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ABSTRACT

The linearized Vlasov equation that governs the oscillations of a flat collisionless stellar disk is in-
tegrated in action-angle variables, and the Poisson equation is solved exactly by use of a logarithmic-
spiral representation for the surface densities and potentials. An integral equation for the potential of
unstable modes is derived, as well as small-amplitude conservation theorems for angular momentum and
energy. A necessary and sufficient condition for the stability of axisymmetric disturbances is derived.

I. INTRODUCTION

In this and following papers we shall explore the possibility that the spiral pattern,
or structure, seen in flat rotating galaxies is a slowly growing density wave associated
with noncircular motions along the galactic plane.

The suggestion that the patterns are density waves is old and was first explored by
Bertil Lindblad. His emphasis was mainly on kinematics and less on collective effects
on a large scale, though many of the kinematical effects he discovered can still be seen
in the collective modes. Most of Lindblad’s work predated plasma physics, the tech-
niques of which gave a new impetus to the density-wave theories.

The importance of collective effects in our Galaxy was first clearly pointed out by
Toomre (1964). He showed that in the disk the stellar motions are sufficiently coherent
to make it almost vulnerable to collapse. He also pointed out that the scale on which
this would occur is quite large, roughly the circumference of a typical epicycle (6-8 kpc
in the solar neighborhood).

It is customary to assume that the spiral patterns represent a small deviation from a
stationary, axisymmetric state. The spiral pattern can then be looked for among the
possible small-amplitude perturbations. Even if the perturbation turns out to be not
so small, an understanding of the dynamics close to equilibrium should provide us with
some qualitative, if not quantitative, information.

A comprehensive WKB]-like method for solving the linearized Vlasov (or collision-
less Boltzmann) and Poisson equations needed to calculate the density response of a
galaxy to tightly wound spiral fields of force has been developed by Lin and his students
(Lin and Shu 1964; Lin 1966; Shu 1968). They have applied their method in the search
for a self-consistent gravitational explanation for the tightly wound pattern that is
thought to be seen in the H 1 distribution of our Galaxy (Lin, Yuan, and Shu 1969).
The WKBJ method is well adapted to response calculations. However, their treatment
of the self-consistent waves is incomplete since the origin and the evolution of these
waves depend on the behavior of the disk at special radii (the edge, resonance points,
and/or center) where the WKBJ method is inapplicable. The importance of these radii,
as well as the possibility that the WKBJ pattern results from some yet undiscovered
forcing mechanism, has been discussed by Shu (1970g, b). Lin (1970) has suggested that
gravitational turbulence at the outer edge might be the driving mechanism. A further
clarification of this suggestion is needed.

A desirable feature of the WKB]J waves is their mathematical simplicity; their
physical relevance to the “grand design” of a spiral galaxy is less transparent. The re-
sponse to a disturbance of a flat galaxy made of stars in circular orbits grows inversely
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as the geometrical scale of the disturbance. The presence of random motions actually
reverses this trend. Along an eccentric orbit a spatially corrugated force field will appear
to be rapidly varying in time. The orbital deflection caused by such a field will be small
as well as complicated, and the resulting density change computed by adding the de-
flections of many stars will be smaller still. This sharp reduction of the response gives
rise to a characteristic scale, namely, that scale associated with the disturbance of a
given pattern speed for which the response is a maximum. Since a real galaxy is an in-
homogeneous system, a precise expression for this scale is difficult to obtain, but for
disturbances whose pattern speeds are comparable to revolution rates, it is again of the
order of a typical epicycle circumference. For a galaxy such as ours the scale is large—
about half the galactic radius. The response is a measure of the gravitational coupling
between the stars, and therefore we would expect the characteristic scale to be the scale
on which the collective effects are most pronounced. For two-armed disturbances a
more precise measure of coupling is the shift of the pattern speed from the kinematical
value @ — 3« which obtains in the absence of coupling. The short-wave WKB] dis-
turbances can be characterized by this criterion as weakly coupled kinematic waves.
These considerations suggest that the underlying cause of the “grand design” of spiral
galaxies is a loosely wound two-armed pattern associated with the characteristic length
scale. For such disturbances the WKB] method is not applicable.

Preliminary calculations (Kalnajs 1970) using a theory based on epicyclic orbits
(Kalnajs 1965) suggest that a large-scale unstable mode can exist in a galaxy similar
to ours. The density wave itself resembles a bar; however, the pattern revealed by the
subsystem of objects with the lowest eccentricities is a relatively tightly wound spiral
and has the largest density contrast. It is this subsystem which includes the very bright
young objects and gas that we actually observe. If we examine the velocity field of the
low-eccentricity subsystem, we observe that when the amplitude of the mode reaches
the point where the density contrast in the subsystem becomes large, the noncircular
motions become large enough to distort severely the density pattern of the gas that
would be obtained on the assumption of circular motion. An observer situated in the
plane of the galaxy would no longer observe a monotonic change of radial veldcity along
his line of sight in the second and third quadrants. In certain directions the relatively
small noncircular motions may vary rapidly enough along his line of sight to produce
maxima and minima. Each maximum and minimum not only gives rise to a distance
ambiguity but also contributes a peak to the H 1 line profile. It is possible to obtain as
many as three such peaks in the line profile from a single spiral-arm crossing. Such spuri-
ous “arms’’ due to velocity crowding arise also in the first and fourth quadrants.

We can already see from this relatively simple calculation that the observable fea-
tures of a barlike density wave can mimic a tightly wrapped pattern, and that the ob-
servational evidence must therefore be sifted with care. The problem may be further
complicated by nonlinear effects. For even with growth rates measured in 10 years, the
time the mode spends in the linear regime at an observable amplitude is short compared
with the lifetime of the galaxy. A further discussion of the observable aspects of barlike
modes will be given in a later paper.

Here we present a formulation of the small-amplitude oscillations around an axisym-
metric stationary equilibrium. The novel feature that allows us to say something useful
while remaining rather general is the use of coordinates that explicitly incorporate all
the qualitative features of the equilibrium. The perturbed disk behaves as an infinite
set of coupled harmonic oscillators, which, however, are unlike bedsprings in one impor-
tant respect: the energies of some oscillators can be negative and the system can be un-
stable. The coupling is through the disturbed force field. If the latter is assumed to be
given, the equations of motion of the oscillators can be integrated explicitly and the
disturbed distribution can be found. Requiring it to be self-consistent with the force
fields leads to a well-behaved integral equation to be satisfied by the perturbed poten-
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tial. The equation has at most a countable set of unstable modes. The system of coupled
harmonic oscillators has an infinite set of constants of motion, the simplest two of which
we identify as angular momentum and energy. We choose a representation for the poten-
tials and surface densities in which the Poisson equation can be solved exactly and ex-
plicitly. Finally, we discuss the nature and stability of axisymmetric modes.

