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ABSTRACT 
Four stages in the accretion of planetesimals are described. The initial stage is the condensation 

of dust particles from the gaseous solar nebula as it cools. These dust particles settle into a thin 
disk which is gravitationally unstable. A first generation of planetesimals, whose radii range up to 
~ 10“1 km, form from the dust disk by direct gravitational collapse to solid densities on a time 
scale of the order of 1 year. The resulting disk, composed of first-generation planetesimals, is still 
gravitationally unstable, and the planetesimals are grouped into clusters containing approximately 
104 members. The contraction of these clusters is controlled by the rate at which gas drag damps 
their internal rotational and random kinetic energies. On a time scale of a few thousand years, the 
clusters contract to form a second generation of planetesimals having radii of the order of 5 km. 
Further coalescence of planetesimals proceeds by direct collisions which seem capable of producing 
growth at a rate of the order of 15 cm per year at 1 a.u. The final stage of accretion during which 
planet-sized objects form is not considered here. 
Subject headings: planets — solar system 

I. INTRODUCTION 

This paper reports on an investigation of the significance of gravitational instabilities 
in the primordial solar nebula to the planetary formation process. Of course, this 
subject is by no means a new one. Kuiper (1951) suggested that fragmentation of the 
nebula into protoplanets occurred when compression of the disk in the vertical 
direction due to cooling drove the density above the local Roche limit. However, he 
did not determine the scale of the instabilities but merely assumed that it was com- 
parable to the planetary separations. An attempt to establish this scale was made by 
Urey (1966, 1972). Urey applied the dispersion relation for an infinite uniformly 
rotating gas to the solar nebula. This dispersion relation reads (Chandrasekhar 1955) 

cl)2 = A:2c2 + 4Q2 — 4ttGp , (1) 

where p is the unperturbed gas density, c is the sound speed, Q is the angular velocity, 
G is the gravitational constant, œ is the frequency of the disturbance, and k = Itt/X 
is its wavenumber. From the above dispersion relation, we see that a range of unstable 
wavelengths exists if nGp > Ü2. The minimum unstable wavelength is 

^min = ttcKttGp — Q2)1/2 . (2) 

Urey assumed that nGp was slightly greater than Q2. He then deduced that lunar-sized 
objects formed as the products of the collapse of regions of initial sizes Amln. One 
puzzling feature of Urey’s work is his choice of Amin as the dominant instability scale 
since Chandrasekhar’s dispersion relation shows that longer-wavelength perturbations 
grow faster. 

These attempts to attribute the planetary formation process to gravitational in- 
stabilities of the entire gaseous nebula encounter an insurmountable obstacle. The 
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density required for instability is so great that either the temperature of the nebula 
must have been unacceptably low or else its mass must have greatly exceeded the value 
needed to account for the present combined masses of the planets. A brief discussion 
of this point is given in § Ilia. 

Our contribution is to outline the process by which dust particles can accrete to 
form gravitationally active objects. We shall present a compelling argument that, 
indeed, gravitational instabilities account for the growth of objects up to several 
kilometers in radius. The crucial difference between our investigation and earlier 
analyses is that these instabilities are found to develop, not in the gaseous solar nebula, 
but in the thin disk of particulate matter that forms in the central plane during the 
condensation phase. While our work was in progress, two papers dealing with this 
problem appeared. Lyttleton (1972) pointed out that a thinning dust disk would 
eventually become more dense than the Roche limit. But he made no attempt to 
ascertain the masses of the unstable regions. Polyachenko and Fridman (1972) 
presented an analysis of the fragmentation of a dust disk similar to that contained in 
§ Ilia of this paper. They solved for the density of a dust disk that would have been 
unstable on the scale of the present planetary separations. Not surprisingly, they 
found that the required mass of solid material was two orders of magnitude greater 
than that present in the planets. On the other hand, we use the known masses of the 
planets to estimate the surface density of the preplanetary dust disk and then solve 
for the scale of the initial instabilities. 

