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ABSTRACT

Interpenetrating streams of solids and gas in a Keplerian disk produce a local, linear instability. The two
components mutually interact via aerodynamic drag, which generates radial drift and triggers unstable modes. The
secular instability does not require self-gravity, yet it generates growing particle-density perturbations that could
seed planetesimal formation. Growth rates are slower than dynamical but faster than radial drift timescales. Growth
rates, like streaming velocities, are maximized for marginal coupling (stopping times comparable to dynamical
times). Fastest growth occurs when the solid-to-gas density ratio is order unity and feedback is strongest. Curiously,
growth is strongly suppressed when the densities are too nearly equal. The relation between background drift and
wave properties is explained by analogy with Howard’s semicircle theorem. The three-dimensional, two-fluid
equations describe a sixth-order (in the complex frequency) dispersion relation. A terminal velocity approximation
allows simplification to an approximate cubic dispersion relation. To describe the simplest manifestation of this
instability, we ignore complicating (but possibly relevant) factors such as vertical stratification, dispersion of
particle sizes, turbulence, and self-gravity. We consider applications to planetesimal formation and compare our
work to other studies of particle-gas dynamics.

Subject headinggs: hydrodynamics — instabilities — planetary systems: formation —
planetary systems: protoplanetary disks

1. INTRODUCTION

A major uncertainty in theories of planet formation occurs
embarrassingly early, during the formation of planetesimals.
Collisions are unlikely to result in coagulation over a wide range
of sizes, from millimeters to kilometers, since available binding
energies (chemical or gravitational) are negligible comparable to
kinetic energies (Chokshi et al. 1993; Youdin & Shu 2002, here-
after YS02; Youdin 2005). Zero-gravity experiments confirm de-
structive cratering during low-velocity impacts (Colwell 2003).
The hypothesis that planetesimals form by gravitational col-
lapse of solids that settle onto the disk midplane (Goldreich &
Ward 1973; YS02) remains controversial because it is uncertain
whether protoplanetary disks are ever suitably quiescent or metal-
rich enough to allow gravitational instabilities to develop.

The strong coupling between small solids and gas is both
an obstacle to and a necessary ingredient in planetesimal forma-
tion theory. Forming planetesimals via gravitational instabilities
would be trivial in a gas-free disk, since collisional damping dom-
inates viscous stirring in the absence of protoplanets (Goldreich
et al. 2004a). Indeed, Goldreich et al. (2004b) discuss a second
generation of planetesimals that could form in a gas-free envi-
ronment during the final stages of planet formation. However,
the first generation of planetesimals likely formedwithin the gas-
rich disks are observed to persist for several million years around
low-mass stars (Haisch et al. 2001). The outer planets of our so-
lar system contain substantial amounts of this gas (Uranus and
Neptune have several Earth-mass atmospheres, while Jupiter and
Saturn are mostly gas), which presumably accreted onto solid
cores assembled from planetesimals that, by this logic, must
have formed in the presence of gas. While only trace amounts
of gas are found on terrestrial planets, the simplest hypothesis
is that inner-disk planetesimals also formed in the presence
of gas. Indeed, conditions for gravitational instability become
favorable when the gas disk is only partly dissipated (Sekiya
1998; YS02).

The relative abundances of solids and gas are not yet tightly
constrained by observations. At solar abundances the ratio of
condensable solids to gas is of order 0.01, and is higher or lower
depending on whether ices condense. The solid-to-gas sur-
face density ratio �p /�g need not be fixed at solar abundances.
YS02 and Youdin & Chiang (2004, hereafter YC04) discuss and
model enrichment mechanisms (e.g., radial migration and photo-
evaporation) that act to increase �p /�g . The ratio of space
densities, �p /�g , is larger than �p /�g toward the midplane of a
stratified disk. The extent of particle settling is limited by settling
times (longer than disk lifetimes for submicron grains) and by
turbulent diffusion, which can be generated by vertical stratifi-
cation itself, among other possibilities. Assuming that Kelvin-
Helmholtz instabilities trigger this stirring, Sekiya (1998) and
YS02 showed that if�p /�g is augmented by a factor of�10, the
particle layer becomes so stratified that the gas and particle
masses are equal in the particle sublayer, i.e., �p � �g throughout
the layer. For even higher concentrations of solids, i.e., when the
layer becomes particle-dominated, vertical shear instabilities are
no longer capable of preventing particle settling, and gravita-
tional instabilities appear inevitable (YS02).

Given that interesting effects occur when the solid and gas
densities become comparable, Newton’s third law tells us that we
must consider the effects of frictional coupling on solids and gas
equally. However, most studies of midplane particle dynamics
(see x 7) do not fully treat the feedback of drag on the gas fluid.
We consider a simplified model that treats the dynamics of both
components self-consistently. We investigate the linear stability
properties of a two-fluid Keplerian disk, where a pressureless
fluid represents particles of a specific size. It is well known that
this system leads to steady state drift as angular momentum is
transferred from the solids to the pressure-supported, and thus
sub-Keplerian, gas (Nakagawa et al. 1986; see x 2). The radial
component of this drift globally redistributes solids on long
timescales, leading to ‘‘particle pileups’’ since the accretion rate
of solids is faster in the outer disk (YS02; YC04).
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Here, however, we are concerned with local and more rapid
consequences of orbital drift. By analogy with the two-stream
instability in plasma physics (Spitzer 1965), coupling between
interpenetrating streams destabilizes linear waves. In our case
the streams interact by drag forces, not electric fields. Our model
does not include self-gravity. Nevertheless, unstable waves gen-
erate particle-density perturbations. In principle, these pertur-
bations could be relevant to planetesimal formation, for instance
by raising the particle density to a point where self-gravity in-
duces collapse of the perturbations. However, we caution that
the ‘‘real world’’ manifestation of particle-gas coupling may
differ significantly from our model because of several simpli-
fications. We ignore vertical structure in our background state,
so our system is effectively an infinite cylinder and not a thin
disk. Such an approximation may be warranted for vertical wave-
lengths smaller than disk scale heights. Furthermore, our model
is linear, laminar, and inviscid, although a possible nonlinear
outcome of the instability is weak turbulence.

