J. 2 Z158. J89RT T

DAD

rt

THE ASTROPHYSICAL JOURNAL, Vol. 158, December 1969
@ 1969, The University of Chicago. All rights reserved. Printed in U.S.A.

GROUP VELOCITY OF SPIRAL WAVES IN GALACTIC DISKS

ALAR TOOMRE
Department of Mathematics, Massachusetts Institute of Technology
Received 1969 March 13; revised 1969 June 2

ABSTRACT

Studied here are density waves of the kind proposed especially by Lin to explain the spiral structures
of disk galaxies. It is shown that any packet of such waves propagates radially (and toward increasingly
short wavelengths) with a group velocity that is sufficient to obliterate it within a few galactic revolutions

This does not necessarily mean that the density-wave hypothesis is wrong. But it does imply that any
existing spiral waves in the disk of a galaxy must somebow be replenished if their pattern as a whole
is to persist. Three conceivable sources of such replenishment are also discussed in this paper.

I. INTRODUCTION

It has now been suggested by a number of authors starting with B. Lindblad (1963,
and several earlier papers) and Lin and Shu (1964, 1966) that at least the grander spiral
patterns in disk galaxies represent density waves governed primarily by gravity. Such
a suggestion seems quite attractive, and indeed Lin, Yuan, and Shu (1969) have found
it helpful in reconciling certain observations concerning this Galaxy. But the theory
remains incomplete. Among other things, it has not yet been established that any com-
plete disk would permanently admit spiral waves as self-consistent modes of oscillation.
On the contrary, indications such as the “anti-spiral theorem” of Lynden-Bell and
Ostriker (1967) for differentially rotating gas disks have raised doubts whether any
purely oscillatory (that is, neither growing nor decaying) modes of spiral planform can
be found at all.

And yet, though it may be premature to speak of spiral waves as true modes of
oscillation, it seems entirely appropriate to ask how some postulated spiral wave pat-
tern in a galactic disk would evolve with time. It is the latter type of question which this
paper tries to answer. It does so by calling attention to a group velocity that should be
applicable to any reasonably tightly wound spiral wave. This group velocity describes
at least qualitatively how various information from the given disturbance propagates
radially, and that in turn has important implications to any permanent (or quasi-
permanent) maintenance of spiral wave patterns.

Like the WKB]J analyses of Lin and Shu, the present remarks will be confined to a
single azimuthal Fourier component of disturbance to an originally axisymmetric thin
disk. Such a component of, say, the perturbation surface density can always be written as

M,m(r30>t) = S(T’t) cos [q)(r;t) - me] ’ (1)

where 7 is the distance from the disk center, 8 denotes longitude increasing in the direc-
tion of rotation, and ¢ is time.

Lin and Shu considered that (i) the total disturbance is infinitesimal, (ii) both the
amplitude S(r,f) and the radial wavenumber

k(r,t) = —ad/0r (2)

vary only slowly with # (in order to represent a smooth spiral), (iii) the angular wave-
number m is a small integer (usually 2) but |k]|7>> 1 {for all radii of interest (to make
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that spiral tightly wound), and (iv) S(r,f) and k(r,) are both independent of , and the
frequency
wlrl) = a®/ot (3)

is the same for all # and ¢ (to postulate a single mode).

The first three of those assumptions also apply here. But instead of dealing explicitly
with modes, this discussion admits from the start that S(»1), k(r,t), and w(r,{) may all
depend weakly on both of their arguments. We simply postulate at first that any ap-
proximate dispersion relation of the kind

,f<kswaf;m> =0 (4)

estimated for modes is also adequate for describing the local behavior of those slightly
more general disturbances. This additional assumption is often made (cf. Whitham
1960; Lighthill 1965) in semiquantitative discussions of wave trains or packets with
gradually varying properties. As usual, it seems very reasonable, but we will here not
even attempt to defend it rigorously.

II. PROPAGATION OF INFORMATION
a) Group Velocity
Imagine that equation (4) has been solved for o as

w = f(kym) . (5)
Then the above is equivalent to supposing that
ad/dt = f(— 9%/ dr,r;m) 6)

regardless of whether those partial derivatives themselves vary with time.

Equation (6) is ripe for a “kinematic” derivation of group velocity, the merits of
which have been reviewed by Whitham and Lighthill among others. Just by differentiat-
ing it with respect to time, and using equations (2) and (3), one obtains

w af\ dw _
IR LL g

Likewise, a differentiation with respect to 7 gives
0 ak
() E--(9). ®)

These convective derivatives indicate that at least the frequency and wavenumber in-
formation in a slowly evolving spiral disturbance propagates radially with the speed

dr/dt = (8f/ k), = c,(kr;m) , )
which clearly plays the role of a group velocity.

by Characterisiic Curves

Viewed geometrically, equations (7) and (8) define a variety of so-called characteristic
curves or “rays” in the (r,f)-plane. Along every such curve the frequency w remains
constant and the wavenumber k changes at a known rate. The local “slope” dr/di,
moreover, is given by equation (9). Generally, this group velocity varies even along any
given characteristic curve. But it can everywhere be determined from the known % and 7,
or—implicitly via equation (4) or (5)—from # and the conserved value of w.
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¢) Dispersion Relation

Let us now apply these concepts to that important version of Lin and Shu’s (1966,
eq. [4.1]) dispersion relation which refers to an infinitesimally thin disk composed only
of stars with a Schwarzschild distribution of velocities.

