal "disorder"
- Broad range of space-time scales
- Power transfer / flux thru broad range of scales *
- Energy dissipation and irreversibility as $Re \rightarrow \infty^*$

And:

- Decay of large scales
- Irreversible mixing
- Intermittency / burstiness

Ma Yuan

Leonardo

What is difference between turbulence and noise/equilibrium fluctuations?

- Power transfer dominant
- Irreversibility for $\nu \to 0$
- Noisey thermal equilibrium: (ala' Test Particle Model)

Emission <-> absorption balance, locally

• Turbulence:

~ cascade

Fluctuation-Dissipation Theorem applies

Flux ~ emission – absorption

Flux dominant for most scales

Why broad range scales? What motivates cascade concept?

A) Planes, trains, automobiles...

<u>DRAG</u>

- Recall: $F_d \sim c_D \rho A V^2$
- $C_D = C_D(Re) \rightarrow \text{drag coefficient}$

• The Point:

- -

- Energy dissipation is finite, and due to viscosity, yet does not depend explicitly on viscosity
 ANOMALY
- 'Irreversibility persists as symmetry breaking factors vanish'

i.e.
$$\frac{dE}{dt} \sim F_d V \sim C_D \rho A V^3$$

 $\frac{dE}{dt} \sim \frac{V^3}{l_0} \equiv \epsilon \Rightarrow$ dissipation rate $l_0 \Rightarrow$ macro length scale

• Where does the energy go?

Steady state $\nu \langle (\nabla \vec{v})^2 \rangle = \langle \vec{f} \cdot \vec{v} \rangle = \epsilon$

• So $\epsilon = \nu \langle (\nabla v)^2 \rangle$ \leftarrow independent of ν

...

• $(\nabla v)_{rms} \sim \frac{1}{v^{1/2}} \Rightarrow$ suggests \Rightarrow singular velocity gradients (small scale)

- Flat C_D in $Re \rightarrow$ turbulence must access small scales as $Re \rightarrow \infty$
- Obviously consistent with broad spectrum, via nonlinear coupling

- B) ... and balloons
- Study of 'test particles' in turbulence:
- Anecdotal:

Titus Lucretius Caro: 99-55 BC

"De rerum Nature" cf. section V, line 500

• Systematic:

L.F. Richardson: - probed atmospheric turbulence by study of balloon separation Noted: $\langle \delta l^2 \rangle \sim t^3 \rightarrow \underline{\text{super-diffusive}}$

- not ~ t, ala' diffusion, noise
- not exponential, ala' smooth chaotic flow

<u>Upshot:</u>

$$\delta V(l) = \left(\left(\vec{v} \left(\vec{r} + \vec{l} \right) - \vec{v} \left(\vec{r} \right) \right) \cdot \frac{\vec{l}}{|\vec{l}|} \right) \rightarrow \text{structure function} \rightarrow \text{velocity differential} \\ \text{across scale}$$

Then: $\delta V \sim l^{\alpha}$

so, $\frac{dl}{dt} \sim l^{\alpha} \rightarrow$ growth of separation $\Rightarrow \langle l^2 \rangle \sim t^{\frac{2}{1-\alpha}} \sim t^3$

$$\rightarrow \alpha = \frac{1}{3}$$

<u>so</u> $\delta V(l) \sim l^{1/3}, \langle \delta l^2 \rangle \sim t^3$

 \rightarrow Points:

- large eddys have more energy, so rate of separation increases with scale
- Relative separation is excellent diagnostic of flow dynamics
- cf: tetrads: Siggia and Shraiman

Roughness:

N.B. turbulence is spatially "rough", i.e. $\delta V(l) \sim \epsilon^{1/3} l^{1/3}$

$$\lim_{l \to 0} \frac{V(\vec{r} + \vec{l}) - V(\vec{r})}{l} = \lim_{l \to 0} \frac{\delta V(l)}{l} = \epsilon^{1/3} / l^{2/3}$$

- → strain rate increases on smaller scales
 - turbulence develops progressively <u>rougher</u> structure on smaller scales

- Where are we?
 - turbulence develop singular gradients to maintain
 - C_D indep. Re

- turbulent flow structure exhibits
 - super-diffusive separation of test particles
 - power law scaling of $\delta V(l)$

• Cascade model – K41

K41 Model (Phenomenological)

• Cascade \rightarrow hierarchical fragmentation

- Broad range of scales, no gaps
- Described by structure function $-\langle \delta v(l)^2 \rangle \leftrightarrow \text{energy}$,
- $\langle \delta V(l)^2 \rangle$, $\langle \delta V(l)^n \rangle$, ...

