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Accumulation of dust and ice particles into planetesimals is an important step in the planet
formation process. Planetesimals are the seeds of both terrestrial planets and the solid cores of
gas and ice giants forming by core accretion. Left-over planetesimals in the form of asteroids,
trans-Neptunian objects and comets provide a unique recordof the physical conditions in
the solar nebula. Debris from planetesimal collisions around other stars signposts that the
planetesimal formation process, and hence planet formation, is ubiquitous in the Galaxy. The
planetesimal formation stage extends from micrometer-sized dust and ice to bodies which can
undergo run-away accretion. The latter ranges in size from 1km to 1000 km, dependent on
the planetesimal eccentricity excited by turbulent gas density fluctuations. Particles face many
barriers during this growth, arising mainly from inefficient sticking, fragmentation and radial
drift. Two promising growth pathways are mass transfer, where small aggregates transfer up
to 50% of their mass in high-speed collisions with much larger targets, and fluffy growth,
where aggregate cross sections and sticking probabilitiesare enhanced by a low internal
density. A wide range of particle sizes, from mm to 10 m, concentrate in the turbulent gas
flow. Overdense filaments fragment gravitationally into bound particle clumps, with most
mass entering planetesimals of contracted radii from 100 to500 km, depending on local disc
properties. We propose a hybrid model for planetesimal formation where particle growth starts
unaided by self-gravity but later proceeds inside gravitationally collapsing pebble clumps to
form planetesimals with a wide range of sizes.

1. INTRODUCTION

Most stars are born surrounded by a thin protoplane-
tary disc with a characteristic mass between 0.01% and
10% of the mass of the central star (Andrews and Williams,
2005). Planetesimal formation takes place as the embed-
ded dust and ice particles collide and grow to ever larger
bodies. Tiny particles collide gently due to Brownian mo-
tion, while larger aggregates achieve higher and higher col-
lision speeds as they gradually decouple from the smallest
eddies of the turbulent gas flow and thus no longer inherit
the incompressibility of the gas (Voelk et al., 1980). The
gas disc is partially pressure-supported in the radial direc-

tion, causing particles of sizes from centimeters to meters
to drift towards the star (Whipple, 1972;Weidenschilling,
1977a). Drift speeds depend on the particle size and hence
different-sized particles experience high-speed collisions.

The growth from dust and ice grains to planetesimals –
the seeds of both terrestrial planets as well as the cores of
gas giants and ice giants – is an important step towards the
assembly of a planetary system. A planetesimal can be de-
fined as a body which is held together by self-gravity rather
than material strength, corresponding to minimum sizes of
order 100–1,000 meters (Benz, 2000). The planetesimal
formation stage, on the other hand, must extend to sizes
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where the escape speed of the largest bodies exceeds the
random motion of the planetesimals, to enter the next stage
of gravity-driven collisions. The random speed of planetesi-
mals and preplanetesimals (the latter can be roughly defined
as bodies larger than 10 meters in size) is excited mainly by
the stochastic gravitational pull from density fluctuations in
the turbulent gas; under nominal turbulence conditions the
largest planetesimals need to reach sizes as large as 1,000
km to start run-away growth (Ida et al., 2008). In disc re-
gions with less vigorous turbulence, planetesimal sizes be-
tween 1 and 10 kilometers may suffice to achieve significant
gravitational focusing (Gressel et al., 2012).

Planetesimals must grow to run-away sizes despite
bouncing and disruptive collisions (Blum and Wurm, 2000).
Planetesimals must also grow rapidly – radial drift time-
scales of cm-m-sized particles are as short as a few hundred
orbits. Despite these difficulties there is ample evidence
from cosmochemistry that large planetesimals formed in
the solar nebula within a few million years (Kleine et al.,
2004;Baker et al., 2005), early enough to melt and differ-
entiate by decay of short-lived radionuclides.

The time since the lastProtostars & Planetsreview on
planetesimal formation (Dominik et al., 2007) has seen a
large expansion in the complexity and realism of plan-
etesimal formation studies. In this review we focus on
three areas in which major progress has been obtained,
namely (i) the identification of a bouncing barrier at mm
sizes and the possibility of growth by mass transfer in high-
speed collisions (Wurm et al., 2005;Johansen et al., 2008;
Güttler et al., 2010; Zsom et al., 2010; Windmark et al.,
2012b), (ii) numerical simulations of collisions between
highly porous ice aggregates which can grow past the
bouncing and radial drift barriers due to efficient sticking
and cross sections that are greatly enhanced by a low in-
ternal density (Wada et al., 2008, 2009;Seizinger and Kley,
2013), and (iii) hydrodynamical and magnetohydrodynam-
ical simulations which have identified a number of mecha-
nisms for concentrating particles in the turbulent gas flow of
protoplanetary discs, followed by a gravitational fragmen-
tation of the overdense filaments to form planetesimals with
characteristic radii larger than 100 km (Johansen et al.,
2007; Lyra et al., 2008a, 2009;Johansen et al., 2009a;
Bai and Stone, 2010a;Raettig et al., 2013).

The review is laid out as follows. In section 2 we give
an overview of the observed properties of planetesimal belts
around the Sun and other stars. In section 3 we review the
physics of planetesimal formation and derive the planetesi-
mal sizes necessary to progress towards planetary systems.
Section 4 concerns particle concentration and the density
environment in which planetesimals form, while the follow-
ing section 5 describes laboratory experiments to determine
the outcome of collisions and methods for solving the co-
agulation equation. In section 6 we discuss the bouncing
barrier for silicate dust and the possibility of mass transfer
in high-speed collisions. Section 7 discusses computer sim-
ulations of highly porous ice aggregates whose low internal
density can lead to high growth rates. Finally in section 8

we integrate the knowledge gained over recent years to pro-
pose a unified model for planetesimal formation involving
both coagulation, particle concentration and self-gravity.

2. PLANETESIMAL BELTS

The properties of observed planetesimal belts provide
important constraints on the planetesimal formation pro-
cess. In this section we review the main properties of the
asteroid belt and trans-Neptunian population as well as de-
bris discs around other stars.

2.1. Asteroids

The asteroid belt is a collection of mainly rocky bodies
residing between the orbits of Mars and Jupiter. Asteroid
orbits have high eccentricities (e∼0.1) and inclinations, ex-
cited by resonances with Jupiter and also a speculated pop-
ulation of embedded super-Ceres-sized planetary embryos
which were later dynamically depleted from the asteroid
belt (Wetherill, 1992). The high relative speeds imply that
the asteroid belt is in a highly erosive regime where colli-
sions lead to fragmentation rather than to growth.