With its terms slightly rearranged, this reads

[w — mQ(N)P = () — 20Gu(r) | k] 00 , (10)

where Q(r) is the equilibrium angular speed of rotation, «(r) = r=3/2 [d(r*Q?)/dr]'? is the
epicyclic frequency, G is the gravitational constant, u(r) is the unperturbed projected
mass density, and

1 — 2 vie 1 A
= — —_— —_ —x (1+¢cos s)
T = ” [1 " _!1:6 X cos vsds ] .

= /(=) e (= WXL = /w00

] T
Q=2
08 | ~
= {6
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>
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& 04 -
@
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F16. 1.—The Lin-Shu-Kalnajs dispersion relation

Here I,(x) is a modified Bessel function, » = (w — mQ)/x is a dimensionless frequency,
and x = k%,%/«? is an auxiliary variable involving o,, or the unperturbed rms radial
speed of the stars.

The frequency » implied by equation (10) has been plotted in Figure 1. The abscissa
is a dimensionless radial wavenumber,

g' = k/“crit ’ (12)
aorit(7) = «2/27Gu (13)

is that wavenumber beyond which a cold, thin disk becomes gravitationally unstable in
the axisymmetric sense (cf. Toomre 1964). (These curves are reflection-symmetric about
the {- and »-axes. Hence only the absolute values of those variables appear.) The labels

where

Q = O'u/o'u,min (14)
on the different curves compare the assumed velocity dispersion with the minimum
Ou,min = (0.2857)2%/ aeris (15)
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that is needed to avoid all local axisymmetric instabilities in this disk of stars (Toomre
1964 ; Kalnajs 1965).

Owing to the fact that the force estimates implicit in Lin and Shu’s dispersion relation
neglect the slight inclinations of the spiral waves, the curves shown in Figure 1 (as well
as the latter form of eq. [11]) are identical with those implied by Kalnajs’s analysis of
strictly axisymmetric oscillations. The latter have a simple physical interpretation: The
self-gravitation of the disk material generally reduces the frequency of collective oscilla-
tion below the epicyclic frequency «(r) which alone would be feasible in the absence of
interactions! and which always remains the basic frequency of oscillation of individual
stars. As indicated by Figure 1, the amount of that reduction depends both on the wave-
length and on the stability parameter Q.

With this understanding, equation (10) is best viewed simply as a consistency relation
equating the rates at which various parts of a disk are able to vibrate in an essentially
axisymmetric manner and those at which they are reguired to oscillate in order to con-
stitute a single mode. These conceptually distinct frequencies are compared in equation
(10) as they would appear to an observer (or to a group of stars) orbiting with the ap-
proximate mean speed Q(r): The left-hand side is the square of the required frequency;
the right-hand side is the square of the frequency that is actually feasible at the given
radius and wavelength.

Except for modes, the frequencies w = f(k,;m) implied by equation (10) will hardly
be the same at all radii, nor will w at any given radius generally remain constant with
time. The latter expectation stems from the different angular rates w/m of wave travel
at various radii. Owing to this, the wave pattern must shear gradually, the radial wave-
number will change, and that in turn will affect the intrinsic frequency of oscillation via
the self-gravitation.

To follow such changes in detail, let the curves in Figure 1 be abbreviated by the

function
| = N([¢[;0), (16)
so that equation (10) may be rewritten
w = f(kr;m) = mQ(r) + sgn Wk(HN(|¢];0), 17

where sgn (v) = +1 depending on whether » 2 0. Then the group velocity from equa-
tion (9) becomes

dr/dt = co(kyrim) = sgn (v)[x(r)/acrn(r)ION/8|S] , (18)
and it also follows that
& _ &) (b _ 0N dQ
dt T aeris(r) \dr sgn (v) aQ dr (19)
along any given characteristic curve. Although numerical values of dN/d|¢{| can easily
be estimated from Figure 1, let it be recorded for § IVea that
N 9 In &(x)) 3 (1 — 2
o = (2550 fanr (50) - (20)

d) Behavior in the Large

To examine one fairly typical set of such characteristic curves in the (,)-plane, con-
sider that infinite model galaxy in which

Q@) = V/r and pulr) = V2/22Gr (21)
*In his thesis, Kalnajs also mentions other axisymmetric oscillations whose ¢ — 0 frequencies are
2k, 3k, . . . . But such overtone oscillations are confined mainly to velocity space, and they were justi-

fiably ignored by Lin and Shu even though contained in equations (10) and (11).
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with speed V' = constant. Assume that its local stability parameter Q is likewise inde-
pendent of the radius. For this model,

k(1) /acrir(r) = 20Gu(r) /x(r) = V/+/2. (22)
Therefore, the relative frequency »(r;w,m) implied by a given w works out as
v= (0 — mQ)/k = (m//Dl(r/r,) — 1], (23)

where 7, = mV/w is the radius at which the assumed angular wave speed w/7 matches
that of the average material.