II. EQUATIONS OF MOTION

We shall restrict our attention to dynamical effects which involve motions along the
galactic plane. Since the characteristic scale associated with the collective phenomena is
comparable to the size of the galaxy, the thickness of the disk can be neglected. The cor-
rections introduced by the thickness are small in this case (Vandervoort 1970).

In the absence of collisions the dynamics of the stars can be described by the single-
particle distribution function f(r, 9, v,, ve, ¢). It satisfies the collisionless Boltzmann or
Vlasov equation

of _
L+inm=o, &

where H is the Hamiltonian, 1(v,2 + v,2) + V(r, 6, ¢), and the bracketed term denotes
the Poisson bracket
=3 (% %8 o &
L1 gl = 2 dq; dp:  9ps 9qi/ &)

The motion takes place in a self-consistent field. Therefore, the potential V is related
to the distribution function by Poisson’s equation

ViV (r, 6, 2) = 4xGd(2) S S f(r, 8, vr, vs)dv.dvs . 3)

The Hamiltonian of the unperturbed galaxy is time independent and has rotational
symmetry around the z-axis. These two symmetries imply the conservation of energy E
and angular momentum J for each star. Because the motion of stars is in the plane z =
0, the orbits have one more important property: they are doubly periodic.

The equilibrium distribution, according to Jeans’s theorem, will be a function of the
two isolating integrals E and J.

We shall discuss perturbations of the equilibrium in two stages: () the kinematical
evolution, which ignores any force field produced by the perturbation; and (b) dynamical
evolution, which takes the first-order effects of the perturbed force field into account.
We feel that a review of the kinematical aspect is necessary, for all too often an incom-
plete discussion of it is used to show that spiral structure cannot persist in differentially
rotating systems.

III. KINEMATIC DENSITY WAVES

It is quite natural that the existence of differential or shearing motions in a flat galaxy
should bring to mind the dissolving patterns formed by milk being stirred into a cup of
tea. Pursuing the analogy, we might conclude that shearing motions would in a few
revolutions wind up and thus dissolve any structure in the galaxy. However, this argu-
ment overlooks one essential difference between a galaxy and a cup of tea: the fluid ele-
ments in the latter are constrained by viscous forces to move in circular orbits, whereas
stars in the galaxy not only can rotate around the center but can also execute oscilla-
tions in the radial direction.

Shear in a teacup is caused by the different rates of angular rotation of fluid elements
at different radii. The same mechanism would act in a galaxy if the radial oscillations
of the stars were not present. It is true that the radial velocities are generally an order
of magnitude smaller than the circular velocities. But it is important to realize that
shear phenomena are characterized by a spread in frequencies and that the radial and
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angular periods of orbits are comparable. The resulting shear is quite complicated since
linear combinations of the frequencies are observed at a fixed point in the galaxy. It is
possible to create smooth disturbances which show little shear, as well as features that
appear to have retrograde motion and to shear out into leading structures. Such struc-
tures must clearly be waves, and their description is somewhat less intuitive than shear
in a teacup.

The detailed description of the kinematics as well as dynamics can be considerably
simplified if we use coordinates in phase space that incorporate the double periodicity
of the orbits in the plane of an axisymmetric galaxy. We introduce the action-angle
variables (J1, J2, w1, w2) in place of the usual cylindrical coordinates (r, 8, v,, v5). Instead
of the customary definition (Goldstein 1950), we shall divide the action variables (and
multiply the angles) by 2x:

Ji= 2—11r £ podr = 51; f\/[ZE —2V(r) — {;]dr , (4a)

]252—11;fpod0=.7, (4b)

where the J, are functions of E and J and are thus constants of motion. The Hamiltonian
is a function of the J; alone, and the equations of motion for the w; are

w; = 9Hy(J3, J2) = Q;(Jy, J2) = const. (5)
aJ;

With our normalization of the J;, the angles w; change by 2= in one period of oscilla-
tion, and therefore the @; are angular frequencies rather than inverse oscillation periods.

If the orbits are nearly circular, or J;/J, < 1, they can be represented by epicycles
(Lindblad 1959). For such orbits, 2, corresponds to the epicyclic frequency x and @, is
the angular rotation rate .

Any single-valued function g in phase space must be periodic in the angle variables.
More explicitly, g must have a Fourier series expansion

B0, ) = 5 3 gn()) exp liChwn + mu)] ©
where - e
gim(J) = B/',ofg(f, w;) exp [—i(lws + mws)]ldwrdw, . @)

If g(J., w,, 0) represents a disturbance of the galaxy at ¢ = 0, the subsequent kine-
matical evolution is a convection of g along the orbits. But since we choose to view g at a
fixed point in phase space, the value it has there at some later time ¢ can be found only
if we know where that point was at ¢ = 0. Integrating the equations of motion (5)
backward in time, we find that it came from (J;, w; — Qu), or that

g(J, wi, ) = g(J, w; — Qut, 0)
1 . .
= 4—1‘_2 ZZ.mglm(J) €xp ["'l(wl - Qlt) + iM('uh — le)] . (8)

The only part of the disturbance that does not evolve is the goo component in the
expansion (8). It is clear that the series expansion (6) of the equilibrium state will con-
tain only the / = m = 0 term.

The Fourier series expansion and the evolution of g described by equation (8) show
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that the galaxy can be viewed as an infinite collection of harmonic oscillators. The
amplitude and phase of the oscillator labeled by (J1, Js, I, m) is the Fourier coefficient
gin(J), and its frequency is () + m£,). The projection of an oscillator on the galactic
plane is a density wave which rotates with the angular velocity (//m)Qi + Q2; m is
the angular periodicity of the wave, whereas [ indicates the radial structure.

A single oscillator is a particular case of a dispersion orbit as defined by Lindblad
(1958), although sums such as

dow(J) + Zym=ydin(J) exp [2(lwn + mws)] 9)
with fixed g satisfy the definition as well. Lindblad gives a detailed prescription for ob-
taining some of the simplest dispersion orbits of type (9) incase g =1, 3, ..., 1/n.

A Fourier analysis of a smooth disturbance will in general reveal that a continuum of
oscillators has been excited, which in turn implies that the density (or any other macro-
scopic property) associated with the disturbance consists of a continuum of rotating
waves. The evolution of the density will be characterized by a transformation or shear-
ing of the initially smooth pattern into consecutively smaller scales. The dissolution can
be traced to the interference or phase mixing of the various harmonic components.
The characteristic time for this process is roughly the inverse of the spread of the phase
velocities over the region under consideration. The only permanent visible effect after a
long time will be that associated with the goo term.