Asteroids range in diameters fromD ≈ 1000 km (Ceres)
down to the detection limit at sub-km sizes (Gladman et al.,
2009). The asteroid size distribution can be parameterised
in terms of the cumulative size distributionN>(D) or the
differential size distributiondN>/dD. The cumulative
size distribution of the largest asteroids resembles a bro-
ken power lawN> ∝ D−p, with a steep power law in-
dex p ≈ 3.5 for asteroids above 100 km diameter and
a shallower power law indexp ≈ 1.8 below this knee
(Bottke et al., 2005).

Asteroids are divided into a number of classes based
on their spectral reflectivity. The main classes are the
moderate-albedo S-types which dominate the region from
2.1 to 2.5 AU and the low-albedo C-types which domi-
nate regions from 2.5 AU to 3.2 AU (Gradie and Tedesco,
1982;Bus and Binzel, 2002). If these classes represent dis-
tinct formation events, then their spatial separation can be
used to constrain the degree of radial mixing by torques
from turbulent density fluctuations in the solar nebula
(Nelson and Gressel, 2010). Another important class of
asteroids is the M-type of which some are believed to be
the metallic cores remaining from differentiated asteroids
(Rivkin et al., 2000). Two of the largest asteroids in the
asteroid belt, Ceres and Vesta, are known to be differenti-
ated (from the shape and measured gravitational moments,
respectively,Thomas et al., 2005;Russell et al., 2012).

Asteroids are remnants of solar system planetesimals
that have undergone substantial dynamical depletion and
collisional erosion. Dynamical evolution models can be
used to link their current size distribution to the primordial
birth size distribution.Bottke et al.(2005) suggested, based
on the observed knee in the size distribution at sizes around
100 km, that asteroids with diameters aboveD ≃ 120
km are primordial and that their steep size distribution
reflects their formation sizes, while smaller asteroids are
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fragments of collisions between their larger counterparts.
Morbidelli et al.(2009) tested a number of birth size distri-
butions for the asteroid belt, based on either classical co-
agulation models starting with km-sized planetesimals or
turbulent concentration models predicting birth sizes in the
range between 100 and 1000 km (Johansen et al., 2007;
Cuzzi et al., 2008), and confirmed that the best match to the
current size distribution is that the asteroids formed big,in
that the asteroids above 120 km in diameter are depleted dy-
namically but have maintained the shape of the primordial
size distribution. On the other hand,Weidenschilling(2011)
found that an initial population of 100-meter-sized planetes-
imals can reproduce the current observed size distribution
of the asteroids, including the knee at 100 km. However,
gap formation around large planetesimals and trapping of
small planetesimals in resonances is not included in this
particle-in-a-box approach (Levison et al., 2010).

2.2. Meteorites

Direct information about the earliest stages of planet for-
mation in the solar nebula can be obtained from meteorites
that record the interior structure of planetesimals in the as-
teroid belt. The reader is referred to the chapter byDavis et
al. for more details on the connection between cosmochem-
istry and planet formation. Meteorites are broadly char-
acterized as either primitive or differentiated (Krot et al.,
2003). Primitive meteorites (chondrites) are fragments of
parent bodies that did not undergo melting and differenti-
ation and, therefore, contain pristine samples of the early
solar system. In contrast, differentiated meteorites are frag-
ments of parent bodies that underwent planetesimal-scale
melting and differentiation to form a core, mantle and crust.

The oldest material to crystallise in the solar nebula
is represented in chondrites as mm- to cm-sized calcium-
aluminium-rich inclusions (CAIs) and ferromagnesian sili-
cate spherules (chondrules) of typical sizes from 0.1 mm to
1 mm (Fig. 1). The chondrules originated in an uniden-
tified thermal processing mechanism (or several mech-
anisms) which melted pre-existing nebula solids (e.g.
Desch and Connolly, 2002; Ciesla et al., 2004); alterna-
tively chondrules can arise from the crystallisation of splash
ejecta from planetesimal collisions (Sanders and Taylor,
2005;Krot et al., 2005).

The majority of CAIs formed as fine-grained conden-
sates from an16O-rich gas of approximately solar compo-
sition in a region with high ambient temperature (>1300
K) and low total pressures (∼10−4 bar). This environment
may have existed in the innermost part of the solar neb-
ula during the early stage of its evolution characterized by
high mass accretion rates (∼10−5 M⊙ yr−1) to the proto-
Sun (D’Alessio et al., 2005). Formation of CAIs near the
proto-Sun is also indicated by the presence in these objects
of short-lived radionuclide10Be formed by solar energetic
particle irradiation (McKeegan et al., 2000). In contrast,
most chondrules represent coalesced16O-poor dust aggre-
gates that were subsequently rapidly melted and cooled in

Fig. 1.— X-ray elemental maps composed of Mg (red), Ca
(green), and Al (blue) of a fined-grained CAI from the Efremovka
CV3 chondrite (A) and two barred-olivine chondrules (B, C) from
the NWA 3118 CV3 chondrite.

lower-temperature regions (<1000 K) and higher ambient
vapor pressures (≥ 10−3 bar) than CAIs, resulting in ig-
neous porphyritic textures we observe today (Scott, 2007).
Judging by their sheer abundance in chondrite meteorites,
the formation of chondrules must reflect a common pro-
cess that operated in the early solar system. Using the
assumption-free uranium-corrected Pb-Pb dating method,
Connelly et al.(2012) recently showed that CAIs define a
brief formation interval corresponding to an age of 4567.30
± 0.16 Myr, whereas chondrule ages range from 4567.32±
0.42 to 4564.71± 0.30 Myr. These data indicate that chon-
drule formation started contemporaneously with CAIs and
lasted∼3 Myr.

A consequence of accretion of planetesimals on Myr
time-scales or less is the incorporation of heat-generating
short-lived radioisotopes such as26Al, resulting in wide-
scale melting, differentiation and extensive volcanic activ-
ity. Both long-lived and short-lived radioisotope chronome-
ters have been applied to study the timescale of asteroidal
differentiation. Of particular interest are the26Al-26Mg and
182Hf-182W decay systems, with half-lives of 0.73 Myr and
9 Myr, respectively. Al and Mg are refractory and lithophile
elements and thus remain together in the mantle after core
formation. In contrast, the different geochemical behav-
ior of Hf and W during melting results in W being pref-
erentially partitioned in the core and Hf being partitioned
into the silicate mantle and crust. Therefore, the short-lived
182Hf-182W system is useful to study the timescales of core
formation in asteroids, as well as in planets, which can be
used to constrain planetesimal formation models.