Now recall from § I1b that it is w that is conserved along each characteristic curve.
Hence dv/dr there follows directly from equation (23) and this, together with equations

Time, wt ! | { I !

0% |—

s — \

0 r 1 ! L |
0 0293 069 10 I 31 1707
Radius, r/rp

F16. 2.—Some m = 2 characteristic curves for a disk in which Q = 1.2. (The early parts of these
curves should be treated only as extrapolations, since the waves then are still very open.)

(19) and (22) and the fact that dQ/dr = 0 here, implies that the dimensionless wave-
number { increases at a constant rate

dat/dt = w/2 (24)
along every such curve.

These conveniently linear dependences of » upon 7, and of { upon ¢, reduce the present
task of obtaining characteristic curves in the (7,f)-plane to little more than a relabeling
of the (v,¢)-axes in Figure 1. In fact, Figure 2, which shows a set of such curves referring
to a trailing (or { > 0) spiral pattern of a single frequency w and of angular wavenumber
m = 2, was constructed with a template shaped exactly like the Q = 1.2 curve from the
former diagram.

All radii in Figure 2 have been normalized with respect to the particle-resonance
radius 7,(w;m). Hence the so-called inner Lindblad resonance (v = —1) occurs there at
r/r, = (1 — 2712) ~ 0.293, and the outer Lindblad resonance (v = +1) occurs at
7/r, = 1.707. Between those two radii lies what Lin, Yuan, and Shu (1969) call the
“principal part of the spiral pattern.” Outside that range, |»| > 1 and no radially
oscillatory WKBJ solutions are possible. However, as here indicated by the gap 0.69 <
r/7, < 1.31, an additional annulus must be excluded whenever the stability parameter Q
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exceeds unity; this is necessary because the local self-gravity is then also incapable of
reducing |»| below a certain minimum.

The fact that the characteristic curves in Figure 2 cross each other is of little conse-
quence to the forward time development of an already tightly wound and trailing (i.e.,
¢ > 1.5) spiral wave whose w o~ const. at various radii. Consider, for instance, the wave.
number and frequency information contained in the range 0. 4 <7/rp, <0. 65 at time
t1. According to these curves, such information is simply conveyed inward (e. g, t = b).
It ends up eventually in the v1c1n1ty of the inner Lindblad resonance appropriate to the
assumed value of w. Likewise, any similar information beyond the particle resonance at
r = r, tends to be carried outward to the outer Lindblad resonance. In addition, the
tightness of winding of the spiral waves associated with either set of characteristic
curves increases inexorably with time (cf. eq. [24]).

The interesting past history of the marked wave group in Figure 2 shows, however,
that the radial transport along any given characteristic curve has not always been in the
same direction. Obviously the details of the turnaround or refraction near r/7, = 0.69
demand a more elaborate analysis. And especially for this disk, waves with [¢] < 1
also do not lend themselves to WKB] analysis because they are as yet wound too loosely
But despite these shortcomings, it seems undeniable that the sense of propagation of
that (proto)group must have been outward when its constituent waves had not yet be-
come wrapped as tightly as { o~ 1.5.

e) Implications for the Galaxy

All the qualitative behavior discussed in the last three paragraphs carries over to the
trailing and two-armed (m = 2) spiral wave which, according to Lin and Shu (1967) and
Lin, Yuan, and Shu (1969), is present in the Galaxy. The only significant changes are:
(i) For a pattern speed w/2 ~ 12.5 km sec™ kpc™ as judged in the latter paper, the
particle resonance » = 0 occurs at # o~ 17 kpc. This means that any v > 0 oscillations
lie essentially outside the Galaxy and may be ignored. (ii) Unlike our equatlon (23), the
relatxonshlp v = p(r) is now nonlinear, as reflected by the values » = —1, —%, —1 and

% occurring at r o~ 3.5, 10.5, 13, and 15 kpc, respectively.

