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ABSTRACT 
We calculate the linear response of a differentially rotating two-dimensional gas disk to a 

rigidly rotating external potential. The main assumptions are that the sound speed is much 
smaller than the orbital velocity and that the external potential varies on the scale of the disk 
radius. We investigate disks both with and without self-gravity. 

The external potential exerts torques on the disk only at the Lindblad and corotation 
resonances. The torque is positive at the outer Lindblad resonance and negative at the inner 
Lindblad resonance; at corotation the torque has the sign of the radial gradient of vorticity 
per unit surface density. The torques are of the same order of magnitude at both types of 
resonance and are independent of the sound speed in the disk. 

The external potential also excites density waves in the vicinity of the Lindblad and corotation 
resonances. The long trailing wave is excited at a Lindblad resonance. It transports away from 
the resonance all of the angular momentum which is deposited there by the external torque. 
Short trailing waves are excited at the corotation resonance. The amplitudes of the excited 
waves are the same on both sides of the resonance and are small unless the disk is almost 
gravitationally unstable. No net angular momentum is transported away from the corotation 
region by the waves. Thus the angular momentum deposited there by the external torque 
accumulates in the gas. 

We briefly discuss the behavior of particle disks and prove that the external torques on 
particle disks are identical to those on gas disks. 
Subject headings: galaxies: structure - hydrodynamics - stars: stellar dynamics 

I. INTRODUCTION 

Toomre (1969) and Kalnajs (1972) have shown that a tightly wound free spiral density wave cannot survive 
for longer than 109 yr in a typical spiral galaxy. Fresh waves must be continually created to maintain the spiral 
pattern. These waves might be excited by an external potential, perhaps due to a central bar or, in rare cases, 
to a satellite galaxy. Alternately, a galaxy may contain a density wave amplifier and a feedback mechanism for 
converting trailing into leading waves. This paper is mostly concerned with the former possibility. 

We consider gaseous disks, although the mass fraction of gas in spiral galaxies is small. This approach is often 
fruitful because the hydrodynamic behavior and stellar dynamic behavior of galaxies are very similar. We discuss 
the applicability of our results to stellar systems in § V. 

Much of the paper is devoted to justifying the validity of the approximations we make in deriving the basic 
equations and in solving Poisson's equation. These parts may be omitted without affecting the continuity of the 
paper. The main results are summarized in the Abstract, and a key to the principal equations is provided in 
§ VI. Otherwise the plan of the paper is as follows. The basic equations which govern tightly wound density waves 
at the Lindblad resonances are described in § III. In § IV the driving of short trailing waves at the corotation 
resonance is calculated. A comparison of our results with those of other workers is presented in § V. Concluding 
remarks are contained in § VI. 

II. BASIC EQUATIONS 

We analyze a two-dimensional gas disk and adopt cylindrical coordinates r, 8, z and associated unit vectors 
e, e6 , e2 • The pressure p acts only in the horizontal plane and is related to the surface mass density a by 

p =KaY. (1) 

We adopt this simple equation of state because our gas disk is partly intended to be an approximate analog to 
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stellar disks. A more general equation of state is considered by Kato and Inagaki (1978). The enthalpy TJ and the 
sound speed c satisfy 

(y - 1)TJ = c2 = dp. 
du 

(2) 

The unperturbed disk rotates in the gravitational potential f/Jo(r ). 4 Because the mass of the galactic halo may 
be comparable to the mass of the disk, f/Jo(r) and u0(r) cannot be related by Poisson's equation and must be 
specified independently. 

The unperturbed angular velocity is O(r) > 0, where 

Q2(r) = ~ dd (f/Jo + TJo). 
r r 

The Oort parameter B(r) and the epicyclic frequency K(r) are defined by 

r dQ 
B(r) = Q(r) + 2 dr 

and 

The vorticity is 2B(r ). 
K2(r) = 4B(r )Q(r) . 

(3) 

(4) 

Consider the response of the disk to an external perturbation potential fP1(r, 8, t). The surface density perturba
tion u1 is the source for an additional potential perturbation fP1D. The linear perturbation equations read: 

0~1 + (vo· V)v1 + (v1· V)vo = - V(f/J1 + f/J1D + "11), 

0:r1 + v •(C1oV1) + v ·(u1vo) = 0 ' 

"11 = Co2(u1fuo), 

•:;pfP1D = 47TGu1 S(z), 

where v0 = rO(r )e8 and S(z) is the Dirac delta function. 
Without loss of generality, we write each perturbation variable X in the form 

X= X(r) exp i(m8 - wt), 

(5) 

(6) 

(7) 

(8) 

(9) 

where m is a positive integer. In general, X(r) is complex. However, the phase of the potential due to a bar or a 
satellite is independent of r. We set this phase equal to zero and take f1J1(r) as real. 

In component form, the momentum equation (5) becomes 

i(mQ - w)u1 - 20v1 = -;, Cf/J1 + qJ1D + TJ1), 

2Bu1 + i(mQ - w)v1 = - im (fiJ1 + qJ1D + TJ1), 
r 

where v1 = u1e, + v1e8• Solving equations (10) yields 

i [ d 2mQ] D u1 = -- (m!l- w)- + -- Cf/J1 + f/J1 + "11) D dr r ' 

v1 = b [2B ;, + o/CmO- w)](f/J1 + qJ1D + TJ1), 

where 
D = K 2 - (mO - w )2 • 

4 The unperturbed and perturbed variables carry subscripts 0 and 1, respectively. 
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We assume that the rotation curve is normal, that is, D has a single maximum. Substituting equations (11) and 
(7) into the continuity equation (6), we obtain 

{ d2 [d (a')] d 2mn [d (an)] m2} D D7J1 
dr 2 + drln D dr + r(mn- w) drln D - Y2 (cp1 + 9'1 + 7J1) = 7' (13) 

where the subscripts on a0 and c0 have been dropped. 
The response of the disk to cp1 is completely described by equations (7), (8), and (13). Analytic solutions may be 

obtained for 
(cfnr) « 1, (14) 

which we refer to as the tight-winding or Lin-Shu approximation (Lin and Shu 1968). In the solar neighborhood, 
c ~ 30 km s- 1 (appropriate for the K and M dwarfs which contain most of the disk mass), a~ 75 M0 pc- 2 • 

Thus cfnr ~ 0.1, Gafn2r ~ 0.05, c2 /Gar ~ 0.3, so that the tight-winding approximation is not really appropriate. 
Nevertheless, analytic solutions obtained in this limit offer valuable insights into the behavior of density waves in 
more realistic model galaxies. 