Related to energy distribution $\leftarrow \rightarrow$ greatest interest

 $\langle \delta v(l)^2 \rangle \leftrightarrow \text{energy},$ of great interest

- higher moments more challenging

- Input:
- 2/3 law (empirical)

 $S_2(l) \sim l^{2/3}$

• 4/5 law (Rigorous) - TBD

$$\langle \delta V(l)^3 \rangle = -\frac{4}{5}\epsilon l$$

 \rightarrow Ideas:

Fig. 2.12. Basic cartoon explanation of the Richardson–Kolmogorov cascade. Energy transfer in Fourier–space (a), and real scale (b)

- <u>Flux</u> of energy in scale space from l_0 (input/integral scale) to l_d (dissipation) scale – set by ν
- Energy flux is <u>same</u> at all scales between l_0 , $l_d \leftrightarrow$ self-similarity

<u>And</u>

- Energy dissipation set as $\nu \rightarrow 0$ but not at $\nu = 0$
- * Asymmetry of breaking or stirring etc. <u>lost</u> in cascade: symmetry restoration
- N.B. intermittency <-> 'memory' of stirring, etc
- Ingredients / Players
 - Exciton \rightarrow eddy (not a wave / eigenmode!)
 - *l*: scale parameter, eddy scale
 - $\delta V(l)$: velocity increment. Hereafter V(l)

- *V_o*: rms eddy fluctuation (large scale dominated)
- $\tau(l)$: \rightarrow eddy transfer / life-time / turn-over rate
- \rightarrow characteristic scale of transfer in cascade step

- Self-similarity \rightarrow constant flow-thru rate $\epsilon = V(l)^2/\tau(l)$
- What is $\tau(l)$?? Consider...

The possibilities:

 Dimensionally, τ(l) is 'lifetime' of structure of scale l, time to distort out of existence

So

- Larger scales advect eddy but don't distort it
- Physics can't change under Galilean boost

cf: Rapid distortions, shearing

- Irrelevant \rightarrow insufficient energy

• $\tau(l) \sim l/V(l)$, set by $l' \sim l$

 $\Rightarrow \epsilon \sim V(l)^2 / \tau(l) \sim V(l)^3 / l \Rightarrow V(l) \sim (\epsilon l)^{1/3} ; 1 / \tau(l) \sim (\epsilon / l^2)^{1/3}$ $\Rightarrow V(l)^2 \sim V_0^2 (l / l_0)^{2/3}$ (transfer rate increases as scale decreases) And

$$\rightarrow E(k) \sim \epsilon^{2/3} k^{-5/3} \qquad E = \int dk E(k)$$

 \rightarrow Where does it end?

- Dissipation scale
 - cut-off at $1/\tau(l) \sim \nu/l^2$ i.e. $Re(l) \rightarrow 1$

 $- l_d \sim v^{3/4} / \epsilon^{1/4}$

• Degrees of freedom

$$\begin{split} \#DOFs &\sim \left(\frac{l_0}{l_d}\right)^3 \sim Re^{9/4} \\ \text{For } l_o &\sim 1 km, \ l_d \sim 1 mm \ (\text{PBL}) \\ \Rightarrow N &\sim 10^{18} \end{split}$$

→ Anything missing here?

Dynamics!

- i.e. How is the energy transferred?
 - How are small scales generated?
 - Where have the N.S. equations gone?
 - Enter <u>vorticity!</u>

•
$$\omega = \nabla \times \vec{v}$$
; $\partial_t \vec{v} = \nabla \times \vec{v} \times \vec{\omega} + \nu \nabla^2 \vec{v}$

• $\Gamma = \int \oint \vec{v} \cdot d\vec{l} \sim const.$ to v (Kelvin's theorem)

So
Vortex tube stretching
Strain tensor

$$\frac{\partial \vec{\omega}}{\partial t} + \vec{v} \cdot \nabla \vec{\omega} = \vec{\omega} \cdot \nabla \vec{v} + \nu \nabla^2 \vec{\omega}$$

$$\vec{\omega} \cdot \vec{S}$$

• Stretching:

- Small scales generated $(\nabla \cdot \vec{v} = 0)$
- Energy transferred to small scale
- Enstrophy $\Omega = \langle \omega^2 \rangle$

$$\frac{d\omega^2}{dt} = \vec{\omega} \cdot (\vec{\omega} \cdot \nabla \vec{v}) + \dots \sim \omega^3 + \dots$$

- Enstrophy increases in 3D N-S turbulence
- Growth is strongly nonlinear
- Enstrophy production underpins forward energy cascade

• Where are we?