To estimate the group velomty near the Sun, recall that Lin ef al. considered this star
disk with the observed ¢, =~ 35 km sec™ to be barely stable, or Q o~ 1.0. Via equations
(14) and (15), this implies immediately that «/aerit =~ (0. 2857) 12 (5,/0) o~ 65 km sec™!,
or that Neris = 27/ aeris o2 13 kpc.? As a check, note also that Lin et al. judged a radlal
wavelength N = 2x/k = 3-4 kpc in this vicinity to be consistent with the cited wave
speed. This means that { = k/acis o~ 4. Indeed, the line [»| = ¢ in Figure 1 intersects
theQ = 1.0 curve near that value of the abscissa. But, more 1mportant the slope of that
curve thereabouts is dN/d|{| =~ 0.15.

From these data and from equation (18) it follows that the nearby group velocity is
dr/dt ~ —10 km sec™’. The minus sign merely reaffirms that the proposed spiral waves
are already wound so tightly that their information propagates radially inward, or
away from the particle-resonance radius. The actual speed may not seem remarkable.
But even at a rate of only 10 km sec™ one would cover 10 kpc in about 10° years, or in
roughly 4 galactic years as figured at the Sun. Of course, this is not to say that such a
group velocity would be sustained along any given characteristic curve, or that the
“message’” would ever reach the galactic center. However, it can be verified by simple
integration that the time of propagation from# = 12 kpc, say, to r = 5 kpc is at most
10° years, regardless of whether Q = 1.0, 1.2, or 1.4.

2 This shortcut avoids any explicit corrections for the finite disk thickness. Taken literally, our de-
duced wavelength A.; implies a local surface density u = 77 M© pc™2. But that is only an equévalent
density for a comparable disk of infinitesimal thickness, and is not to be confused with the total g ~ 90
Mo pc? adopted by Lin ef al. for a modified version of Schmidt’s (1965) model of the Galaxy.
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The above estimates obviously raise the question of how any existing spiral wave
could have persisted longer than a few galactic years. We shall return to that in § IV.

ITI. DENSITY WAVES IN A LOCAL MODEL

The following computer experiment corroborates much of the preceding theory. It
also shows emphatically that wave energy is transported in an analogous manner.

@) Review of the Model

This experiment rests entirely on the thin, local model of a shearing disk of stars that
was introduced by Julian and Toomre (1966, hereinafter JT) to discuss certain forced
responses of disk galaxies. Like the well-known Hill problem (cf. Szebehely 1967, p. 608)
from restricted three-body theory, or the model of a shearing gas disk devised by Gold-
reich and Lynden-Bell (1965), that model assumes that the total radial extent of any
region of interest is much less than its distance from the center of rotation. It also sup-
poses that any relative motion is only a small fraction of the full rotation speed.

With this rationale, the model pretends that even the perturbed (r,8) motion

X =7 — 7%, y = 7’0(5 —_ Qut) (25)
of any given star is described exactly by the equations
% _ 0@ g DY @ _ g
dl‘f2 49014036 29{) dt = Fm s ar + ZQO dt = Fy . (26)

Here 7, is some suitable reference radius, Qo stands for Q(r), 4, is the Oort constant
—370(dQ/dr)e, and F,’ and F,’ are the radial and circumferential components of any
disturbance self-gravitation and/or imposed force. Less important, the model also sup-
poses that F,” and F,” may be deduced from densities in the plane exactly as if the co-
ordinates x, y were truly Cartesian and the disk exceedingly thin, that the unperturbed
stellar velocities are everywhere distributed about the mean (dx/dt) = 0, (dy/dt) =
—2Aox according to a given Schwarzschild distribution, and that all disturbances to
that uniform state are infinitesimal.

The small-scale assumption is obviously very drastic. But aside from that, this
idealized thin stellar system has several advantages as an example: (i) Its analysis re-
quires no further asymptotic approximations of any sort, nor is it limited to tightly
wrapped waves. (ii) It embodies the basic effects both of Coriolis forces and of the dif-
ferential rotation. (iii) Its axisymmetric (or y-independent) vibrations obey the Lin-
Shu-Kalnajs m = 0 dispersion relation (10). (iv) All its nonaxisymmetric disturbances
may be decomposed into shearing wavelets. The separate time development of each of
those can be followed through a Volterra integral equation (eq. [21] of JT), and the re-
sults can subsequently be reassembled. (v) And finally, for any pattern of y-dependence
like sin or cos (27y/\g), presumed to remain stationary to an observer orbiting with
angular speed o, the model also exhibits Lindblad resonances. Those occur here at

* = 1, where
wn = (ko/2A40) (No/2m) (27)
and where ko = [4Q0(Q — A)]'”? is the relevant epicyclic frequency.

b) Results

The present computations are in fact confined to a single y-harmonic. They presume
the entire stellar disturbance to have been provoked by the gravity forces of a hypo-
thetical mass distribution of infinitesimal surface density

Pimp (%,3,1) = epo exp [— (¥ — x0)?/x1?] cos (2my/No) exp (— &/t (28)
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introduced in the plane of the model. For the moment, let us not ask what this forcing
could conceivably correspond to in a real galaxy. Just note that these perturbing forces
could in principle have been realized with a suitable distribution of extraneous masses,
that they are periodic in v but lack any spiral bias, and that they are applied only for a
limited time of O(¢;) and predominantly at a distance x, from the radius #, at which they
would appear most nearly stationary.

