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Summary

Jeans’ theorem that the distribution function of an unrelaxed steady stellar
system can be expressed as some (in general multivalued)t function of
elementary time-independent integrals of the motion has often been used
restrictively. Only obvious integrals such as energy and angular momentum
have been considered while there are always five time-independent integrals
in all. 'This paper considers the role of the neglected integrals] and shows
that certain classes of integrals should indeed be omitted. A criterion is
developed for finding some classes of potentials in which further integrals are
important.

1. Introduction.—Several authors (2, 3, 4) have stated that certain integrals
are not isolating and have therefore neglected them. We aim to prove that such
integrals should not be used in Jeans’ theorem (1) and we illustrate the argument
by means of the ‘‘fifth integral >’ of the spherical clusters. We show that this
integral is non-isolating as was suggested by Kurth (2z). We first consider this
integral qualitatively.

In a spherical cluster the direction of the angular momentum of a star deter-
mines the plane of its orbit. The energy and the magnitude of the angular
momentum determine the shape and size of the orbit. The role of the fifth
integral is to determine the orbit completely. Its plane, size and shape being
already fixed, the only remaining freedom is the orientation of the orbit within
its plane. The mathematical specification of this orientation is the last integral.
For closed non-circular orbits the orientation is a clear concept but most orbits
are not closed. To get a clearer picture in this case we attempt to construct
mentally a surface of constant orientation as it occurs in the phase space. To
reduce phase space from six dimensions to three we shall only consider a definite
angular momentum per unit mass w. We plot (7, #) the space coordinates (in
the plane perpendicular to @) just as if we were describing the space motion alone.
However at right angles to this plane of motion we plot the radial momentum
which for unit mass is just#. In this space we may now draw the energy surfaces
72 +w?[2r* —(r)=E, E<o, where {()>0) is the gravitational potential.
These surfaces are toroids§. At fixed 7, 72 increases with E; thus the toroids

* Received in original form 1961 May 3.

1 The function must be single valued in physical phase space but may take several values in
the space of integrals of the motion. See Section 5.

1 All integrals mentioned in this paper are time-independent.

§ We may write 7#*=2(E+y)—w?/r*= 2¥(s) say. For a proof that for E<o, w?#o0, ¥ is
Ppositive only in a certain range r, <7 <7, see (2) or (5).
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are nested, those belonging to smaller energies lying inside. As we decrease E
we eventually reach the line toroid where #= o; this is the circular orbit of the
given angular momentum w.

Each orbit lies on an energy toroid. Fixing @ and E determines the orbits.
except for orientation; thus on any one toroid they are identical except in orien~
tation. Just as in complete phase space no orbits can cross. Each is a spiral
lying on its toroid. The pitch of such aspiral may be defined as the angle at
the centre swept out between two neighbouring apcentres divided by 2w ; this
agrees with the primitive idea of pitch as the number of times the spiral goes
around the toroid by the short way for each time around by the long way
(see Fig. 1). For clarity we have greatly exaggerated the pitches in our
diagrams. Actual values lie between one and two (5). The pitch is the same

The long
way around

Fic. 1.

for all orbits on one toroid but it varies from toroid to toroid as it is a function of
the energy*. The variation is continuous so almost all our toroids are associated"
with irrational pitches. Thus their spirals are not closed. Any one such
spiral visits the neighbourhood of -every point on its energy surface. Such
orbits are said to be quasi-ergodic in our reduced phase space. Almost no orbits.
have rational pitch so we shall neglect the possibility of any star having such an
orbit. We now indicate why the distribution function cannot depend on the
““orientation >>. If it did then there must exist E, w which do not belong to-
the exceptional set of toroids associated with rational pitch, and x;, x,, A such that

J(E, , x1)—f(E, o3, xs)=A>o0.