An examination of the range of frequencies associated with a typical flat galaxy
shows that, with two exceptions, the mixing process for most disturbances will have a
time scale of one revolution. The exceptions are the / = —1, m = 2 terms. Lindblad
(1958) noted that the linear combination x — 2 remains approximately constant over
a large portion of a galaxy and, because of this, bisymmetrical disturbances could per-
sist for many revolutions.

The relative constancy of xk — 2Q is a consequence of the mass distribution in flat
systems, and appears to be the explanation for the prevalence of bisymmetrical shapes
observed in these systems. The requirement that the galaxy be stable against axisym-
metric disturbances (Toomre 1964) limits the effects that a given force field can produce,
particularly on the shortest scales. The reduction in effectiveness has to be compensated
by a longer time over which it can act in order to produce a given response. Therefore,
the persistent nature of the bisymmetrical disturbances makes them the likeliest self-
consistent disturbances.

An example which contradicts intuition is any one-armed structure formed by I =
—1, m = 1 oscillators. Its rotation is retrograde, and it shears out into a leading struc-
ture.

IV. POISSON’S EQUATION

The potential V(r, ) from a surface density S(r, 8) is obtained by Poisson’s integral

dg'S(’, 6")

© 2r
v = _G'ofr,dr’?)f V2 4+ — 2¢r'r cos (¢ — 0)]° (10)

It is a linear integral equation which has a number of complete sets of eigenfunctions,
depending on the range of r over which S is assumed to be nonzero (Snow 1952). The in-
tegral operator clearly commutes with rotations, so that the angular part of the eigen-
functions will be exp (im#0). If the domain of 7 is (0, 1), the radial part of the eigenfunc-
tions can be Legendre polynomials (Hunter 1963) or Bessel functions (Yabushita 1966),
whereas if it is (0, ) we may use Bessel functions (Toomre 1963) or logarithmic spirals
(Kalnajs 1965). Here we will introduce the latter.

A well-known, but seldom exploited, symmetry of expression (10) is the scale invari-
ance of the operator that connects ¥ and 7S, i.e., it is invariant if  — #\. The change of
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variable r = ¢* turns a scale change into a translation of the » variable. Substituting
r = ¢* into equation (10), we see that

2r ’ ’ ’_
v ) = —C [ an (a8 [e*'S(ev’, 6)]e w12
V(e 0) = G_{du .Ofde V2 cosh i — ) + 2cos @ = O]’ 11)

which shows the translation invariance of the kernel in the (%, 6)-plane. A more sym-
metrical kernel is obtained if the reduced potential #!/2V and reduced surface density
r%/2S are introduced in place of V and rS (Snow 1952). The kernel that connects the
latter quantities is invariant also to inversions in a sphere (Kelvin’s transformation).

The eigenfunctions of a translation-invariant operator are exponentials exp [¢(m0 -+
an)], or logarithmic spirals in the (r, 8)-space. The reduced potential that corresponds
to a reduced density exp [i(m6 + au)] can be obtained from expression (11) by integra-
tion. If we call this constant of proportionality —2xGK(a, m), then

P{(m + 1/2 + ia)/2]0[(m + 1/2 — ia)/2]
I{(m + 3/2 + ia)/2I0((m + 3/2 — ia)/2]"

The quantity K is real and positive. From its definition we may deduce the recurrence
relation with respect to m,

K(a, m)K(a, m + 1) = [(m + 3)* + o (13)

If a? + m? is large, we may use Stirling’s formula to evaluate the gamma functions and
show that K(a, m) = (m?+ a?)~Y2. The accuracy of the asymptotic result can be
inferred from Table 1. The slow |a|~! decay of K reflects the logarithmic singularity of
the kernel in equation (10) at r = 7',

To calculate the reduced potential from a reduced surface density, we first express
it as a superposition of logarithmic spirals (Fourier series integral),

S (e, 0) = 73 B S dadn(@) exp [i(md + au)] . (14)

w2

K(a, m) =%

(12)

TABLE 1
THE FUNCTION K(«, m)

™ K(a, 0) K(a, 1) K(a, 2) (a244)"1/2
0.0...,.. 4,376879 0.913893 0.486320 0.500000
0.2...... 3.823712 0.901814 0.484226 0.497519
0.4...... 2.810230 0.867909 0.478089 0.490290
0.6...... 2.003811 0.818113 0.468324 0.478913
0.8...... 1.479225 0.759584 0.455540 0.464238
1.0...... 1.145176 0.698582 0.440452 0.447214
1.4...... 0.773840 0.584731 0.406220 0.409616
2.0...... 0.519350 0.453055 0.353158 0.353553
3.0...... 0.338438 0.319432 0.278272 0.277350
4.0...... 0.252052 0.244150 0.224430 0.223607
5.0...... 0.201030 0.197005 0.186276 0.185695
6.0...... 0.167257 0.164933 0.158512 0.158114
8.0...... 0.125247 0.124268 0.121466 0.121268
10.0...... 0.100126 0.099625 0.098167 0.098058
12.0...... 0.083406 0.083116 0.082265 0.082199
16.0...... 0.062531 0.062408 0.062046 0.062017
20.0...... 0.050016 0.049953 0.049767 0.049752
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In this logarithmic-spiral representation the potential operator is a multiplication
operator. The reduced potential is

1

T 4x?

w2V (ev, 6) = % S da2nGK (, m) An(a) exp [i(md + aw)],  (15)

and the potential energy from the pair is

o0 2 1

S du S doe 2V (e, 0)e+2S (e, 0) = — -— Z, S da2aGK(a, m)| An(a)|2. (16)
— o 0 -

472

The equality is a consequence of Plancherel’s theorem.

We shall find it necessary to place some restrictions on the admissible density pertur-
bations. A convenient, yet sufficiently wide, class of perturbations are those that have
finite potential energies. Equation (16) shows that the potential energy is negative
definite. If we divide it by —2#G, we obtain a positive-definite quadratic form which we
will use as a norm in our function space B. P becomes a Hilbert space if we define the
inner product between two surface densities to be the interaction potential divided by
—2xG. That is, if s; are surface densities and %, the corresponding potentials, then the
inner product is defined as

1 N dr
(i bi) = — 5= SS 72557 %h;

- d0 = (hj, s3)" . (17)
The expression for the inner product becomes more symmetrical in the logarithmic-
spiral representation. Denote the Fourier amplitudes of 7%2s; and 7%/2s; by An.(e) and
B,.(a), respectively. Then

(51, ) = # oS dedn* (@)K (e, m)Bn()de . (18)

This expression also demonstrates the self-adjointness of the potential operator.