Typical of the results of these computations is Figure 3 showing the evolution of the

Rudius
F1c. 3.—An evolving density wave in the Q = 1.2 local model. Heavy curves denote density ampli-

tudes S.{(x,t) (cf. eq. [29]), and the envelopes represent +[S2 4 S1/2, at seven equally spaced instants
of time. The broken curves are two of the (,{) characteristic curves defined in § IT.

induced stellar disturbance density

I-"I(x7y7t) = eﬂO{Sc(xat) €os (27737/)\0) + Sé‘(xat) sin (27*'}’/7\0>] . (29)
That figure refers to a situation where
Q=12, A4Ay=3D, (30)
and
X1 = }\crit s Xy = —15'70[, to = ZP() ’ (31)
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with Py = 27/, denoting the epicyclic period. The two parameters in equation (30)
merely describe the unperturbed state. The three in equation (31) refer to the excitation;
their choice was influenced by the following, more subjective considerations: (i) As
verified with a similar calculation for xr, = 3Aerit, the WKB] expectations would indeed
have been met more accurately with a larger ratio xr/Aeir. However, judging from the
rough equality of the characteristic length Nerie = 47%Guo/ko> and of the separation be-
tween the inner Lindblad and the particle resonance radii in this Galaxy according to
Lin et al., the choice x1, = Ayt seems more realistic. (i1) The offset xy = —1.5 ®L was
designed to insure that the “inner” (—x1 < x < 0) strip of the model was excited con-
siderably more than the “outer” (0 < x < xy). (iii) The chosen duration was found to
yield about the most compact wave packet.

In other respects, Figure 3 almost speaks for itself. For instance, it clearly exhibits
the expected shortening with time of the typical radial wavelengths within the propagat-
ing packet. Also, the almost negligible motion of individual wave crests and nodes in that
diagram confirms that the wave frequency is approximately conserved everywhere—that
is, it remains small as viewed from our rotating coordinates. What is more, the smallness
of that frequency itself is nicely explained by the fact that the exciting force field did not
move with respect to these coordinates.

But the most striking thing about Figure 3 is the advance of the wave envelopes in the
same qualitative manner as predicted for the wavenumber and frequency information.
(That expected behavior is here represented by the pair of characteristic curves emanat-
ing from 7y + «r, at £ = 0. Note that the relationship » = »(7) is again linear in this ex-
ample.) Although the initial propagation of wave energy toward 7, is not shown clearly
in this diagram, it is evident that most of that energy remains on the side where it was
introduced. The amount of “tunneling” or “barrier jump” from one side of 7, to the
other may be estimated from the fact that the same imposed forces (not entirely neg-
ligible on the side x > 0) led, in the case 1, = 3\, to an “outer” disturbance of roughly
half the relative amplitude shown here. Thus, easily 90 percent of the wave energy in the
present example seems to be reflected from the forbidden annulus surrounding ro.

The subsequent decay of either wave packet in Figure 3 stems from a slight phase
mixing—or, broadly speaking, a Landau damping—of the perturbed oscillations of vari-
ous stars even in the presence of collective forces. As discussed by JT, such a decay is the
eventual fate of all nonaxisymmetric disturbances to our idealized stellar system when
the forcing does not persist indefinitely. Only the rate varies, increasing fairly rapidly
with decreasing circumferential wavelength: This dependence may be gauged either
from equation (32) of JT or from Figure 6 there. It is also reflected by the fact that that
damping was barely evident at ¢ = 15 Py in the xr, = 3\ai calculations, whereas in the
case ¥r, = 3t it proved virtually complete by ¢ = 2.5 Po. (Those specific instants are
cited because the typical radial wavelengths in the respective cases are then roughly the
same as those found at ¢ = 5 P, in Fig. 3).

Figure 4 refers to the same transient forcing as Figure 3. It differs only in its vertical
scale and the fact that the stability parameter Q now equals unity instead of the previous
Q = 1.2. Such an equilibrium state, of course, is only marginally stable with respect to
certain axisymmetric disturbances. Hence it seems likely (e.g., Julian 1967) that real star
disks are by now somewhat “hotter” than this.

Nevertheless, the case Q = 1.0 is of theoretical interest because Figures 1 and 2 left
open the possibility that a wave packet then originating on one side of 7o might simply
travel to the other side with hardly any reflection. However, Figure 4 shows the truth to
be more complicated: It appears instead that when the packet arrives in the general
vicinity of #,—which also means that its radial wavelengths have shrunk to O Nerit)—
the density wave amplifies roughly threefold owing to the gravitational near-instability.
The ensuing pattern at { = 3 P, looks remarkably uniform, symmetric, and extensive.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1969ApJ...158..899T

J. 2 Z158. J89RT T

DAD

rt

908 ALAR TOOMRE Vol. 158

But soon thereafter, both the group transport and the phase mixing reassert themselves,
and the final outcome resembles that of Figure 3.

