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ABSTRACT

This paper considers the question of the large-scale gravitational stability of an arbitrary, highly
flattened stellar system, which is assumed initially to rotate in approximate equilibrium between its
self-gravitation and the centrifugal forces. It is concluded that no such disk, if fairly smooth or uniform,
can be entirely stable against a fendency to form massive condensations within its own plane, unless the
root-mean-square random velocities of its constituents, in the directions parallel to that plane, are every-
where sufficiently large. Lacking such random motions, it is shown that the system must be vulnerable
to numerous unstable disturbances, the dimensions of which may approach its over-all radius, and
whose times of growth are to be reckoned in fractions of the typical periods of revolution.

The minimum root-mean-square radial velocity dispersion required in any one vicinity for the com-
plete suppression of all axisymmetric instabilities is calculated (in collaboration with A. Kalnajs) as
3.36 Gu/x, where G is the gravitational constant, and u and « are the local values of the projected stellar
density and the epicyclic frequency, respectively. From that, and the observed u and «, together with
their uncertainties, this minimum for the solar neighborhood of our Galaxy is estimated to fall between
20 and 35 kni/sec, a range which indeed encompasses the actual radial velocity dispersions of the most
predominant types of stars in our vicinity. It is pointed out that both this curious agreement, and also
the well-known discrepancy between the z- and r-velocity dispersions at least of the older disk stars, may
be explainable in terms of past instabilities of this galactic disk.

I. INTRODUCTION

The well-known instabilities of those Maclaurin spheroids whose rotational flattening
exceeds a certain fairly moderate value suggest that other sufficiently flattened, rotating,
and self-gravitating systems might in some sense likewise be unstable. At any rate,
these instabilities have often been cited as a likely reason why one does not observe
elliptical galaxies exceeding a certain degree of oblateness. It is only when we turn to
consider what are now thought to be the distributions of all but the youngest stars in the
disks of the ordinary (as opposed to the barred) spiral galaxies that this classical result
suggests a serious dilemma: How is it conceivable, in spite of these or analogous insta-
bilities, that so much of the fainter stellar matter within such galaxies—and certainly
the SO galaxies—should today appear distributed relatively evenly over disks with
something like a ten-to-one flattening?

It is essentially this question which the present investigation will try to answer. In a
broader sense, however, this paper forms only a part of a more comprehensive investiga-
tion of the large-scale stability of an entire galactic disk that was recently envisaged by
C. C. Lin (1961) during a discussion with L. Woltjer. Motivated chiefly by a desire to
understand to what extent gravitation might be responsible for the spiral phenomenon,
Lin asked: What are the circumstances that would be needed for either one or both of the
stellar and interstellar parts of a supposedly smooth galactic disk to remain gravita-
tionally stable against all large-scale disturbances? Needless to say, a full answer to
Lin’s question would demand a simultaneous consideration of both the stellar and the
gas dynamics. However, since stars are today believed to comprise the preponderant
fractions of the total masses of most of the spiral galaxies, it seemed a legitimate first
approximation to ignore the interstellar gas and dust, and to concentrate here on the
stability of a thin disk composed only of stars. A discussion of the gravitational stability
of a thin layer of gaseous material imbedded within an otherwise stable galaxy will be
presented in a later paper (Toomre 1964).

1217

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1964ApJ...139.1217T

.139.1217T

1964ApJ. .

1218 ALAR TOOMRE Vol. 139

The general character of the present stability problem can perhaps best be appreciated
by recalling that no non-rigid, infinitesimally thin, plane sheet of gravitating matter—not
even a perfectly uniform, infinite sheet—could long endure near its original state in the
presence of the slightest disturbances if it lacked all stabilizing influences. One should
therefore inquire: Which other mechanisms could conceivably be present in a rotating
disk of stars that would help thwart this inherent tendency toward gravitational clump-
ing? Upon reflection, it becomes evident that at most three such stabilizing effects need
be considered. These are () the Coriolis or centrifugal forces stemming from the rotation,
(b) the equivalent of a pressure resulting from the random motions of the individual mass
elements, and (¢) the fact that the magnitudes of the gravitational forces themselves
would be less if the thickness of the disk were appreciable.

It shall indeed be seen from the simple order-of-magnitude arguments of the following
section that no amount of rotation can by ifself insure the complete stability of a thin,
gravitating sheet. The same estimates will, however, also suggest that a combination of a
basic rotation and of sufficiently large random velocities in the plane of the disk should
be able to cope with all of the instabilities. These general conclusions will subsequently
be verified in Sections ITI-V for several specific examples; those calculations will in
addition provide numerical estimates of some of the quantities involved. Finally, in
Section VI, we will discuss certain implications of these results.

II. AN ORDER-OF-MAGNITUDE DISCUSSION
a) Instability in the Presence of Rotation

To begin, let us consider an arbitrary thin disk, all parts of which initially revolve
about a common center not necessarily with a uniform angular velocity, but without
random motions and exactly in equilibrium between the gravitational and centrifugal
forces. Now imagine that such a disk somehow suffers a slight contraction over a rela-
tively small region or patch whose characteristic linear dimension is L.

To determine whether the excess gravitational attraction toward such a disturbed
region, which by itself would act to increase that local mass concentration, could be
overcome solely by Coriolis or centrifugal forces, let us suppose that this local shrinkage
has increased the density, u, per unit surface area in that neighborhood by a fraction e.
In that case, a typical material element previously located near the periphery of this
region would now find itself roughly an increment of distance eL closer to the involved
mass of the order ul2 For that reason, it should feel an additional gravitational force
of the order

Gul?[(L — eL) 2 — L% =~ eGu m

per unit mass, which would tend to pull it deeper into the affected region. Here G is the
gravitational constant.

On the other hand, owing to the tendency to conserve even the detailed angular
momentum (about the center of the disturbance), the local or intrinsic angular velocity,
say Qiocal, Of the matter in the contracted region should also have increased by approxi-
mately the fraction e. Therefore, as would be judged by an observer moving with the
center of the affected region, a typical material element should at the same time experi-
ence an increased centrifugal force per unit mass that is roughly equal to the change in
the product of its distance, d =0(L), from the center of this region, and of Qi,ca1?, or

A(Qlocaa\.l2 d) = A(Qloca.l2 d4/d3) =~ Qloca.l2 at A(d—s) ~ 5L9100a12 . (2)
This force would in general try to fling the particular element back out from that region.

It readily follows that the latter force could not be expected to overcome the former
imbalance if L were sufficiently shorter than a certain critical length

Lcrit = GI«‘/QIOM).I2 . (3)
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Thus, it is the disturbances of sufficiently skort dimensions which must in general remain
unstable in spite of the rotation. This conclusion is akin to one that was arrived at
already by Maxwell (1857) during his study of the stability of Saturn’s rings; in connec-
tion with galaxies, it has recently been explicitly mentioned also by Mestel (1963). It is
obviously the opposite of the result found for the Jeans instability proper, but it should
be remembered that in the latter case the stabilizing influence consists of pressure forces
and not a rotation.