This paper is organized as follows. Model equations and as-
sumptions, for both steady state and perturbed motions, are pre-
sented in x 2. Growth rates arising from the sixth-order dispersion
relation are numerically analyzed in x 3. The relation between
growth rates and wave speeds is studied in x 3.3 by analogy with
Howard’s semicircle theorem. Eigenfunctions of vertically stand-
ing waves are constructed in x 4, allowing visualization of the
fluid motions. An approximate cubic dispersion that reproduces
most features of the growing modes is derived in x 5, allowing
analytic investigation to complement the results of x 3. Astro-
physical applications considered in x 6 include particle concen-
tration (x 6.1) and a comparison of growth rates to steady state
drift (x 6.2). We compare our work to other studies of dust-layer
dynamics in x 7. A summary and conclusions are given in x 8.

2. BASIC EQUATIONS

Our gas and particle ‘‘fluids’’ obey continuity and Euler
equations for the evolution of particle (Vp) and incompressible1

gas (Vg) velocity, here presented in a nonrotating frame:

@�p
@t

þ:= (�pVp) ¼ 0; ð1Þ

:=Vg ¼ 0; ð2Þ
@Vp

@t
þ Vp =:Vp ¼ ��2

Kr�
Vp � Vg

tstop
; ð3Þ

@Vg

@t
þ Vg =:Vg ¼ ��2

Krþ
�p
�g

Vp � Vg

tstop
� 9P

�g
; ð4Þ

where P is the gas pressure, �p and �g are the particle and gas
spatial densities, respectively, and �K / r�3=2 is the Keplerian
orbital frequency at cylindrical radius r (see Table 1 for definitions
of symbols). We ignore vertical stratification and self-gravity for a
simpler analysis, avoiding in particular the vertical settling and
stirring of particles. The particle stopping time tstop is conveniently
independent of �p , Vp , and Vg for the small particles (rT1 m at
1 AU) of interest prior to planetesimal formation. Epstein’s law

t
Ep
stop ¼

�sa

�gcg
ð5Þ

applies when a < (4=9)kmfp, where a is the particle radius, kmfp

is the gas mean free path (and kmfp � 1 cm at 1 AU), cg is the gas

sound speed, and �s denotes the material density of the solid.
Particles larger than 4

9
kmfp but small enough that the Reynolds

number of the flow past the solid, Re � 4ajVp � Vgj=(cgkmfp),
is less than 1 obey Stokes’ law:

tStstop ¼
4�sa

2

9�gcgkmfp

: ð6Þ

For generality we use the dimensionless stopping time parameter

�s � �Ktstop ð7Þ

instead of referring to specific particle sizes and disk models.
In this context,2 fluid description of particle motions (as

opposed to the kinetic theory approach) requires that solids be
tightly coupled to gas. The criterion �sT1 ensures strong cou-
pling to dynamical perturbations, while !tstopT1 suffices for
disturbances of arbitrary frequency, !. We do not consider
�s > 1.
Since relative motions between solids and gas are slow

compared to center-of-mass (COM) velocities (in equilibrium
and for perturbations), we express equations (3) and (4) in terms
of relative motion, �V � Vp � Vg, and COM motion, V �
( �pVp þ �gVg)=�, with � ¼ �p þ �g being the total density:

@V

@t
þ V =:V þ F(�V2) ¼ ��2

Kr�
9P

�
; ð8Þ

@�V

@t
þ V = :(�V )þ�V = :V þ G(�V2) ¼ � �

�g

�V

tstop
þ 9P

�g
:

ð9Þ

TABLE 1

Symbols

Symbol Definition Meaning

tstop ................... Eqs. (5) and (6) Particle stopping time

� s ...................... �tstop Dimensionless stopping time

�p, �g ................ . . . Particle and gas space densities

�........................ �p + �g Total density

fp , fg .................. �p /�, �g /� Particle and gas fractions

! ....................... . . . Complex wave frequency

s, !< ................. =(!), <(!) Growth rate and wave frequency

vwave ................. !< /kx Radial wave (phase) speed

kx , kz ................. . . . Radial and vertical wavenumbers

k........................
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
Wavenumber

Kx , Kz ............... kx�r, kz�r Dimensionless wavenumbers

�........................ Eq. (16) Pressure parameter

r ........................ . . . Cylindrical disk radius

x, y, z................ . . . Rotating Cartesian grid

VK ..................... �Kr Keplerian circular speed

�....................... (1 � fg�)�K COM orbital frequency

Vp , Vg ............... . . . Particle and gas fluid velocities

V ....................... fpVp + fgVg COM velocity

�V.................... Vp � Vg Relative velocity

v........................ Eq. (20) Perturbed COM velocity

�v .................... Eq. (21) Perturbed relative velocity

�........................ Eq. (22) Perturbed density

h........................ Eq. (23) Perturbed pressure/enthalpy

2 A fluid description might also be possible given frequent interparticle
collisions, but for small solids in a gas disk the stopping time is shorter than
the collision time.

1 Since motions are very subsonic, this assumption filters sound waves from
the analysis.

YOUDIN & GOODMAN460 Vol. 620



The functions

F(�V2) � 1

�
:=

�g�p
�

�V�V

� �
; ð10Þ

G(�V2) � �g
�
�V = :

�g
�
�V

� �
� �p

�
�V =:

�p
�
�V

� �
ð11Þ

can often be dropped because of the smallness of�V, in which
case equations (8) and (9) simplify considerably. (Since the
conditions for the neglect of these terms differ for equilibrium
and perturbed motions, they will be addressed subsequently.)
Another advantage of this formulation is that drag forces do not
appear in COM evolution, and gravity, including self-gravity
were it included, is absent from the relative motion equation.