There are singularities in the coefficients of equation (13) where D = 0 (Lindblad resonance, r = rL) and 
mn - w = 0 (corotation resonance, r = r 0 ). Away from the resonances, the general solution of the perturbation 
equations divides naturally into wave and non-wave parts. The individual waves satisfy the homogeneous equations 
(cp1 = 0) and are the free density waves of the Lin-Shu theory. The non-wave part is a particular solution of the 
inhomogeneous equations. Note that this division into homogeneous free-wave solutions and inhomogeneous 
non-wave solutions does not apply if the domain of the solutions includes the resonances. Then the relative 
magnitudes of the wave and non-wave parts are fixed by the behavior of cp1 at the resonances and by the boundary 
conditions. We defer consideration of the resonances to later sections. 

First consider the inhomogeneous non-wave solution. For this solution, the potential due to the surface density 
perturbation is negligible, so we set cp1D = 0. Then to lowest order in cfnr « 1, we find 

a1 = 7J1 = _!_ {~ + [dIn (a')] d + 2mn [~In (an)] _ m2
} 

a c2 D dr 2 dr D dr r(mn - w) dr D r 2 9'1 • 
(15) 

From Poisson's equation (8), we see that O(cp1D) = O(Ga1r) = O(Gacp1 fn 2r) which justifies our neglect of cp1v. 
A more careful examination of the magnitudes of the discarded terms in the vicinity of the resonances reveals 
that equation (15) is valid where \(r- rL)/rL\ » (cfnr)112 and \(r- r0 )/rc! » (cfnr). 

Next consider the homogeneous free-wave solutions. The term D7J1/c 2 on the right-hand side of equation (13) 
can be balanced by terms on the left-hand side only if O(d2 fdr 2) » r - 2 • Thus we look for solutions of the form 

!f1D(r) = <l>(r) eXp [i r k(s)ds]' . (16) 

where <I>, k are real and \kr I » 1. For these rapidly oscillating solutions, Poisson's equation can be solved by a 
WKB approximation and yields 

_ i sgn (k) d ( 112 D) 
a1 - 27TGr1t2 dr r 9'1 ' (17) 

with fractional error 0(\kr \- 2) (Shu 1970). Substituting equations (16) and (17) into equation (13), setting 
cp1 = 0, keeping the highest order terms in kr and nrfc, and separating real and imaginary terms, we obtain 

D + (kc)2 - 27TGa\k\ = 0 (18a) 
and 

~ [r<l>2 (t - c2\kl)] = 0 . 
dr 7TGa 

(18b) 

Equation (18a) is the dispersion relation due to Lin and Shu (1968). Its solutions are 

7TGa [ (7TGa) 2 D] 112 
lk! = - + € - - - ' c2 c2 c2 (19) 

where " = + 1 for "short waves" and -1 for "long waves." The waves have a spiral form, and both leading 
(k < 0) and trailing (k > 0) waves are permitted. The group velocity Cg is given by (Toomre 1969) 

_ dw _ k[7TGa - \k\c2J 
Cg = dk - sgn mn - w . (20) 
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For axisymmetric perturbations, m = 0, equation (18a) reduces to 

w 2 = K 2 - 27TGaJkJ + c2k 2 • 

Stable disks have w 2 > 0 for all k, which requires (Toomre 1964) 

KC 
Q=-a>l. 7T a 

Vol. 233 

(21) 

(22) 

In the solar neighborhood Q is probably between 1.2 and 2.0 (Toomre 1974). We take Q to be of order unity in 
this investigation. The tight-winding approximation reduces to O(c(Or) « 1, O(Q) = 1. 

Spiral density waves transport angular momentum by gravitational torques and by advective transport (Lynden
Bell and Kalnajs 1972). The angular momentum flux across a cylinder of radius r due to gravitational torques is 

1 52
" f"' [8 D] [8 n·j Fa= 41TG 0 d() -oo dzr Re ~~ Re :~ _ . (23) 

The WKB solutions of Poisson's equation (8) for z ¥- 0 show that 

Re [cp1D(r, 0, z, t)] = <l>(r) exp ( -Jk(r)zJ) cos (f k(s)ds + mO- wt) · (24) 

Thus 

F. _ (k) mr<l>2(r) 
a- sgn 4G . (25) 

The flux due to advective transport is 
r2" 

FA = r 2a L d() Re (u) Re (v). 
·0 

(26) 

Evaluating u and v from equation (11) and setting cp1 = 0 yields 

FA = 1r");a [1m (cpln + 'l')l) Re! (cpl + <p1n + 1)1) - Re (cpl + cp1n + 1J1) Im ;, (cp1n + 1)1)]' (27) 

where w is taken to be real. From equations (7), (16), and (17), we find 

cpl D + 1)1 = ( 1 - ~:~~) <f>(r) eXp [i r k(s )ds] (28) 

to lowest order in (kr)- 1 • Thus for free waves (cp1 = 0) 

F = _ 1rmrak (l _ c2JkJ )2 <1>2 
: D 21rGa . (29) 

The total angular momentum flux is obtained from equations (25) and (29) with the aid of the dispersion relation 
(eq. [18a]) and reads 

F = Fa + FA = - sgn (k) -- 1 - -- · mr<l>2 ( c2 Jkl) 
4G 1rGa 

(30) 

Equation (18b) shows that the waves' angular momentum flux is conserved. 
The general solution of the perturbation equations is a linear combination of the inhomogeneous nonwave 

solution and the homogeneous wave solutions. There is no angular momentum flux associated with the nonwave 
solution because, for it, a 1 and cp1 are in phase. The angular momentum flux due to cross-terms between different 
waves and between wave and nonwave solutions vanishes when averaged over radius. 

Our conclusion is that, in the tight-winding limit, there is no transfer of angular momentum between the disk 
and the perturbing potential except at resonances. This conclusion depends upon the assumption that the external 
potential varies slowly, Jdcp1(drJ « JkcplJ· 

II. LINDBLAD RESONANCES 

To solve equation {13) in the vicinity of a Lindblad resonance, we change the independent variable from r to 

(31) 
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and replace D by I»x, where 

I» = [r(dDfdr )]rL . (32) 

For JxJ « 1, equation (13) simplifies to 

{::2 -1 fx -f(m~m~ w)lL 1}cq?1D + ~1)- ~ YL2X~1 = ~' (33) 

with 

_ ( dq?1 2m0. ) 
'¥ = 'Tr + (mQ- w) 9?1 rL' (34) 

where we have used the fact that O(d2q?1jdr 2 ) = O(r - 1dq?1jdr) = O(r - 2??1). Next we drop the term on the left
hand side of equation (33) which is proportional to [2m0.f(mQ - w)] because O[d(??1D + ~1)/dx] » 0(??1v + ~1). 
In addition, we eliminate ~1 in favor of 9?1v by using the WKB solution of Poisson's equation (eq. [17]) which 
simplifies to 

(35) 

with 

a = (2TrGarfc2)rL sgn (k). (36) 

The validity of this procedure is established in the Appendix. The equation for q?1v now reads 

Ia + - - + - - (3x -- = -- '¥ (. 1) d ia J dq?1 D ia 
xdx x dx x' 

(37) 

where 

(38) 

Note, O(a2) = O(J(3J) and sgn (3 = ± 1 for inner and outer Lindblad resonances. Equation (37) integrates once 
to yield 

(::2- ia d:- (3x)q?1D = ia'f'. (39) 

This equation was derived and solved previously by Goldreich and Tremaine (1978a). A simpler method of 
solution is given here. 