More remarkable than that, however, is the actual magnitude of the length Le;s.
Clearly, Q10ca1 Will in most circumstances be comparable to the angular velocity, Q, of
revolution around the galactic center, although owing to differential rotation the two
will not necessarily be equal. Moreover, the latter velocity must depend on the mean
surface density, umean, Of the entire galaxy and on the galactic radius, R, approximately
through

¥R =~ (GﬂmeanR2)/ R? = Gpmean - (4)

Consequently, the critical length Lt from equation (3) may be re-expressed as
Leriv = (#/Mmean) (Q/Qlocal)2 R ’ (5

thus indicating that whenever the densities 4 and umean are comparable, and all sta-
bilizing influences other than rotation are absent, the length scale which divides the
unstable disturbances from those that are stable is apparently of the same order of
magnitude as the galactic radius!

b) Instability in the Presence of Random Motions

One can envisage the role of the virtually collisionless random movements of the
stars relative to one another in at least two ways: These random motions can either be
thought of as a diffusive mechanism, or else as the equivalent of a pressure. Either way,
there seems little doubt that these motions will on the whole tend to suppress, rather
than encourage, any given instability.

If we adopt the diffusive interpretation, an obvious criterion for the prevention of an
earlier instability by the random motions appears to be that the average mass elements
should manage to travel relative to each other at least through a sizable fraction of the
linear scale of the perturbed region during the time in which the disturbance amplitude
would otherwise have grown, say, by a factor e. Now, for a sheet that is not already in
rotation, such a characteristic time of growth in the absence also of random motions
can be estimated to be of the order of (L/Gu)!/2. Hence, writing the mean-square random
velocity as {#?), we would expect stability only when, approximately,

(L/Gu)2 > (w12 L. (6)

Hence, a given velocity dispersion in a non-rotating sheet consisting of encounter-free
particles ought to stabilize only those disturbances whose typical dimensions are suffi-
ciently smaller than a second critical length

L; = u?/Gu . N

This conclusion, of course, is very analogous (but owing to the different geometry, not
entirely equivalent) to the Jeans result.

¢) Combined Effect of Random Motions and Rotation

From the above two conclusions we deduce that, under the joint influence of a rota-
tion and a moderate superposed velocity dispersion, the unstable disturbances ought to
be confined to a certain intermediate range of scales or ‘“wavelengths.” What is more,
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it appears unavoidable that this range will shrink as the velocity dispersion is increased.
Indeed, beyond some finite value of the velocity dispersion, it seems practically certain
that these severe instabilities (though perhaps not some slower secular changes) will be
avoided altogether. This minimum velocity dispersion for complete stability should
roughly correspond to L.t = L, hence we estimate it to be something like

<7"'2>minl/2 =~ G/Jf/ﬂlocal =~ QR(ﬂ/ﬂmean) (Q/Qlocal) . (8)

This evidently is of the same order of magnitude as the typical (linear) velocity of
revolution!
III. LOCAL CALCULATIONS INVOLVING ONLY ROTATION

To check on the above rather surprising indications, we shall now embark on several
more detailed calculations. The present section will describe some “local’” or mathe-
matically small-scale analyses of infinitesimal disturbances to the equilibrium state of
an infinitely thin, rotating disk without random motions.

a) Notation and Equations

We introduce non-rotating cylindrical polar coordinates 7, 8, z, such that the plane
2 = 0 coincides with that of the disk, the line » = 0 with its axis, and the increasing
angle 0 with the direction of rotation. The undisturbed surface mass density will be
denoted as u(r), and the corresponding linear velocity of revolution will be V(r) =
rQ(r), where, as before, Q(r) is the undisturbed angular velocity. Furthermore, we shall
make use of Oort’s “‘constants”

A(r) =3(Q@—aV/dr) and B(r) = —3(Q+ dV/dr), ©)

and will express the radial and circumferential disturbance velocity components at a
given location as #'(r, 0, ) and v'(r, 6, t), and the surface density and the gravitational
potential in excess of their unperturbed values as u’(r, 0, £) and ¢'(r, 2, 0, £), respectively.

The following four linearized equations, then, must govern any infinitesimal dis-
turbance which involves no motion in the z-direction:

o’ du’ ,_a¢’|
T -I—Q(r)ao 20(r) v = 37 |y’ (10)
dv’ v’ , _19¢’
at+(2(r) Y] 2B(r)u =736 |y’ (11)
g‘_": 6_;1.' _1_ 9 ’ u(r) Qv_,__
at+9(')ao+rar[“‘(')“]+—r 60—0, a2
and
V2 = —4xGu'o(z) . (13)

In the last (or Poisson) equation, the symbol §(2) denotes the Dirac delta function, and
v? is the three-dimensional Laplace operator; the gravitational force per unit mass has
here been defined as the positive gradient of ¢'.

b) Short Axisymmetric Disturbances

For an arbitrary model galaxy these four equations, together with appropriate
boundary conditions to be applied at the center and toward large radii, constitute an
eigenvalue problem which at present appears too formidable to be solved without re-
course to numerical analysis. Nevertheless, some insight into the likely character of
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their solutions may be had by assuming that a particular oscillatory and axisymmetric
eigen-disturbance might be approximated as

w(r, )= C1
7' (r, 1) = Cy )eior givt (14)
wir,t)=Cs

near some radius 7 = 7o, with the C; being (small) complex constants and with the local
“wavelength,” 27/a, being postulated to be much shorter than 7.

In that case, the corresponding gravitational disturbance potential ¢’ may at once be
estimated as follows: Equation (13) shows that if the position on the disk were described
by the Cartesian coordinates x and y, instead of » and 6, then a density

W (x) = Csetor (15)

would exactly be associated with a potential
¢'(x, 2) = C3 27G/a) €io* eol2l | (16)

where a is to be understood to be positive. Now, having assumed that ary >> 1, we see
that the density of equation (14), within a few wavelengths of a point on or near the
circle 7 = 79, must closely resemble that of equation (15). Moreover, since both densities
rapidly alternate in sign with changing location, it is also evident that the disturbance
gravitational potential must (because of cancellation of phase from larger distances) in
either case be determined almost wholly by the disturbance density within an equally
small neighborhood of the point in question. Consequently, the radial gravitational
force in the present situation must also be approximately

(0¢'/07) g 2 1 C3 270G €ior et amn

It now remains only to introduce equations (14) and (17) into equations (10)-(12),
and to approximate terms like ! d(ruu’)/dr appearing in equation (12) by u(ro)du’/dr
on the grounds that ru(r), for instance, would only change gradually with  compared
with the rapidly oscillatory behavior of #'(r, ¢). From that, it directly follows that the
assumed oscillation frequency w and the local wavenumber a must be related approxi-
mately through

2aGu(ro)a = k2(ro) — @?, (8)
where
Kz(fo) = —4 B(ro)Q(ro) . (19)

In addition, the relative amplitudes are determined as
C1 = (1w/2B)Cy = — (w/ua)Cs . (20)

(To be complete, it should be mentioned that the same equations admit a solution also
for w = 0. However, since C; vanishes for that solution, meaning that such a steady
additional motion is wholly tangential, it is perhaps better to regard that mode not
as a disturbance per se but simply as an alternative equilibrium state.)