In § II, the formation of the thin disk of condensed particles and its further evolution 
through gas drag will be described. The fragmentation of the disk is treated in § III, 
and the formation time and masses of the resulting planetesimals are calculated. It 
should be emphasized at the outset that at several stages of this investigation assump- 
tions are introduced for which alternative possibilities are also quite plausible. In 
order to keep our exposition as lucid as possible, we shall follow one particular line of 
reasoning through to the end. Then in the concluding section, we shall explore the 
modifications which the competing assumptions would have introduced. 

In order to avoid repetitious references to the numerical values of the physical 
parameters appropriate to the primordial solar nebula, we list here our adopted values 
for the vicinity of the Earth’s orbit. These values will be applied in the text to all 
numerical calculations without further reference. The distance from the Sun is 
a = 1.5 x 1013 cm and the Keplerian mean motion is Ü = 2 x 10“7 s“1. The surface 
density of condensed matter implied by the masses of the terrestrial planets is ap ~ 1.5 
gem“2, which represents a mass fraction a ^ 5 x 10“3 of the entire gaseous pre- 
planetary disk that has a surface density ag ~ 1.5 x 103 g cm“2. We use a value of 
c — 7.6 x 103T1/2 cm s“1 for the speed of sound at temperature T. This expression is 
applicable to a gas composed of hydrogen molecules. Where a specific value for T is 
required, we use T = 700° K. The half-thickness of the gas disk is Z> ~ c/Q ~ 1012 cm, 
which implies a mean gas density of pg ~ 7.5 x 10”10 g cm“3. The mean free path 
in the gas is lg ~ 10 cm, which together with the value for c, yields v ~ 2 x 106 

cm2 s“1 for the kinematic viscosity. In the discussion of the chemical condensation of 
dust particles we use numerical values appropriate for iron. These are a(Fe) = 
1.5 x 10“3 and />p(Fe) = 7.9 g cm“3. Elsewhere, we assume />p~3gcin“3 as 
appropriate for the mean uncompressed density of the terrestrial planets. 

II. THE PARTICULATE DISK 

a) Formation 

An attractive hypothesis for the initial stage of planetary accretion has emerged 
from recent studies of the chemical condensation sequence of the cooling preplanetary 
gas. As the primordial solar nebula cools, the vapor pressure of a constituent rapidly 
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decreases and eventually falls below its partial pressure. Presumably, at this stage the 
condensation of small particles ensues. This process has long been recognized to be 
important but has only recently been investigated in detail (Lord 1965; Larimer 1967; 
Larimer and Anders 1970; Lewis 1972). From the present composition of the terrestrial 
planets, it appears that the primary condensates in the inner solar system are iron, 
nickel, and iron and magnesium silicates (Larimer 1967). In the outer nebula the 
temperatures are lower and the bulk of the condensate is made up of water and water- 
ammonia ices (Lewis 1972). 

Once nucléation occurs, a particle continues to grow by collecting material still in 
vapor phase. Its growth rate is given by (Hoyle 1946) 

drjdt = avTpg¡pp , (3) 

where r is the particle’s radius and vT is the thermal velocity of the constituent molecules 
which are still in the vapor phase. Numerically, the growth rate is on the order of 
centimeters per year for the more abundant minerals. 

Once nucleated, a particle begins to settle through the gas toward the equatorial 
plane. There is a definite upper limit on the size a particle can obtain during this 
process. In order to calculate this limiting size, we must estimate the rate at which a 
particle descends to the central plane. The differential velocity between a descending 
particle and the local gas is set by the balance between the vertical component of solar 
gravity and the gas drag force. For the small particles with which we are concerned, 
the mean free path in the gas is long compared to the particle radius and the drag force 
is given by 

Fd ~ irr2pgcvz, (4) 

where vz is the vertical velocity of the particle. Setting this expression equal to the 
vertical force of solar gravity, we find 

Q2 — r. 
pgC (5) 

Since the half-thickness of the gas disk is approximately c/ü, the characteristic descent 
time may be expressed in terms of the surface density of the gas disk as 

Qpp r 

From equations (3) and (6), it follows that the maximum radius, R, to which a particle 
can grow before reaching the central plane is 

R 
«ll2og 

(7) 

where is the molecular weight of the condensing molecules. When applied to the 
condensation of iron in the terrestrial region, equations (6) and (7) yield tz ~ \0 
years and R ~ 3 cm. 