We introduce a new dependent variable 

w(x) = q?1D(x) exp (- iaxf2) (40) 

and find 

~; + ( ~2 - (3x) w = ia'¥ exp (- iax/2) . (41) 

Since O(J(3J) = O(a2) » 1, a WKB solution of equation (41) is valid for JxJ « 1 and has the form 5 

w(x) = 'Yl ws(x) I: oo dtwL(t) exp (- iat/2) - wL(x) S: oo dtws(t) exp (- iat/2)] 

+ Mws(x) + NwL(x) , (42) 

where 

Ws = exp [-!-iax(l - (3xfa 2)], wL = exp [-!iax(1- (3x/a 2)]. (43) 

M and N are arbitrary constants. From the relation between w and ~, we see that Ws and wL correspond to the 
short and the long waves. Furthermore, examination of the rate of phase variation of the integrands in equation 
(42) reveals that the external potential couples to the long wave near x = 0 but does not couple to the short 
wave. In other words, the first integral in equation (42) is much smaller than the second for ± x » (JaJ/Jf3J)112 and 
is ignored from here on. 

5 In equation (42) and throughout the remainder of this section, the upper and lower signs apply to inner and outer Lindblad 
resonances. 
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The correct expression for q:>1D(x) is obtained by applying a radiation boundary condition to the general solution 
given in equation (42). That is, we demand that the solution contain only waves that propagate away from the 
Lindblad resonance. The direction of propagation of each type of density wave is given by the sign of its group 
velocity c9 (eq. [20]). Inside corotation the group velocity is positive for long trailing and short leading waves and 
negatives for short trailing and long leading waves. Outside corotation the sign of the group velocity is reversed 
for each wave type. Long waves can exist only between the inner and outer Lindblad resonances whereas short 
waves are not restricted to this region (cf. eqs. [12] and [19]). 

We are now prepared to choose the appropriate solution for q:>1D(x). Consider first the solution for leading waves 
(a < 0). We show that no solution exists. N must vanish because wL(x) is trailing outside the Lindblad resonances 
(for ± x < 0). Then the contribution due to the second integral violates the radiation boundary condition between 
the Lindblad resonances (for ± x > 0). Next consider trailing waves {a > 0). As before, N = 0. The radiation 
boundary condition implies M = 0. We have already discarded the first integral in equation (42). The only remain
ing term is the second integral which describes the excitation of the long trailing wave. The dominant contribution 
to this integral comes from a region of width !:J.x ~ (lal/1,81)112 about the origin. This is where the long trailing wave 
varies most slowly and hence couples most strongly to the external potential. 

The second term in brackets in equation (42), when multiplied by exp (iaxf2), is a good approximation to 
q:>1D(x). Thus 

(if3x2) fx ( if3t2) 
IP1D(x) ~ - 'Y exp 2a "'co dt exp - 2a . (44) 

An asymptotic expression for q:>1D(x), valid for lxl » (lal/l/31)112, is 

IP1D(x) = {(± 1 +/gn x) eiJiiY'2 exp [i(i:2 + 3;)] - i(~) ~}'Y. (45) 

The first term in the long trailing wave which exists on the corotation side of the Lindblad resonance. The non
wave part of the solution is given by the second term. With the aid of Poisson's equation (35) and the defining 
equations (36) and (38) for a and {3, it is readily shown that the corresponding non wave part of 7J 1 agrees with that 
given by equation (15) in the appropriate limit. 

The long trailing wave excited at a Lindblad resonance has an angular momentum flux, 

F = -m7T
2{1 rd;fdr l[r 1/ + (m;m~ w) IP1r}rL' (46) 

computed from equations (15), (19), (30), (32), and (34). Note that F depends on a, Q, and K, but not on cor G. 
The behavior of a disk which is not self-gravitating may be investigated by setting q:>1D = 0 in equation (33). 

In this case the long trailing waves propagate away from corotation. This changes the sign of the angular 
momentum flux but not its magnitude. 

Further details concerning forced perturbations in the vicinity of a Lindblad resonance are given in the Ap
pendix. It is demonstrated there that all the physical variables are well behaved and that the WKB solution of 
Poisson's equation is a valid approximation. We also prove that there is no accumulation of angular momentum 
in the vicinity of a Lindblad resonance. That is, the long trailing wave carries away all the angular momentum 
which the external torque deposits in the disk. 

IV. COROTATION RESONANCE 

The corotation resonance occurs at the radius r0 where mO(rc) = w. If the external potential is due to a non
axisymmetric mass, such as a central bar, which rotates at constant angular speed QP, then w = mOP and 
O(rc) = OP. 

As before, we define a new variable 
(47) 

Furthermore, we consider the response of the disk to a slowly increasing perturbation. Thus we take w to have 
a small positive imaginary part and write 

(48) 

where E > 0. The resonant term in equation (13) is proportional to 

(mQ- w)- 1 ~ {(mrdOfdr)rc[x- (mrd~fdr)Jr 1 · (49) 

Since m > 0 by definition, and dOfdr < 0 for typical galaxies, the imaginary term is positive. In future, we drop 
all poles slightly below the real axis. 
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Although our primary concern is with disks for which O(Q) = 1, it is illuminating to consider first disks which 
are not self-gravitating, i.e., disks with rp1 D = 0. 

a) Disks without Self-Gravity 

Density waves cannot propagate in the region between the inner and outer Lindblad resonances in disks without 
self-gravity (cf. eqs. [12] and [19]). Thus an external potential does not excite density waves at the corotation 
resonance in such disks. However, it is still worth investigating the nonwave forced perturbation in these disks 
for the insight it provides concerning the nature of forced disturbances in self-gravitating disks. 