IV. DISCUSSION

The present estimates were meant as no substitutes for a comprehensive study of dis-
turbances to a complete galactic disk. But they leave little doubt that the fate of any
already tightly wound packet of spiral density waves in a disk of sfars may be summarized

Radius

F16. 4—An evolving density wave in the Q = 1.0 local model

as follows:

i) In effect, even such waves are subject to differential rotation. The latter is not
simply the material shear d©/dr (which is, typically, several times faster). Yet the effect
is qualitatively the same, as least when dv/dr > 0 and dQ/dr =~ 0 (cf. eq. [19]): As
viewed from their packets, all “trailing”” waves tend to wrap yet more tightly, and those
wound in a ‘“leading” sense tend to loosen.

ii) Simultaneously, such packets of waves also drift in radius. The relevant group
velocity was derived in § IIa. Strictly speaking, that simple derivation refers only to fre-
quency and wavenumber data. But the examples of § III suggest that wave energy
propagates roughly likewise.

iti) The time scale of that propagation is of the order of a few galactic years.

iv) The destination of any trailing wave packet of approximate frequency w is the
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vicinity of the corresponding Lindblad resonance, provided this (and also any needed
turnaround radius) les within the disk.?

v) Especially with the last proviso, it is clear that the wave packet will eventually
decay through phase mixing: Simply because the wavelengths then will decrease in-
definitely, it must sooner or later become meaningless to regard any remaining oscilla-
tions as collective. However, this does not mean that most of the wave energy (or, more
precisely, wave action—cf. § IVa below) will necessarily be deposited into random mo-
tions near a Lindblad radius. On the contrary, as Figures 3 and 4 suggest, much of that
may be lost already in transit.

Needless to say, these conclusions about the group velocity constitute a serious
criticism of the existing theoretical case for spiral waves in galaxies. However, note also
that neither the damping nor the radial propagation of individual wave packets actually
excludes really long-lived spiral wave patterns in a galaxy. If such patterns are to per-
sist, the above simply means that fresh waves (and wave energy) must somehow be
created to take the place of older waves that drift away and disappear.

Where could such fresh and relatively open spiral waves conceivably originate? The
only three logical sources seem to be: (@) Such waves might result from some relatively
local instability of the disk itself. (5) They may be excited by tidal forces from outside,
such as from a companion or satellite galaxy. (¢) Or they might be a by-product of some
truly large-scale (but not necessarily spiral) distortion or instability involving an entire
galaxy.

The rest of this paper is simply a review and reappraisal of each of these three possi-
bilities. Although rather lengthy, these remaining comments are not to be regarded as
exhaustive!

a) Local Amplification

No local mechanism seems yet to have been established whereby spiral density waves
in a disk that is stable with respect to axisymmetric disturbances can grow spontaneous-
ly at wavelengths comparable to the observed radial spacings of spiral arms. To be sure,
the pronounced growth of certain shearing disturbances to differentially rotating gas
disks that was discovered by Goldreich and Lynden-Bell (1965) may appear to be one
such candidate. However, though the same transient amplification was later found also
in star disks by JT, the present writer (cf. JT, and also § IV¢ below) regards it, not as
any true instability, but only as evidence that shearing disks are very willing to respond
in a spiral manner.

Different “indications” of a local overstability of a disk of stars were reported by Lin
and Shu (1966). Shu (1968) has since elaborated on them in his thesis. But it now turns
out that those signs, too, were slightly misinterpreted.

Shu’s otherwise comprehensive second-order WKB] analysis of the various gradient
effects contains two small errors. Upon their removal, that analysis predicts in fact that
the density amplitude S (r)———cf eq. (1)—of any steady wave of frequency o should obey

752(r) 4 1In §.(x)
k2(r) (1 oot XX— ] =0. (32)

In combination with the dxspersmn relation (10), with the group velocity ¢, as given by
equations (18) and (20), and with the fact that the wave energy density works out as a
nonnegative

= ____WG_ _ _a_ %v(X)_
E= Zacrit(r) S ov \1 — »? (33)

3 This condition is not always met. For instance, as noted before, the » = -1 resonance correspond-
ing to the spiral wave deduced by Lin, Yuan, and Shu occurs well outside the Galaxy. More important,
even the inner Lindblad resonance (v = — 1) may be absent if the true frequency w of an assumed m = 2
disturbance is too large. In such cases, the given wave packet must in some sense be reflected either from
the outer edge of the disk or from its center; in the process, its character will presumably change from
trailing to leading, and the sign of the group velocity should also reverse.
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in this nominal case of the Schwarzschild distribution,* equation (32) states simply that

d [ reE -
dr \w — mQ 0. 34)