2.1. Steady Drift Solutions

The time-steady, axisymmetric drift motions of solids and
gas have been well studied (Nakagawa et al. 1986) and are sim-
ple to rederive from equations (8) and (9) with F ¼ G ¼ 0:

U ¼ W ¼ �W ¼ 0; ð12Þ

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
K þ r

�

@P

@r

s
� 1� �g

�
�

� �
VK; ð13Þ

�U ¼ �2
�g
�

�VK�s

1þ (�s�g=�)
2
; ð14Þ

�V ¼ �g
�

� �2 �VK�
2
s

1þ (�s�g=�)
2
; ð15Þ

whereV ¼ Ur̂ þ V �̂þWẑ,�V ¼ �Ur̂ þ�V �̂þ�Wẑ, over-
bars denote steady state solutions, VK ¼ �Kr is the Keplerian
circular speed, and

� � � 1

2�gV 2
K

@P

@ ln r
� cg

VK

� �2

ð16Þ

measures the radial pressure support. In standard models of
planet-forming disks, � � 10�3 at 1 AU. Neglect of the non-
linear drift terms (F, G ) is, in practice, always justified for
equilibrium solutions. These terms would only merit inclusion
in the unlikely scenario that pressure strongly dominated grav-
ity, �31.

Our equilibrium solutions (12)–(15) contain no vertical
motion, because of the neglect of vertical gravity. The COM is
fixed in radius, orbiting as a gas supported by a pressure P, but
with a mean molecular weight augmented by �/�g. For out-
wardly decreasing pressure, � > 0, sub-Keplerian gas robs par-
ticles of angular momentum, giving inward migration of solids,
Up ¼ (�g=�)�U < 0, and outward migration of gas, U g ¼
�(�p=�)�U . Since it will set the scale for wave speeds, we
introduce the unweighted sum of the radial drift speeds:

Usum � Up þ U g ¼ �2�g
�g � �p

�2

�VK�s

1þ (�s�g=�)
2
; ð17Þ

which has an interesting density dependence. In the test-particle
limit, �p ! 0, Usum ! Up ! �2�VK�s. With increasing par-
ticle concentration, the gas migrates faster at the expense of the
solids, until Usum ¼ 0 for equal densities. At �p ¼ 3�g, Usum ¼
�VK�s=4 reaches its (positive) maximum. For even larger par-
ticle concentrations,Usum declines as the gas pressure is diluted
by the particle mass.

Azimuthal drift is much slower than radial, �V=�U ¼
�g�s=(2�), for tight coupling. For loose coupling,�V ! �VK as
particle and gas trajectories approach unperturbed Keplerian
and pressure-supported rotation, respectively. The previous cau-
tion about applying fluid equations for �s 3 1 can be ignored for
these equilibrium solutions provided the disk varies negligi-
bly over a stopping length tstop�U � �rTr. Finally, note that
our unstratified model, with @V=@z ¼ 0, ignores the vertical
shear, which can generate Kelvin-Helmholtz instabilities.

2.2. Localized Perturbation Equations

We consider perturbations to steady state motion (eqs. [13]–
[15]) on length scales much shorter than disk radii (indeed,
shorter than the thickness of the gas layer, Hg � �1=2r). This
allows a local treatment, with Cartesian coordinates corotating
about a fixed radius r0 and with the orbital frequency of the local
COM �0 ¼ V�(r0)=r0. In the new coordinates

x � r � r0; ð18Þ
y � r0(�� �0t); ð19Þ

we approximate differential rotation, as usual, by plane-parallel
flow with linear shear, V ¼ �q�0xŷ, where q ’ (3=2) for the
nearly Keplerian profile. Within this approximation drift mo-
tions are radially constant, d�V=dx ¼ 0. We decompose fluid
variables into steady backgrounds and perturbations:

V ¼ � 3

2
�0xŷþ v(x; z; t); ð20Þ

�V ¼ �Ux̂þ�V ŷþ�v(x; z; t); ð21Þ
� ¼ �0½1þ �(x; z; t)�; ð22Þ
P ¼ �0½�ge xþ h(x; z; t)�; ð23Þ

where ge ¼ �dP0=drjr0=�0 ¼ 2��2
0r0�g=�0 > 0. Henceforth

we drop overbars and the subscripted zeros from unperturbed
states. Perturbations are axisymmetric, which avoids stretching
by radial shear, and are given a Fourier dependence

f (x; z; t) ¼ f̃ exp ½i (kx xþ kz z� !t)�; ð24Þ

with real wavenumbers kx and kz and a complex frequency

! ¼ !< þ is; ð25Þ

with a wave frequency !< and growth (or damping) rate s.3

The linear perturbation equations read

�i!v� 2�vx̂þ �

2
uŷþ F0 ¼ �ikh� �ge x̂; ð26Þ

�i!�v� 2��vx̂þ �

2
�uŷþ ikx�Uvþ G0

¼ � �vþ ��Vð Þ
fgtstop

þ ik
h

fg
; ð27Þ

�i!� þ ik = v ¼ 0; ð28Þ
k = v ¼ fp k =�vþ fgkx�U�; ð29Þ

and the terms that arise from perturbations of equations (10)
and (11) are

F0 ¼ ifg ( fp k =�vþ fgkx�U� )�V þ fpkx�U�v
� �

; ð30Þ
G0 ¼ ikx�U ( fg � fp)�v� fg�V�

� �
; ð31Þ

3 Modes with s > 0 and !< 6¼ 0 are often called ‘‘overstable’’ to distin-
guish them from nonoscillatory instabilities.
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where v ¼ ux̂þ vŷþ wẑ,�v ¼ �ux̂þ�vŷþ�wẑ, fg � �g=�
is the equilibrium gas fraction, and the particle fraction fp ¼
1� fg.

Equations (26)–(31) define a sixth-order (one less than the
number of time derivatives because of the incompressibility con-
straint) dispersion relation for !, whose solutions we investigate
in x 3. Equivalent results are obtained by perturbing particle and
gas equations (1)–(4) directly, but the relative velocity formula-
tion allows analytic simplifications. For low-frequency waves
with !P�, it is safe to neglect F 0 and G 0, but all terms are in-
cluded in our numerical solutions. In x 5 further approxima-
tions allow us to derive an approximate cubic dispersion relation
that describes the growing modes while filtering three strongly
damped modes.