Eucrite and angrite meteorites are the two most com-
mon groups of basaltic meteorites, believed to be derived
from the mantles of differentiated parent bodies. The HED
(howardite-eucrite-diogenite) meteorite clan provides our
best samples of any differentiated asteroid and could come
from the 500-km-diameter asteroid 4 Vesta (Binzel and Xu,
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Fig. 2.— Surface and interior structure of the 500-km-diameter
asteroid 4 Vesta, obtained by the NASA Dawn satellite. The iron
core is 110 km in radius, surrounded by a silicate mantle (green)
and a basaltic crust (gray). Image credit: NASA/JPL-Caltech

1993), although seeSchiller et al. (2011) for a different
view. The interior structure of Vesta was recently deter-
mined by the Dawn mission (Russell et al., 2012), indicat-
ing an iron core of approximately 110 km in radius (see
Fig. 2). The26Al-26Mg systematics of the angrite and HED
meteorites indicate that silicate differentiation on these par-
ent bodies occurred within the first few Myr of solar sys-
tem formation (Schiller et al., 2011;Bizzarro et al., 2005;
Schiller et al., 2010; Spivak-Birndorf et al., 2009). Simi-
larly, the Mg isotope composition of olivines within pall-
asite meteorites - a type of stony-iron meteorites composed
of cm-sized olivine crystals set in a iron-nickel matrix -
suggests silicate differentiation within 1.5 Myr of solar sys-
tem formation (Baker et al., 2012). Chemical and isotopic
diversity of iron meteorites show that these have sampled
approximately 75 distinct parent bodies (Goldstein et al.,
2009). The182Hf-182W systematics of some magmatic iron
meteorites require the accretion and differentiation of their
parent bodies to have occurred within less than 1 Myr of
solar system formation (Kleine et al., 2009).

An important implication of the revised absolute chronol-
ogy of chondrule formation ofConnelly et al. (2012),
which is not based on short-lived radionuclides for which
homogeneity in the solar nebula has to be assumed, is that
the accretion and differentiation of planetesimals occurred
during the epoch of chondrule formation. This suggests
that, similarly to chondrite meteorites, the main original
constituents of early-accreted asteroids may have been
chondrules. The timing of accretion of chondritic parent
bodies can be constrained by the ages of their youngest
chondrules, which requires that most chondrite parent bod-

ies accreted>2 Myr after solar system formation. There-
fore, chondrites may represent samples of asteroidal bodies
that formed after the accretion of differentiated asteroids, at
a time when the levels of26Al were low enough to prevent
significant heating and melting.

2.3. Trans-Neptunian objects

The trans-Neptunian objects are a collection of rocky/icy
objects beyond the orbit of Neptune (Luu and Jewitt, 2002).
Trans-Neptunian objects are categorised into several dy-
namical classes, the most important for planetesimal for-
mation being the classical Kuiper belt objects, the scattered
disc objects and the related centaurs which have orbits that
cross the orbits of one or more of the giant planets. The
classical Kuiper belt objects do not approach Neptune at
any point in their orbits and could represent the pristine
population of icy planetesimals in the outer solar nebula.
The so-called cold component of the classical Kuiper belt
has a large fraction (at least 30%) of binaries of similar
size (Noll et al., 2008) which strongly limits the amount of
collisional grinding that these bodies can have undergone
(Nesvorńy et al., 2011). The scattered disc objects on the
other hand can have large semi-major axes, but they all have
perihelia close to Neptune’s orbit. The centaurs move be-
tween the giant planets and are believed to be the source of
short period comets (see below).

The largest trans-Neptunian objects are much larger
than the largest asteroids, with Pluto, Haumea, Make-
make and Eris defined as dwarf planets of 1.5-3 times
the diameter of Ceres (Brown, 2008). Nevertheless the
size distribution of trans-Neptunian objects shows sim-
ilarities with the asteroid belt, with a steep power law
above a knee at aroundD∼100 km (Fuentes and Holman,
2008). The turn-over at the knee implies that there are
fewer intermediate-mass planetesimals than expected from
an extrapolation from larger sizes – this has been dubbed
the “Missing Intermediate-Sized Planetesimals” problem
(Sheppard and Trujillo, 2010; Shankman et al., 2013) and
suggests that the characteristic planetesimal birth size was
∼100 km. The accretion ages of Kuiper belt objects are not
known, in contrast to the differentiated asteroids where the
inclusion of large amounts of26Al requires early accretion.
While the largest Kuiper belt objects are likely differen-
tiated into a rocky core and an icy mantle – this is clear
e.g. for Haumea which is the dense remnant of a differen-
tiated body (Ragozzine and Brown, 2009) – differentiation
could be due to long-lived radionuclides such as U, Th and
40K and hence happen over much longer time-scales (∼100
Myr) than the∼Myr time-scale characteristic of asteroid
differentiation by26Al decay (McKinnon et al., 2008).

2.4. Comets

Comets are typically km-sized volatile-rich bodies
which enter the inner solar system. They bring with them a
wealth of information about the conditions during the plan-
etesimal formation epoch in the outer solar system. Out-

4



gassing provides knowledge about the compositions and
heating histories of icy planetesimals, and the volumes and
masses of comet nuclei can be used to derive their density
which can be compared to the density expected from plan-
etesimal formation models. Comet nuclei are (or are related
to) icy planetesimals, i.e. planetesimals that formed beyond
the snow line in a formation zone extending from roughly
15 to 30 AU from the Sun – at least in the framework of
the so-called Nice Model where the giant planets form in
a compact configuration between 5 and 12 AU and later
migrate by planetesimal scattering to their current positions
(Levison et al., 2011). This zone is wide enough to allow
for the appearance of chemical zoning, but such a zoning
would likely not be reflected in any separation between the
short- and long-period comet source regions.

Comets have to be considered together with the Cen-
taurs and trans-Neptunians, because these are dynamically
related to the Jupiter Family comets, and most of the data
we have on comets come from observations and modeling
of Jupiter Family comets. The emergent picture is a very
wide size spectrum going from sub-km to103 km in di-
ameter. However, the slope of the size distribution is diffi-
cult to establish, since small objects are unobservable in the
outer populations, and large ones are lacking in the Jupiter
Family. Generally, the measurements of masses and sizes
of comet nuclei are consistent with a rather narrow range
of densities at about 0.5 g/cm3 (Weissman et al., 2004;
Davidsson et al., 2007). Most of the determinations use the
non-gravitational force due to asymmetric outgassing. As-
suming a composition that is roughly a 50-50 mix of ice
and refractories (Greenberg and Hage, 1990) the porosity
comes out as roughly 2/3. But the mass determinations only
concern the bulk mass, so one cannot distinguish between
meso-scale-porosity (rubble piles) and small-scale porosity
(pebble piles). Estimates of comet tensile strengths have
generally been extremely low, as expected for porous bod-
ies. For comet Shoemaker-Levy 9, modeling of its tidal
breakup led to (non-zero) values so low that the object was
described as a strengthless rubble pile (Asphaug and Benz,
1996). The non-tidal splittings often observed for other
comets appear to be so gentle that, again, an essentially zero
strength has been inferred (Sekanina, 1997).