It is reassuring to note from equations (18) and (19) that a typical particle would
gyrate about its mean position or epicenter with very nearly the usual epicyclic fre-
quency, , if either the undisturbed surface density, u, happened to be small or the wave-
length very large. More important, however, is that equation (18) generally shows the
frequency of oscillation to be decreased through the gravitational interaction between
the various elements partaking in the disturbance. Indeed, it implies that disturbances
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of this axisymmetric and approximately sinusoidal type should be unstable if their
local wavenumbers, a, exceeded a certain critical value

acrit(fo) = K2/27FGM ’ @1

or when their approximate wavelengths, \, as reckoned in the vicinity of 7 = r,, were
less than
)\crit(fo) = 27r/acrit = 472 G,u/K2 . (22)

In addition, it is also to be seen from that equation that the characteristic time in which
the amplitudes of such unstable disturbances ought to increase by a factor e should be

approximately
7= k[ Nerie/N) — 1712 23

For disturbances of one-half the critical wavelength, for instance, this interval should
amount to between about one-twelfth and one-sixth of the period of revolution.

¢) Critical Wavelengths for Two Galaxy Models

Figure 1 shows as functions of the radius the magnitudes of the critical wavelengths,
Nerit, computed from equation (22) for two of the disklike model galaxies that were
devised by the author in another paper (Toomre 1963). These are “Model 2,” which had
a rotation law

V(r) = Q.r(1 + 1r2/a®)12 (1 + r?/a?)5/4 (24)

and an exactly corresponding surface density
u(r) = (323a/87G) (1 + r?/a?)>/2 25

(where a denotes a characteristic length and Q, the central angular velocity), and the
“Gaussian Model,” for the particulars of which we refer the reader to equations (31)
and (32) of the other paper. .

Strictly, the large estimates for At shown in Figure 1 can only be regarded as
extrapolations from the local theory, inasmuch as they so flagrantly conflict with the
small wavelength assumption that was one of the bases for their derivation. Neverthe-
less, they clearly support the tentative conclusion of Section IIa by showing that even
the longest of those axisymmetric disturbances which one might be willing to regard as
“local”’ are distinctly unstable and grow exponentially with time (except at those large
radii at which the surface density has become so small that the mutual interaction has
become almost negligible).

d) Short Non-axisymmetric Disturbances

At first, it might be supposed that the non-axisymmetric instabilities of a seli-
gravitating disk should, if anything, be even more pronounced than the axisymmetric
ones, since intuitively it seems likely that the displacement of any given element in
longitude should be a simpler task than changing its orbital radius. That such reasoning
does not correctly account for the dynamical constraints of the Coriolis forces, however,
is indicated by the fact that the above local analysis could easily be extended to a
non-axisymmetric disturbance of the form

u'(r, 0, t) = Cy et exp{ifrold — Q(ro)f]} et (26)

if the differential rotation (or the Oort constant A) in a galaxy happened to be negligible.
In such a case, and again postulating that one was dealing with relatively short wave-
lengths, it would be found that

27Gu(ro) (a® + B2 = K(ro) — *, @7

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1964ApJ...139.1217T

.139.1217T

1964ApJ. .

No. 4, 1964 GRAVITATIONAL STABILITY 1223

a result which is very analogous to equation (18). Consequently, we conclude that what-
ever differences there may exist between the shorter axisymmetric and non-axisymmetric
disturbances, these must in essence be due only to the circumstance of differential rota-
tion.

As regards the general case where the differential rotation is not insignificant, it has
been pointed out by Lin (1964) that, formally at least, equations (10)-(13) always
admit solutions of the type #'(r, 0, §) = U(r) exp(imb) exp(iwt), etc. This is somewhat
remarkable, for it means that there exist non-axisymmetric solutions which are not
sheared at all by the differential rotation. It is interesting too that, from a calculation
of some short-wavelength asymptotic forms of those solutions, Lin also obtained a neces-
sary relation between their local wavenumbers and the assumed frequency that is not
very different from our equation (18) or (27).

MODEL TWO

\‘?,?;/" MASS

GAUSSIAN MODEL

0 1 I I
o o5 / L5 2

RADIUS, r/a

Fic. 1.—Locally estimated critical wavelengths, A, for two galaxy models, as functions of the radius
(and divided by 2 for plotting purposes). The broken curves describe the rotation laws for these models,
and the vertical marks identify the radii which contain the indicated percentages of their respective
total masses.

That the axisymmetric results are not anomalous is further indicated by the following,
altogether different family of approximate non-axisymmetric solutions to the governing
equations. These disturbances, behaving as

w'(r, 0,8 = Si(t)
v'(r, 0,1) = S2(f) pexp {iBro8 — Q(r)t]} (28)
W (r, 8, 8) = iSs(t) )

near some radius 7 = 7o, are indeed of a type which become distorted to an increasing
extent by the differential rotation (although, in principle, they should probably be re-
garded as particular superpositions of Lin’s solutions). Their “wrapping up” is made
especially evident by the fact that the above phase function may be expanded as

Brol — Q)] = Brold — Qro)t] + 28A(ro)t(r — 7o), (29)

which also indicates 284! to be the instantaneous radial wavenumber.
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By again making only such approximations which can strictly be justified in the limit
of vanishing wavelength, it can be shown from equations (10)-(13) that the functions
S+(#) must approximately obey the linear equations

-d—;%= 2Q(70) S22+ 27GS; sin v,
%=23(r0)51+21rG53 cos 7, (30)
and
dS
'Ef=u(fo)3(s1 tan ¥ +S2),
where
tan w(f) = 2A4(ro)t @31)

is the tangent of the instantaneous angle between the crest of these waves and the local
radial direction. These coupled differential equations have been integrated numerically

>/
5 ST %
(/) 0 } : i l\ ] } : 8
> 8 916
&
3 :
N
§ 2
N
X -3

6 /\o//\cri{:

Fic. 2.—The time development of the radial velocities associated with certain non-axisymmetric
disturbances of Section ITld.

for an example where dV/dr = 0 Jor A(re) = —B(ro) = 3Q(ro), «*(ro) = 2Q%(ro), and
tan y(f) = Q(ro){], and for the initial conditions: S; £ 0, S = S3 = 0 at £ = 0. Figure
2 shows the subsequent development of the radial velocity, Si(#), plotted to an arbitrary
scale as a function of time. The various curves in that diagram refer to different ratios of
the initial wavelength, Ao = 27/, to the critical wavelength defined in equation (22),
xcrih

We observe from Figure 2 that when this ratio is small, an unbounded growth in
amplitude ensues almost immediately, just as it would in the axisymmetric case. (That
the initial growth is not even more rapid for the shortest disturbances is explained by
the fact that both the initial disturbance density and its time derivative happened to be
chosen exactly zero for this particular example.) On the other hand, when No/Nerit is
somewhat larger than unity, the disturbance at first tends to remain small or even
oscillatory and “blows up’’ only later, once the wavelength has been decreased to a
value less than Ay by the shear which accompanies the differential rotation; note, for
instance, the curve for Mo/Aerit = 6.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1964ApJ...139.1217T

.139.1217T

1964ApJ. .