3. GROWTH RATES AND WAVE SPEEDS

We investigate the growth rates and wave speeds, vwave �
!<=kx, of linear disturbances. The eigenvalue problem for !/�
( prescribed by eqs. [26]–[29]) is uniquely specified by four
quantities: the stopping time parameter �s ¼ �tstop and the equi-
librium solid-to-gas density ratio �p /�g , which define the back-
ground state, and two normalized wavenumbers,Kx ¼ �rkx and
Kz ¼ �rkz. Of the six modes, three decay within a stopping time
and are of little physical interest. The other three modes, of
which two are modified epicycles and the other is a uniquely
two-fluid secular mode, can be slowly damped or growing. The
secular mode gives the fastest growth. This section investigates
the fastest growing waves, considers whether turbulent vis-
cosity can stabilize short-wavelength modes, and relates growth
rates and wave speeds to the background flow, by analogy with
Howard’s (1961) semicircle theorem.

3.1. General Features

Figure 1 (left) plots growth rate contours versus stopping
time and �p /�g . We holdKz ¼ 1 fixed (more on this choice later)

and maximize the growth rate with respect to Kx , which is
plotted at right. Growth is possible for all values of � s and �p /�g ,
on slower than dynamical timescales. In the well-coupled
regime, �sT1, peak growth rates increase as s / �s (for fixed
�p /�g) since looser coupling increases the relative motion needed
for instability. The growth rates peak for marginal coupling and
decrease for �sk 1, but we ignore this regime where a fluid
description of the solids is questionable.
The density dependence in Figure 1 is more complicated and

has nothing to do with self-gravity, which is not included. As
expected, growth rates decrease in the test-particle limit as
�p=�g ! 0, and as �p=�g ! 1 when solids are unaffected by
drag. More surprisingly, growth is diminished in a narrow re-
gion around �p ¼ �g. We will show that this is related to van-
ishing wave speeds. Consequently, two lobes of relatively fast
growth (around �p=�g � 0:2 and 3) exist where particle-gas
feedback is significant, but not so close to �p ¼ �g that waves
stagnate. The fastest growth occurs in the particle-dominated
lobe.
The Kx values of Figure 1 (right) are well fitted by a broken

power law,

Kx ¼
2�s f

3
g

� ��1=2
fg <

1

2
;

ffiffiffi
2

p
��1=2
s f �0:4

g fg >
1

2
;

8><
>: ð32Þ

except for the spike at fg ¼ 1
2
. The preferred radial wavelengths

decrease with the particle stopping time as Kx / ��1=2
s . The

increase in Kx with �p /�g is related to the density dependence of
the gas stopping time, tstop�g /�p (see eq. [4]), and stopping time
for relative motions, tstop�g /� (see eq. [9]). The two fluids be-
come more tightly coupled as particle concentration increases,
resulting in shorter wavelength growing modes.

Fig. 1.—Left: Contours of growth rate (times orbital period) vs. stopping time and solid-to-gas density ratio. The vertical wavenumber is fixed at Kz ¼ 1, while Kx

is varied to maximize growth. Right: Radial wavenumbers (solid contours) of these fastest growing modes. The power-law fits (dotted contours) follow eq. (32). See
text (x 3) for discussion.
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3.2. The Longgand Short of It

Figure 2 (left) plots growth rate versus wavenumbers (Kx ,
Kz). Specific values of the density ratio and stopping time
(�p=�g ¼ 0:2, �s ¼ 0:01) are chosen, but the qualitative features
are rather general. We can identify two ‘‘ridges’’ along which
growth rates peak. The short-wavelength branch follows ver-
tical contours (Kx � 80 and Kzk 100 in the figure), while the
long-wavelength ridge falls diagonally along Kz � �sK

2
x (a

generalization of eq. [32] for Kz 6¼ 1 that ignores the den-
sity dependence). A smooth transition between the two ridges
occurs around Kx � Kz � 1=�s. Very long wavelength modes
(KxP1, KzP �s) are damped by frictional dissipation and angu-
lar momentum gradients. Much of this paper chooses the long-
wavelength branch by fixing Kz ¼ 1. The exact value chosen is
arbitrary since growth rates vary little along this ridge. This
subsection analyzes the short waves, which have larger growth
rates, but could be less relevant if turbulent viscosity were in-
cluded in the analysis.

3.2.1. Short-Wavvelenggth Limit: Kz 3Kx

The short-wavelength behavior is described by a disper-
sion relation that is independent of Kz for Kz 3Kx , as seen in
Figure 2. Physically, radial pressure perturbations become
negligible. Figure 3 plots the maximum growth rates and the Kx

values of the fastest growing modes in this large Kz limit. For a
gas-dominated system, the short waves grow marginally faster
than the long-wave branch; the difference is less than a factor
of 5 in the gas-dominated regime, �p=�gP 0:2. The preferred
radial wavenumber is nearly constant, Kx � 1=�s, in the gas-
dominated regime. The growth rate skyrockets as the density
ratio �p /�g increases toward and above unity. This contrasts
with the behavior we saw in the long-wavelength case, where
growth is suppressed near equal densities. The Kx value that
maximizes growth increases with particle fraction and does not
keep the characteristic value 1/� s .

The real frequencies of these modes (in both the particle- and
gas-dominated regimes, not plotted) are near, but slightly be-
low, the dynamical frequency. Longer wavelength modes have
lower frequencies. Indeed, Figure 2 shows that vwave � !<=kx
is similar for the fastest modes at all wavelengths. Hence modes
with higher kxmust have higher frequencies. The terms in equa-
tions (30) and (31) must be kept to describe the short-wavelength,
high-frequency modes.