"Big whorls have little whorls that feed on their velocity. And little whorls have lesser whorls. An so on to viscosity." – L.F. Richardson, 1920

After: "So naturalists observe a flea has smaller fleas that on him prey; And these have smaller yet to bite 'em, And so proceed ad infinitum. Thus every poet, in his kind, Is bit by him that comes behind." – Jonathan Swift, "On Poetry, a Rhapsody", 1793

Fig. 2.12. Basic cartoon explanation of the Richardson–Kolmogorov cascade. Energy transfer in Fourier–space (a), and real scale (b)

The Theoretical Problem

- "We don't want to *think* anything, man. We want to *know*."
 Marsellus Wallace, in "Pulp Fiction" (Quentin Tarantino)
- What do we know?
 - 4/5 Law (and not much else...)

$$\langle V(l)^3 \rangle = -\frac{4}{5}\epsilon l \rightarrow \text{asymptotic for finite } l, \nu \rightarrow 0$$

 $S_2 = \langle \delta V(l)^2 \rangle$
 $S_3 = \langle \delta V(l)^3 \rangle$

from:
$$\frac{\partial S_2}{\partial t} = -\frac{1}{3l^4} \frac{\partial}{\partial l} (l^4 S_3) - \frac{4}{3}\epsilon + \frac{2\nu}{l^4} \frac{\partial}{\partial l} \left(l^4 \frac{\partial S_2}{\partial l} \right)$$

(Karman-Howarth) flux in scale dissipation

• Stationarity, $\nu \rightarrow 0$

<u>4/5 Law</u>

- Asymptotically exact $\nu \rightarrow 0$, *l* finite
- Unique, rigorous result
- Energy thru-put balance $\langle \delta V(l)^3 \rangle / l \leftrightarrow \epsilon$
- Notable:

- Euler:
$$\partial_t v + v \cdot \nabla v + \nabla P / \rho = 0$$
; reversible; $t \to -t, v \to -v$

- N-S: $\partial_t v + v \cdot \nabla v + \nabla P / \rho = v \nabla^2 v$; time reversal broken by viscosity

 $-S_3(l):S_3(l)=-rac{4}{5}\epsilon l;$ reversibility breaking maintained as $\nu \to 0$

Anomaly

•
$$S_3(l) = -\frac{4}{5}\epsilon l$$

• Extensions:

MHD: Pouquet, Politano2D: Celari, et. al. (inverse cascade, only)

What of so called 'entropy cascade' in Vlasov turbulence?

- N.B.: A little history; philosophy:
 - 'Anomaly' in turbulence \rightarrow Kolmogorov, 1941
 - Anomaly in QFT → J. Schwinger, 1951 (regularization for vacuum polarization)
- Speaking of QFT, what of renormalized perturbation theory?
 - Renormalization gives some success to low order moments, identifies relevant scales
 - Useful in complex problems (i.e. plasmas) and problems where τ_{int} is not obvious
 - Rather few fundamental insights have emerged from R.P.T

Caveat Emptor

Turbulence in Flat Land

- 2D systems \rightarrow 1 dimension constrained ۲
 - i.e. Atmospheric <-> rotation Ω_0

Magnetized plasma $<-> \overrightarrow{B_0}$, Ω_c

Solar interior <-> stratification, ω_{B-V}

Simple 2D fluid:

-

$$\frac{d\vec{\omega}}{dt} = \vec{\omega} \cdot \nabla \vec{v} + \nu \nabla^2 \vec{\omega} \qquad \qquad \vec{v} = \nabla \phi \times \vec{z} \\ \omega = -\nabla^2 \phi$$

$$V/L \Omega_{eff} < 1$$

Low Rossby number

$$\vec{b} = \nabla \phi \times \hat{z}$$

 $\omega = -\nabla^2 \phi$

forcing scale variable $\partial_t \nabla^2 \phi + \nabla \phi \times \hat{z} \cdot \nabla \nabla^2 \phi = \nu \nabla^2 \nabla^2 \phi + \tilde{s}$

- ω constant along fluid trajectories, to ν —
- $-\omega = \nabla^2 \phi$ akin conserved phase space density

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{q}{m} E \frac{\partial f}{\partial v} = C(f)$$