The current results on volatile composition of comets
have not indicated any difference between the Jupiter Fam-
ily comets – thought to probe the scattered disc – and the
Halley-type and long-period comets, which should come
from the Oort Cloud (A’Hearn et al., 2012). From a dy-
namical point of view, this result is rather expected, since
both these source populations have likely emerged from the
same ultimate source, a disc of icy planetesimals extend-
ing beyond the giant planet zone in the early Solar System
(Brasser and Morbidelli, 2013).

The origin of comets is closely related to the issue of the
chemical pristineness of comets. If the total mass of the
planetesimal disc was dominated by the largest planetes-
imals, several hundreds of km in size, then the km-sized
comet nuclei that we are familiar with could arise from

collisional grinding of the large planetesimals. Neverthe-
less there are severe problems with this idea. One is that
comet nuclei contain extremely volatile species, like the
S2 molecule (Bockeĺee-Morvan et al., 2004), which would
hardly survive the heating caused by a disruptive impact on
the parent body. The alternative that tidal disruptions of
large planetesimals at mutual close encounters may lead to
large numbers of smaller objects seems more viable, but this
too suffers from the second pristineness problem, namely,
the geologic evolution expected within a large planetesimal
due to short-lived radio nuclei (Prialnik et al., 2004). If the
large planetesimal thus becomes chemically differentiated,
there seems to be no way to form the observed comet nuclei
by breaking it up – no matter which mechanism we invoke.

The pristine nature of comets is thus consistent with
the formation of small, km-scale cometesimals in the outer
part of the solar nebula, avoiding due to their small size
melting and differentiation due to release of short-lived ra-
dionuclides. Another possibility is that comets accreted
from material comprising an early formed26Al-free com-
ponent (Olsen et al., 2013), which would have prevented
differentiation of their parent bodies. The recent chronol-
ogy of 26Al-poor inclusions found in primitive meteorites
indicate that this class of objects formed coevally with CAIs
(which record the canonical26Al/27Al value of 5 × 10−5,
Holst et al., 2013). This provides evidence for the exis-
tence of26Al-free material during the earliest stages of
the protoplanetry disc. The discovery of refractory mate-
rial akin to CAIs in the Stardust samples collected from
Comet 81P/Wild 2 shows efficient outward transport of ma-
terial from the hot inner disc regions to cooler environ-
ments far from the Sun during the epoch of CAI formation
(Brownlee et al., 2006). Efficient outward transport during
the earliest stages of solar system evolution would have re-
sulted in the delivery of a significant fraction of the26Al-
poor material to the accretion region of cometary bodies.
Analysis of the Coci refractory particle returned from comet
81P/Wild 2 did not show detectable26Al at the time of its
crystallization (Matzel et al., 2010) which, although specu-
lative, is consistent with the presence an early-formed26Al-
free component in comets.

2.5. Debris discs

Planetesimal belts around other stars show their presence
through the infrared emission of the dust produced in col-
lisions (Wyatt, 2008). The spectral energy distribution of
the dust emission reveals the orbital distance of the plan-
etesimal belt. Warm debris discs resembling the asteroid
belt in the Solar System are common around young stars
of around 50 Myr age (at least 30%), but their occurrence
falls to a few percent within 100–1,000 Myr (Siegler et al.,
2007). Thus planetesimal formation appears to be ubiqui-
tous around the Sun as well as around other stars. This
is in agreement with results from the Kepler mission that
flat planetary systems exist around a high fraction of solar-
type stars (Lissauer et al., 2011;Tremaine and Dong, 2012;
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Fig. 3.—The particle size corresponding to Stokes numbers from0.01 to 10, the left plot for compact particles with material density
ρ• = 1 g cm−3 and the right for extremely porous aggregates withρ• = 10−5 g cm−3. Such fluffy particles may be the result of
collisions between ice aggregates (discussed in section 7). Transitions between drag force regimes are indicated withlarge dots.

Johansen et al., 2012b;Fang and Margot, 2012).

3. THE PLANETESIMAL FORMATION STAGE

The dust and ice particles embedded in the gas in pro-
toplanetary discs collide and merge, first by contact forces
and later by gravity. This process leads eventually to the
formation of the terrestrial planets and the cores of gas gi-
ants and ice giants forming by core accretion. The planetes-
imal formation stage can broadly be defined as the growth
from dust grains to particle sizes where gravity contributes
significantly to the collision cross section of two colliding
bodies.

3.1. Drag force

Small particles are coupled to the gas via drag force. The
acceleration by the drag force can be written as

v̇ = − 1

τf
(v − u) , (1)

wherev is the particle velocity,u is the gas velocity at the
position of the particle andτf is the friction time which con-
tains all the physics of the interaction of the particle withthe
gas flow (Whipple, 1972;Weidenschilling, 1977a). The fric-
tion time can be divided into different regimes, depending
on the mean free path of the gas molecules,λ, and the speed
of the particle relative to the gas,δv = |v − u|. The Ep-
stein regime is valid when the particle size is smaller than
the mean free path. The flux of impinging molecules is set
in this regime by their thermal motion and the friction time
is independent of the relative speed,

τf =
Rρ•
csρg

. (2)

HereR is the radius of the particle, assumed to be spheri-
cal. The other parameters are the material densityρ•, the

gas sound speedcs and the gas densityρg. Particles with
sizes above9/4 times the mean free path of the molecules
enter the Stokes regime (seeWhipple, 1972, and references
therein), with

τf =
Rρ•
csρg

4

9

R

λ
. (3)

Here the friction time is proportional to the squared radius
and independent of gas density, sinceλ is inversely pro-
portional to the gas density. The flow Reynolds number
past the particle,Re = (2Rδv)/ν, determines the further
transition to drag regimes that are non-linear in the relative
speed, with the kinematic viscosity given byν = (1/2)csλ.
At unity flow Reynolds number the drag transitions to an
intermediate regime with the friction time proportional to
(δv)−0.4. AboveRe = 800 the drag force finally becomes
quadratic in the relative velocity, with friction time

τf =
6Rρ•
(δv)ρg

. (4)

Following the descriptions above, the step-wise transition
from Epstein drag to fully quadratic drag happens in the op-
tically thin minimum mass solar nebula (MMSN,Hayashi,
1981), with power-law index−1.5 for the surface density
(Weidenschilling, 1977b) and−0.5 for the temperature, at
particle sizes

R1 =
9λ

4
= 3.2 cm

( r

AU

)2.75

, (5)

R2 =
ν

2(δv)
≈ 6.6 cm

( r

AU

)2.5

, (6)

R3 =
800ν

2(δv)
≈ 52.8m

( r

AU

)2.5

. (7)

HereR1 denotes the Epstein-to-Stokes transition,R2 the
Stokes-to-non-linear transition andR3 the non-linear-to-
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quadratic transition. The latter two equations are only ap-
proximate because of the dependence of the friction time on
the relative speed. Here we used the sub-Keplerian speed
∆v as the relative speed between particle and gas, an ap-
proximation which is only valid for large Stokes numbers
(see equation 8 below).