No. 4, 1964 GRAVITATIONAL STABILITY 1225

e) The Effect of a Finite Disk Thickness

The preceding analyses require only one significant modification if they are to apply
to a stellar disk whose thickness, though still small compared with the wavelengths in
question, is not entirely negligible. This change has to do with the fact that, whereas the
Coriolis forces and the excess “dynamical pressures” of the random motions associated
with any given amplitude of disturbance might be expected to remain the same as before
(for the reason that the z-motions of the stars, to a first approximation, would not be
coupled to the motions in the plane), the typical disturbance gravitational force should
be smaller if the matter were not concentrated into a single plane.

To estimate the amount of that decrease, let us assume for simplicity that the stars
are only to be found between the planes z = + 4, and that the disturbance mass, p’,
per unit volume within this layer is neither a function of the 6- nor the z-coordinate.
Specifically, let

o' (r, t) =~ (C3/2h) ei*r it when  |z| <h. 32)

Now, the radial component of the force at 2 = 0 due to a thin stratum (3, z + d3)
with this density p’ may at once be judged from equation (16) to be proportional to
exp{ —a|z| }dz. Therefore, the disturbance force, say, in the central plane, will in this
case be just that of equation (17) multiplied by

F(ah) = (1 — e**)/akh . (33)

Typically, this factor implies about a 26 per cent reduction in the gravity force in the
case where the wavelength of the disturbance, 27/a, equals 5 times the thickness, 24,
and about a 14 per cent change when it amounts to 10 times the thickness. Either (wave-
length-dependent) reduction might simply be thought of as a decrease in the effective
surface mass density.

IV. LARGE-SCALE AXISYMMETRIC DISTURBANCES

This section presents some numerically computed examples of genuinely large-scale
axisymmetric eigen-disturbances. These pertain to the fairly realistic equilibrium con-
figuration that has already been referred to as “Model 2” and described in equations
(24) and (25), as well as in Figure 1.

a) Theoretical Considerations

The following computations were based, for simplicity, on the assumption that the
material in Model 2 could be regarded as divided equally among N concentric and
coplanar rings of negligible cross-sectional dimensions, each one revolving about the
axis of symmetry with a velocity just sufficient to maintain it in equilibrium against the
combined gravitational attraction of all of the rings. The undisturbed radii of the indi-
vidual rings were chosen so as to approximate the mass distribution in Model 2 as
closely as possible; this was done by locating the typical or ith ring from the center at an
undisturbed radius, 7, just equal to that which would have encompassed exactly a frac-
tion (3 — 3)/N of the total mass, M, of the said model galaxy.

The motive behind this physical approximation was that at least certain of the N
strictly axisymmetric and infinitesimal eigen-modes of such a conservative mechanical
system, of the type

ori(t) = X; et (34)
should adequately approximate the less detailed corresponding linear eigen-modes of

the continuous model, and that this would avoid dealing with a rather complicated
integro-differential equation which would have arisen in a more direct attempt to solve

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1964ApJ...139.1217T

.139.1217T

1964ApJ. .

1226 ALAR TOOMRE Vol. 139

equations (10)—(13). As it turned out, this hope was largely realized—and the continuous
problem in essence solved—through the use of an electronic computer, which made it
possible to consider radial perturbations to as many as eighty of these rings simul-
taneously.

It was assumed that each ring preserved its individual angular momentum during a
disturbance. Consequently, using F;;(r;, 7;) to denote the outward-directed gravita-
tional force exerted by the entire jth ring at the radius 7; upon a unit mass of the ith
ring at 7;, and letting ©; be the unperturbed angular velocity of the ith ring, it was de-
termined that the excess gravitational force on the ith ring at any given instant would be

. aFt 6F.i,-
gu«:t[ J+z ’arj]’

ri i#e

whereas the centrifugal force would have been decreased by
3Q¢2X i e""" .

Balancing the sums of these forces against the radial accelerations, the entire dynamics
was summed up in the V simultaneous linear algebraic equations,

N
D 45X;=0 foralli, 35
=1
where the coefficients 4 ;; were defined as dF;;/dr; when ¢ 5 7, and otherwise as
N
dF ;;
2 2 — Y
<w 300+ ; 0r,~>'

In the case when ¢ # 7, a straightforward calculation then revealed that

(27r)—1gﬂ-/[—a—f (r2+r;2—2r;r; cos 0)~1/2d0
2GM o
;—]—V—'a—— 71K< ) when 1’,'>7’j
= (36)
ZGM d 1 7
v anln Gl when ri<7j,

where K(k) denotes the first complete elliptic integral, expressible in terms of the
hypergeometric function as

K(k) = (r/2) F}, 3; 1; 8% @7

Note that dF;;/dr; = 0F;;/0r;. This meant that 4;; = 4;;, which in turn implied,
thanks to a well-known theorem from matrix theory, that the eigenvalues, «? of the
set of equations (35) were all necessarily real. In the present context, this guaranteed
that there could be no overstability among the radial modes.

The assumption that the cross-section of each ring was infinitesimal proved embar-
rassing only as regards the attraction of any given ring upon a unit mass of itself.
Similarity considerations obviously demanded that this force be of the form

F,;= —CS(GM/N)7¢_2 , (38)
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but, unfortunately, a direct application of equation (36) showed the coefficient C; to be
infinite! This relatively artificial difficulty was overcome, however, by supposing every
mass element within a given ring to be acted upon only by the matter located beyond
some small angular distance or “cutoff angle,” ., from itself; such an approximation was
found to imply that

Ce = 7 1In cot (6,/4) . (39)

A number of different physically plausible values of 8, were tried in the course of these
calculations; but not surprisingly, in view of the logarithmic character of equation (39)
and the fact that except for a few of the innermost rings the self-attraction could not
reasonably be expected to account for more than a small fraction of the total force
experienced by any one ring, the results were found to be quite insensitive to the exact
choice of that cutoff angle. For the examples which follow, the values of C; (or 6,) for
the different rings were assigned specifically through the requirement that the fotal
unperturbed gravitational force on each ring give rise to a rotation velocity identical to
that found at the same radius 7; in Model 2.

b) Computed Results

Some idea of the rates of convergence of the results of this discrete analysis with
increasing numbers of rings to what might be presumed to be the corresponding features

TABLE 1
SQUARES OF THE EIGEN-FREQUENCIES, w?

N=2 N=3 N=¢ N=5 N=20 N=80
40 5252 +0 4534 +0 4219 +0 4062 +0 3719 40 3659
+0 1124 + 06778 + 04801 + 04043 + 02780 4+ 02423

+0 01995 + 01413 + 01736 + 00620 + 00578
—0 4060 — 3036 — 00243 + 00355
—0 9194 —0 05103 +0 00154

of the continuous model may be had from Table 1, which shows the five (algebraically)
largest characteristic values w? of equations (35) that were computed for six different
numbers of rings, V. The units in Table 1 were chosen to make the angular velocity at
the center exactly unity.

Figure 3 portrays the relative amplitudes, X ;, corresponding to the three most rapid,
and hence most reliably calculated, oscillatory eigen-modes of the disk composed of 80
rings. The components of those eigen-vectors have there been plotted to an arbitrary
vertical scale as functions of the undisturbed radii of the various rings, although some
of the points have been omitted to prevent overcrowding. The five additional solid dots
in the left half of the diagram indicate the amplitudes similarly obtained for this basic
mode in the case where the total number of rings was only five.