- The problem:
 - Enstrophy now conserved: $\vec{\omega} \cdot \nabla \vec{v} = 0$
 - Two inviscid invariants:
 - Enstrophy $\Omega = \langle (\nabla^2 \phi)^2 \rangle$
 - Energy $E = \langle (\nabla \phi)^2 \rangle$
 - Might ask: Where do these want to go, in scale?
 - Enstrophy:

$$\rightarrow$$
 + turbulent flow \rightarrow

Isovorticity contour

Stretched contour, $\langle (\nabla \omega)^2 \rangle \uparrow$ \rightarrow Enstrophy to small scale

- Energy
 - Expect $(\Delta k)^2$ increases
 - What of centroid \vec{k} ?

$$(\Delta k)^2 = \frac{1}{E} \int dk \left(k - \bar{k}\right)^2 E(k)$$
$$\bar{k} = \frac{1}{E} \int dk E(k)$$

But

$$(\Delta k)^{2} = \frac{1}{E} \int dk \left(k^{2} - 2k\bar{k} + \bar{k}^{2} \right) E(k) = \frac{1}{\Omega} \left(\Omega - \bar{k}^{2} \right)$$
$$\partial_{t} (\Delta k)^{2} > 0 \twoheadrightarrow \partial_{t} \bar{k} < 0 \qquad \qquad \Omega \text{ conserved!}$$

➔ energy should head toward large scale

- Dilemma:
 - Energy seeks large scale
 - Enstrophy seeks small scale
 - How accommodate self-similar transfer i.e. cascade of both?
 - → Dual cascade (R.H. Kraichnan)
 - <u>Forward</u> self-similar transfer of enstrophy

 \rightarrow toward small scale dissipation

- Inverse transfer of energy
 - \rightarrow scale independent dissipation?

(Low $k \sinh$)

Fig. 2.17. Schematic of energy spectrum for dual cascade.

- Spectra
 - Enstrophy range:

 $E(l) \rightarrow kE(k)$ $1/\tau(l) \rightarrow k[kE(k)]^{1/2}$ $\Rightarrow E(k) = \eta^{2/3} k^{-3}$

- Energy range: ala' K41; $E(k) = e^{2/3} k^{-5/3}$
- Pair dispersion:
 - Energy range: ala' Richardson
 - Enstrophy range: exponential divergence
- Scale independent dissipation critical to stationary state

- \rightarrow Where do we stand now?
- "Big whorls meet bigger whorls, And so it tends to go on. By merging they grow bigger yet, And bigger yet, and so on."
 - M. McIntyre, after L.F. Richardson

• Cautionary tale: coherent structures happen!

Decay experiment

→ Isolated coherent vortices appear in turbulent flow

McWilliams, '84 et. seq. Herring and McWilliams '85

- Depending upon forcing, dynamics be cascade or coherent structure formation, or both:
- Need a non-statistical criterion, i.e. Okubo-Weiss

 $\rho = -\nabla^2 \phi$, $S = \partial^2 \phi / \partial x \partial y \rightarrow$ local flow shear

 $\partial_t \nabla \rho = (s^2 - \rho^2)^{1/2}$; criterion for "coherence"

 \rightarrow Gaussian curvature of stream function predicts stability

- <u>MHD turbulence</u> A First Look
 - HUGE subject includes small scale and mean field dynamo problems (c.f. Hughes lectures)
 - Here, focus on Alfvenic turbulence i.e. (Kraichnan-Iroshnikov-Goldreich-Sridhar …) → wave turbulence
 - Strong mean $\overrightarrow{B_0}$
 - $\delta B < B_0, \nabla \cdot \vec{v} = 0$
 - Shear-Alfven wave turbulence
 - Best described by reduced MHD: (Ohm's Law, $\nabla \cdot J = 0$)

$$\frac{\partial A_{\parallel}}{\partial t} + \nabla_{\perp}\phi \times \hat{z} \cdot \nabla_{\perp}A_{\parallel} = B_{0}\partial_{z}\phi + \eta\nabla^{2}A_{\parallel}$$

$$\frac{\partial}{\partial t}\nabla^{2}\phi + \nabla_{\perp}\phi \times \hat{z} \cdot \nabla_{\perp}\nabla^{2}\phi^{2} = B_{0}\partial_{z}\nabla^{2}A_{\parallel} + \nabla_{\perp}A_{\parallel} \times \hat{z} \cdot \nabla_{\perp}\nabla^{2}A_{\parallel} + \nu\nabla^{2}\nabla^{2}\phi + \tilde{S}$$

$$\uparrow$$

- Observations:
 - All nonlinear scattering is perpendicular
 - Contrast N-S, eddys with $\omega = 0$