A natural dimensionless parameter to construct from the
friction time is the Stokes numberSt = Ωτf , with Ω denot-
ing the Keplerian frequency at the given orbital distance.
The inverse Keplerian frequency is the natural reference
time-scale for a range of range of physical effects in pro-
toplanetary discs, hence the Stokes number determines (i)
turbulent collision speeds, (ii) sedimentation, (iii) radial
and azimuthal particle drift, (iv) concentration in pressure
bumps and vortices and (v) concentration by streaming in-
stabilities. Fig. 3 shows the particle size corresponding to
a range of Stokes numbers, for both the nominal density
of 1 g/cm3 and extremely fluffy particles with an internal
density of10−5 g/cm3 (which could be reached when ice
aggregates collide, see section 7).

3.2. Radial drift

Protoplanetary discs are slightly pressure-supported in
the radial direction, due to gradients in both mid-plane den-
sity and temperature. This leads to sub-Keplerian motion of
the gas,vgas = vK − ∆v with vK denoting the Keplerian
speed and the sub-Keplerian velocity difference∆v defined
as (Nakagawa et al., 1986)

∆v ≡ ηvK = −1

2

(

H

r

)2
∂ lnP

∂ ln r
vK . (8)

In the MMSN the aspect ratioH/r rises proportional to
r1/4 and the logarithmic pressure gradient is∂ lnP/∂ ln r =
−3.25 in the mid-plane. This gives a sub-Keplerian speed
which is constant∆v = 53 m/s, independent of orbital dis-
tance. Radiative transfer models with temperature and den-
sity dependent dust opacities yield disc aspect ratiosH/r
with complicated dependency onr and thus a sub-Keplerian
motion which depends onr (e.g.Bell et al., 1997). Never-
theless, a sub-Keplerian speed of∼50 m/s can be used as
the nominal value for a wide range of protoplanetary disc
models.

The drag force on the embedded particles leads to par-
ticle drift in the radial and azimuthal directions (Whipple,
1972;Weidenschilling, 1977a)

vr = − 2∆v

St + St−1 , (9)

vφ = vK − ∆v

1 + St2
. (10)

These equations give the drift speed directly in the Epstein
and Stokes regimes. In the non-linear and quadratic drag
regimes, where the Stokes number depends on the relative
speed, the equations can be solved using an iterative method
to find consistentvr, vφ andSt.

The azimuthal drift peaks atvφ = vK−∆v for the small-
est Stokes numbers where the particles are carried passively
with the sub-Keplerian gas. The radial drift peaks at unity
Stokes number where particles spiral in towards the star at
vr = −∆v. The radial drift of smaller particles is slowed
down by friction with the gas, while particles larger than
Stokes number unity react to the perturbing gas drag by en-
tering mildly eccentric orbits with low radial drift.

Radial drift puts requirements on the particle growth at
Stokes number around unity (generally fromSt = 0.1 to
St = 10) to occur within time-scaletdrift∼r/∆v∼100–
1000 orbits (Brauer et al., 2007, 2008a), depending on the
location in the protoplanetary disc. However, three consid-
erations soften the at first glance very negative impact of
the radial drift. Firstly, the ultimate fate of drifting parti-
cles is not to fall into the star, but rather to sublimate at
evaporation fronts (or snow lines). This can lead to pile
up of material around evaporation fronts (Cuzzi and Zahnle,
2004) and to particle growth by condensation of water
vapour onto existing ice particles (Stevenson and Lunine,
1988;Ros and Johansen, 2013). Secondly, the radial drift
flow of particles is linearly unstable to streaming insta-
bilities (Youdin and Goodman, 2005), which can lead to
particle concentration in dense filaments and planetesimal
formation by gravitational fragmentation of the filaments
(Johansen et al., 2009a;Bai and Stone, 2010a). Thirdly,
very fluffy particles with low internal density reach unity
Stokes number, where the radial drift is highest, in the
Stokes drag regime (Okuzumi et al., 2012). In this regime
the Stokes number, which determines radial drift, increases
as the square of the particle size and hence growth to “safe”
Stokes numbers with low radial drift is much faster than for
compact particles. These possibilities are discussed morein
the following sections.

3.3. Collision speeds

Drag from the turbulent gas excites both large-scale ran-
dom motion of particles as well as collisions (small-scale
random motion). The two are distinct because particles may
have very different velocity vectors at large separations,but
these will become increasingly aligned as the particles ap-
proach each other due to the incompressible nature of the
gas flow. Particles decouple from turbulent eddies with
turn-over times shorter than the friction time, and the grad-
ual decoupling from the smallest eddies results in crossing
particle trajectories. This decoupling can be interpretedas
singularities in the particle dynamics (so-called “caustics”,
Gustavsson and Mehlig, 2011). Caustics in turn give rise to
collisions as small particles enter regions of intense cluster-
ing (clustering is discussed further in section 4.1.1). The
random motion is similar to the turbulent speed of the gas
for small particles, but particles experience decreased ran-
dom motion as they grow to Stokes numbers above unity.