By definition, every element of the disk would, in the absence of any mutual interac-
tions, only be willing to oscillate about its mean orbital radius, 7o, with a frequency
equal to its epicyclic frequency, x(ro). In such a case, one could indeed conceive of very
many distinct oscillatory axisymmetric eigen-disturbances, for each of which the ampli-
tude would everywhere be zero except for a “spike” at the one appropriate radius. What
we observe in Figure 3 is evidently that the interaction between the various displaced
components of the disk modifies that picture in just two ways: it broadens those spikes,
and it restricts the possible frequencies to discrete values. In this connection, note
especially the three arrows in that diagram. These point to the radii at which the local
epicyclic frequency just matches one of the three eigen-frequencies, w.
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Another feature of Figure 3 which also deserves to be explained in general terms is the
mildly oscillatory behavior with the radius of two of the curves inside the radii corres-
ponding to the maxima, as opposed to the purely monotonic decrease of the amplitudes
outward from the same peaks. This explanation is based on equation (18), which indi-
cated that at least for any short, sinusoidal disturbances the effect of the gravitational
interaction was generally to decrease the frequency of oscillation of a typical element. It
seems improbable that the same would not also be true qualitatively of those parts of any
other disturbance in which the amplitude alternates in sign with varying radius. Cou-
pling that belief with the knowledge that the epicyclic frequency for our Model 2 (as for
most other disks) is a monotonically decreasing function of the radius, one can readily
appreciate how material inward of the radius where () equals w could be persuaded to

w = 0.605 2, 0.156 12, 0.076/ 5,

/ -0 —
. » Q /.0' \,

AMPLITUDE
Q
0

RADIUS, r[a

F16. 3.—The relative amplitudes of three oscillatory eigen-disturbances to Model 2, as functions of
the radius. For an explanation of the arrows and the solid dots see text.

oscillate with less than its preferred frequency, and also how, in the absence of any
obvious mechanism for increasing the frequency of oscillation, the disturbance amplitude
would have to trail off to zero quite rapidly beyond that critical radius.

The most important results of this numerical analysis, however, are contained in
Figure 4 in the form of four examples chosen from among the numerous unstable eigen-
modes determined for the set of 80 rings. For convenience in plotting, these amplitudes
have been divided by the radii. (It is not meant to be implied here that the particular
negative characteristic values w? which were selected have any special significance—as
a matter of fact, on the basis of some other results, this author suspects that the spec-
trum of negative w?, unlike that for positive w? would be continuous for the case of a
smooth disk without a sharp outer edge.)

Figure 4 clearly supports our earlier contention that disturbances of shorter and
shorter wavelengths are increasingly unstable. Moreover, the eigen-mode corresponding
to w = —0.0958 iQ,, for instance—or for that matter, the curve for w = 0.0751 Q, in
Figure 3—furnishes an estimate of the scale of the approximately neutrally stable
disturbances: If we define the “wavelength’ as the distance from the center of the disk
to the next node but one, both these curves are seen to indicate a neutral wavelength
close to 2a. Referring back to Figure 1, we find that this result agrees almost embar-
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rassingly well with the mean value between 7 = 0 and » = 2¢ that was extrapolated for
Model 2 from the theory based on the assumption that the wavelength was small com-
pared with the radius.

No doubt this excellent agreement is largely fortuitous, but it nonetheless suggests
that the local theory can probably be trusted to predict within some 20-30 per cent even
the values of the neutrally stable “wavelengths,” large though these may be. Granted
the power of hindsight, it is not difficult to understand why this should be the case: As
Safronov (1960) remarked in a similar context, considerably the largest contribution to
the disturbance gravity experienced by a given particle stems from material situated
within the nearest quarter-wavelength. Hence a more generous criterion for insuring that

2?-

AMPLITUDE | RADIUS

Fic. 4.—The relative amplitudes, divided by the radius, of one stable and several unstable eigen-
disturbances to Model 2, as functions of the radius.

the local theory remains of value is probably that tkaf fraction of the wavelength should
still be small compared with the radius. Application of the latter criterion invalidates
the results shown in Figure 1 only from about r = }a inward.

Finally, in this connection it should also be noted that Hunter (1963) has recently
managed to determine analytic expressions for the entire infinite family of axisymmetric
and non-axisymmetric infinitesimal eigen-modes to an extremely flattened Maclaurin
spheroid—that is to say, to a bounded disk with a uniform undisturbed angular velocity
and without random motions. Among other things, Hunter, too, finds that the dimen-
sions of the most extensive unstable disturbances to such a system are quite comparable
to the radius, and that the rates of growth of these unstable disturbances (including
the non-axisymmetric ones) increase with decreasing “wavelengths.”

V. THE INFLUENCE OF RANDOM MOTIONS

We now turn to the question of the gravitational stability of a thin rotating disk
composed of a large number (in fact, a continuum) of particles or stars whose random
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motions may no longer be ignored. For simplicity, the present analysis will essentially
be limited to the determination of only the neutrally stable or time-independent dis-
turbances under the same (mathematical, if not physical) assumptions of short wave-
lengths and axial symmetry as were made in Section III. There can, of course, be no
assurance from such a purely local theory that any complete disk would actually admit
disturbances which are exactly time-independent. Nevertheless, provided that some
local approximations to such postulated neutrally stable over-all disturbances can be
found at all, and that these represent the limit of the very slightly unstable disturb-
ances, it seems not unreasonable to expect that their properties will constitute a signifi-
cant dividing line between those local combinations of random motions and rotation
which could succeed in overcoming the clumping tendency of the self-gravitation, and
those that could not.
a) Collisionless Boltzmann Equation

Since the stars in the disk of an average galaxy can be estimated almost never to
suffer close encounters with other stars (e.g., Chandrasekhar 1942, p. 81), this analysis
will be based on the presumption that these discrete mass points influence one another’s
motions only collectively through distant-acting gravitational forces. Therefore, if
f = f(u, v, r, t) denotes a velocity distribution function such that the amount of mass
dm corresponding to a surface element r dr d6 and to the velocity increments du and dv is

dm = f(u,v,7,8) dudvrdrdb, (40)

and if F, is the total gravitational force per unit mass acting radially outward, the most
general axisymmetric disturbances must obey the collisionless Boltzmann equation

g_]_‘_l_ua_f_!_vﬂaf u'uaf_'_Fraf_O’ “n

—— s ——— ——— —

where # and v are the radial and the full azimuthal velocity components relative to a
non-rotating frame of reference.