It is obvious that the unknown number of nucléation sites is the principal uncertainty 
bearing on the size of the particles which settle into the central dust disk. If the 
number of these sites is so large that the vapor phase is significantly depleted on time 
scales short compared to the particle descent time, the final particle sizes will be much 
smaller than R given by equation (7). Because we have no reliable estimate on the 
actual number of nucléation sites, we shall express all future results in terms of the 
unknown particle radius r ^ R. 
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b) Gas Drag and Orbital Decay 

In addition to a vertical pressure gradient, there undoubtedly exists a radial pressure 
gradient in the gaseous solar nebula. This affects the orbital velocity of the gas since 
the centripetal acceleration is produced by the difference between the inward gravita- 
tional attraction of the Sun and the outward force of the pressure gradient. Thus, 

aQ.g2 = 
GMq 

a2 + 
Pg da 

(8) 

where Ü«, is the orbital angular velocity of the gas, M© is the mass of the Sun, and pg 

is the gas pressure. If we make the approximation dpgjda ~ — c2pgla, then we obtain 

a a - 
2Qa2 (9) 

to lowest order in (c/Da)2 « 1. Here D is the local Keplerian velocity. 
The pressure gradient has little effect on the condensed particles since their densities 

are many orders of magnitude higher than the gas density. However, the particles do 
interact with the gas through gas drag. A straightforward calculation for the rate at 
which a particle spirals toward the Sun yields (Whipple 1972) 

where 

2yQ 
(V + Q2) 

(Q - n3), 

3 pgC 

* 4ppr 

(10) 

(11) 

From equations (9), (10), and (11) it follows that the characteristic orbital decay time, 
r0 = a/à, is given by 

3pga
2 > 

ppcr ’ 

where we have used the fact that 

1 = > 3 
£} 4 ppr 4 ppR 

3 /x1/4 

— —  » 
4 a1'2 1 . 

(12) 

(13) 

The fractional decay that a particle’s orbital radius 
descent to the central plane is 

suffers during the particle’s 

Aa/a ~ rjTa ~ $(c/a£l)2 ~ 10”3. (14) 

The characteristic orbital decay time given by equation (12) is 

2 x 104 

ra ~ years (15) 

in the terrestrial region (a ~ l a.u.), where r is to be expressed in centimeters. The 
estimate given above for ra is not applicable to particles in the dust disk unless gas 
molecules are able to pass freely through the disk. The ratio of the mean free path, 
/p, to the thickness of the disk, d, is approximately 

lp¡d ~ 4pprl3<jp ~ 0.53r. (16) 
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From equation (16), we see that if a substantial fraction of the particles m the disk 
have radii in the subcentimeter range, then IJd < 1. In this case, the gas drag is 
exerted on the surface of the dust disk. A short calculation of this boundary layer drag 
is outlined below. 

The drag force per unit area on the surface of the disk is given by 

S = pAdvJdz) , (17) 

where v is the kinematic viscosity in the gas. If the boundary layer flow were laminar, 
the velocity gradient would be confined to an Ekman boundary layer of thickness 

$ - (v/Q)1'2 . (18) 

From the standard parameters we have adopted, it follows that S ~ 3 x 106 cm, 
much smaller than the half-thickness of the gaseous disk, D ~ 1012 cm. The tangential 
stress on the dust disk would be 

5 - Pgva(&9 - &)!* ~ -i(?l&a2)ll2pgc
2 . (19) 

However, it seems quite likely that the boundary layer flow is turbulent. The Reynolds 
number in the Ekman layer, if the flow is assumed to be laminar, is 

a(Q — Q,g)S 

2vll2Q?l2a 
104. (20) 