3.2.2. Turbulent Diffusion

Another factor to consider in determining the relative signif-
icance of short or long waves is turbulent diffusion. Turbulence

Fig. 2.—Left: Contours of growth rate, log10(s=�) (solid lines), and damping rate, log10(� s=�) (dashed lines), vs. Kx and Kz for �p=�g ¼ 0:2 and �s ¼ 0:01.
Two regions contain the fastest growing modes: Kz k102, Kx � 80 (darkly shaded region) and along Kz � �sK

2
x f 3g (dotted line in both panels). Right: Wave speed,

vwave ¼ !<=kx, in units of ��vK�s, for the same modes. The contours from 0.1 to 1.1 increment by 0.2, and s peaks along this gradient in phase speed. Darkly
shaded, large phase speed regions to the right and upper left correspond to damped and to very weakly growing modes, respectively.

Fig. 3.—Maximum growth rates (solid line) and fastest growing radial
wavenumber (dashed line) vs. solid-to-gas density ratio for �s ¼ 0:01 in the limit
Kz 3Kx. The growth rates are below the upper limit implied by the semicircle
theorem (dotted lines), except for a narrow region near equal densities.
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is not included in our model, and sowe cannot be certain of its ef-
fects. If it introduces viscous diffusion, short-wavelength modes
would be preferentially damped. To estimate the relevance of this
effect , consider the diffusive timescale, tD � 4�2=(k 2D), with
the diffusion coefficient parameterized by the usual prescrip-
tion D � �c2g =�. Growth outpaces diffusion if stDk1, or
equivalently,

KP2�

ffiffiffiffiffiffiffiffi
s�

��

r
: ð33Þ

Considerable uncertainly surrounds the appropriate value for�.
The values invoked to explain accretion onto young stars, rang-
ing from 10�4 to 10�2 at least , may not apply here. Even if
accretion is driven by turbulent diffusion, disks likely contain
spatial inhomogeneities (disk midplanes that may be more qui-
escent) and experience temporal evolution (accretion rates de-
crease with age).

It is more relevant to consider diffusivities needed to maintain
a thin, but finite-density, particle layer. A simple balance between
settling and diffusion (see, e.g., YC04) for well-coupled particles
(�sT1) suggests that � � ��s½Hp=(�r)�2 is required for sedi-
mentation to a particle scale height Hp (which is assumed to
be thinner than the gas scale height). If Hp � �r (thinner lay-
ers may be strongly Kelvin-Helmholtz unstable), equation (33)
gives KP 2�½s=(��s)�1=2. Since sP��s (for �p < �g at least),
short modes withK 3 1 should be strongly damped. Even longer
wavelength modes, with K � 1 10, are affected viscous diffu-
sion, according to this analysis. However, viscous effects can
sometimes destabilize disks (Schmit & Tscharnuter 1995). This
issue merits further study.

3.3. Phase Speeds and the Semicircle Theorem

The right panel of Figure 2 plots the wave speed vwave of the
modes whose growth rates were shown in the left panel. For the
mode of interest, we see two plateaus of nearly constant phase
speed.4 The steep transition between these values overlaps the
ridge of large growth rates in Figure 2.

These results are analogous to Howard’s semicircle theorem
for theKelvin-Helmholtz instability, whichwe summarize briefly
(see Kundu & Cohen 2002 for a derivation). Howard (1961)
found that one-dimensional modes, /exp (st � i!< þ ikxx),
have a wave speed that lies between the minimum andmaximum
speeds in the shearing flow,Vmin < !<=k < Vmax. The semicircle
theorem,

!<

k
� 1

2
Vmax þ Vminð Þ2

� 	2
þ( sk )

2

� 1

2
Vmax � Vminð Þ2

� 	2
;

ð34Þ

says that the complex wave velocity of an unstable mode lies in
a semicircle (since only positive growth rates are considered)
of radius Vmax � Vmin. This imposes a limit on the maximum
growth rate,

s � k

2
(Vmax � Vmin); ð35Þ

which is achieved for a phase speed midway within the al-
lowed range.
The physical differences between our streaming instability

and the Kelvin-Helmholtz instability cannot be overstated: two
interpenetrating, unstratified, rotating fluidswith three-dimensional
velocities and two-dimensional wavenumbers versus a single,
plane-parallel, neutrally buoyant fluid with two-dimensional ve-
locities and one-dimensional wavenumbers. It is remarkable then
that ourmodes behave as if amodified semicircle theorem applied
to them. Since no proof of an analogous theorem for our problem
exists, we describe the similarities. First, the radial phase speeds of
our secular growing mode fall in the range 0 < jvwavej < jUsumj,5
where Usum is the sum of particle and gas drift velocities; see
equation (17). Since Usum is positive (negative) in a particle (gas)
dominated layer, vwave has the same sign asUsum. Second, growth
rates are largest near vwave � Usum=2 and vanish near the end-
points of the allowed range. Since Usum ¼ 0 for equal densities
(�p ¼ �g), the semicircle theorem is consistent with the finding
that growth is weakened in this case (although not in the large-
wavenumber limit, as we have discussed). The peak growth
rates are indeed bounded by s < jkxUsumj=2, except for a very
narrow region around �p ¼ �g.
To demonstrate the generality of these findings, Figure 4

plots the growth rates and wave speeds versus Kx and �p /�g . At
small Kx , wave speeds vwave approach Usum; for instance, with
�p=�g ¼ 0:1, vwave ! Usum ’ �1:5�vK�s, as the contour in-
dicates. For large Kx , vwave ! 0 (ignoring the mode switching
of the dark region in the upper left corner). Growth rates are
largest roughly midway through this transition, where vwave �
Usum=2, as indicated by the dashed contours. The suppression
of growth for �p ¼ �g , when vwave ’ Usum ¼ 0 and the ‘‘radius’’
of the semicircle vanishes, is clear.
The transition in vwave from Usum to 0 with increasing Kx has

an added wrinkle in the particle-dominated case. The wave
speed first rises slightly aboveUsum (which is clearly not a strict
upper limit) before dropping to zero, as can be seen by fol-
lowing the contours in Figure 4 (right) for �p=�g > 1. The anal-
ogy to the semicircle theorem is still relevant, since the fastest
growth occurs for vwave � Usum=2.
The analogy to the semicircle theorem connects the back-

ground flow to wave properties. The free energy of interpenetrat-
ing streams undoubtedly plays a role, but from this perspective, it
is surprising that the velocity scale is set by the sum rather the
difference of radial streaming velocities. More study of two
coupled, rotating fluids should increase our understanding of this
system.