In what follows, let us think of the distribution function f(«, v, r, £) as consisting of an
original or undisturbed part, f°(x, v, r), and of an infinitesimal disturbance, f'(%, v, 7, f).
Let us also abbreviate by w the difference between the particular tangential speed » and
the speed V(r) that would be required at the radius 7 for a particle to execute an exactly
circular orbit when experiencing only the undisturbed force, F,%(r). The disturbance
force will be written as F,'(r, t). Using this notation, equation (41) may profitably be
split into the following four groupings:

S, 3 wuvof', ;,0f°
u6r+r on rav+F’ ou
off , of V(r)af  _ V(r)aof @ﬁ)
T Tes, e e T 5 “2)

1 E”fﬂ_l_ﬂi’_ﬂ_l_p/ %12’7')+(1’i£_'_l+m) 6f’=0.

r ou r dv ou

The contents of the first of these parentheses cancel identically, owing to the equilibri-
um definition of f°. The terms in the last parentheses do likewise, by virtue of the
definitions of V(r) and F,%(r). Furthermore, when we now also assume that the velocity
dispersion, though not negligible, is small compared with the equilibrium speed, V(r),
the third parentheses may be seen to enclose only terms each of which individually is
considerably smaller than some member of the second group, at least for all values of
# and w = v — V(r) that arelapt to be of any interest. The disturbance distribution
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function, f'(u, v, 7, ), must therefore be governed approximately by this twice-linearized
Boltzmann equation,

of'
Y

af’

E—+2w9(r)af,——u9(r)a—];+ﬁ‘,’§—ﬁ= , (43)

ou 0 du

where Q(r) again denotes the equilibrium angular velocity of rotation, V(r)/r.

+u

b) Time-dependent Disturbances

Consistent with the above assumption that the velocity dispersion is relatively small,
we now stipulate the zeroth-order distribution function approximately as

o, v, r) = (u/2w0u0,) exp (—u?/20,% — w¥/20.2), (44)

where u again is the undisturbed surface mass density, here assumed not to vary with the
radius. It is, of course, known from the theory of galactic dynamics (e.g., Chandrasekhar
1942, p. 159)—or may be confirmed directly from the zeroth-order Boltzmann equation—
that the root-mean-square velocities ¢, and g, in this case are not independent but must
be related through

ot/a = 31 + (/V) (dV/dr)] = B/(B — 4) = —B/%, (45)

Oort’s constants 4 and B having already been defined in equation (9).
We shall look for (supposedly) short-wavelength, axisymmetric disturbances to this
equilibrium state of the form

f,(uy v 7, t) = fo(“7 w) g(“, w) e et ’ (46)

where s is assumed to be a small, real, positive constant. OQur intent will be to take the
limit s— 0 at a later stage of this analysis, and so to determine the relevant time-
independent disturbances and their wavenumbers.

Having assumed that ar >> 1, we may (as in Section IIIb) at once estimate the force
corresponding to this disturbance as

F/(r,t) = 27xiGeie e f [ fo(u, w) g (u,w) dudw . 47)

On the same grounds, we shall henceforth ignore any variation of Q(r) in equation (43),
except in the term #(9f’/dr) in which that angular velocity happens to be differentiated.
Consequently, it may be deduced from equations (43)-(47) that the function g(u, w)
must to a first approximation satisfy

20028 4 2uB %8 1 (s tina) g =iuk, (e8)
au Jdw

where K abbreviates a relative constant that depends on g(u#, w) only in the integral
sense
K= (27G/a2) [[f(u, w) g (u, w) dudw . (49)

As regards the detailed behavior of g(#, w), equation (48) may be thought of as a
first-order partial differential equation for that function, the characteristics of which are

described by
du _ dw _ dg (50)
20Q 2uB  iuK — (s+iua)g’
The projections of these characteristics onto the #w-plane are the ellipses
—B u? + Qu? = — Be2(u?/0,2 + w?/s,%) = constant . (51)
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Hence, if we write
/o, =pcosy and w/e,=psiny, (52)

the rate of change of g(u, w) along any one of the characteristics may be deduced also
from equation (50) as

ag

d¢=(a+ibpcos¢)g—’i6pCOSl//, (53)
where
a = (0u/20,) (s/D),
b = (6u/20,) (0ua/Q) , (54)

¢ = (04/20,) (0.K/Q) .

The general solution of equation (53) for any ¢ > 0 is
. . Lo S
g=1icpexp(ay+ibp smtﬁ)_/; cos pexp(—ap—ibpsin p)dp, (55)

where the upper limit, L(p), is as yet arbitrary. However, the requirement that g =
g(u, w) should in this instance be a single-valued function of # and w, and hence g(p, ¥)
be periodic in ¢ with a period 2=, imposes a severe limitation on L(p). In fact, it can be
shown that the latter condition, which is equivalent to the requirement that

; 2w
e—aL(p)f cos p exp(—ap—ibpsin p)dp=0, e
0

cannot be met if @ is real and positive, unless the real part of L(p) is infinite. Consequent-
ly, the function g that is of interest here may be expressed without any loss of generality
as

g=1icpexp(ibp sinxb)./omcos(¢+p’)exp[—ap’—ibp sin (W +p")1dp’, &1

or, following an integration by parts, as

g=(K/a)[1—C(a, b, p,¥)exp(ibpsin¥)], (58)
where

C(a,b, p,¥)=0a(1— 3“2"“)*1/0.27rexp[ —ap’ —ibpsin(Y+p')1dp’'. 9

It must be remembered, however, that the constant K is not arbitrary but must itself
depend on g(%, w) as a whole through equation (49); indirectly, that imposes a restric-
tion on a in terms of the other parameters.

¢) Time-independent Disturbances

. We now proceed to the limit of vanishing instability. By reference to Watson (1944,
p. 47), we thus find that

lim C === cos (bp cos p')dp' = Jo(bp), (60)
i d 0

or that the neutrally stable form of the function g(%, w) must be
gnlt, w) = (K/as) [1 — Jo(bp) exp (ibp sin ¥)] (61)
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where the subscripts # denote “neutral.” The substitution of this g, and of the f°(%, »,
) = f%(p) from equation (44) into equation (49) then results in the following implicit
relation for the neutral wavenumber, a,:

anobz

1 e} o2n ., . A
=1 —?;£=04=0e /2]y (bp)exp (ibp sin¥) pdpdp

=1~ [ e 1a(bp) 1% ds (62

.
= 1 — exp (— o 2a./k?) Io(o.a2/k2) ,

the two integrals above having been evaluated according to Watson (1944, pp. 47, 395).
. The final version of equation (62) is strictly due to A. Kalnajs (1963), who obtained
it by another method during an attempt to verify an earlier result of the present author,

STABLE
o3 —— 02857

N:e
~

Noz2l
NG
N3

bosk UNSTABLE

1 i 1 |
0 02 0.4 0 08 /

erit

6
WAVE LENGTH, A[A

F16. 5.—A curve describing the wavelengths and radial-velocity dispersions admitting neutrally
stable, axisymmetric disturbances, for the case of a disk of stars with random motions and rotation.

from which the modified Bessel function, 7o(e.%a,2/2?), had been mistakenly omitted.
As it stands, the present analysis is somewhat related also to that of Lynden-Bell (1962)
for a three-dimensionally homogeneous example.

As a partial check on equation (62), it should be noted that as the velocity dispersion
o,— 0, while a, and « remain finite, the right-hand side of that equation approaches
(0.2a,2/k?); consequently, the neutral wavenumber then tends to

K2/27I'G[.L = Qerit y (63)

in welcome agreement with equation (21). On the other hand, when (o,a,/«) tends to
infinity, equation (62) yields
a, = 27Gu/a?, (64)

a result which could have been obtained more directly from the infinitesimal stability
analysis of a thin, infinite sheet involving no rotation. As for other values of a,, equation
(62) implies a dependence on 7,2 that is fully described by the neutral stability curve in
Figure 5; note that the abscissa in that diagram is the neutral wavelength, X\, = 27/a,.