Furthermore, gravitational stratification appears to be too weak to stabilize the 
boundary layer flow since the Richardson number (e.g., Chandrasekhar 1961) is 

gzdp/dz %ttG(jpv / Qa\2 

p(dvg/dz)2 ~ c3 \ c / 
(21) 

much smaller than the critical value of J. 
The tangential stress due to a turbulent boundary layer is given by equation (17) 

but with v replaced by the turbulent viscosity 

i/ - kvg&l&£* . (22) 

Here Ai^ ~ (Q -- £lg)a is the velocity jump across the boundary layer, S' is the 
boundary layer thickness, and is the critical value of the Reynolds number above 
which the flow becomes fully turbulent. Since dvgldz ~ &vg/8'9 the turbulent stress on 
the disk is simply 

S - p9(&vg)
2/@** . (23) 

From experimental data it is known that ~ 5 x 102 (Jeffreys 1959). The thickness 
of the turbulent boundary layer is 

x 107cm' (24) 

The lifetime of the dust disk against orbital decay turns out to be 

Ta ~ 20^2 ¿ ~ 1 x 105 years, (25) 
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if the boundary layer flow is laminar, and 

ra ~ 4@£*a(Q.alc)3Q.-1 ~ 5 x 103years, (26) 

in the more likely case that it is turbulent. From equations (15) and (26), it appears 
that the time available to initiate the next stage of the accretion process (following the 
condensation of small particles from the vapor phase) is about 103 years. 

III. FRAGMENTATION AND COLLAPSE 

a) Stability 

Extensive calculations of the gravitational stability of rotating disks have been 
carried out in an effort to explain the spiral structure of galaxies (Toomre 1964; 
Goldreich and Lynden-Bell 1965a, b). We shall make use of the dispersion relation for 
local axisymmetric perturbations (i.e., for wavelengths A « a) that reads 

to2 = k2c2 + /c2 — IttGuJc , (27) 

where k2 = 2Ü[Q + d(rQ)/dr] and c is the sound speed. The important features to 
note are that pressure stabilizes short disturbances and rotation stabilizes long ones. 
If the surface density a is high enough, there is a range of intermediate wavelengths that 
are unstable. For a given c and k, the critical value of a above which the disk is unstable 
is given by 

a* = kc/ttG . (28) 

This criterion is not rigorously applicable to the gaseous solar nebula since it is derived 
for a thin disk. Nevertheless, it does provide a good estimate of the surface density 
required for instability. If we substitute in equation (28) /c = O, which is the appro- 
priate expression for Keplerian motion, the critical gas surface density is 

a/ = 7.6 x 103r1/2gcm-2. (29) 

Since the value of og we obtain by augmenting the terrestrial planets up to solar 
composition is only 1.5 x 103 gem-2, equation (29) implies that the gaseous solar 
nebula is stable unless T < 0.04° K. Actually, equation (29) gives an underestimate of 
the critical surface density for a gas disk of finite thickness by a factor of order 3. 
This is a consequence of basing the derivation of cr* on a thin-disk model which over- 
emphasizes the effects of the disk’s self-gravitation for disturbances that are not much 
longer than its thickness. The low temperature required by equation (29) is the primary 
reason for rejecting theories of planetary formation that are based on the gravitational 
instability of the gaseous solar nebula. 

We now proceed to apply the dispersion relation given by equation (27) to the 
stability of the dust disk that forms in the equatorial plane of the solar nebula. 