To reduce equation (13) to a tractable form in the neighborhood of corotation, we assume that O(d2TJ 1fdx2) » 
O(dTJ1fdx) » O(TJ1). Then keeping only the largest terms, we obtain 

d2TJ1 (p 2) p ( ) dx2 + x - q TJ1 = -.x fP1 rc , (50) 

where 

(51) 

and 
(52) 

We simplify equation (50) further by assuming for the moment that O(TJ1) « O(rp1) so that we can discard the 
term PTJ1fx. The solution of the resulting equation is straightforward (Donner 1978): 

[ f ro dt fx t ] 
TJ 1 =: + fq rp1(rc) exp (qx) x (t + ie) exp ( -qt) + exp ( -qx) -oo (t + ie) exp (qt) ' (53) 

where we have imposed the boundary condition TJ1-+ 0 as JxJ -+ oo. Here 0 < e « 1. The asymptotic solution 
for TJ 1 follows immediately from the asymptotic behavior of exponential integrals (Abramowitz and Stegun 1964). 
We find 

p hrp 
"11 = q2x rpl(rc) - 2q rpl(rc) exp ( -JqxJ) , (54) 

for q- 1 = (c/Kr),c « JxJ « 1. The first term matches onto the nonwave inhomogeneous solution for TJ1 given by 
equation (15). The second term matches onto homogeneous solutions consistent with the dispersion relation (19). 

The solution for TJ1 has the property that O(d2TJ 1fdx2) » O(dTJ1fdx) » O(TJ1), which validates the assumption 
made in deriving equation (50) from equation (13). To justify the neglect of the term PTJ 1fx in equation (53), we 
note from equation (53) that O(TJ1) = q- 10(rp1) « O(rp1). 

Next we calculate the angular momentum flux near corotation. Since rp1D = 0, the entire flux is carried by 
advective transport. Substituting equation (53) into equation (27), we obtain 

FA = -~2 m sgn (x)[ db.i~r;, (Ji) ] .. exp ( -JqxJ), (55) 

to lowest order in (cfD.r). Note that FA-+ 0 as JxJ-+ oo, so angular momentum is not transported to infinity. 
Curiously, there is a net flux of angular momentum into the resonance: 

Fi -0)- Fi +0) = 7T;m [db.i~r;, (Ji) J.. · (56) 

The rate of accumulation of angular momentum is equal to the net torque exerted by the external potential in 
the neighborhood of corotation. 

From equation (53) we see that, as x-+ 0, TJ1 -+ -prp1(rc)[i7T/(2q) + x In x]. Thus the azimuthal velocity 
perturbation v1 oc In x for JxJ « q- 1. This singularity is discussed further in§§ IVb and V. 

b) Disks with Self-Gravity 

In self-gravitating disks, density waves can propagate between the inner and outer Lindblad resonances except 
in a forbidden region around corotation for which JO.- O.vJ < K(I - Q- 2)112/m (cf. eq. [19]). The forbidden 
region is narrow if 0 < Q - 1 « 1 and absent if Q < 1 (unstable disks). Therefore, we expect the efficiency of 
density wave excitation to increase as Q decreases. In this subsection we assume O(J Q - 1J) « 1 so that for stable 
disks the forbidden zone occupies a small fraction of the region between the inner and outer Lindblad resonances. 
However, we consider both limits 1 » O(J Q - 1J) » cfO.r and O(J Q - 1 J) « cfO.r. 
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Once again, we are faced with reducing the equation governing forced disturbances (eq. [13]) to a simplified 
form valid near the corotation resonance. We assume that O[d(!p1n + "h)fdx] » O[(~P1n + "'/1)]. For x « 1, 
equation (13) then yields 

- + -ln - - +- ('Pl + 7J1)- -7]1 = -- 1P1(r). { d 2 
[ d (a')] d p} D D p 

dx2 dx Ddxx c2 x c 
(57) 

We assume for the moment that 0(!p1n + 7]1) « 0(!p1) so that we can neglect the term proportional to px- 1 on 
the left-hand side of equation (57). The WKB solution of Poisson's equation (17) is written as 

where 

_ i sgn (k) !!_ ( 112 D) 
7Jl - 2k r 112 dx r 'Pl ' 

c 
(58) 

(59) 

The validity of equation (58) is established in the Appendix. Equation (58) is now used to eliminate 1p1n from 
equation (57) in favor of 7]1 • The result is 

d 27]1 [ d l (ar) "k J d7]1 [ D 2. dkc ikcrc 2 .k d l (a')] P ( ) -- + - n - - 2z - + -- - 1- + -- - z - n - 7]1 = -- 1p1 r . dx2 dx D c dx c2 dx r cdx D X c 
(60) 

Next introduce a new dependent variable 

y(x) = (ar/D)112 exp [-ike sgn (k)X]7]1(x). (61) 

Then set 
(62) 

where 

(63) 

Note, O(L) = 1. We retain the x dependence of D near corotation so that our final equation can describe the 
transition from evanescent to propagating disturbances which occurs at the boundary of the forbidden region. 
With these changes, equation ( 60) becomes 

d 2y 2 ( 2 Q2x2 2i d ) p (ar ) . dx2+kc 1- Q +--v-+ kcdxlnQ y=-:x n'P1 rcexp[-lkcsgn(k)x]. (64) 

In deriving equation (64) we have discarded terms of order unity in the coefficient of y. Henceforth we take Q 
to be constant and evaluate kc at x = 0. Finally, we define 

and rewrite equation (64) as 

v = (2kcQ/L) 112x, 

b = kcL(Q2 - l)J2Q, 

K = sgn (k)(kcL/2Q)112 , 

d2y ( v2) S - + - b + - y = - exp (- iKv) . 
dv2 4 v 

(65) 

(66) 

(67) 

(68) 

(69) 

The stellar dynamical analog of the homogeneous part of this equation was originally derived by Mark (1976). 
Lin and Lau (1975) derived equation (69) and studies its solution in some special cases. 

It turns out to be most convenient to solve equation (60) in the interval -oo < v < oo, although it is only a 
valid approximation to the dynamics for JvJ « (2kcQ/L) 112 (jxj « 1). This procedure introduces a minor problem 
which is easily overcome by a slight modification of the inhomogeneous term. The difficulty is due to the expres
sion adopted for D (eq. [62]) which vanishes at Jvl = (2kcQL) 112 (JxJ = L). These locations have some of the 
properties of Lindblad resonances. In particular, the inhomogeneous term generates small propagating distur
bances there. Since we are interested in isolating the effects of driving at the corotation resonance, we eliminate 
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this unwanted (and invalid) source of waves by multiplying the inhomogeneous term by f(v), where f(v) = 1 
near v = 0 and declines monotonically to f(v) = 0 for lvl < (2kcLQ)112• We show that the driving near co
rotation occurs in the interval O(Kv) = O(kcx) = I. Thus as long as f(v) = 1 in this interval, it does not affect 
the excitation of the waves. 