The problem when calculating the turbulent collision
speed is that at close separations (when the particles
are about to collide) they interact with the same eddies,
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Fig. 4.— The collision speed, in meters per second, of two particles of size a1 anda2, with contributions from Brownian motion,
differential radial and azimuthal drift, and gas turbulence. The upper panels show collision speeds forα = 10−2 and the lower panels
show collision speeds forα = 10−4. The gravitational pull from turbulent gas density fluctuations is included in the right panels. The
red line marks the transition from dominant excitation by direct drag to dominant excitation by turbulent density fluctuations. The “oasis”
of low collision speeds for particles above 10 meters vanishes when including eccentricity pumping by turbulent density fluctuations.

which causes their motions to become highly correlated.
The framework set out byVoelk et al.(1980) which em-
ploys a Langevin approach, is still widely used, and
Ormel and Cuzzi(2007) provided closed-form analytical
approximations to their results (but seePan and Padoan,
2010, for a criticism of the simplifications made in the Völk
model). The closed-form expressions ofOrmel and Cuzzi
(2007) require numerical solution of a single algebraic
equation for each colliding particle pair (defined by their
friction times). With knowledge of the properties of the
turbulence, particularly the turbulent rms speed and the fre-
quency of the smallest and the largest eddies, the collision
speeds can then be calculated at all locations in the disc.

Another important contribution to turbulent collision
speeds is the gravitational pull from turbulent gas den-
sity fluctuations. The eccentricity of a preplanetesimal in-
creases as a random walk due to uncorrelated gravitational
kicks from the turbulent density field (Laughlin et al., 2004;
Nelson and Papaloizou, 2004). The eccentricity would
grow unbounded with time ase ∝ t1/2 in absence of dissi-
pation. Equating the eccentricity excitation time-scale with
the time-scale for damping by tidal interaction with the

gas disc (fromTanaka and Ward, 2004), aerodynamic gas
drag, and inelastic collisions with other particles,Ida et al.
(2008) provide parameterisations for the equilibrium eccen-
tricity as a function of particle mass and protoplanetary disc
properties. The resulting collision speeds dominate over the
contributions from the direct drag from the turbulent gas at
sizes above approximately 10 meters.

Ida et al.(2008) adopt the nomenclature ofOgihara et al.
(2007) for the eccentricity evolution, where a dimension-
less parameterγ determines the proportionality between the
eccentricity andt1/2. The parameterγ is expected to scale
with the density fluctuationsδρ/ρ but can be directly cali-
brated with turbulence simulations. The shearing box sim-
ulations byYang et al.(2009) of turbulence caused by the
magnetorotational instability (Balbus and Hawley, 1991)
suggest thatδρ/ρ ∝ √

α, whereα is the dimensionless
measure of the turbulent viscosity (Shakura and Sunyaev,
1973). In their nominal ideal-MHD turbulence model with
α ≈ 0.01, Yang et al.(2012) findγ ≈ 6 × 10−4. This
leads to an approximate expression forγ as a function of
the strength of the turbulence,γ ≈ 0.006

√
α. The result-

ing eccentricities are in broad agreement with the resis-
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Fig. 5.—The collision speed of equal-sized particles as a function of their size, from dust to planetesimals, based on the stirring model
of Ormel and Okuzumi(2013). The collision speeds of small particles (below approximately 10 m) are excited mainly by direct gas drag,
while the gravitational pull from turbulent gas density fluctuations dominates for larger particles. The transition from relative-speed-
dominated to escape-speed-dominated can be used to define the end of the planetesimal formation stage (dashed line). Theplanetesimal
sizes that must be reached for run-away accretion range fromnear 1000 km in highly turbulent discs (α = 10−2) to around 1–10 km in
disc regions with an extended dead zone that is stirred by sheared density waves from the active regions (α = 2× 10−4).

tive magnetohydrodynamics simulations ofGressel et al.
(2012) where the turbulent viscosity from Reynolds stresses
fall belowα = 10−4 in the mid-plane.

In Fig. 4 we show the collision speeds of two par-
ticles of sizes fromµm to 100 km, in a figure similar
to Fig. 3 of the classicalProtostars and Planets IIIre-
view by Weidenschilling and Cuzzi(1993). We take into
account the Brownian motion, the differential drift, and
the gas turbulence (from the closed-form expressions of
Ormel and Cuzzi, 2007). We consider an MMSN model at
r = 1AU andα = 10−2 in the upper panels andα = 10−4

in the lower panels. The gravitational pull from turbulent
density fluctuations driven by the magnetorotational insta-
bility is included in the right panels. The collision speed ap-
proaches 100 m/s for meter-sized boulders whenα = 10−2

and 30 m/s whenα = 10−4, due to the combined effect of
the drag from the turbulent gas and differential drift. The
collision speed of large, equal-sized particles (withSt>1)
would drop as

δv = cs

√

α

St
(11)

in absence of turbulent density fluctuations (for a discussion
of this high-St regime, seeOrmel and Cuzzi, 2007). This
region has been considered a safe haven for preplanetes-
imals after crossing the ridges around unity Stokes num-
ber (Weidenschilling and Cuzzi, 1993). However, the oases
vanishes when including the gravitational pull from tur-
bulent gas density fluctuations, and instead the collision
speeds continue to rise towards larger bodies, as they are
damped less and less by gas drag (right panels of Fig. 4).

The collision speed of equal-sized particles is explored
further in Fig. 5. Here we show results both of a model
with fully developed MRI turbulence and a more advanced
turbulent stirring model which includes the effect of a
dead zone in the mid-plane, where the ionisation degree
is too low for the gas to couple with the magnetic field
(Fleming and Stone, 2003; Oishi et al., 2007), with weak
stirring by density waves travelling from the active surface
layers (Okuzumi and Ormel, 2013; Ormel and Okuzumi,
2013).

The collision speeds rise with size until peaking at unity
Stokes number with collision speed approximately

√
αcs.

The subsequent decoupling from the gas leads to a decline
by a factor ten, followed by an increase due to the turbu-
lent density fluctuations starting at sizes of approximately
10 – 100 meters. The planetesimal formation stage can be
defined as the growth until the gravitational cross section of
the largest bodies is significantly larger than their geometric
cross section, a transition which happens when the escape
speed of the largest bodies approach their random speed. In
Fig. 5 we indicate also the escape speed as a function of
the size of the preplanetesimal. The transition to run-away
accretion can only start at 1000 km bodies in a disc with
nominal turbulenceα = 10−2 (Ida et al., 2008). Lower
values ofα, e.g. in regions of the disc where the ionisation
degree is too low for the magnetorotational instability, lead
to smaller values for the planetesimal size needed for run-
away accretion, namely 1–10 km.
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3.4. Sedimentation

While small micrometer-sized grains follow the gas den-
sity tightly, larger particles gradually decouple from thegas
flow and sediment towards the mid-plane. An equilibrium
mid-plane layer is formed when the turbulent diffusion of
the particles balances the sedimentation. The Stokes num-
ber introduced in section 3.1 also controls sedimentation
(because the gravity towards the mid-plane is proportional
toΩ2). Balance between sedimentation and turbulent diffu-
sion (Dubrulle et al., 1995) yields a mid-plane layer thick-
nessHp, relative to the gas scale-heightH , of

Hp

H
=

√

δ

St + δ
. (12)

Hereδ is a measure of the diffusion coefficientD = δcsH ,
similar to the standard definition ofα for turbulent vis-
cosity (Shakura and Sunyaev, 1973). In generalδ ≈ α
in turbulence driven by the magnetorotational instability
(Johansen and Klahr, 2005; Turner et al., 2006), but this
equality may be invalid if accretion is driven for example
by disc winds (Blandford and Payne, 1982;Bai and Stone,
2013).