The above refers, of course, to only a single time harmonic. But by superposing a
continuum of such “modes” and applying the usual stationary-phase arguments to
integrals like

S S(rw) cos [¢p(rw) — wildw , (35)

it is easily deduced from equation (34) that the corresponding statement for a slowly
evolving disturbance must be

_r¢E
w——mQ 767 w—mQ

=0. (36)

This last result impiies that, just as for a wide class of shearing fluid motions discussed
by Whitham (1965) and by Bretherton and Garrett (1968), it is not exactly the wave
energy density but rather the wave “action density,” here E/(w — mQ), which propa-
gates with the group velocity ¢,. Note added in proof: This particular action density has
recently been identified by Kalnajs as just the excess density of angular momentum
associated with the wave.

With that answer, Shu’s work unwittingly closes the main logical gap of the present
paper. However, it also means that no true ‘“‘gradient instability”—nor indeed any
damping®—exists to this asymptotic order in a disk of stars.

b) Tidal Forcing

One alternative that deserves very serious consideration is that much of any spiral
density wave in this Galaxy may have evolved from vibrations set up during a close
passage of at least the Large Magellanic Cloud some 5 X 108 years ago.

Such an approach of the LMC to a perigalactic distance of 20 or 25 kpc was judged
necessary by Hunter and Toomre (1969) to explain the well-known warp of the outer
plane of this Galaxy. Subsequent theoretical efforts (Toomre 1970) to match the ampli-
tude and phase of that observed vertical distortion indicate that the orbit of the LMC
must be of relatively low inclination. Assuming the standard distance R, = 10 kpc to
the galactic center, the eccentricity of that orbit appears to be roughly 0.5, and the
minimum mass required of the LMC comes close to 3 X 10!% M e. The sense of revolu-
tion is less certain, but both the bending and some circumstantial evidence suggest a
direct—as opposed to a retrograde—orbit.

If one accepts the close approach it is only this last point that leaves much uncer-
tainty about the “tidal wave’’ excited within the plane of this Galaxy: In either kind of
orbit, the LM C would have spent only some 1.5-2.5 X 108 years traversing the nearest
90° of galactocentric longitude. In the retrograde case, the implied angular speed of

# This energy density was here Calcu]ated literally as the net work per unit area done between ¢ = —
and ¢ = O in the course of “waving” an extraneous, axisymmetric, and very slowly (s — 0) growing
mass distribution

Mimp (%,t) < sest cos (kx + wkt)

in the plane of the initially undisturbed infinite stellar sheet defined in § 1Ila.

& It seems quite likely that such “Landau damping” as exhibited in Figures 3 and 4 may be absent
to all orders in an asymptotic expansion in powers of the (supposedly small) ratio of the radial to the
circumferential wavelengths. This remark is based on the fact that the phase mixing associated with the
differential rotation, at least, seems to decrease with exponential rapidity as the inclination of waves of
any given length perpendicular to their crests is chosen smaller and smaller (cf. the term exp (— 825%r4/2)
in JT’s eq. [32]).
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6-10 km sec™ kpc™ would have had no special significance. But in the more favored
direct orbit, this speed would have roughly matched the speed of advance, @ — «/2, of
the slow m = 2 “dispersion orbit” (cf. B. Lindblad 1959) of any ring of supposedly
noninteracting material in the outer half of the disk. And that, coupled with the domi-
nant m = 2 character of the tidal force in the plane, means that any direct close passage
of the LMC should have been unusually effective in exciting » o~ —1, m = 2 oscillations
of the Galaxy. It also suggests that, even with self-gravitation taken into account, the
resulting “pattern speed” should have been of the order of 10 km sec™ kpc™™.

F16. 5.—A time history of the displacements of four rings of noninteracting test particles provoked
by a simulated direct passage of the LM C. All points have here been projected onto the present galactic
plane, with the hypothetical mass point at the galactic center (=GC) treated as fixed. As explained in
the text, the mass of the LM C was chosen differently for each of the four rings; the LM C orbit shown, and
also the indicated positions of the center of mass (=CM) of the combined system, refer to Mimc =
2.0 X 10 M@ or the mass felt by the 10-kpc ring. Time in units of 108 years is here reckoned from the
%)erigall:lictéchoint. The heavy spiral curves connect points on each ring which are at maximum distance

rom the .

But why should the simple tidal force of the LMC have caused a spiral wave? To
understand that, consider Figure 5. Shown there are five successive ‘“frames” from re-
stricted three-body computations (patterned after those of P. O. Lindblad 1960;
Pfleiderer and Siedentopf 1961; Pfleiderer 1963) in which the mass of the Galaxy was
replaced by a single 1.2 X 10! Mo particle and in which the outer matter in this disk
was represented by test particles orbiting initially in circles with radii of 8, 10, 12, and
14 kpc about that mass point. The LMC, represented likewise by a single mass point,
was placed in a direct orbit of 35° inclination and a perigalactic distance of 25 kpc; its
present distance was taken to be 55 kpc and its speed of recession 65 km sec™, both
reckoned from the galactic center. Each calculation was begun with the LMC at the
appropriate apogalactic point.