The homogeneous solutions of equation (69) are parabolic cylinder functions (Abramowitz and Stegun 1964). 
It is most convenient to take E(b, v) and E*(b, - v) as the independent homogeneous solutions. Relevant properties 
of these solutions are 

E*(b,v) = +iexp(1rb)E*(b, -v)- i[1 + exp(2?Tb)]l'2E(b, -v), 

(2)112 { [v2 8 ?T]} E(b, v) ----7 - exp i -4 - bIn v + -2 + 4- • 
V»ibil/2 V 

8 = arg [r(t + ib)] , 

and 
W[E(b, v), E*(b, -v)] = 2 exp (1rb), 

where W denotes the Wronskian. The general solution of equation (69) may be written as 

y(v) = -~ exp ( -?Tb){ E(b, v)[foo dt E(:(~ :;) f(t) exp ( -iKt) + M] 
+ E*(b, -v)[ioo dt~~':!/(t)exp(-iKt) + N]}• 

where M and N are arbitrary constants. 

(70) 

(71) 

(72) 

(73) 

(74) 

We impose outward radiation boundary conditions on 'l)l[x(v)] for lvl > 2blf2. Long leading waves and short 
trailing waves propagate away from the boundary of the forbidden zone around corotation (I vi = 2b112) toward 
the inner and outer Lindblad resonances. It is easy to verify that, for both leading and trailing disturbances, 
this implies M = N = 0. 

To evaluate the integrals in equation (69), we make use of the fact that K » 1. We define 

fv E*(b, - t) . 
Mv) = _ oo dt (t + i€) f(t) exp ( -zKt), (75) 

Mv) = foo dt (E(b, ~))f(t) exp ( -iKt). 
v t + l€ 

(76) 

Consider first 

/ 1(oo) = -i?TE*(b, 0) + t s:oo ~t f(t){cos Kt[E*(b, -t) - E*(b, t)]- i sin Kt[E*(b, -t) + E*(b, t)]} · (77) 

In the limit IKI ~ oo, the integral containing cos Kt vanishes and the integral containing sin Kt is evaluated by 
setting sin Ktft = 1r8(t) sgn (k). Thus 

/ 1(oo) = -i1r[l + sgn (k)]E*(b, 0). 
Similarly, 

/ 2(- oo) = - i1r[l + sgn (k)]E(b, 0) . 

(78) 

(79) 

The amplitudes of the waves which propagate toward +oo and -oo are proportional to / 1(oo) and / 2( -oo), 
respectively. Since l 1(oo) and / 2( -oo) vanish for sgn (k) = -1, leading waves are not excited at corotation. This 
conclusion was first reached by Feldman and Lin (1973). Since IMoo)l = l/2( -oo)l, the trailing waves are excited 
with the same strength on both sides of corotation. 

The nonwave part of y(v) is proportional to 

J1(v) = E(b, v)[Mv) - Moo)] + E*(b, -v)I2(v) for v » K- 1 , 

and to 
J2(v) = E(b, v)l1(v) + E*(b, -v)[Mv)- Ii -oo)] for v « -K- 1 • 

To evaluate J1(v) for v » K-I, we form 

dJ [dE* dE ] foo dt . dv1 (v) ~ dv (b, - v)E(b, v) - dv (b, v)E*(b, - v) f(v) v t exp ( -1Kt) , 
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where we have taken advantage of the fact that E(b, v), E*(b, v), and f(v) are all slowly varying compared to 
exp (- iKv) and can be taken out of the integrals. The angular bracket contains the Wronskian of E(b, v), 
E*(b, -v) (cf. eq. [73]), and the remaining integral is well approximated by -i(Kv)- 1 exp ( -iKv). Once 
dJ1(v)fdv is known, J1(v) is obtained by integration using J1(oo) = 0. In this manner we obtain 

(83) 

Similarly, 
(84) 

The nonwave part of 1J1(x) near corotation is determined by equations (61), (65)-(68), (74), (83), and (84). It reads 

1J1(x)ln-w = {d~~dr [;,In (a2)] (~,r9?1}rJ, (85) 

for kc - 1 « lxl « 1. In deriving equation (85), we have set kc ~ (Krjc), consistent with our assumption 
ICQ- 1)/QI « 1. The above expression agrees with the more general nonwave solution for 1)1 (cf. eq. [15]) near 
corotation. 

The contributions to 1J1 [x(v)] from the short trailing waves excited at corotation are given by equations (61), 
(74), (78), and (79). They are 

1)1 [x(v)llw = i7TS exp ( -7Tb)E*(b, O)E(b, v) exp (iKv) for v » K- 1 (86a) 

and 

1)1[x(v)Jiw = i7TS exp ( -7Tb)E(b, O)E*(b, -v) exp (iKv) for v « -K-1 . (86b) 

We are now in a position to justify the assumptions made in the derivation of equation (60). From equations 
(61), (74), (85), and (86), we see that O(d21Jddx2) » O(d1J1fdx) » 0(1)1). Equation (58) then shows that 0(9?1D) = 
0(1)1). To estimate 1)1 we note that forb > 0 (stable disks), O[E(b, v)] :s; exp ( -7Tbf2). Hence 0(1)1) = 0(9?1D) :s; 
O(S) = O[(c/Or)1129J1] « 0(9?1), which justifies our neglect of (1)1 + 9?1D)fx with respect to 9?dx. For b < 0 
(unstable disks), O[E(b, 0)] = 1 and 0(1)1) = 0(9?1D) = O[(c/Or)112 exp CI7Tbl)9?d for x ~ 0. Thus 0(1)1 + 9?1D) « 
0(9?1) if I7Tbl «In (Orfc). For larger values of lbl, the forced perturbations are so large that our approximations 
fail. Unstable disks probably do not merit special study since they are unlikely to exist in nature. 

The short trailing waves excited at corotation carry angular momentum toward x = ± oo. We evaluate the 
angular momentum flux near corotation from equations (19), (30), and (62). Well outside the forbidden region 
[lxl » (Q 2 - 1)112L/Q], 

(87) 

F is positive on both sides of corotation because the angular momentum density is positive for x > 0 and negative 
for x < 0. Near corotation, the wave part of the perturbation satisfies <I>= l9?1vl = 211J11. Using this relation 
together with equations (65)-(68), (70), (71), and (87), we obtain 

7T4aQ2 {/ me 1112[ 209?1 dln (a)]2} exp ( -37Tbf2) 
F = ~ r 2d0fdr (dQjdr) dr B rc lr(-3:- + ib/2)1 2' 

(88) 

where we have explicitly evaluated IE(b,O)I 2. For large lbl, lr(i + ib/2)1 2---+7TI2bl 112 exp(-7Tibl/2). Thus Foc 
exp (-7Th) forb > 0, and F oc exp (27Tibi) forb < 0. From the definition of b (cf. eq. [66]), we see that for stable 
disks, F is negligible unless O(Q- 1) = O(c/Or) « 1. Even if Q = 1, F for the waves excited at corotation is 
smaller by O[(cf0r)112] « 1 than F for the waves excited at the Lindblad resonances. 