The choice of the density (or the corresponding potential) as the field variable is
convenient because of its immediate physical significance, but it results in the unsym-
metrical expression (17) for the inner product, and an unsymmetrical linear-response
kernel. The expression (18) of the inner product in the logarithmic-spiral representation
suggests a possible way to redefine our function space which would lead to a symmetrical
expression for the inner product as well as the response kernel. We may absorb the
K(a,m) term by multiplying all Fourier transforms of the reduced densities by KY(a, m).
This multiplication may be viewed as an isometric mapping of P onto a new space
&: r¥25(r, 6) — C(a) defined by ‘

Cula) = K'2(a, m)S L1257, 0) exp (—ia In 7 — imh) ‘f} #.  (19)
The inner product between two functions C,(a) and D,(a) in & is

[Cn(@), Da(e)] = 715 Znf Cu* (@) Di(e)dec (20)

& is also known as an Ly(— ®, ) function space, and is separable.

Besides the simple relation between potentials and surface densities there are two
other advantages of the logarithmic-spiral representation. (¢) Danver (1942) pointed
out that the observed shapes of spiral galaxies can be represented by segments of loga-
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rithmic spirals. This suggests that the functional forms of the observed shapes should be
simple functions of . (b) Any classification of functions into leading or trailing classes
has to be invariant under the spiral groups, i.e., rotations and radial expansions. If we
assume that a galaxy rotates counterclockwise, then a logarithmic spiral will be leading
or trailing according to whether a/m < 0 or a/m > 0. This suggests that we may de-
compose the Fourier amplitudes into leading and trailing parts. The two parts are
orthogonal, and for complicated functions the potential energy densities in this repre-
sentation could be used as classification criteria. The densities are identical for anti-
spiral disturbances. A precise definition of leading and trailing is needed in order to
demonstrate the leading-trailing asymmetry that is introduced by resonances (Kalnajs
1965).

V. DYNAMICS OF PERTURBED DISKS

To study small-amplitude disturbances we must take into account the effect of the
force field they produce on the equilibrium disk. If we write the disturbed distribution
function as F + f, then the Hamiltonian will be changed to Ho + %, where % is the po-
tential caused by the excess surface density /' fd%. Vlasov’s equation becomes

O+ r I+ 2 4, B+ B+ (£, = 0. 21)

The first two terms are zero since F is the equilibrium distribution. The last term is
quadratically small, and we linearize by omitting it.
The linearized terms expressed in action-angle variables have a simple form

§I+z. of 0Hy _ 5 OF Ok _
ot “ow; 9J; ‘o dw;

p (22)

If we expand f and % in Fourier series using equations (6) and (7), and substitute the
results into equation (22), we find

1 Of tm .
s Zon| L2 4 000 + 9o
— 'L(l-gJEl + m{—g) hlm] exp [t(lwy + mw,)] = 0. (23)

Since the exponentials are linearly independent, equation (23) is satisfied by each term
in the sum. These equations for the Fourier coefficients are identical with those for an
infinite set of coupled linear oscillators. The coupling is through %, which depends
linearly on f. We have one equation for each /, m, J,, and J,.

If we know the time dependence of the perturbing potential %, it is a simple matter to
integrate each harmonic-oscillator equation. For definiteness we will assume that the
perturbation is created at some finite time, say ¢ = 0. The solution for £ > 0 is

Fnld) = 1(l§—2 m:;?]%) S exp i + mo) (¢ — )ha(t)it

+ fin(0) exp [—2(I% + mQp)t] . (24)
The response consists of two parts: a forced component proportional to %, and the initial

transient. The latter evolves kinematically.
If |2(¢)| does not grow faster than Ae™, n > 0, then it can be represented as a Fourier
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integral
co—1n
h() = 2—11r S K() exp (iwd)dw , (25)
i

and the transform A(w) has an analytic continuation in Im(w) < —7. We may also
express the transient term as a Fourier integral

fnl0) exp (=00 + m@)l = 5= S FeOLeXp Gdda (g

If we introduce expressions (25) and (26) into equation (24), we may evaluate the ¢/
integral and obtain a Fourier integral representation of fi.(¢), with the transform

I(0F/8J1) + m(8F/3J,)

rd _ flm(O)
fim(w) = 0 I @ Fim(w) + (27)

(I + mQ + w)

Equation (24) or (27), which expresses the perturbed distribution function in terms
of the perturbing potential, remains valid in the more general case where % consists of
the internal contribution arising from f as well as any externally imposed field. The latter
causes little difficulty since it is a known function. We may combine it with the initial
transient and denote the sum by §i.(w). The difficult part of the problem is the simul-
taneous determination of the internal potential %, and f.

Having calculated f from an assumed %, we integrate it over all velocities and obtain
the perturbed density, from which we calculate # with the help of Poisson’s equation.
These steps lead to a linear inhomogeneous operator equation of the form

F(w) = R(w)h(w) + p(w) . (28)

We shall call the linear operator R the response, and the inhomogeneous term H(w)
arising from §, the driving term. The nature of the dynamical evolution of a small dis-
turbance is completely determined by the operator R.

We shall restrict our discussion to equilibrium distributions that are nonzero only
over a closed finite range of the action variables and that have continuous first deriva-
tives. Similarly, we shall admit perturbations that have finite potential energies. These
restrictions suffice to make R a compact (or completely continuous) operator. The prop-
erties of compact operators are in most respects similar to finite-dimensional matrix
operators. Because of this relative simplicity of R we shall be able to deduce a number
of concrete results about the response of thin disks.

Since we do not possess explicit transformations between cylindrical coordinates and
action-angle variables, the route from the above prescription for obtaining R to an
explicit integral equation representation will be devious. An intermediate step involves
the introduction of a bilinear functional, which we justify because it displays only the
features of R and not the peculiarities associated with a particular basis.