Here we have used y to label the different spirals on the toroid specified by E, w.
f is the distribution function. Hereafter we talk of E, @ as a toroid and E, =, x
as an orbit, since these numbers completely specify the object concerned. There
are points P; of E,w, x,, in the neighbourhood of any point of E,®. Choose
some point P, of E, s, x,. Then f takes a finite jump A between P, and a point
P, that can be made arbitrarily close in phase space. Hence f is discontinuous.

* When @ is not fixed it is a function of both E andw. The possibility arises that for some-
potentials the pitch might be rational and independent of E,=. It may be shown that this only

occurs for Newtonian o’ /r and simple harmonic ar? potentials in both of which cases there are 5
independent isolating integrals. i
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This contradicts the physical definition of f as a local average. We therefore
deduce that f must be independent of x. Before leaving this qualitative dis-
cussion for a more exact approach it is interesting to consider a surface of constant
x- We so define this orientation that all orbits with pericentres at ¢ =0 have
x=o0. Consider the line segment 7 =0, ¢ =0 which lies between =0 and the
line toroid. The surface y=o is generated when we draw all the orbits that
intersect this line. We may picture this as follows. Consider the plane ¢ =3¢.
Each point of our line segment is moved along its own orbit which remains on
its toroid and bends around that toroid (by the short way) by an amount corre-
sponding to the pitch. In this plane our new line segment is curved because of
the variation of pitch with energy. If we nowlook at the plane ¢ =« for increasing
« we find our line segment is wound more and more tightly into a spiral centred
on the line toroid. The surface y=o is swept out by this spiral when « is varied
over the complete range — o to + . Our picture is black throughout showing
that y=o0 is a surface visiting the neighbourhood of all points in our reduced
phase space.

2. Mathematical discussion of the sth integral.—Using r2¢ == we may write
the energy equation in the form:

dr _ w2r2)rha-
(d¢) @(E+) ~wir-2)
whence

X =const.
where

_ r wdr o
=4[ cam s bk

x is the integral sought*. 7, may be taken arbitrarily; we shall choose it to be
the value of 7 at pericentre. Kurth (2) has shown that for non-circular, non-
rectilinear bound orbits the expression ¥ =E + ¢ —w?/27% is positive in a region
ry<r<ry, Also ¥ has simple zeros at the end points 7,, 7,, Now the mathe-
matical expression

J(r) f 'IW the solution of ( ) = 0(r)

is an inverse periodic function, provided Q is positive in r, <7 <7, with sxmple
zeros at the end points. 7 is a periodic function of J with period

2 ["o-rar

2r'w 2V (r) satisfies the conditions on Q for all bound non-circular non-
rectilinear orbits. Thus K is inverse periodic.

It is therefore multivalued, its values being K+ 2nP, where

P= f " (2t (7)) dr.

* We have only found this in axes specially oriented for the star in question. For use in Jeans’
theorem we would have to convert the integral to cluster coordinates, in which case the mathe-
matical expression is cumbersome. The expression for x has often been written down, e.g. (5),
but it has not been discussed as an integral for use in Jeans’ theorem.

)
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But ¢ is multivalued with values ¢+ 2m=. Thus x is multivalued with values
x—2nP+2mn. Pl is the pitch of the spirals in the previous discussion. If it
is irrational, the set of multiple values for y is a dense set. Any orbit must have
a certain population independent of our labelling, thus:

f(E, @, x)=f(E, @, x—2nP+2mm).

We shall now show that if fis Lebesgue-integrable over almost all the surfaces*
of constant E, o, then it is independent of y almost everywhere (see(7)). We
shall consider only bound stars E < o, so the surfaces £ = E,, @ =w, are all toroids
of finite area. Suitable coordinates on the toroids are the ¢ and K used earlier
but with the restrictions o< ¢ <27, o< K< 2P.

Lemma.—1If Q, Q' are sets of points of positive surface measure on any toroid
for which P/x is irrational, then they have a value of ¥y in common. By this
we mean that there exist R, R’, points of O, Q' respectively, such that the set of
values that x takes at R is the same as the set it takes at R'.