The external potential exerts a torque on the disk 

(89) 

Since 9?1(r, 8, t) = 9J1(r) exp [i(m8- wt)] with 9J1(r) real, 

Tc ~ -m7T(r 2a9?1/c2)rc f_: dxg(x) lm (1)1), (90) 

where we have evaluated 9?1(r) at r = rc and replaced a1(r) by 1J1(r) using equation (7). The auxiliary function g(x) 
has been inserted in the integrand for reasons explained below. Near corotation 1J1[v(x)] = exp (iKv)y(v), where 
y(v) is given by equation (74). Since 1)1 oscillates, the torque density oscillates as well. Nevertheless, the net torque 
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in the corotation region is well defined by equation (90) if we take g(O) ~ 1 for lxl ~ kc - 1 and let g(x)-+ 0 
smoothly for lxl » kc - 1 • The effect of g(x) is to slowly damp the oscillations in torque density and thus to produce 
a finite, well-defined, expression for Tc which is essentially independent of g(x). 

The most economical method of computing Tc is to use equation (69) as follows. Define 

f "" [d2y ( b + v2) J J = -oo dv exp [iKv- (Llv)2] dv2 + y --4- = -hrS, (91) 

where g[v(x)] = exp [ -(Llv)2] with K 112 « Ll « K. For this choice of Ll, the v 2yf4 term in the integrand may be 
neglected with respect to the d 2yfdv2 term. Integration by parts then yields 

J ~ -(K2 +b) L: dvexp [iKv- (Llv)2]y(v) = -hrS, (92) 

where the discarded terms in the integrand are O(aK- 1) « 1 smaller than those retained. From equations (90) 
and (92) we obtain 

(93) 

As advertised, this result is independent of g [v(x)] or, more precisely, of the value of Ll. Comparison of equations 
(56) and (93) reveals that the net torque at corotation is independent of whether or not the disk is self-gravitating. 
Self-gravitating disks share another property with non-self-gravitating disks. From equation (69) it follows that 
,'}l[v(x)] ex: v In v as v-+ 0. This implies that the azimuthal velocity perturbation varies as In x as x-+ 0 (cf. 
eq. [12]). 

V. DISCUSSION 

The behavior of a disk near the Lindblad and corotation resonances has been treated previously in several 
papers. Below we describe how the results of these earlier papers compare with those presented here. We discuss 
results obtained for gas disks first. 

The excitation of the long trailing wave at the Lindblad resonances by an external potential was calculated 
by Goldreich and Tremaine (1978a, b) for self-gravitating disks. Donner (1978) derived the wave driving at the 
Lindblad resonances for disks without self-gravity. In appropriate limits, the results of these earlier works are 
compatible with those reported in the current paper. 

The study of the corotation resonance most closely comparable to ours is by Feldman and Lin (1973). Their 
equation (6.13) is analogous to our equation (60) in the limit lxl « L(Q2 - 1)112/Q. Feldman and Lin were the 
first to show that an external potential excites the short trailing wave at corotation. However, they did not compute 
the angular momentum flux of the driven waves. Lin and Lau (1975) concentrated on the special case Q = 1 
and on cylindrical rather than disk geometry. Subsequently, Lau (1977) derived the wave driving at corotation in 
cylindrical geometry. He established that the amplitudes of the excited waves are the same on both sides of 
corotation. 

Donner (1978) solved the initial value problem for the forcing of disks without self-gravity. He included the 
effects of bulk viscosity. His paper contains the first derivation of equation (53) describing the response near 
corotation. 

Kato and Inagaki (1978) discuss angular momentum transport near the corotation resonance of a disk without 
self-gravity. They use a more general equation of state than we do and consider nonadiabatic perturbations. 
However, their work is restricted to disks with very small differential rotation and is not directly comparable 
to ours. 

The most interesting comparison of our work is with the stellar dynamical calculations of Lynden-Bell and 
Kalnajs (1972, hereafter LBK). These authors determined the rate Ii at which a disk of stars gains angular momen
tum under the influence of a potential of the form cp1(r) exp [i(m8- wt)]. We assume that the disk is not self
gravitating, so that cp1 is the external potential. According to their equation (30) 

(94) 

Here J1 is the radial action, J2 is the azimuthal action or orbital angular momentum, and F(J1, J2) is the distribu
tion function. F gives the mass density per unit volume in the four-dimensional phase space. In the limit 
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J1/Kr 2 « 1 (corresponding to the epicyclic approximation or to our limit cfO.r « 1), 0.1 = K and 0.2 = O.(r). 
The Fourier components of the potential !film are related to our !p1(r) by 

I1Piml2 = 167T4!fi12' 1 = 0' 

= 81T4l1 (rd1P1 _ 2mO.IP1) 2, Ill 1 
KT 2 dr /K = ' 

(95) 

Ill > 1. 

To derive equation (95) we used equation (18) from LBK and assumed O(d!f!1/dr) = 0(1P1/r). Note that when 
equation (95) is substituted into equation (94), !f!1(r), K(r), O.(r), and r are considered functions of J 2 through 
the relation J 2 = r 20.(r ). The argument of the delta function in equation (94) indicates that I = 0 corresponds to 
the corotation resonance and 1 = ± 1 correspond to the outer and inner Lindblad resonances, respectively. 

For 1 = 0, equations (94) and (95) yield 

Ji = - ~ m2 f" dJ21P12S(mO. - w) d~2 [ 47T2 f' dJ1F(J1, J2)] • (96) 

The quantity in the square brackets is the total mass in the interval dJ2 since the volume element in phase space 
is dw1dw2dJ1dJ2 , where w1 and w2 are the angle variables. Since J 2 = r 20.(r), 

4 2 f."' FdJ = 27Tra(r) = ~. 
7T 0 1 d(r 20.)/dr B 

(97) 

Thus 

(98) 

assuming dO.fdr < 0. The final expression for Ji is identical to the result we obtained for the net external torque 
in the neighborhood of corotation (cf. eqs. [56] and [93]). 