The interpretation of c in this context requires some discussion. The use of a sound 
speed c to model the effect of the random kinetic energy of dust particles is not 
entirely justified because collisions between particles are inelastic. The time interval 
between collision, r, is given by t ~ /p/c, where lp is the particle mean free path. The 
mean free path is lp ~ 4rppd/3op, where d is the thickness of the dust layer. The 
thickness is in turn a function of the dispersion velocity since it is just twice the height 
to which a typical particle can rise above the central plane. Thus, 

d - c2I27tGgp . (30) 

Note that in deriving equation (30) the disk’s self-gravity has been used and not the 
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vertical component of the Sun’s gravity. This is because inside the disk, the gravitational 
acceleration due to the disk, 27rGapz/d, exceeds the vertical component of the solar 
gravitational acceleration, GMoz/a3 = Q2z, for disks which are cold enough to be 
unstable. If at each collision a fraction ß of the impacting particles’ kinetic energy is 
dissipated as heat, the velocity dispersion will damp on a time scale of order 

~ 3^ß ~ 2 x 105^) 8 ’ (31) 

where c and r are to be expressed in cgs units. From equation (28), it follows that 
c < ttGctp/zc in unstable disks. With our standard parameters, this implies c < Sans”1 

and hence, rdamping < 1.6 x 106r/j8 seconds. Thus for most applications we can safely 
set c = 0. The principal exceptions arise in cases of collapse on time scales shorter 
than 'T'damping* 

In the absence of random motions (c = 0), the dust disk is unstable to all axisym- 
metric perturbations of wavelength shorter than the critical wavelength 

Xc = 47r2G<7p/Q
2 . (32) 

For uniformly rotating disks, the stability criterion for nonaxisymmetric perturbations 
is the same as that for the axisymmetric ones. The situation is more complicated for 
differentially rotating disks. The shear associated with the differential rotation converts 
an arbitrary nonaxisymmetric disturbance into an approximately axisymmetric one in 
a time of the order of a few rotation periods. Fortunately, as equation (27) shows, the 
growth time for perturbations having wavelengths shorter than Ac is less than an 
orbital period. (Actually, eq. [27] only shows this for axisymmetric disturbances, but 
the same result also holds for more general perturbations.) Thus, for perturbations 
which are somewhat smaller than Ac, we can forget the distinction between axisym- 
metric and more general perturbations and just use equation (27) to get an estimate of 
the exponential growth rate. The exact value of A < Ac, below which equation (27) 
may be used for nonaxisymmetric perturbations, is not well defined. It depends upon 
the magnitude of the initial perturbation which determines how fast growth into the 
nonlinear regime is achieved. We shall express all future results in terms of £AC, 
where £ is on the order of, but less than, unity. 

b) Fragmentation 

The largest fragments that form when the unstable disk breaks up have masses of 
order m ~ <jpi2Xc

2. Numerically, Ac ~ 5 x 108 cm and m ~ 2 x 1018 £2 g. Note that 
Ac « a, so that our application of the dispersion relation given in equation (27) is 
justified. 

Regions containing total masses as large as m cannot collapse unimpeded. As a 
fragment contracts, its gravitational binding energy, U\ increases as U' ~ UX/X'. 
However, as a consequence of the conservation of internal angular momentum, its 
rotational energy ER' increases as ER' ~ ER(X/X')2. Furthermore, if the contraction 
time scale is shorter than the damping time for random motions, the random kinetic 
energy of the particles, T\ increases as T' ~ T(X¡X')2. If the release of gravitational 
binding energy exceeds the demands of the rising rotational and internal kinetic 
energies, the excess energy will appear in the form of a bulk contraction velocity. 
On the other hand, if during the collapse the required rate of increase of rotational and 
random kinetic energies cannot be met by the release of gravitational potential energy, 
the contraction velocity will decay and reexpansion will ensue. In this latter case, the 
dimension of the fragment will eventually begin to oscillate about an equilibrium size 
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that is determined by 

-jÿ (Er + T' — U’) = 0, (33) 

or, in differentiated form, by 

2Er' + 2T' - U' = 0. (34) 

The condition for marginal stability (o>2 = 0) given by the dispersion relation (eq. 
[27]) is of this form. In terms of the wavelength A, it yields 

A2Q2 + 47t2c2 - 47r2GV = 0 (35) 

for the marginally stable mode. We may identify each of the three terms in equation 
(34) with the corresponding term in equation (35).1 Consider next an unstable linear 
perturbation of the dust disk (i.e., one for which oj2 < 0) of wavelength A. In the 
absence of interactions with other contracting fragments, this perturbed region would 
initially collapse and then oscillate about an equilibrium size A' given by 