The inner product between the density response of the disk due to a potential 4,
arising from a member of B, and any other member is a bilinear functional on P which
defines the response operator. Let i(J, w, w) and §(J, w, w) be the potentials associated
with two surface densities in B. The angle dependences of & and § may be expanded
in Fourier series (6), and the corresponding coefficients of the perturbed distribution
function f(J, w, w) caused by & are determined by equation (27). The perturbed surface
density is obtained by integrating f over all velocities. The surface density multiplied
by —§*/2xG and integrated over the spatial coordinates yields the desired inner prod-
uct. But since the two integrations span all phase space and §* is constant over the
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velocity part, we may evaluate the integral in action-angle variables. The angle integra-
tions can be done explicitly, which leaves us with

11 I
- 274G 4r? Elmffdjldj2g l‘m(J)flm(J)
_ 11 I(0F/0J1) + m(0F/3Js) ..
= oG i DS S e e T wm(im(J) . (29)

The above bilinear functional defined on P is represented by a kernel of the traditional
type in the Hilbert space © which was obtained from P by the isometric transformation
(19). To obtain the transformed functional on &, we express # and § in terms of their
images in & and substitute these expressions in equation (29).

The reduced potentials 7'/2F and rY/%§ are related to their corresponding density
images Cy,(a, w) and D, (e, w) in & by the transformation

AR = — = f Cale, ) KV¥(e, m) exp (ieIn 7 + imb)da (302)

and

g = — %Em,fDm,(a’, w)K'"?(a/, m') exp (i’ In 7 + im'8)de’ .  (30b)

The transformations between 7, § and the action-angle variables are of the form
r = el(le J‘h wl) ’ 0 = We + e2(]17 J2y wl) ’ (31)

where the ©; are periodic functions of w;. We insert these expressions in the right-hand
side of expression (30a) and expand the angle dependences of # in Fourier series (6).
Because of the above relation (31) between 6 and w, the Fourier expansion of ¢ in
w, will have only one term e®: ¢ and the Fourier coefficients of # will be

hlm(J) = _chm(a)Kl’2(a) m)ez(a, m, ]) da) (32)
where

27
e, m,J) = S exp [(la — 1) Inr + im0 — w,) — ilw]dw, . (33)
0

There is a corresponding expression for the §*un.
If we substitute equation (32) and the corresponding §*:» into the right-hand side of
equation (29), we obtain the transformed functional

G 1(8F/8J1) + m(3F/3J,) ./
—mzl,mffd]ldj2 1%+ m + @ JSS e, m)

X ei(a, m)KV2(a!, m) K1?(a, m)Cu(a, w) D*n(a’, w)dada' . (34)

The left-hand side of equation (29) is the inner product between the density cor-
responding to § and the density response. Denote the image of the latter in & by
E.(a,w); then the inner product computed in & is

# S dal D' n(el, @) Em(e!, ) (35)
and is equal to equation (34) by definition for @/l D,, in ©. For this to be true we must
have

G I(0F/3J1) + m(9F/dJ,)
/ = e— —
En(el, ) = = 5= Zuf daCola )| S dnrdTy =G e

X é'(a’, m, J)exa, m, J)KV2(c!, m)KV*(a, m)] . (36)
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The bracketed term is the desired kernel, and equation (36) is an integral equation
representation of the response operator.

The kernel is bounded over the whole (e, a’)-plane, and decays at least as fast as
K'Y, m)K'%(a’, m) ~ |aa’|~12. The boundedness can be inferred from the conver-
gence of the sum

2r
Zifei(@)e @) < (Bl e@) 2Bl en(@) | = 20 S 21 (3)
The above bound is integrable. This can be best seen if we transform back to cylindrical
coordinates.

If we were to modify K(a, m) by incorporating a small thickness correction, we could
state without further comment that the kernel is also quadratically integrable over the
(a, a’)-plane. Even without such a correction it is quadratically integrable, but to show
it we must examine the asymptotic properties of the oscillatory functions e;(«, m, J)
and their integrals over J;. A more detailed discussion of this point will be found in the
Appendix.

The quadratic integrability of the kernel implies that it is completely continuous
(Riesz and Nagy 1955) or compact.

The above properties are true for each w in Im(w) < 0. More properly, we should
speak of an analytic family of compact operators (Kato 1966). That the operators are
analytic follows from the fact that for every allowable g and % the bilinear form (29) is
an analytic function of w. Moreover the forms can be analytically continued into
Im(w) > 0, and their singularities lie on the real axis. As Im(w) — — o, the norm
of the operator goes to zero. The bilinear form (29) certainly suggests this, but the re-
sult depends on the behavior of the e;(a) for large ! (see Appendix).

With these facts we are in a position to state that the initial-value problem, as well
as the forced problem, have unique solutions. The argument is simple: we choose 7 in
equation (25) so large that the bound of R along the line Im(w) = — 17 is less than 1.
Then the resolvent (I — R)™! is represented by its convergent Neumann series I 4
R+ R?+ ..., and equation (28) may be solved to obtain

h(w) = (I — R)7'5(w) , (38)

where I is the identity operator. From /(w) we may obtain f(w) and determine their time
development with the help of equation (24).

If the driving term is analytic in Im(w) < O—and this will be the case if it arises from
an initial perturbation—we may use the fact that the resolvent is analytic along Im(w) =
—n and attempt to continue the solution analytically up to Im(w) = 0. Because R(w)
is compact, such a continuation is possible. R(w) can have only a finite number of
eigenvalues equal to 1 in any compact subset of Im(w) < 0, and only at these singular
values do we find that the resolvent does not exist. A continuation of the resolvent around
a singular w shows that it is an isolated singularity. Therefore, we can move the contour
of integration in equation (24) from Im(w) = —7 to Im(w) = 0 as long as we include
the contributions from the singular values. The resultant time development of the
initial perturbation can then be expressed as

MO = o= S exp (i)l — R)I(@)do

+ 5 25 exp (i) S e [iw — W)l — R ). (39)

The {w;} are the singular values of w, and C; is a small positively oriented circle around
w;. As in the case of finite-dimensional analytic matrix operators, the integral of the
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resolvent around w; is a projection with a finite range. Thus each C; integral can con-
tribute only a finite number of linearly independent functions. The particular combina-
tion is determined by the driving term $(w). The time dependence of a C; integral will
be a polynomial of finite degree in ¢.

The w; which give rise to multiple functions are termed exceptional points. The source
of the multiplicity is the existence of a group of eigenvalues of R(w) in the neighborhood
of w; that converge to 1 as w — w;. This degeneracy appears to be accidental.!