Equation (12) was derived assuming particles to fall
towards the mid-plane at their terminal velocityvz =
−τfΩ

2z. Particles with Stokes number larger than unity do
not reach terminal velocity before arriving at the mid-plane
and hence undergo oscillations which are damped by drag
and excited by turbulence. NeverthelessCarballido et al.
(2006) showed that equation (12) is in fact valid for all
values of the Stokes number.Youdin and Lithwick(2007)
interpreted this as a cancellation between the increased sed-
imentation time of oscillating particles and their decreased
reaction to the turbulent motion of the gas.

The particle density in the equilibrium mid-plane layer
is

ρp = Zρg
H

Hp
= Zρg

√

St + δ

δ
. (13)

HereZ is the ratio of the particle column density to the gas
column density. In the limit of large particle sizes the mid-
plane layer thickness is well approximated byHp = cp/Ω,
wherecp is the random particle motion. This expression is
obtained by associating the collision speed of large particles
in equation (11) with their random speed (withα = δ) and
inserting this into equation (12) in the limitSt ≫ δ. The
mass flux density of particles can then be written as

F = cpρp = ZρgHΩ , (14)

independent of the collision speed as well as the degree
of sedimentation, since the increased mid-plane density of
larger particles is cancelled by the decrease in collision
speeds. Hence the transition from Stokes numbers above
unity to planetesimal sizes with significant gravitational
cross sections is characterised by high collision speeds and
slow, ordered growth (̇R is independent of size whenF
is constant) which does not benefit from increased particle
sizes nor from decreased turbulent diffusion.

Mid-plane solids-to-gas ratios above unity are reached
for St = 1 whenδ < 10−4. Weaker stirring allows succes-
sively smaller particles to reach unity solids-to-gas ratio in
the mid-plane. This marks an important transition to where
particles exert a significant drag on the gas and become con-
centrated by streaming instabilities (Youdin and Goodman,
2005;Johansen et al., 2009a;Bai and Stone, 2010a,c). This
effect will be discussed further in the next section.

4. PARTICLE CONCENTRATION

High local particle densities can lead to the formation of
planetesimals by gravitational instability in the sedimented
mid-plane layer. Particle densities above the Roche density

ρR =
9Ω2

4πG
= 4.3× 10−7 g cm−3

( r

AU

)−3

= 315 ρg

( r

AU

)−1/4

(15)

are bound against the tidal force from the central star
and can contract towards solid densities. The scaling
with gas density assumes a distribution of gas according
to the minimum mass solar nebula. Sedimentation in-
creases the particle density in the mid-plane and can trig-
ger bulk gravitational instabilities in the mid-plane layer
(Goldreich and Ward, 1973). Sedimentation is neverthe-
less counteracted by turbulent diffusion (see section 3.4
and equation 12) and particle densities are prevented from
reaching the Roche density by global turbulence or by mid-
plane turbulence induced by the friction of the particle
on the gas (Weidenschilling, 1980;Johansen et al., 2009a;
Bai and Stone, 2010a).

High enough densities for gravitational collapse can nev-
ertheless be reached when particles concentrate in the gas
turbulence to reach the Roche density in local regions.

4.1. Passive concentration

The turbulent motion of gas in protoplanetary discs can
lead to trapping of solid particles in the flow. The size of
an optimally trapped particle depends on the length-scale
and turn-over time-scale of the turbulent eddies. We de-
scribe here particle trapping progressively from the small-
est scales unaffected by disc rotation (eddies) to the largest
scales in near-perfect geostrophic balance between the pres-
sure gradient and Coriolis accelerations (vorticesandpres-
sure bumps).

We consider rotating turbulent structures with length
scaleℓ, rotation speedve and turn-over timete = ℓ/ve.
These quantities are approximate and all factors of order
unity are ignored in the following. Dust is considered to
be passive particles accelerating towards the gas velocity
in the friction timeτf , independent of the relative velocity.
Particle trapping by streaming instabilities, where the parti-
cles play an active role in the concentration, is described in
section 4.2. The three main mechanisms for concentrating
particles in the turbulent gas flow in protoplanetary discs
are sketched in Fig. 6.
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Eddies

l ~ η ~ 1 km, St ~ 10−5−10−4

Pressure bumps / vortices

l ~ 1−10 H, St ~ 0.1−10
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Fig. 6.—The three main ways to concentrate particles in protoplanetary discs. Left panel: turbulent eddies near the smallest scales
of the turbulence,η, expel tiny particles to high-pressure regions between theeddies. Middle panel: the zonal flow associated with
large-scale pressure bumps and vortices, of sizes from one scale height up to the global scale of the disc, trap particlesof Stokes number
from 0.1 to 10. Right panel: streaming instabilities on intermediate scales trap particles of Stokes number from 0.01 to1 by accelerating
the pressure-supported gas to near the Keplerian speed, which slows down the radial drift of particles in the concentration region.

4.1.1. Isotropic turbulence

On the smallest scales of the gas flow, where the Coriolis
force is negligible over the turn-over time-scale of the ed-
dies, the equation governing the structure of a rotating eddy
is

dvr
dt

= −1

ρ

∂P

∂r
≡ fP . (16)

HerefP is the gas acceleration caused by the radial pressure
gradient of the eddy. We user as the radial coordinate in a
frame centred on the eddy. The pressure must rise outwards,
∂P/∂r > 0, to work as a centripetal force. In such low-
pressure eddies the rotation speed is set by

fP = −v2e
ℓ
. (17)

Very small particles withτf ≪ te reach their terminal ve-
locity

vp = −τffP (18)

on a time-scale much shorter than the eddy turn-over time-
scale. This gives

vp = −τffP = τf
v2e
ℓ

=
τf
te
ve . (19)

The largest particles to reach their terminal velocity in the
eddy turn-over time-scale haveτf ∼ te. This is the op-
timal particle size to be expelled from small-scale eddies
and cluster in regions of high pressure between the eddies.
Larger particles do not reach their terminal velocity before
the eddy structure breaks down and reforms with a new
phase, and thus their concentration is weaker.