4. EIGENFUNCTIONS: FLUID MOTIONS
AND DENSITY PERTURBATIONS

Having investigated the eigenvalues, i.e., the growth rates
and phase speeds of a mode, we consider the eigenfunctions,
i.e., the Fourier amplitudes f̃ , that give us the fluid variables via
equation (24). An individual mode has a vertical phase speed
!< /kz , which can be eliminated by linearly superposing pairs of
modes with opposite signs of kz . Under a vertical parity transfor-
mation, the vertical velocity is odd, while ! and all other Fourier
amplitudes are even. The vertical standing waves have forms

fodd ¼ < i f̃ exp ½i(kxx� !t)�

 �

sin (kzz); ð36Þ
feven ¼ < f̃ exp ½i(kxx� !t)�


 �
cos (kzz) ð37Þ

5 For �p > �g , the behavior is a bit more complicated. This case will be
discussed shortly.

4 We can ignore the discontinuities in the upper left corner and far right-hand
side of the plot , which correspond to different, epicyclic roots that happen to
give larger growth rates in this region of phase space, which is generally un-
interesting since growth rates are small.
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for the odd (vertical velocity) and even (all other) variables,
respectively.

Figure 5 plots particle velocities for a rapidly growing mode.
The Kx value gives the fastest growth rate for Kz ¼ 1, as in
Figure 1. Since vertical wavelengths are longer than radial,
tight coupling of particles to the incompressible gas, @ug=@xþ
@wg=@z ¼ 0, causes vertical velocities to dominate. Recall from
Figure 1 (right) that elongation of the fastest growing modes is
more ( less) pronounced for tighter ( looser) coupling. The verti-
cal velocities flow toward density maxima for this growing secu-
lar mode. The pair of epicycles are weakly damped (s � �2:4 ;
10�3� and s � �8:9 ;10�3�) for these parameters. Their flow
patterns are similar to Figure 5, except that vertical velocities
flow toward density minima. Gas and particle velocities are not
well coupled for the three strongly damped modes. The gas is
nearly stationary, so particle motion leads to rapid decay.

Figure 6 shows perturbed relative velocities for the same
mode as Figure 5, with the perturbed density in gray scale. This
relative motion is predominantly radial, even accounting for
azimuthal velocities. The correlation of density with�u can be
derived from the continuity equation using !< 3 s.

These eigenfunctions cannot be fitted into a finite-thickness
dust layer. This is clear from equations (36) and (37) and Figure 5,
which show that vertical velocities are maximized where density
(and other component of velocity) vanish, and vice versa. Amore
complicated model that includes either stratification or a free
surface between the particle layer and overlying gas layers would
give eigenfunctions with more realistic boundary conditions.

5. TERMINAL VELOCITY APPROXIMATION

A simpler description of unstable modes, which filters the
three strongly damped roots, is achieved by assuming that rel-
ative velocities reach ‘‘terminal velocity,’’ so that drag forces

Fig. 4.—Left: Growth rates, log10(s=�) (solid contours), and decay rates, log10(� s=�) (dotted contours), vs. solid-to-gas density ratio and radial wave-
number for �s ¼ 0:01 and Kz ¼ 1. Two lobes of rapid growth are centered on �p=�g � 0:2 and 3, with suppressed growth near �p ¼ �g. Right: Radial wave speed
contours in units of �vK�s for the same modes. The phase speed changes sign across �p ¼ �g. The dashed contours in both plots indicate the location where
vwave ¼ Usum=2.

Fig. 5.—Instantaneous (perturbed) particle velocity vp in the x-z plane with a
gray-scale image of azimuthal velocities (white is positive) for a growing mode
with Kx ¼ 5, jKzj ¼ 1, �s � :044, and �p=�g ¼ 0:2. Gas velocities are very
similar because of strong coupling. The density is very nearly in phase with the
azimuthal speed, so the vertical flow is channeled to high-density regions. The
ratio of azimuthal to vertical velocity amplitudes is jvpj=jwpj ’ 0:66. The radial-
to-vertical ratio, jupj=jwpj ’ Kz=Kx ¼ 0:2, follows from near incompressibility.
This mode has a growth rate s=� � 2:9 ;10�3 and a phase speed !<=kx ¼
�0:42j�U j.
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adjust quasi-statically to pressure forces. This amounts to ne-
glecting all terms on the left-hand side of equation (9), both in
equilibrium and in perturbation. Thus �V ¼ �(9P=�)tstop ,
and perturbations obey

�vþ ��V � ikhtstop: ð38Þ

This approximation, which ignores inertial accelerations, is
valid so long as KT1=�s and �sT1.

A cubic dispersion relation,

( !� )
3

þ �s( !� )
2

i fp
K 2

x

K2
þ 2f 2g Kx

� �
� ( !� ) Kz

K

� �2

þ 2 fgKx

Kz

K

� �2

( fp � fg)�s ¼ 0; ð39Þ

results from equations (26), (28), (29), and (38); see the Ap-
pendix for intermediate equations. The roots of this cubic re-
produce the results of the full system of equations to very good
approximation when the stated assumptions are met.

5.1. Stability of In-Plane Motions

When Kz ¼ 0, equation (39) gives

�i!=� ¼ �fp�s � 2if 2g Kx�s; ð40Þ

so that all modes are damped, s < 0. The full equations also lack
growing modes for kz ¼ 0. Fluid motions in this case are quite
limited, especially given gas incompressibility. Equations (26)
and (27) show that w ¼ �w ¼ 0.6 The gas incompressibility
condition, kxug ¼ 0, requires ug ¼ 0 for a nontrivial mode.
Thus gas velocities are one-dimensional, azimuthal. We must

allow two-dimensional waves, and three-dimensional motion,
to find secular instability.