(A2Q2 + 47r2c2)(A/A')2 - 47t2Gc7pA(A/A') = 0 (36) 

or 

A2Q2 + 47t2c2 

A7T2G(Tp 
(37) 

As written, equations (36) and (37) do not include the effects of damping on the 
random motions of the particles. However, it seems likely that damping is always fast 
enough to make the random motions unimportant to the collapse dynamics. To 
appreciate this, note that the damping time as given in equation (31) depends inversely 
on o-p2 and thus decreases as (A'/A)4 as the collapse proceeds. The characteristic time 
scale for collapse is never shorter than ~(\,/Ggp)

112 and thus, decreases more slowly 
as (X'/X)312. From the numerical estimate of the damping time given by equation (31), 
it appears that the damping of the random kinetic energy is sufficiently rapid to render 
pressure unimportant in the initial stages of the contraction. The preceding argument 
then implies that the effects of pressure remain small for all later stages of collapse. 

Fragments collapse directly to form solid bodies provided that their equilibrium 
contraction corresponds to spatial densities at least as great as that of the solid 
material. This condition on the equilibrium contraction is approximately 

A/A' ^ (7rPpX/6apyi3 . (38) 

If equation (37) is substituted into the above inequality (and the initial random kinetic 
energy is set to zero), we obtain 

A4 ^ 
3847t5GîV 

3847T5 (39) 

A 5 x 10e cm . (40) 

1 The model of a contracting region as a rotating subdisk is imperfect for two reasons: (1) 
particles in a disk with differential rotation do ,not execute circular motions when observed in a 
corotating inertial frame centered on the contracting region; and (2) although tidal forces are 
important in determining Ac, they are not important in later stages of collapse and our A"2 scaling 
law does not take this into account. However, since we are interested only in establishing the size 
of the planetesimals to within an order of magnitude, these deficiencies do not alter our results. 
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The mass and diameter of the solid bodies that form from fragments of initial size A 
are m ^ 2 x 1014 g and A' ^ 0.5 km. 

c) Further Growth 

We have shown how dust particles coalesce into planetesimals with radii of a few 
tenths of a kilometer. Because Ac/A ~ 102, these first-generation planetesimals will be 
grouped into rotating disklike associations containing ~104f2 members. Although 
each cluster is stable against collapse on the gravitational free-fall time scale, it does 
contract slowly as gas drag reduces its internal rotational and random kinetic energy. 
Since the Reynolds number for the gas flow about bodies the size of the planetesimals 
is large, the drag force arises from the formation of a turbulent wake and is 

Fd = CDTrr2Pg\vg - vp\(vg - vp), (41) 

where CD is the dimensionless drag coefficient typically on the order of a few tenths. 
The contraction time for the associations is then given by 

T ~ Ä fe) (v) ¿ ~ 13 X l°2ri,CD yearS ’ (42) 

where r4 is the radius in units of tenths of kilometers. It is easily shown that the 
cluster contraction time is comparable to the relaxation time due to binary encounters 
between planetesimals. Thus, the contraction of a cluster should proceed without a 
significant loss of members by evaporation. The masses and radii of the second 
generation of planetesimals range up to 

m - Ac
2£2ap - 2 x 1018£2 g (43) 

and 

r - 5£2/3 km . (44) 

Beyond this stage it appears unlikely that further growth proceeds by means of 
collective gravitational instabilities such as we have been describing. The frictional 
effect of gas drag does destabilize axisymmetric perturbations for wavelengths larger 
than Ac. We cannot be certain that the axisymmetric perturbations by themselves are 
not a significant feature in producing a limited further growth of planetesimals. 
However, it is possible to prove that they are too slow to be responsible for the 
accumulation of material over interplanetary distances. 