The violent commotion produced outward of about 12 kpc in this simulated passage
of the LM C was foreshadowed by the results of Pfleiderer, and especially by the com-
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ments of Habing (1967) on even more closely related computations performed by himself
and Visser. Indeed, with the LM C assigned a mass of 2.0 X 10 Mo here, roughly 15
percent of the test particles at 16 kpc are actually torn loose from their primary. More-
over, the transient spiral shapes of the very distorted 14- and 16-kpc rings found in such
a calculation resemble those already reported by Pfleiderer, and thus are not reproduced
here. Such outermost spiral structure seems largely a result of just an ordinary shearing
of that far-flung material.

Not so evident in Pfleiderer’s diagrams, however, is an additional wave shear that is
probably more relevant to the bulk of the Galaxy. That is the reason why Figure 5 has
been prepared as a moniage: The particles initially at 14 kpc (together with the central
mass point in that calculation) were exposed to a passing mass of only 0.5 X 10 Mo,
those at 12 kpc (and again the central particle) to a mass of 1.0 X 10 M o, and so forth
in mass multiples of 2.

This montage has two advantages over an unadulterated diagram in which the outer-
most violence would tend to “steal the show.” For one thing, it gives a fairly honest pic-
ture of the relative dynamical importance of the various rings, since their own realistic
masses decrease outward roughly by factors of two. But, more important, it also empha-
sizes the relative phases of the various oval distortions, the latter being largely the afore-
mentioned dispersion orbits by B. Lindblad. In each of those, the particle density is
greatest near each end of the long axis. And, as we see here, the various ovals drift at
different rates. It is just these last two facts together which explain qualitatively why
even an initially unbiased vibration is sheared into a trailing spiral wave.

These test-particle calculations can, of course, be criticized for their total neglect of
any interactions between the various particles. However, this is not to say that the self-
gravity of these relatively low-density parts of the disk should immediately have been of
major importance, nor does it contradict our qualitative picture about the evolution of
the waves: For one thing, the relatively sudden passage of the LM C should have induced
roughly the same initial velocities regardless of the subsequent disturbance gravity forces
from within this system. And also, it seems that the principal effect of that later mutual
attraction of the various disk particles should have been to enhance the shearing dis-
cussed above, since in effect it would have reduced the epicyclic frequency « and thus
caused the wave speeds @ — «/2 at the various radii to become more disparate.

In addition, the self-gravitation should have had the following, more subtle effect:
Once the shear had reduced the radial wavelengths below A\eit/2 (cf. Fig. 3), it is now
clear that the group transport would have begun to communicate the vigorous oscilla-
tions of the outer disk to the more massive but also more quiescent inner parts of the
Galaxy. This last phenomenon is akin to a tail wagging the dog. As such, it runs con-
trary to much of our intuition. However, it has one corollary that is very welcome: The
energy transport inward would itself have served to damp the outer oscillations from
their embarrassingly large amplitudes as compared with present observations; by con-
trast, the same wave energy deposited into the denser parts is much less objectionable.
The total elapsed time from the excitation to the eventual extinction of such a transient
spiral wave has in effect been estimated already in § ITe: It is roughly 10° years.

¢) Forcing from Within

There are other galaxies in which a pronounced spiral structure might again be at-
tributed to tidal forces from a presumed satellite. The most celebrated of those is, of
course, M51. However, even granting the difficulty of observing faint companion gal-
axies, it seems far-fetched to suggest that any large-scale density waves in the majority
of the disklike spirals could owe their existence to external influences.

In such galaxies, it appears from the present discussion that the cause of any reason-
ably tightly wound spiral waves not only must be internal but also must not be pri-
mordial, nor can it very plausibly be sought in any local overstabilities or amplification
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of the waves in transit. If this is indeed so, the only remaining alternative seems to be
that such waves must themselves be the consequences of some yet more basic density
asymmetries—e.g., disturbances such as mildly barlike waves or oval distortions which
may be hard to detect but which cannot even remotely be approximated as tightly
wrapped waves. And that is probably the most important hint contained in this paper.

Once again, I am indebted to Drs. C. C. Lin and A. J. Kalnajs, not only for their
expert advice on this paper but also for many vigorous discussions of the spiral problem
in general. I would also like to thank Drs. G. Contopoulos, C. Hunter, F. D. Kahn, N. R.
Lebovitz, M. J. Lighthill, K. H. Prendergast, and F. H. Shu for various helpful and
perceptive comments.
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