Next consider Ill = 1. We drop the term proportional to m8Ff8J2 in equation (94) because its contribution to 
the integral is much smaller than that due to the term proportional to l8Ff8J1 (Fis strongly peaked at small values 
of 11). Integrating by parts and using equation (95), we obtain 

r'r 7T J."" dJ2 ( d!p1 2m0. ) 2 . [ J"" ] n = 4lm 
0 

KT 2 r dr - --r;- !p1 S(lK + mQ - w) % 2 
0 

dJ1F(Jl> 12) • (99) 

With the aid of equation (97), Ji reduces to 

· _ l 2{1 a I [ d!p1 2Q ] 2
} H - m7T rdDfdr r dr + (Q - QP) IP1 rL' 

(100) 

where we have used dDfdr = 2Kd(K + lmO.)fdr. The above expression for Ji is equal to the external torque exerted 
on a gas disk in the neighborhood of the Lindblad resonance (eq. [10]). However, in the gas disk all of the angular 
momentum deposited by the torque is transported away by a long trailing wave (see Appendix), while in the 
stellar disk without self-gravity the angular momentum is absorbed by the stars near the resonance and no density 
wave is excited. 

The case of a self-gravitating stellar disk is more complicated. The dispersion relation for long trailing waves 
near the Lindblad resonance is identical for self-gravitating gaseous and stellar disks. Thus we believe that the 
angular momentum deposited at the resonance will be carried away by the long trailing wave, just as it is in the 
gaseous disk. The differences only arise once the long wave has been reflected from corotation as a short wave. 
In stellar disks the short wave cannot propagate past the Lindblad resonance. Thus the angular momentum 
carried by the wave will eventually be deposited at the resonance through Landau damping of the short wave. 

VI. CONCLUDING REMARKS 

Our major conclusions are described in the Abstract. This section contains some additional comments and a 
guide to the key equations. 

The external torques at the Lindblad and corotation resonances are given by equation (100) or (AlO) and by 
equation (56), (93), or (98), respectively. The angular momentum deposited at a Lindblad resonance is trans
ported away by a long trailing density wave (compare eq. [AlO] for the torque to eq. [46] for the angular momentum 
flux). Short trailing density waves are excited at corotation but do not remove net angular momentum from this 
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region. The wave amplitude (eq. [88]) is small for stable disks unless O{Q - 1) ~ O(cfD.r) « 1. Strong waves 
can be excited at corotation in unstable (Q < 1) disks, but we doubt that real galactic disks are unstable. 

Note that the Lindblad "resonance" is not a true resonance of a fluid disk, but only a region where the disk 
is strongly coupled to the external potential (i.e., where the WKB wavelengths of the long waves are large; cf. 
eq. [18]). The external torque is exerted over a distance !::J.r "' (Gar)1 12fD.. By contrast, the corotation resonance 
is a true resonance. The torque on the disk there is exerted over a distance !::J.r "' c2fGa. 

The perturbations of all physical variables are well behaved at Lindblad resonances, whereas the tangential 
velocity perturbation has a logarithmic singularity at corotation. This singularity would be removed by the 
presence of a nonzero shear viscosity. 

We thank Drs. J. Bardeen, Y. Y. Lau, C. C. Lin, D. Lynden-Bell, and A. Toomre for helpful discussions. 
This work was supported by NSF grant AST 76-23281 and NASA grant NGL-05-002-003. 

APPENDIX 

The problem addressed here is the validity of the WKB solution of Poisson's equation (cf. eqs. [17], [35), and 
[58]). This solution is accurate for any disturbance which can be decomposed into Fourier components of one 
sign of k for which \kr\ » 1. 

We have applied equation (17) to the perturbations forced by an external potential near the Lindblad and 
corotation resonances. The validity of this procedure is open to doubt for two reasons. First, although only 
trailing waves are excited at each type of resonance, there is also a nonwave part to the perturbation. It is not 
obvious that the total disturbance can be written as a superposition of Fourier components with positive k (trailing 
waves). Second, the WKB dispersion relation (eq. [19]) gives k = 0 for the long wave at the Lindblad resonances. 
Although this is a formal result, it does cause some concern as the WKB solution of Poisson's equation is valid 
only if \kr\ » 1. To justify our application of equation (17), we shall demonstrate that the forced disturbances 
near the Lindblad and corotation resonances may be written as the superposition of Fourier components for 
which kr » I. 

a) Lindblad Resonances 

Equation (39) determines the potential perturbation near the resonance. A simple approximate solution of this 
equation was obtained in §II. Here we discuss an exact solution, derived by the method of Laplace transform 
in Goldreich and Tremaine (1978a). Written as a Fourier integral, the solution reads 

IP1D(x) = -- dtexp i tx-- +- · rxl{l i"" r ( rxt2 t3 )] 
~ 0 2~ 3~ 

(Al) 

The integrand has stationary phase at 

t ± = trx[l ± (1 - 4~xfrx2)112] . (A2) 

The contributions to cp1v from the regions of stationary phase are of the form 

(A3) 

Reference to equations (18) and (19) identifies cp±(x) as short and long trailing density waves in the limit \xi « 1. 
Note, t_(x) < 0 for ~x < 0 so cp_(x) does not exist for ~x < 0. This reflects the fact that the long trailing wave 
exists only between the inner and outer Lindblad resonances. The amplitude of the long trailing wave given by 
equation (A3) is the same as that given by equation (45) in the limit x « rx2/4~. 

The short trailing wave is present because the long trailing wave excited at the resonance is reflected at x = 
rx2/4~ as a short trailing wave. Since the Laplace transform method gives a global solution of equation (39), we 
cannot eliminate the short trailing wave as we did in § II. 

The expression for cp1D(x) given by equation (AI) satisfies the constraints required for the validity of the WKB 
solution of Poisson's equation. Only Fourier components with t ~ 0 are involved. Although the point of stationary 
phase which gives rise to the long wave is at t = 0 for x = 0, the major contribution to cp_(O) comes from 0 ~ 
t ~ (f3/rx)112. Since O[(f3/rx)112] » 1, almost all of cp_(O) is generated by spatial frequencies for which t » 1 or, 
equivalently, kr » 1. For !x! « I, the nonwave part of cp1(x) is largely made up of Fourier components with 
t = O(lx\- 1) » 1. Thus the application of the WKB solution of Poisson's equation near the Lindblad resonances 
is justified. 