Proof.—Let the set of all values of ¢ — K attained at points of Q be called 4.
Since Q has positive surface measure A is of positive linear measure. Thus, by
a theorem on the density of measurable sets, ‘‘ Given any ¢> o there exists an
interval A(= [s—6/2, s+8/2]) of length &(e) such that the average density of Q
in A is greater than 1—e.”’ That is u(Q~A)> (1 —€)u(A) where u(B) is the
measure of the set B. O and A are contained in the interval S= [—2P, 27].

The set X of all values of x=¢ — K+ 2mm —2nP (all m, n) attained in Q will
be of average density greater than 1 —e in each of the intervals A *, where

Amnz[s-i—zmn—znP— g, §+2mm —2nP+ g]

Since the set s+ 2mm — 2nP (all m, n) is dense we may place the centre of some set
A" as close as we please to any point. It follows that in all intervals of length 3,
X has average density > (1—e). Whence, dividing off the range s into intervals
of length & and atoning for overlap of 2 intervals at one end of the range, we find
X has average density in S>1—2e. Since e is arbitrarily small p(X~S)=pu(S).
But A’ the set of values of ¢ — K attained in Q' is contained in S and has positive
measure. Hence A’ and X have points in common. Thus there are points in
O, O’ which have at least one value (and hence all mult1-values) of ¥ in common.
Q.ED.

Consider any two subdivisions of T (the toroid surface) into sets of positive
measure, Oy, ...0,.... 0y ... 0/ .... Let M, (m,) be the upper (lower)
bound of the value of fin Q,. Define M/, m, similarly. Now take T to be a
toroid with irrational pitch P/=. Then by our Lemma Q,, O, have values of y
in common and hence they have values of f in common. Thus

M.>m/ and M/ >m, for all r, .

Thus Z w(0))= M,zp.(Q,)>Zm, ©(Q,') or, taking lower bounds over all
subd1v1s1ons O’ and assummg f mtegrable on T
,,u(T)?J. fdu=1 say.
T

* Since E,w, both constant, give a differentiable set of surfaces the above condition on f follows
if f is Lebesgue-integrable in phase space.
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Define

__L
f—Mﬂ'

M,>f or M.—f>o.

Then

Similarly ; ;
m.<f or m.—f<o.

Now f—f is clearly integrable over 7. Hence there exists a set of subdivisions
O;...0,...such that

;(Mr —)m(Q,) - ;(mr =f)m(Qr) <e.
Both terms taken with their signs are positive (from above). Thus
> S(M,~)u(@) > 0> S(m~ ) u(Q)> —<.

Now the maximum of |f—f]| is either M,—f or — (m,—f), whichever is greater.
Whichever it is, it is greater than their sum, since both are positive. Thus

2¢> 3(Max in O{If~71)u(0,) >0
2e> [ If=Fldu>o

since the mtegral certainly exists when f is integrable.
But e.is arbitrarily small. Thus [,|f—f|de=0. Hence f is the constant f

. almost everywhere on 7.

Summing up, we have proved that on any toroid 7' where P/x is irrational
and f is integrable, f is constant almost everywhere. Since the two sets of
exceptional toroids (P/x rational and f not integrable) are of measure zero in the
set of all toroids, f is independent of x almost everywhere in phase space.

3. The general case.—We use the following definition of a non-isolating
integral. Let I be the integral in question and let I, I, . .. I, be a complete set of
independent integrals. Consider the space I;=a; i=1...4 where the a; are
constants. I is said to isolate in this space if there exists at least one pair of sets
O, O’ each of positive measure in the space, such that for all PeQ, P’«Q’

I(P)#1(P).

If for almost all sets (ay . ..a,) I does not isolate in the corresponding space,
I,=a,i=1....4, then we say I is non-isolating.