5.2. Equal Mass

When the mass densities of solids and gas are equal, so that
fp ¼ fg ¼ 1

2
, the constant term in equation (39) vanishes. In this

case we have a static mode, ! ¼ 0, and the quadratic roots,

�i!

�
¼ �sK

2
x

4K 2
�1þ i

K 2

Kx

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i

K 2

Kx

� �2

� 4KzK

�sK 2
x

� �2
s2

4
3
5:
ð41Þ

The growth rate s � 0 for any (real) choice of parameters.7

Notice that as �s ! 0 the modes approach the modified epicy-
clic frequency, !=� ! �Kz=K (this is the frequency of in-
ertial oscillations in a single incompressible fluid). Numerical
solutions of the full equations give suppressed, but actually
nonzero, growth when densities are nearly identical. Also,
small-wavelength (Kk1=�s) behavior, in which growth rates
increase near equal densities, see Figure 3, is not captured in
the terminal velocity approximation, since terms giving small-
scale accelerations have been dropped.

5.3. Series Solutions

Aside from the special cases above, it is more enlightening
to consider solutions to the approximate dispersion relation,
equation (39), as a series expansion in �sT1:

! ¼ !0 þ !1�s þ !2�
2
s þ � � � : ð42Þ

(Series solutions of the full sixth-order dispersion relation have
been done, but are not presented here.) Two of the three modes
described by equation (39) are epicycles (inertial oscillations)
to leading order, with !0=� ¼ �Kz=K. The first-order correc-
tion, !1=� ¼ �fg fpKx � i fp(Kx=K )2=2, shows that these modes
are damped to lowest order. With the full set of equations,
epicycles can grow for Kz 3Kx, but growth rates of the secular
mode are always faster.
The third, secular root is oscillatory to leading order:

!1

�
� 2 fg( fp � fg)Kx: ð43Þ

Thus the leading order wave speed is !1�s=kx ¼ Usum, the
sum of the equilibrium drift speeds of gas and solids; see equa-
tion (17). This agrees with the wave speed of growingmodes for
small Kx, before higher order corrections become significant.
Since !2 ¼ 0 for this mode, !3 gives the leading order growth
rate:

s3 � �i=(!3) ¼ 4 fp f
2
g ( fp � fg)

2 K
4
x

K 2
z

�: ð44Þ

This rate is always positive, but nominally third order in �sT1.
However, growth rates are larger for Kx 3Kz. The growth is
maximized at Kz � �sK

2
x as a higher order expansion (and, e.g.,

Fig. 2, left) shows. This asymmetry in wavenumbers makes the
growth rate first order in � s.
These low-order expansions confirm some basic results

about growth rates and wave speeds. Most importantly, we

Fig. 6.—Perturbed relative motion of solids and gas, �v, for the same mode
as Fig. 5. The gray-scale image shows density perturbations (white is posi-
tive). The radial relative motion dominates the azimuthal, j�vj=j�uj � 0:15,
and vertical, j�wj=j�uj � 0:11, speeds. Density perturbations correlate with
relative motion.

6 If s ¼ �1=( fg tstop), then�w 6¼ 0 is possible, but this damped mode is not
of particular interest.

7 This follows trivially from the fact that <f½(1þ ia)2 � b2�1=2g � 1 for all
real values of a and b.
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demonstrate that the secular mode is responsible for fastest
growth, not the pair of epicycles.

6. APPLICATIONS

6.1. Particle Concentration

Two-fluid instabilities like ours could aid planetesimal for-
mation by generating particle-density perturbations. With the
aid of self-gravity these perturbations could eventually collapse
to solid densities. Perturbation amplitudes are arbitrary in a
linear analysis, so inferences about nonlinear development are
speculative. To estimate the relevance of density perturbations,
we compare the perturbation amplitudes of particle density, A� �
j�j=fp, and radial pressure gradients, Ah � jkxh=gej. Figure 7
shows that A� > Ah, suggesting that density perturbations are
significant. By comparison with Figure 1, we see that the re-
gions of largest growth rates do not coincide and are somewhat
anticorrelated, actually, with the largest density perturbations.

We briefly justify using radial pressure gradients as the scale to
compare the density perturbations. Vertical gradients of pressure
perturbations are smaller (since kz < kx) and more importantly
have no background value in our unstratified model. Perturba-
tion velocities have six components and can be compared to sev-
eral different background speeds, including drift, Keplerian shear,
and �vK, the amplitude of pressure-supported sub-Keplerian ro-
tation. However, the amplitudes jvj=�vK and j�vj=�U are
similar to Ah , i.e., somewhat smaller than A�.

The mass of solids in an unstable mode varies considerably
over the wide range of possible wavenumbers. Let us conser-
vatively take a small-scale mode with Kx � Kz � 100, in which
the solid mass is

Mk ¼
�p

Hp

2�

kx

2�

kz

2�

k y

� 1020

k y�r
g; ð45Þ

where the particle surface density �p � 10 g cm�3, � � 10�3,
and the particle scale height Hp � �r is the value for stirring
by Kelvin-Helmholtz instabilities (YS02). This is thin enough

so that �pk 0:1�g. Since our modes are initially axisymmetric,
k y�r < 1 is possible, but even if azimuthal breakup occurs on
scales comparable to the radial wavelength, k y�r � Kx � 100,
Mk is comparable in mass to a 100 km planetesimal. Thus,
while nonlinear development is unclear, the density pertur-
bations induced by streaming instabilities contain more than
enough mass to make healthy planetesimals.

6.2. Growth vversus Drift Rates

Our local treatment of the instability is valid only if the
growth is faster than global disk evolution, including changes in
surface density or temperature. Single-fluid accretion disk mod-
els evolve on timescales greater than 105–106 yr, while passive
disks evolve more slowly. Global redistribution of solids, at the
equilibrium radial drift speed Up , changes particle surface den-
sities (YS02; YC04). Gas densities are less subject to change
because drift speeds are smaller (when �p < �g) and because
drift rates are much smaller for the majority of the gas mass,
which lies outside the particle-dense midplane.