The behavior of the perturbations of the physical variables near the Lindblad resonances remains to be dis
cussed. This is done most easily in terms of the integral expression for cp1D given by equation (Al). Clearly cp1D 
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and, from Poisson's equation (3S), 1J1 are well behaved as x ~ 0. With the same approximations made in deriving 
equation (37) from equation (33), the expressions for the perturbed velocities given by equations (12) reduce to 

-iK [ d ] 
ul = rLit1Jix 'Y + dx (cplD + 7]1) ' 

and 

v1 = i sgn (.@) 2~ u1, 

for JxJ « 1. Substituting equation (AI) into equation (A4), we obtain 

U1 =- rL~I 'Y fo dtexp [i(xt- ~~2 + ~~)] · 

(A4) 

(AS) 

(A6) 

Equation (A6) shows that u1 is nonsingular at x = 0. That the same is true for v1 is seen from equation (AS). 
Thus we have proved our assertion in § II. The perturbations of all physical variables are well behaved at the 
Lindblad resonances. 

To calculate the torque exerted on the disk by the external potential in the neighborhood of a Lindblad 
resonance, we use equation (89) which reads 

T = -Trm fo drrcp1(r) Im a1(r). (A7) 

Using the continuity equation (6) and integrating by parts, we obtain 

{ico d [ mcp1aV1 . d ( 1P1 )]} T = Trm Im 0 r (mQ _ w) + zraul dr mO _ w · (A8) 

Near a Lindblad resonance we may rewrite equation (A8) with the aid of equations {4) and (34) in the form 

TrmarL 'Y I co TL = K sgn {.@) _co dx Re (u1)f(x) . (A9) 

We have treated all quantities except u1 , the most rapidly varying, as constants. In addition, we have added a 
weighting factor f(x) which declines monotonically from f(x) = 1 near the resonance to f(x) ~ 0 as JxJ ~ oo. 
Next we substitute for u1 using equation {A6). The integral over x is proportional to 

g(t) = L: dxf(x) exp (ixt) , 

which peaks sharply at t = 0 and has a total area of 2Tr. Thus 

(AIO) 

This result is in accord with equation (100) (because sgn (~) = -/),and it agrees with equation (46) to within a 
factor sgn {~). This signum factor arises because the group velocity of long trailing waves has the same sign as 
.@. Thus we have proved that all of the angular momentum deposited at a Lindblad resonance is transported away 
by a long trailing wave. 

b) Corotation Resonance 

Equations (61) and (69) govern the enthalpy perturbation near the corotation resonance. The latter equation 
is solved by the method of Laplace transform in the following manner. We set 

y(v) = I dz exp (izv)g(z) . (All) 

Substituting equation (All) into equation (69) and integrating by parts, we obtain 

Sexp(-iKv) = J~Kexp{izv)[i(z2 + b- ~)g + ~~; + ~~;~] 

- I:K dz exp (izv) ~ [~ ~;~ + (b + z2)g] • (A12) 
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We have chosen the contour of integration to run along the real axis from -K to +oo. Because v has a small 
positive imaginary part (cf. the second paragraph in§ IV), the boundary terms vanish at +oo. 

Equation (A12) is satisfied if 

and 

g(- K) = dg I = 0 ' 
dz -K 

d2gl = i4S 
dz2 -K 

d2g 
dz2 + 4(b + z2)g = i4S. 

Solving equations (A14) subject to the conditions given by equation (A13), we find 

g(z) = ~ [E( -b, 2z) r: dwE*( -b, 2w)- E*( -b, 2z) r: E( -b, 2w)] · 

Using equations (61), (All), and (A15), the enthalpy perturbation may be written in the form 

7J1[v(x)] = (ar)112 {'" dt exp [itv(x)]g(t - K). 

(A13) 

(A14) 

(A15) 

(A1) 

From the asymptotic properties of the parabolic cylinder functions (cf. eq. [71]), it follows that the above expression 
for 7]1 is well defined for all x. 

The enthalpy perturbation appears as a Fourier integral involving only positive spatial frequencies (t ;::: 0). 
This implies that only trailing disturbances are self-consistent solutions of the linear perturbation equations, at 
least if the WKB approximation is used to solve Poisson's equation. Thus we confirm the result we obtained in 
§ IVb-namely, only trailing disturbances are forced at corotation in the tight-winding limit. Henceforth, we 
restrict attention to K » 0. 

The wave parts of 7J1(x) may be evaluated by the method of stationary phase applied to equation (A14). For 
\x\ > L [\v\ > (2kcLQ) 112], there is one point of stationary phase for each sign of x. Each point corresponds 
to a short trailing wave which propagates away from corotation. For (Q2 - 1)112L/Q < \x\ < L, there are two 
points of stationary phase for each sign of x. One of these points is associated with the short trailing wave and 
the other with the long trailing wave. The latter is weakly excited at \x\ = Land propagates toward corotation. 
It cannot be eliminated from the global solution obtained by Laplace transform. It must be regarded as an artifact 
of our approximations. This point is discussed in the paragraph following equation (69). The long trailing waves 
excited at x = ±L are partially reflected, partially transmitted, and also amplified at corotation (Mark 1976). 

Aside from the addition of the long trailing waves, equations (A15) and (A16) describe the perturbation forced 
near corotation which was more explicitly evaluated in§ IIIb. Equation (A16) demonstrates that this disturbance 
can be written as a superposition of Fourier components of a single sign. Furthermore, it is easy to show that 
almost the entire contribution to 7]1 comes from short waves, kr » 1. Note that g(- K) = 0. Thus the validity 
of the WKB solution of Poisson's equation near corotation is established. 

REFERENCES 
Abramowitz, M., and Stegun, I. A. 1964, Handbook of 

Mathematical Functions (New York: Dover). 
Donner, K. 1978, preprint. 
Feldman, S. 1., and Lin, C. C. 1973, Stud. Appl. Math., 

52, 1. 
Goldreich, P., and Tremaine, S. 1978a, Icarus, 34, 240. 
--. 1978b, Ap. J., 222, 850. 
Kalnajs, A. J. 1972, Ap. Letters, 11, 41. 
Kato, S., and Inagaki, S. 1978, preprint. 
Lau, Y. Y. 1977, private communication. 
Lin, C. C., and Lau, Y. Y. 1975, SIAM J. Appl. Math., 29, 

352. 

Lin, C. C., and Shu, F. H. 1968, in Astrophysics and General 
Relativity, ed. M. Chretien et at. (New York: Gordon & 
Breach). 

Lynden-Bell, D., and Kalnajs, A. J. 1972, M.N.R.A.S., 157, 
1 (LBK). 

Mark, J. W. K. 1976, Ap. J., 203, 81. 
Shu, F. H. 1970, Ap. J., 160, 99. 
Toomre, A. 1969, Ap. J., 158, 899. 
--. 1964, Ap. J., 139, 1217. 
--. 1974, Highlights Astr., 3, 457. 
--. 1977, Ann. Rev. Astr. Ap., 15, 437. 

PETER GoLDREICH: Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 

ScOTT TREMAINE: School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1979ApJ...233..857G