The following theorem is sufficient for our purposes although further demands
on the continuity of the I; could remove the ‘‘almost”’ ,
Theorem.—I1f f is continuous in phase space and [ is non-isolating, then f is
independent of I almost everywhere.
Proof.—Suppose not; then fis dependent on I for a set of values of (a; ... ay)
which are not of zero measure in the 4-dimensional a,...a, space. Then
there will exist 2 A > o such that the set U of values (4, . . . a,) for which there
exist a, a¥*, with

flay .. a5, a)~f(a;...aa*)>A,
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is not of measure zero. We have written f=f(I,...1,, I). I cannot isolate on
all the surfaces I;=a,, i=1...4, where (a,, a,, as, a,) eU since these have non-
zero measure. Choose (a;...a,)eUsuch that I does notisolatein I;=a,i=1...4,
and let P, P* be points on this surface where I=a, I=a* respectively. Since f
is continuous, there is a neighbourhood of P with positive surface measure within
which f differs from its value at P by less than A/2. Similarly for P*. Hence
I cannot take the same value at 2 points; one in each of these neighbourhoods.

Hence I isolates on this surface, Wthh contradicts its selection. Thus the

‘theorem is true.

The ergodic hypothesis is that in any sufficiently complicated dynamical system
the energy is the only isolating time-independent integral of the motion. The
task of proving this conjecture, and of clarifying the vague terms used in the
statement of it, is known as the ergodic problem. We are interested in the
exceptional cases when the energy is not the only integral for a single particle
moving in a potential field. Thus we are faced with the ergodic problem for
one particle. We would like to classify all potentials by their isolating integrals.
‘This is not a task to be undertaken lightly.

4. Ameliorating circumstances for the problem of real interest.—Consider a
class of potentials of the form

p=i(x, ¥, 2,L(2))
where A=A(x, y, 2) is a fixed *‘ coordinate >’ and {(}) is an arbitrary function.
For a certain { let time-independent integrals of the equations of motion be
I, I, ... I, Aswe vary { these integrals will change to some other functions

'of coordinate and momenta. Thus the integrals are functionals of {. We say

I is a local integral in the potentials (x, y, 2, {(A)) if for all functions {(A),
I(p, r, {(})) is an integral of the motion. Thus I is local if it is a point function
of {(}) rather than the far more general functional*.

We shall look for all possible local integrals since these are the integrals
which maintain their form (as functions of p, r, ) for a whole class of potentials.
We may indeed observe that the Hamiltonian itself, ignorable coordinates,
separable coordinates, integrals of Liouville’s type, etc., are all local integrals.
We now give intuitive reasons why we should expect all isolating integrals to be
local (except for those which only appear when 3 or 4 isolate already).

Let H be the Hamiltonian. The condition that I be a constant of the motion
is that the Poisson bracket [H, I]=o0. This is the condition that A be invariant
under the infinitesimal contact transformation generated by / and that there-
fore this transformation be a symmetry operation on the Hamiltonian. The
nomenclature is somewhat unfortunate as we find ourselves ascribing 5 separate
symmetries to an arbitrary Hamiltonian (since it has 5 time-independent integrals
of the motion). However if the Hamiltonian possesses isolating integrals
besides the energy then it must indeed take a special form, so we shall hereafter
use the word symmetry only in connection with Zsolating integrals. Several of
the possible symmetries of the Hamiltonian do correspond with symmetries of
the system in ordinary space. We take this analogy seriously and postulate
that all symmetries of the Hamiltonian behave like spatial symmetries.