Whether w; is exceptional or not, at least one of the linearly independent functions
associated with it will be a solution of the homogeneous equation

B(w;) = R(w)k(w;) . (40)

We shall call such eigensolutions modes. The significance of the modes is clear from the
form of the solution as expressed by equation (39). In the absence of degeneracy, they
comprise all the exponentially growing solutions. We would expect the fastest growing
modes or their nonlinear counterparts ultimately to dominate the appearance of the
galactic disk. -

Because the singularities of R(w) and f(w) lie on Im(w) = 0, it is difficult to say any-
thing specific about the nature of the integral contribution in equation (39). The inte-
gral describes all the transient phenomena as well as disturbances that grow more slowly
than any exponential. The possibility of further simplification of the integral depends
on the analytical properties of the integrand. In particular, the generally complicated
time behavior of the integral may have discrete oscillatory components which arise from
real singular points of R(w). Lynden-Bell and Ostriker (1967) have argued that in a
gaseous disk the nondegenerate discrete oscillatory modes cannot show any spiral struc-
ture. Shu (1970¢) has argued that in certain cases a stellar disk might violate the anti-
spiral theorem of Lynden-Bell and Ostriker. All three authors base their conclusion on
the form their equations take along Im(w) = 0. We would like to point out that all
antispiral theorems arise from a common symmetry property of the equations of motion.
If we reverse the direction of time and at the same time turn the galaxy over (§ — —8),
the Vlasov and Poisson equations as well as the equilibrium distribution remain un-
changed, but any initial disturbance is transformed into its mirror image. The sym-
metry transformation allows us to generate new modes. A single growing mode is trans-
formed into its mirror image, which rotates in the same sense but decays in time. In
particular, if we can excite a single oscillatory mode, we can excite its mirror image. If
the mirror image differs from the original only by a rotation around the z-axis through a
fixed angle, we do not obtain a new mode. In this case we can orient the coordinate sys-
tem so that the mirror image actually equals the original and therefore the mode is
antispiral. If the mirror image is distinct from the original, we have two oscillatory
modes which rotate at the same rate. Hence we conclude that in the absence of degeneracy
all discrete oscillatory modes are antispiral.

The above symmetry properties are contained in equation (39) and can be made
explicit by further analytic continuation of the integrand in Im(w) > 0. It is possible
to deform the integral along the real axis into a long thin loop encircling the real axis
plus a discrete sum of terms arising from the singularities of the continued resolvent at
the frequencies {w"*;}. The details of this continuation and further discussion of discrete
oscillatory modes will be found in a future paper.

VI. CONSERVATION THEOREMS

Angular momentum and energy are rigorous constants of motion in any isolated sys-
tem, and therefore the difference between the perturbed and unperturbed states of the
1Tt can be removed by any small change in the equilibrium model that makes the degenerate eigen-
value #1, or splits the degeneracy. We can also remove it by the artificial device of placing a A 5 1

in front of R(w) and taking the limit A\ — 1 after the w integration. The removal of degeneracy makes the
discussion simpler, but it has little or no effect on numerical calculations.
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system of these quantities will be conserved also. Writing out the time derivatives of
the differences, one notes that they appear to be conserved only to first order in the
perturbation parameter since there is an uncertainty about the quadratic terms dis-
carded in the linearization of equation (21) which governs the evolution of f. This is the
order to which the differences in energy and angular momentum can in general be con-
served if linearization is involved, unless the unperturbed state is time independent
and axisymmetric. Then the differences are indeed quadratic in the disturbances, and
will be conserved to that order even if the disturbance is calculated accurately only to
first order. Here we shall start with the linearized equation and show that it has an
infinite set of integrals, the first two of which we will identify as angular momentum and
energy.
If the time development of f is governed by a linear equation of the form

af — iBf, (41)

where A4, B are self-adjoint operators and 4 is time independent, then the inner product
(f, Af) is conserved. The inner product here is defined between two functions in phase

space as
(f,8) =3Sfgdu= (g1, (42)

and dy is a volume element in phase space. The conservation can be seen easily. We com-
pute the time derivative and use the time independence and self-adjointness of A:

i an=LZ, 4> +{5 44> =a¥ >+ 42> @

Eliminating the time derivatives via equation (41) leaves
L1, Af) = GBI, ) + (1, 4Bf) = i, BY)' + i f, Bf) . (49)

Because B is self-adjoint also,
(f; Bf) = (Bf,f) = (f, Bf) = real, (45)

and therefore the right-hand side of equation (44) is zero.

We note that if another self-adjoint and time-independent operator C commutes with
A and B, then CA and CB have the same properties as 4 and B. Therefore, (f, CAf) is
conserved. Similarly, if A~ exists and if B is now time independent as well, then suc-
cessive multiplication of equation (41) by BA~! will also preserve the necessary prop-
erties to ensure conservation of (f, Bf), (f, BA™'Bf), ..., since such symmetric prod-
ucts of self-adjoint operators are self-adjoint. With the exception of the first two, the
usefulness of the integrals decreases in proportion to the difficulty of computing the
products BA—'B, BA"1BA™'B, .

The linearized part of equatlon (21) is not in the form of equation (34). The first
two terms are, but the third involves a product of two noncommuting self-adjoint oper-
ators, which is not self-adjoint. This is fortunate, for otherwise it would follow that
(f, f) is conserved, and that the galaxy is stable. Clearly the kinematical evolution,
which neglects the third term, is stable. It can be seen from equation (8) or (23) that
each amplitude |fi.| is constant in time.

The linearized equation (23) can be manipulated into the form (41). Since this equa-
tion is satisfied for each /, m, we may divide each member by I(dF/dJ 1) + m(dF/dJ )

to obtain
(3/80)f —i(i% + m,)
I(9F/87y) + m(dF/aJy) ~ I(dF/aJy) + m(9F/aTy)

flm + ihlm . (46)
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Here k should be viewed as the result of the self-adjoint potential operator acting on f.
In each I/, m subspace of phase space our operator 4 is a diagonal matrix with real
elements [[(dF/3J1) + m(0F/dJ»)}™*, while on the J1, J, part it is multiplication by a
real function, and hence is self-adjoint. The right-hand side of equation (46) has a
similar object plus the potential operator. The latter is, of course, self-adjoint. All three
operators are time independent. The operator L = i(d/dw,), which is the same as the
infinitesimal generator of rotations around the z-axis #(9/96), commutes with the
above operators and in this representation is also a diagonal matrix, with the elements
—m.
For the first conserved quantity we choose (f, LAf), and obtain

1 43 —m‘fl,,.|2

872 ot Zuf S d]id), I(dF/3T1) + m(3F/9Ts)

0. )

This we shall identify as angular momentum.?
The second conserved quantity, which we shall identify as energy, is (f, Bf), or

1 d lﬂ] + mﬂg
R T | - 0F/o77) + m(aF a7y

The other integrals do not have such explicit forms and will not be examined here.

The axisymmetric form of equation (48) was derived and identified by Lynden-Bell
(1966). To identify equations (47) and (48) we shall suppose that the change from the
unperturbed to the perturbed state is brought about by an external potential 4,(¢), which
acts only for a finite time.