It should be emphasized that the above derivation has strictly only established the
inadmissibility of neutrally stable disturbances under circumstances other than those
which are described by the curve in Figure 5. However, bearing in mind that that curve
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was deliberately obtained in the limit of vanishingly unstable disturbances, and that it
agrees qualitatively with what was to be expected from the order-of-magnitude discus-
sion of Section Il¢ as regards the ranges of stable and unstable wavelengths for different
velocity dispersions, it seems practically certain that it represents the boundary between
the conditions in which an arbitrary sinusoidal disturbance with axial symmetry either
would or would not remain bounded for all subsequent time; hence the labels “stable”
and ‘“unstable’ on the respective regions in Figure 5. It thus appears from that diagram
that the radial instabilities should be altogether avoided in the presence of root-mean-
square radial velocities exceeding

assuming, of course, that the undisturbed velocity distribution is approximately Gauss-
ian.

To give some idea of the magnitudes both of this critical velocity dispersion, and of
the corresponding oy,min implied by equation (45), these two locally estimated quantities

osh s
/ \\ 90 % MASS

_’_ ~——
o4 2 V ‘f\\

03

o2

or -/ | l | '

(4] o5 / 1.5 2
RADIUS, r[a

Oy, min

F16. 6.—The minimum radial and tangential velocity dispersions needed to stabilize Model 2 against
all axisymmetric disturbances, expressed as multiples of the maximum linear velocity of rotation and as
functions of the radius. The broken curve denotes one-half of the rotation velocity for the same model
galaxy, drawn to scale.

have been plotted in Figure 6 as functions of the radius, for a model galaxy with the same
surface density and rotation law as Model 2. (Due to the “pressure” of the random
motions, Model 2 is, of course, no longer an exact equilibrium configuration, but doubt-
less we may neglect that inexactitude for the purpose of this illustration.) From Figure
6 we observe that, while these minimum random velocities are indeed roughly of the
same magnitude as the typical speeds of revolution, numerically they are not as large as
was suggested by the crude estimate of Section IIc. The comparative smallness of
0w, min 1S further illustrated by the fact that a star having that as its maximum radial
velocity would, in the absence of any collective disturbance forces, execute an epicycle
with a major axis amounting only to about 0.17 Ncri¢.

In retrospect, it therefore seems fair to conclude that the assumption ¢, < V() has
been grossly violated only right near the center. As regards the short-wavelength as-
sumption, the violation of which might appear to be more serious, we can only remark
(@) that Section IVb indicated the local theory to remain quite accurate even when the
wavelengths in question had become comparable to the radius, and (b) that Figure 5
implies our present concern to be chiefly with wavelengths of only about 0.55 Nerit
which belong to the disturbances most reluctant to be stabilized. All things considered,
the systematic increases in Figure 6 of ou,min and o,,min toward = 0 appear to be of
some significance, even though their central values are mere extrapolations.
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d) Non-axisymmetric Disturbances

The present writer has not explored in any detail the effects of random motjpns upon
disturbances without axial symmetry, except to note that a Jocal analysis very similar
to the foregoing could also have been carried out for non-axisymmetric disturbances
had the differential rotation happened to be negligible. In that case, the minimum
stabilizing ¢, would have been found to be identical with that of equation (65).

This conclusion suggests, but of course does not prove, that the stability even of the
comparatively shorter non-axisymmetric disturbances should be assured in general by
a radial velocity dispersion approximately equal to oy, min. However, a question which
the present discussion leaves completely unanswered is to what extent a similar amount
of random motion might affect the character of the most extensive non-axisymmetric
disturbances, in particular those which ought to determine whether or not a given disk
might prefer to develop into a barlike structure.

VI. COMMENTS

To sum up, it has been shown here that any reasonably thin, smooth, and rotating
disk of stars should be vulnerable to a variety of remarkably extensive and violent
instabilities, if those stars did not already possess sufficiently vigorous random motions
relative to one another, superposed on their common rotation. Therefore, any observed
smooth distribution of the more common stars in the disk of a galaxy whose age is to be
reckoned in tens of revolutions must imply that the stellar velocity dispersions in almost
all parts of such a system do now at least equal, if not exceed, the minimum values
consistent with stability.

a) A Comparison with Observations in the Solar Vicinity

A lack of observations concerning the random velocities of the average stars in the
spiral and SO galaxies at present limits any comparisons between the actual and the
theoretically required velocity dispersions to our immediate vicinity of this galactic disk.

Judging from an extrapolation of the volume density of known stars within 20 pc of
the Sun, as determined by Gliese (1956), and from Oort’s (1960) estimates of the z-com-
ponent of the gravitational attraction at distances up to 1000 pc above the galactic
plane, the mean surface or projected density of stellar matter in our neighborhood seems
to be bracketed by

u = 50-65 Mo/pc? . (66)
Our epicyclic frequency, on the other hand, may be estimated as L
k = 2(—B)2 (4 — B)2 = 27-32 (km/sec)/kpc, (67)

the lower value being based on the 4 = 19.5and B = —6.9 (km/sec)/kpc advocated by
Schmidt (1956), and the upper one on the 4 = 15 determined by Johnson and Svolop-
oulos (1961) and by Kraft and Schmidt (1963), together with the B = —10 deduced by
Schmidt (1964).

Equation (65) indicates that any supposedly smooth and very thin disk having the
above properties in a given vicinity would require a radial velocity dispersion of at least
22.5-35 km/sec in that same neighborhood, if it was to be stable. Given the same values
of u and «, it also follows from equation (22) that the longest unstable wavelengths in
the absence of random motions would be

Nerit = 8.5-15 kpc , " (68)

and the wavele gth of the axisymmetric disturbance most reluctant to be stabilized by
a finite amount of random motion,

0.55 Neris = 5-8 kpc . (69)
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To be realistic, the above estimate for a,,min requires at least two (largely self-cancel-
ing) corrections. The first stems from the fact that we are actually dealing with a disk
whose effective thickness of roughly 600 or 700 pc is about one-tenth of the most relevant
wavelength given by equation (69); hence the example of Section ITIe suggests that that
estimate should be reduced by some 15-20 per cent, or to about 18-30 km/sec. On the
other hand, one must also make some allowance for the presence of interstellar material.
Even though a gaseous disk of, say, one-tenth the projected stellar density cannot by
itself be expected to be unstable with regard to wavelengths of the order of 5-8 kpc,
such material should on account of its relatively small random velocities be fairly readily
attracted toward any concentrations of stars, thereby augmenting their disturbance
gravity. Indeed, if we suppose the gas to be distributed uniformly, and to experience
practically no pressure or magnetic forces, it is not difficult to extend the analysis of
Section V to obtain the following expression for the neutral wavenumber, a,, in place of
equation (62):