* The general form I=I(p, r, {(3), 'Y, £’(Y) . . . L @ (X)) was originally used in the definition of

local since this is the most general functional which depends on { only in the neighbourhood of A

However, this generalization is dull, as it may be proved that all mtegrals local by such a definition
are local in the sense used above.
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.If we demand of a function in 3 dimensions that it has some particular infinitesi-
mal symmetry operation (e.g. rotation about the 2 axis) this does not define the
function. It merely demands that it take the form f(R, 2) rather than f (x, y, ).
This invariance under a symmetry operation reduces the free function from a
function of 3 variables to a free function.of 2 variables. In our Hamiltonian
system the Hamiltonian isolates if the potential is time-independent. We
expect that the potential will be free to a function of 2 variables if we demand
one other isolating constant of the motion and will be free to a function of one
variable if we demand two others. Thus we expect that isolating integrals will
maintain their form for a whole class of potentials. The only exceptions will be
those isolating integrals which only exist when several others exist too. It may
then be that the potential is so shaped by the symmetries required that it has no
further functional freedom. This happens for the integral of the line of apses
for the central inverse square law of force. However provided one of the other
symmetries, necessary for the existence of this one, exists for a whole set of
potentials (r, {(A)) we will still be discussing all the potentials which can have
isolating integrals. We may thus make a special search for such awkward
exceptions once we have found the other possible integrals.

From the point of view of stellar dynamics an isolated example of a completely
defined potential admitting certain integrals is of only passing interest; we
would like to consider the equilibrium configurations of stellar dynamics as
evolutionary sequences for relaxing stellar systems. The relaxation is slow and
thus at any instant the system is near one of the equilibria, but the slow relaxation
causes a secular change in this equilibrium. We are thus interested in whole sets
of equilibrium states. What is more, if we are looking for a secular series, the
distribution function must change slowly along the series. Thus in some
sense the gravitational potentials of the members of the series must possess the
same isolating integrals. More exactly those dynamical real-symmetries of the
Hamiltonian which generate the (constant) isolating integrals of the motion must
be preserved along the series. There is little doubt that we are interested in
integrals possessed by potentials that are still fairly undetermined since one
would expect the shape of a stellar system to be governed at least as much by the
Poisson equation as it is by the continuity equation. If we specify our potential
very closely before we use the Poisson equation, it is probable that the latter will
only be soluble for rather eccentric distribution functions. We try, therefore,
to specify our potential as little as possible, consistent with sufficient freedom in
the distribution function to fit the observations. It is thus the isolating integrals
possessed by all potentials of a given form involving an arbitrary function which
are of real interest to us.

5. Remark on Feans’ theorem.—In solving the collisionless Boltzmann-
Liouville equation by the standard method, what is actually proved is that the
gradient of f is perpendicular to the surfaces on which the integrals I . . . I are
constant. Thus f=f(I;...I); but if there is more than one piece to the
surface I;=A4;, i=1...6, (4; constants) then f may take a different value on
each piece (8). , ;

An illustration is provided by the one dimensional problem of particles
moving in a gaussian potential well. The only constant of the motion is the
energy. The energy surfaces are connected for E<o and disconnected for
E>o. In this latter case the particles on one surface always have ¢ > o and those
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on the other c<o. Hence the sign of the velocity is conserved. f must have a
single value for E <o but may be double valued +f for E>o0. Needless to say
when there are several isolating integrals it is not merely the energy which distin-
guishes trapped and untrapped particles but the result still turns on the con-
nectivity of the surface I;=A;,i=1...6 wherezis the number of isolating integrals.

7x

_"%&
/

AE
[
/;\ 1 1 >
trapping P I— c trapping L (]
speed speed

Fic. 2.

Conclusion.—The systems of greatest interest for stellar. dynamics are the
sets of potentials (r, {(1)) which possess isolating integrals I;... I, 1<i<35.
A large class of these will be local integrals. If the other integrals do not isolate,
their neglect is valid when we use Jeans’ theorem. Wherever possible this
neglect should be fully justified by showing that the remaining integrals are
non-isolating. For a discussion of the possible existence of isolating but non-
local integrals see (3), (x0) and (9)*.
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* These give power series expansions of unknown convergence for another integral. Even if
the series are only asymptotic the first few terms may still give approximate isolating integrals of
the motion even where the corresponding exact integral does not isolate. Quasi integrals of this
type may well be of great importance in stellar dynamics.
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