In the expression for energy we must distinguish between the contribution to the
potential energy arising from self-gravitation and that due to the external field. We
write the total Hamiltonian as before, Ho + %, and consider V,, £ to be the sums of
the external and self-contributions V.4 V,, k. 4+ k,, respectively. The total energy

! fl‘mlz +f*lmhlm] =0. (48)

becomes
C=SF+f)(Ho+ h— 3V, — $h)du, (49)
and its time derivative is
a¢ of L 9, F) PP
= S{EE+ 2 G ) + £ P + D]+ £ GhaF — 4V} du
= S S + P (50)

The last derivative in the first integral vanishes identically upon integration because
of the self-adjointness of the potential operator. If we subtract the third term from both
sides, we obtain

d€’

) d 9
_‘i—t-=fH05{dﬂ+E%fhsfdﬂ=_f'ai;hedﬂ~ (51)

We shall call €', which differs from € only in the presence of an external field 4., the
energy. Similarly, the change in angular momentum is

% = ;id—th(F + fdp = ./‘Jgédu =—=SEF+))

2 The choice of LA rather than 4 makes the conserved quantity the angular momentum in case we
choose to sum over m. We know, in fact, that each term in the m sum is conserved separately since it
arises from an eigenfunction.

ok,
%9 du . (52)
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The contribution from F(9dk./d6) vanishes upon integration over 6.
In both cases we have a linear term df/d¢ which we can convert into a quadratic one
with the help of equation (21). We then obtain an expression of the type

—SSS S G, T){(f, Hol + [F, k] + [ f, hl} dJ1dT2dwndw; . (53)

Since Ho and F depend only on the J;, the first two bracketed terms will give rise to
terms of the type R(J1, J2) (9g/dw;) which vanish upon integration over w;. The last
bracketed term is quadratic in the disturbance, and upon an integration by parts be-

comes
aG af

hd.’ 1dJ gdwldﬂ’)o (54)

This exact result will remain correct to second order if we write % in terms of f, using
the linearized equation (23).

In the first case we have G = H,. Expanding %4 and f in Fourier series (6), using
definition (5), then eliminating # and integrating over the w;, we obtain

1 lQ1 + mﬂg 0
~ gz ZimS S ST 1(8F/8Jy) + m(dF/aJy) [f ~t-m oy fim

+ 1% + MDY —n fin | . (59)

On summation, only the symmetrized part of the first term remains; the second is
antisymmetric in /, m and vanishes. Since f is real, f_i_» = f*m, and equation (55) re-
duces to
1 I 4 m,
= gz 2emd S g S Mo o7y Ot

O | fuml?. (56)

To this we must add the remainder of equation (51), which, evaluated in action-angle
variables, becomes

1
8n2

We can restrict the m sum to include only m or —m, for their contributions are the same.
This is clearly true of equation (56) and is also true of equation (57), but to see it we
must go back to the potential equations (12) and (16), or note that the potential energy
associated with a surface distribution is the same as that with its mirror image.

In the angular-momentum case, G = J; and the result differs from equation (55)
only in that the numerator of the first factor is —m rather than IQ; + mQ,.

We have shown that the two exact integrals (47) and (48) of the linearized equation
are approximate integrals of the exact nonlinear equation. The neglected terms are of
cubic order in f. The integrals are indefinite functionals of the perturbed distribution f
and therefore do not imply the stability of the system.

The one difference between equations (47) and (48) and the above expressions is
that the former are defined for complex functions as well as real ones. The possibility
of representing the perturbed quantity by the real part of a complex function is a con-
venient consequence of linearization. If we used the complex function instead of its
real part in equation (47) or (48), the values of these constants would differ from the
angular momentum and energy by some constant factors. But because integrations
over angles are involved, one half of the real parts of these constants will equal the an-
gular momentum and energy.

The change in energy and angular momentum caused by an external field can be
calculated by equations (51) and (52). These relations can also be derived from the

zl m.ffdjld]2f lmhlm . (57)
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linearized equations directly. The equation of motion (41) is changed by the presence of
the external field 4. which appears as the inhomogeneous term 74, on the right-hand
side. Then instead of being zero, the right-hand side of equation (47) is

RS TORLEE D2 9

and that of equation (48) is
_nUN _ Y
RGOS 9

The two conservation laws become essentially one if we excite an unstable mode. The
potential associated with such a mode will be of the form Re[k exp(iwt)] and the Fourier
expansion (6) of # will have only one nonzero m-term. We use equation (27) to eliminate
the distribution function f;, from both (47) and (48). In the first case we obtain

1(0F/3Js) + m(3F/Jy)
119 + m% + o]

The energy equation is identical save for the factor Re(w) in place of —m. But Re(—w/
m) = Q, is the pattern speed; hence for such a mode we have

|exp (iw) | 275

oSS dTd T | him]2 = 0. (60)

19
2 9t w2

energy = Q, X (angular momentum) . (61)

A necessary condition for a mode to be unstable is that both the energy and angular
momentum should vanish, for otherwise both will grow as |exp (iwt) | 2.

For a growing mode, the conservation of angular momentum is equivalent to the
requirement that the imaginary part of the response vanish. This can be seen if we set
g = k in equation (29) and compare the imaginary part of the right-hand side with
equation (60). The imaginary part of the left-hand side of (29) vanishes because the
potential operator is self-adjoint.

VII. STABILITY OF AXISYMMETRIC MODES

The two conservation theorems are constraints on the possible evolution of perturba-
tions. Since they involve the structure of the equilibrium distribution, it is natural to
ask whether they can be used to characterize stable distributions. The answer is: proba-
bly not.

The energy integral does rule out overstable axisymmetric modes whenever the equi-
librium distribution is a decreasing function of the radial action, or dF/dJ, < 0. The
restriction that w? be real makes the response operator self-adjoint, and its bound be-
comes a continuous nonincreasing function of —w? Because of this we can infer a
necessary and sufficient condition for stability from the value of the bound at w? = 0.

To demonstrate the absence of overstability we first note that because the radial
oscillation of a particle is symmetric about the turning points (7 = 0), we have

2r 27

hyp = .0/' dw, .0/' h(J1, Jo, w1) exp (3lwr)dwn

2 2r
= S dw, B/'k(fl, Ja, w1) exp (—ilwi)dwy = h_p (62)
0
if we choose w; = 0 to be one of the turning points. The energy conservation (61) for
the m = 0 modes can then be stated in the following way:

13 LN S .
Re(w) Im(@) g3 2/ ddTad 57 |l <|ml—w|2 Taap) =0 6

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1971ApJ...166..275K

No. 2, 1971 DYNAMICS OF FLAT GALAXIES 291

If dF/dJ, < 0, this expression can vanish only if Re(w)Im(w) = 0. Therefore, any ex-
ponentially growing mode must have Re(w) = 0. The result was shown to be true
locally by Julian (1969).