2 -1
5&;5%: 1= @ - ) [1—exp (— alan?/ «2) Io (0,%as?/ k%) ]. (70)
8 crity g

Here the subscripts s and g refer to the stars and the gas, respectively. Conservatively
assuming that u,/u, > 0.1 in our vicinity, it may be calculated from equation (70) that
a velocity dispersion at least 20 per cent greater than that estimated previously would
be required to curb all axisymmetric instabilities involving wavelengths of the order of
0.55Acris, s Although such an increase must probably be diminished in actuality by the
fact that the gas is already distributed unevenly, it is not clear that the effect is in-

significant. Therefore, the best present estimate of the minimum ¢, for stability has to be
Oy, min = 20-35 km/sec . (1)

This theoretical estimate is to be contrasted with an average of the observed velocity
dispersions, weighted heavily in favor of (1) the K- and M-type main-sequence stars, and
(2) the white dwarfs, which, according to Gliese (1956), respectively account for about
two-thirds and some 10-15 per cent of the recognized stellar matter in the solar neigh-
borhood. Unfortunately, no accurate estimate of o, for the white dwarfs appears to be
available, although their velocity dispersion seems unlikely to be any less than the
present-day ¢, >~ 25 km/sec observed for the red giants (e.g., Allen 1963, p. 243).
There have, however, been a number of determinations of o, for the K8-M2-type
dwarfs, in which special care has been taken to eliminate a selectional bias of the sort
discussed by Woolley (1958): Dyer (1956) found o, = 34.5 km/sec, Mumford (1956)
0w = 31.4 km/sec, and Mrs. Wehlau (1957) o, = 32.1 km/sec.

We conclude that the velocity dispersion of the most common stars in our vicinity
is not inconsistent with the observationally favored hypothesis that these stars are
distributed fairly uniformly over this galactic disk. Of course, owing to the virtual
identity of the observed and the theoretically required ¢.’s, and the fact that this theory
strictly applies only to relatively short axisymmetric disturbances, it is as yet impossible
to rule out instabilities altogether. However, should any actually be present, it must be
understood that this comparison and Figure 5 also suggest that such instabilities would
have to be relatively mild and confined to wavelengths (or similar dimensions) of the
order of the 5-8 kpc estimated in equation (69); conversely, all disturbances to this
stellar disk with wavelengths comparable to the 2-kpc spiral-arm spacing must almost
certainly be judged stable. The latter point is important as an argument against any
suggestion that the existing spiral structure in this Galaxy might be the result of collec-
tive stellar instabilities of the sort we have been considering. In fairness, however, it
should again be noted that all these remarks of necessity refer only to conditions in the
solar neighborhood.
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b) Instabilities as a Cause of Increased Random Motions

The question of the eventual fate of any disk of stars originally lacking the random
velocities needed to protect itself against all instabilities is not one that can be answered
entirely by any linearized stability analysis. All that can surely be said is that such
instabilities would in the short run (i.e., in one or two revolutions) have caused many
excess stars to become attracted to certain areas on the disk at the expense of neigh-
boring regions. However, it must not be presumed that such initial clumpings would
necessarily have led to the formation of any permanent irregularities.

It is indeed difficult to conceive of any effective means whereby the different stars
arriving in any typical region of increased density could have sufficiently dissipated their
relative motions to have become gravitationally bound to each other. On the contrary,
it seems much more likely that the bulk of the stars involved in any given (generally
non-axisymmetric) instability would merely have streamed past each other when their
degree of clumping reached a maximum, and that they would eventually have dispersed
themselves upon emerging from the opposite sides of the aggregation and upon expe-
riencing the shearing effect of the differential rotation.

Of course, it must be conceded that if the random velocities had not been altered
significantly as a result of the clumping, the subsequent smoothing by the differential
rotation could not have proceeded too far without again violating the principle that too
smooth a disk without adequate random motions must be unstable. On the other hand,
even a net effect of every instability would surely have had to be some increase in the
random or non-circular motions, for it seems improbable that the excess ‘‘random”
kinetic energy imparted during the growth phase of any instability could ever have been
recovered fully.

It follows that an initially unstable disk of stars should probably have undergone not
just one but several successive generations of instabilities, after each of which the system
would have been left somewhat less unstable than it was previously. In particular, it
seems likely that before very many rotation periods had elapsed, the disk would have
approached a new equilibrium state that was again fairly regular and quite possibly
axisymmetric, but in which the random velocities at the various radii had become—and
would henceforth remain—about equal to the minimum values needed for complete
stability.

It might seem at first that this suggestion that the system could have again become
smooth and yet now possess additional disorganized kinetic energy somehow violates
the energy conservation principle; actually, it merely requires some adjustment to have
taken place in the gross distribution of material. Curiously, though, the virial theorem
indicates that the total gravitational energy in the final state would have had to be the
same as that of the original (unstable) equilibrium configuration; hence the said redis-
tribution of stars could not simply have consisted of an over-all contraction, but would
have had to entail a contraction perhaps of the inner parts of the disk jointly with a
net expansion of the outer portions.

¢) An Interpretation of the Observed Velocity Dispersions

The last few remarks obviously invite the query whether the afore-mentioned near
agreement between the observed and theoretically required o.’s of the common stars in
our own vicinity might not be more than a simple coincidence. In reply, we can only
point to the one strong piece of evidence which suggests that those stars must at least
have been created with appreciably less than their present random velocities: This is
the well-known fact that the z-velocity dispersions of most classes of nearby stars are
considerably smaller than their ¢,’s. In the case of the dK8-dM2 stars, for instance,
Dyer, Mumford, and Mrs. Wehlau all found o, to be only about 19 km/sec, as opposed
to their o, in excess of 30 km/sec. Although it is now understood from discussions of the

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1964ApJ...139.1217T

.139.1217T

1964ApJ. .

1238 ALAR TOOMRE

approximate third integral (e.g., Contopoulos 1963) that such an anisotropy, once
established, could have persisted almost indefinitely, no satisfactory explanation ap-
pears forthcoming as to how those stars could actually have originated with such dis-
tinctly larger radial than z-velocities. (For instance, it is difficult to picture a comparable
lack of isotropy in the random motions of the original interstellar material.)

Still, one must not jump to the conclusion that the instability mechanism has neces-
sarily been the only process tending to increase the random velocities of the various
stars preferentially in the directions parallel to the galactic plane since their formation.
Schwarzschild and Spitzer (1951, 1953), for instance, considered stellar encounters with
massive “cloud complexes” as giving rise to a similar acceleration; conceivably, other
mechanisms might also have been operative. Nevertheless, it is probably fair to remark
that had all the competing processes together not been able to provide for a sufficient—
and a sufficiently rapid—increase in the radial and azimuthal random velocities during
that epoch when most of these stars were formed, then the acceleration through their
collective gravitational instabilities should almost certainly have supplied the balance.

Much of the credit for this investigation belongs to Professor C. C. Lin, both for
asking a very relevant question at the outset and for many subsequent discussions. I am
particularly indebted also to Professors B. Strémgren and L. Woltjer for their generous
advice and helpful criticism, and to Mr. A. Kalnajs, who called to my attention a sub-
stantial error in an earlier version of Section V.

Begun (and completed) at the Massachusetts Institute of Technology, this paper was
largely written at the Institute for Advanced Study, during a visit made possible through
the kindness of Professors J. R. Oppenheimer and B. Stromgren. In part, this work was
also supported by the National Science Foundation. The numerical calculations were
performed at the M.I.T. Computation Center.
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