Now: Alfven waves: $\omega^2 = k_{\parallel}^2 V_A^2$

- If uni-directional wave population:

i.e.
$$A = f(z - V_A t) + g(z + V_A t)$$

then f is exact solution of MHD

- → Need counter-propagating populations to manifest nonlinear interaction
- See also resonance conditions

$$\omega_1 + \omega_2 = \omega_3$$
$$k_{\parallel 1} + k_{\parallel 2} = k_{\parallel 3}$$

• For Alfven wave cascade:

$$\epsilon = T(k \to k + \Delta k)E(k) \to E(k)/\tau(k)$$

transition rate

• Recall Fermi Golden Rule:

$$T_{i;j} \sim \frac{2\pi}{h} \mid < i \mid H_{int} \mid j > \mid^2 \delta \left(E_j - E_i - h\omega \right)$$

$$T \sim \frac{V(l_d)^2}{l^2} \tau_{int} (l_\perp)$$

$$V(l_\perp)^2 \rightarrow \text{scatter energy}$$

$$1/l^2 \rightarrow (cc)^2$$

- $\tau_{int}(l) = 1/(\Delta k_{\parallel})V_A$
 - → Alfvenic transit time $(\Delta k_{\parallel} \sim k_{\parallel})$

Packet passage $\rightarrow \checkmark$

Enter the Kubo number

$$\frac{l_{\parallel ac}}{\Delta_{\perp}} \frac{\delta B}{B_0} \sim \left(\frac{V_A \delta B / B}{l_{\perp}}\right) \left|\Delta k_{\parallel} V_A\right|$$

- Basically: $B \cdot \nabla \rightarrow B_0 \partial_z + \tilde{B} \cdot \nabla_\perp$ \rightarrow relative size $\begin{cases} \text{Linear } B_0 \partial_z \\ \text{Nonlinear } \tilde{B} \cdot \nabla_\perp \end{cases}$
- i.e. K < 1 \rightarrow weak scattering, diffusion process

 $K > 1 \rightarrow$ strong scattering, ~ de-magnetization ~ percolation

 $K = 1 \rightarrow$ (critical) balance

Why Kubo?

- But... "It ain't over till its over"
 - Eastern (division) philosopher
- As l_{\perp} drops, $V(l_{\perp})/l_{\perp} \rightarrow (\Delta k_{\parallel})V_A$

$$\tau_{\perp} \rightarrow \tau_{\parallel} \qquad \qquad Ku \rightarrow 1$$

• Critically balanced cascade, $Ku \sim 1$

i.e.
$$\frac{V(l_{\perp})}{l_{\perp}} \sim V_A \frac{\delta B(l_{\perp})}{B_0} \sim (\Delta k_{\parallel}) V_A$$
, unavoidable at small scale

- Statement that transfer sets $K \approx 1$
- Attributed to G.-S. '95 but:

 $k_{\parallel} = k_{\parallel}(l_{\perp})$

defines anisotropy

"the natural state of EM turbulence is K ~ 1"

- Kadomtsev and Pogutse '78

• If now $\frac{1}{\tau_{int}(l_{\perp})} \sim \frac{V(l_{\perp})}{l_{\perp}}$

- Recover K41 scaling in MHDT,
$$F(k_{\perp}) \sim \epsilon^{\frac{2}{3}} k_{\perp}^{-\frac{5}{3}}$$

- "Great Power I aw in the Sky"
- Eddy structure:

$$k_{\parallel}V_A \sim \frac{V(l_{\perp})}{l_{\perp}} \Rightarrow k_{\parallel} \sim k_{\perp}^{\frac{2}{3}} \epsilon^{\frac{1}{3}} / V_A \Rightarrow \text{anisotropy increases as } l_{\perp} \downarrow$$

• Many variants, extensions, comments, "we did it too's"...

→ Fate of Energy?

- End point is dissipation
- What is dissipative structure?
 - Dimension < 3 \rightarrow fractal and multi-fractal intermittency models
 - Structure:
 - Vortex sheet
 - Current sheet
 - \rightarrow Stability \rightarrow micro-tearing, etc.
 - Energy leak to kinetic scales?
 - Electron vs ion heating
 - Particle acceleration (2nd order Fermi)

Conclusion

P.D.

- This lecture is not even the "end of the beginning"
- A few major omissions:
 - pipe flow turbulence Prandtl law of the wall
 - spatial structures, mixing, spreading
 - general theory of wave turbulence Qiu, P.D.
 - MHDT + small scale dynamo Hughes
 - kinetic/Vlasov turbulence Sarazin, Qiu, Dif-Pradalier
 - Langmuir collapse ... Kosuga