To investigate the exponentially growing modes we set w = —ig, ¢ > 0, and write
the potential of the mode as A(J1, Ja, w1)e®’. For such a mode the quadratic form (29)
is real and with the help of equation (62) can be written as

__11¢ w0, oF |,
Blo) = 2xG 4n? ;ffd]ld]z PN + o? dJ, | w2 0. (64)

Let s be the surface density associated with 4. Then if we let s range over all axisym-
metric densities in B, subject to the condition (s, #) = 1, the maximum value obtained
by equation (64) is the bound of the response operator. Clearly Bmax(o) is a continuous
nonincreasing function of o, and tends to zero as ¢ — . Therefore, if Bm.x(0) < 1,
we can have no exponentially growing modes. The condition is also necessary, for if
Bmax(0) > 1 we can find at least one exponentially growing mode. This follows from
the fact that the response operator defined by the integral equation (36) is symmetric
along w? < 0 and is by definition bounded by Bmax(a). A classical result on symmetric
compact operators states that the function which maximizes 8(¢) is an eigenvector and
Bmax(o) the corresponding eigenvalue. Since Bmax(0) > 1 and goes continuously to zero
as ¢ — o, there exists a ¢ for which Bnax = 1, and a corresponding eigenvector in &.
The image of this vector in P is the unstable mode.

The stability criterion Bmax(0) < 1 has a simple form. If we let ¢2— 0 in equation
(64), we obtain

SN T | OF 2 ) s
f= 270G 4n? §ffd]1d]2 a1 |hm| ’ (65)
but since
1 ) 2% or
ml;mlka = ,[dwz.[lh]2dw1, (66)
-1 OF 1 (0 1 2)
8= = gog SIS ST by o= (102 = 5 hwl?) . (67)

The expression in parentheses is the square of the fluctuating part of the potential as
seen by a star. The constant part plays no role in dynamics.

If we write the stability criterion in the form 1 — Bmax(0) > 0, it becomes identical
with the positive-definiteness criterion of the Hartree-Fock exchange operator (Lynden-
Bell 1969). Despite our choice of action-angle variables we have made no explicit use of
adiabatic invariance in our arguments. The adiabaticity of % follows as a corollary.

The stability criterion based on equation (67) is an extension of Toomre’s local result
(Toomre 1964). The calculation of the upper bound of the response is clearly a varia-
tional matter, and Toomre’s local result should be viewed as such also. Hence it is apt
to be more relevant than it appears from the context of its derivation.

To complete the discussion of axisymmetric modes, we should examine the possibility
of discrete stable oscillations. In a finite galaxy we may assume that the radial fre-
quencies 2; will have a lower bound Q,. The above arguments show that there will
exist a stable axisymmetric mode whenever the margin of stability 8, = 1 — Bmax(0) is
sufficiently small. We see from equation (64) that Bmax(c) increases as o> becomes nega-
tive, and if it reaches 1 for some w < , then there will be a stable mode with that fre-
quency. The existence of such slow primeval oscillation in a galaxy such as ours would
imply a rather small 8,. A rough estimate, based on equation (64), suggests that g,
is not likely to exceed 0.2.
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VIII. DISCUSSION

The development presented here has been intentionally on the formal side, for we
wished to emphasize the form that the equations take. In the future calculations it will
be necessary to introduce some approximations such as epicyclic orbits, Gaussian
velocity distributions, etc. Had these approximations been introduced at the outset,
the question of how they affect the results and whether they introduce any new effects
could not be answered. These approximations will not introduce qualitative differences,
and even quantitatively they are no worse than our ignorance about the unperturbed
state.

The expression for the kernel of the response operator (eq. [36]) in the epicyclic ap-
proximation was derived by Kalnajs (1965). The epicyclic orbits were introduced at
the outset, and because the fact that they do not represent an incompressible flow in
phase space was overlooked, a spurious term appears in that epicyclic response operator.
That spurious contribution is small (of order J;/J,), and has been ignored in all dis-
cussions based on that equation.

The dynamics of cold disks differs qualitatively as well as quantitatively from that of
disks with random velocities. The response of a cold disk is unbounded, which leads to
instabilities that grow arbitrarily fast (Hunter 1969). Some further information about
such disturbances can be obtained from the two conservation theorems which remain
valid for the cold disks.

The results of this paper apply also to the tidal-perturbation problem, and to a dis-
cussion of dynamical friction and statistical density fluctuations (Gilbert 1968). In both
cases one seeks the density change produced by an orbiting point mass. Preliminary
calculations have indicated that it is not sufficient to calculate the tidal effect as the
sum of individual orbital displacements caused by the imposed potential, as the density
change due to the displacements contributes a potential which in general is comparable
in magnitude to the imposed potential. Such a significant polarization indicates that
collective effects are important in flat galaxies.

It is with pleasure that I acknowledge the discussions with Professors Toomre,
Layzer, Contopoulos, Lin, C. Hunter, and Dr. Shu. They all have been most helpful.
A considerable part of this work has roots in a Ph.D. thesis supervised by Professor
Layzer.

This work has been supported by the National Science Foundation.

APPENDIX

A detailed discussion of the rate of decay of the kernel is beyond the scope of this paper.
We will see that with epicyclic orbits the decay is sufficiently rapid that the kernel is well ap-
proximated in a finite region of the (a, &’)-plane by only a finite number of terms in the J-sum
of equation (36).

Without an explicit representation of the orbits we have to rely on asymptotic estimates of
the behavior of the e;(a, m, J). We note the following relevant facts that are shared by a wide
class of orbits. From equation (33) we see that whenever a or ! is large, ei(e, m, J) is defined by a
rapidly oscillating integral. If I>> «, we may integrate by parts twice and show that these terms
decay at least as fast as /=2, When a>> I, the leading contributions to the integral will come
from points where the phase of the exponential is stationary. For most orbits these contribu-
tions will be of order |a| =2,

Using these estimates, we can show that along any line a (or @’) = constant, the l-sum de-
cays as |&/[7V2 (or |a|~Y/?). Only along the diagonal @ = o’ does it remain constant (see eq.
[37]). The decay is further enhanced by the integration over the J;. However, the above esti-
mates already suffice to ensure that the kernel is quadratically integrable.
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