Direct particle-particle collisions are probably the dominant accretion process 
following the formation of the second-generation planetesimals. It seems plausible to 
expect near encounters between planetesimals to build up a dispersion velocity on the 
order of the escape velocity from the surface of a typical object ve = (2GM/r)112. The 
corresponding disk thickness is c/ ~ z;e/ü. The growth rate produced by direct impacts 
is simply 

drjdt ~ Clvp/pp ~ 15 cm year"1. (45) 

d) Survival Time 

As long as the gaseous solar nebula is present, gas drag will produce a slow inward 
drift of the planetesimals toward the Sun. It is essential that at each stage of accretion, 
the particle growth time be short compared to the orbital lifetime set by gas drag. 
We have already verified that this condition is well satisfied through the formation of 
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the second generation of planetesimals. Past this stage, the orbital lifetime, as deter- 
mined from equations (9) and (41), becomes 

where the particle radius r5 is expressed in units of kilometers. Comparison of equa- 
tions (45) and (46) reveals that at each stage of accretion the survival time exceeds the 
growth time by at least two orders of magnitude. 

There are two related uncertainties which plague any attempt to present a detailed 
account of the early stages of planetary accretion. The first of these, to which we have 
previously referred, is the question of the number of nucléation sites that form during 
the condensation of minerals from the gaseous phase. If the number of independent 
nucléation sites is so small that the vapor phase is not seriously depleted in the time it 
takes the particles to gravitationally settle into the equatorial plane, the resulting 
particles have radii several centimeters in size and the settling time is about 10 years. 
On the other hand, if the number of nucléation sites is so large that the vapor phase is 
exhausted before appreciable settling takes place, the resulting dust particles may be 
very much smaller and the corresponding settling time much longer. A related question 
is the relative rate of cooling of the preplanetary nebula to the settling time of the dust 
particles. If the cooling time is short compared to the settling time, the chemical 
composition of the dust disk reflects typical cosmic abundances. However, if the 
cooling time is longer than the settling time, chemical fractionation occurs at the 
earliest stage of planetary accretion. 

Of the two problems discussed above, the question of the number of nucléation sites 
is the more fundamental. Because it directly bears on the size and hence the settling 
time of the dust particles, it sets the time scale to which the cooling time must be 
compared. It also indirectly affects the cooling time itself, since the opacity of the 
nebula depends upon the number and size distribution of the dust grains. 

Another problem worth mentioning is that gravitational instabilities will begin to 
grow in the dust disk as soon as its vertical thickness is less than Ac. Thus, our dis- 
cussion in terms of the dispersion relation for a thin disk is an oversimplification of the 
true situation. Fortunately, the time scale for growth of these instabilities is identical 
to that for the thinning of the disk. The major new feature introduced by the finite 
thickness of the disk is just a decrease in the growth rate of the first-generation plane- 
tesimals from 27r(Gcrp/X)112 to 2tt(G(tp/Xc)

112. The calculated masses of the objects are 
not affected by the finite thickness of the disk. 

The main contribution of this investigation is the demonstration that sizable 
planetesimals can accrete directly from dust grains by means of gravitational in- 
stabilities. Thus, the fate of planetary accretion no longer appears to hinge on the 
stickiness of the surfaces of dust particles. Although we have dismissed the sticking of 
dust grains as unnecessary to the planetary accretion process, there is a more funda- 
mental reason for disregarding it altogether. That is, even if the dust grains tended to 
stick together upon impact, the growth of solid bodies by this process would be much 
slower than by the gravitational instabilities we have described. 

This research was supported in part by NASA NGL 05-002-003. This work con- 
stitutes a portion of one of the author’s (W. R. W.) Ph.D. thesis. 

(46) 

IV. DISCUSSION 
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Note added in proof.—Recently, a Russian to English translation of a book entitled 
Evolution of the Protoplanetary Cloud and Formation of Earth and the Planets has 
appeared, , which contains a discussion of the fragmentation of a primordial dust layer 
which is in some ways similar to that presented here. Safronov credits Gurevich and 
Lebedinskii (1950) as being the first to obtain the critical wavelength and mass. 
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