To justify the local treatment of the instability, we compare
growth rates to equilibrium radial drift, which leads to a global
redistribution of solids (YS02; YC04). Figure 8 shows that
growth rates are at least an order of magnitude faster than the
particle drift rate, Up /r. Gas drift rates, also slower than growth
rates, are shown as well. In a stratified disk, the gas drift rate will
decrease with height as the particle concentration drops, while
the particle drift rate asymptotes to a constant value. For all rea-
sonable values of stopping time and pressure support �, growth
should still dominate. Both the growth and drift rates are linearly
proportional to stopping time for �sT1. A hotter disk, i.e.,
larger � � c2g =v

2
K / T, has a faster drift rate, while growth rates

are unaffected by �.8 As long as disks are not hotter than standard
models by more than an order of magnitude (a safe assumption
according to observations), we conclude that growth rates are
robustly faster than drift rates. This enhances our confidence that
the instability can be astrophysically relevant.

Fig. 7.—Contours of A� /Ah , the ratio of particle-density perturbations to
radial pressure gradient perturbations, in � s-�p /�g space for the growing modes
of Fig. 1. Density perturbations are sizeable for �p=�gP1. The largest relative
density perturbations, around �p=�g � 1, correspond to slowly growing modes.

Fig. 8.—Growth rates and equilibrium drift rates of solids and gas vs. the
density ratio �p /�g for � ¼ 2 ; 10�3, �s ¼ 0:01. The growth rates are faster than
the drift rates for the given values. This is true more generally as well; see text.

8 The fastest growing wavelength is shorter in a hot disk , with k / �.
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7. OTHER WORK

There have been several previous studies of the linear stability
of gas-and-dust mixtures in the context of the protosolar nebula.
Theseworks include physical effects that we have neglected, such
as self-gravity and vertical stratification. But because of var-
ious restrictions on the types of perturbations considered, none
found the modes described in this paper. Coradini et al. (1981)
and Noh et al. (1991) wrote down two-fluid equations includ-
ing self-gravity but permitted only horizontal motions. Sekiya
(1983) allowed verticalmotions but worked in the tightly coupled
limit where the velocity difference between the two fluids is
negligible. All of these authors found gravitational instabili-
ties at sufficiently high densities. Ishitsu & Sekiya (2003) and
Garaud & Lin (2004) examined the stability of the vertical shear
between the settling dust layer and the overlying gas but also
neglected the slippage between the two fluids.

Like the present paper, Goodman & Pindor (2000) found an
instability driven by drag rather than self-gravity, but theirs was
not a complete two-fluid analysis. Following Goldreich &Ward
(1973), Goodman & Pindor treated the dust as a monolithic
although dilute layer, the drag being exerted at its top and bot-
tom surfaces by boundary-layer turbulence driven by the dif-
ference in orbital velocity between the dust-laden and dust-free
components. The dynamics of the gas was not treated explic-
itly, its effects on the dust layer being parameterized in terms of
the orbital velocity difference. Goodman & Pindor did however
emphasize that they expected the existence (although not the
growth rate) of drag instabilities to be independent of many
physical details provided that the drag is a collective effect: in
other words, that the drag on a dust particle depends upon
neighboring particles and is not linearly proportional to dust
mass. In Goodman & Pindor’s case, the collective property de-
rives from the assumption that the drag depends on conditions
at the surface of the dust layer only, so that the average drag per
particle is inversely proportional to the column density of the

dust layer. We, however, have resolved the vertical dimension
explicitly, so that the drag on a small dust particle depends on
its motion relative to the local gas only. But because of the
back-reaction of the dust on the gas, the drag is collective: as
the local ratio �p /�g increases, the relative velocity and the drag
per particle decrease. Apparently, this is enough to support an
instability despite the many simplifications assumed for our
background state.

8. CONCLUSION

We describe a two-fluid streaming instability relevant to
protoplanetary disks of particles and gas. Unstable modes are
powered by the relative drift between the two components, a
universal consequence of radial pressure gradients. Growth oc-
curs despite the fact that the two components interact only via
dissipative drag forces. The robust instability has growth rates
slower than dynamical times but faster than drift times. The
fluid motions generate particle-density enhancements, even in
the absence of self-gravity, which could trigger planetesimal
formation. The physics of our disk model was simplified con-
siderably (see x 2). Numerical studies that include vertical strat-
ification, a dispersion of particle sizes, and nonlinear effects
could elucidate the role of such instabilities in protoplanetary
disk evolution.
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ported by the National Aeronautics and Space Administration
under grant NAG5-11664 issued through the Office of Space
Science. This research was supported in part by the National
Science Foundation under grant PHY 99-07949.

APPENDIX

SIMPLIFIED EQUATIONS OF MOTION

Derivation of the cubic dispersion relation, equation (39), uses the terminal velocity approximation, equation (38), with equa-
tions (26), (28), and (29) and neglecting the F 0 and G 0 terms. Directly solving for the characteristic equation of this set introduces
terms, including a quartic in !, which must be dropped for consistency with the �sT1 approximation. Alternatively, elimination of
pressure and relative motion variables gives the following three-equation set:

(!� fgkx�U )� ¼ 2 fpkx�sv; ðA1Þ

�i!�� 2�kzv ¼
kz��U�

�s
; ðA2Þ

�i!þ k 2
x

k 2
fp�s�

� �
vþ kz

2k 2
�� ¼ � k 2

x

2k 2
fg��U�; ðA3Þ

where � � kzu� kxw is proportional to azimuthal vorticity (modulo a phase). The dispersion relation follows directly. Equation (A1)
gives a simple relation between density and azimuthal velocity perturbations, which are nearly in phase since the growth rate is usually
small compared to !< � fgkx�U .
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