Numerical simulations and laboratory experiments have
shown that particles coupling at the turn-over time-scale of
eddies at the Kolmogorov scale of isotropic turbulence ex-
perience the strongest concentrations (Squires and Eaton,

1991;Fessler et al., 1994). In an astrophysics context, such
turbulent concentration of sub-mm-sized particles between
small-scale eddies has been put forward to explain the nar-
row size ranges of chondrules found in primitive meteorites
(Cuzzi et al., 2001), as well as the formation of asteroids
by gravitational contraction of rare, extreme concentration
events of such particles (Cuzzi et al., 2008). This model was
nevertheless criticised byPan et al.(2011) who found that
efficiently concentrated particles have a narrow size range
and that concentration of masses sufficiently large to form
the primordial population of asteroids is hard to achieve.

4.1.2. Turbulence in rigid rotation

On larger scales of protoplanetary discs, gas and parti-
cle motion is dominated by Coriolis forces and shear. We
first expand our particle-trapping framework to flows dom-
inated by Coriolis forces and then generalise the expression
to include shear.

In a gas rotating rigidly at a frequencyΩ, the equilibrium
of the eddies is now given by

2Ωve −
1

ρ

∂P

∂r
= −v2e

ℓ
. (20)

For slowly rotating eddies withve/ℓ ≪ Ω we can ignore
the centripetal term and get

ve = − fP
2Ω

. (21)

High pressure regions haveve < 0 (clockwise rotation),
while low pressure regions haveve > 0 (counter-clockwise
rotation).

The terminal velocity of inertial particles can be found
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by solving the equation system

dvx
dt

= +2Ωvy −
1

τf
vx , (22)

dvy
dt

= −2Ωvx −
1

τf
(vy − ve) , (23)

for vx ≡ vp. Here we have fixed a coordinate system in the
centre of an eddy withx pointing along the radial direction
andy along the rotation direction atx = ℓ. The terminal
velocity is

vp =
ve

(2Ωτf)−1 + 2Ωτf
. (24)

Thus high-pressure regions, withve < 0, trap particles,
while low-pressure regions, withve > 0, expel particles.
The optimally trapped particle has2Ωτf = 1. Since we are
now on scales withte ≫ Ω−1, the optimally trapped parti-
cle hasτf ≪ te and thus these particles have ample time to
reach their terminal velocity before the eddies turn over. An
important feature of rotating turbulence is that the optimally
trapped particle has a friction time that isindependentof the
eddy turn-over time-scale, and thus all eddies trap particles
of τf ∼ 1/(2Ω) most efficiently.

4.1.3. Turbulence with rotation and shear

Including both Keplerian shear and rotation the terminal
velocity changes only slightly compared to equation (24),

vp =
2ve

(Ωτf )−1 + Ωτf
. (25)

Equilibrium structures in a rotating and shearing frame
are axisymmetric pressure bumps surrounded by super-
Keplerian/sub-Keplerian zonal flows (Fig. 6). The opti-
mally trapped particle now has friction timeΩτf = 1. This
is in stark contrast to isotropic turbulence where each scale
of the turbulence traps a small range of particle sizes with
friction times similar to the turn-over time-scale of the eddy.
The eddy speed is related to the pressure gradient through

ve = − 1

2Ω

1

ρ

∂P

∂r
(26)

Associatingve with −∆v defined in equation (8), we re-
cover the radial drift speed

vr = − 2∆v

St−1 + St
. (27)

However, this expression now has the meaning that particles
drift radially proportional to thelocal value of∆v. Particles
pile up where∆v vanishes, i.e. in a pressure bump.

4.1.4. Origin of pressure bumps

Trapping ofSt∼1 particles (corresponding to cm-sized
pebbles to m-sized rocks and boulders, depending on the
orbital distance, see Fig. 3) in pressure bumps in protoplan-
etary discs has been put forward as a possible way to cross
the meter-barrier of planetesimal formation (Whipple, 1972;

Haghighipour and Boss, 2003). Rice et al.(2004) identi-
fied this mechanism as the cause of particle concentration
in spiral arms in simulations of self-gravitating protoplane-
tary discs. Shearing box simulations of turbulence caused
by the magnetorotational instability (Balbus and Hawley,
1991) show the emergence of long-lived pressure bumps
surrounded by a super-Keplerian/sub-Keplerian zonal flow
(Johansen et al., 2009b; Simon et al., 2012). Similarly
strong pressure bumps have been observed in global sim-
ulations (Fromang and Nelson, 2005; Lyra et al., 2008b).
High-pressure anticyclonic vortices concentrate particles in
the same way as pressure bumps (Barge and Sommeria,
1995). Vortices may arise naturally through the baro-
clinic instability thriving in the global entropy gradient
(Klahr and Bodenheimer, 2003), although the expression
of the baroclinic instability for realistic cooling times and
in the presence of other sources of turbulence is not yet
clear (Lesur and Papaloizou, 2010;Lyra and Klahr, 2011;
Raettig et al., 2013).

Pressure bumps can also be excited by a sudden jump
in the turbulent viscosity or by the tidal force of an em-
bedded planet or star.Lyra et al. (2008a) showed that the
inner and outer edges of the dead zone, where the ionisa-
tion degree is too low for coupling the gas and the magnetic
field, extending broadly from 0.5 to 30 AU in nominal disc
models (Dzyurkevich et al., 2013, chapter byTurner et al.),
develop steep pressure gradients as the gas piles up in the
low-viscosity region. The inner edge is associated with a
pressure maximum and can directly trap particles. Across
the outer edge of the dead zone the pressure transitions
from high to low, hence there is no local maximum which
can trap particles. The hydrostatic equilibrium nevertheless
breaks into large-scale particle-trapping vortices through
the Rossby wave instability (Li et al., 2001) in the variable-
α simulations ofLyra et al. (2008a). Dzyurkevich et al.
(2010) identified the inner pressure bump in resistive sim-
ulations of turbulence driven by the magnetorotational
instability. The jump in particle density, and hence in
ionisation degree, at the water snow line has been pro-
posed to cause a jump in the surface density and act as a
particle trap (Kretke and Lin, 2007; Brauer et al., 2008b;
Dra̧żkowska et al., 2013). However, the snow line pressure
bump remains to be validated in magnetohydrodynamical
simulations.

Lyra et al.(2009) found that the edge of the gap carved
by a Jupiter-mass planet develops a pressure bump which
undergoes Rossby wave instability. The vortices concen-
trate particles very efficiently. Observational evidence for a
large-scale vortex structure overdense in mm-sized pebbles
was found byvan der Marel et al.(2013). These particles
have approximately Stokes number unity at the radial dis-
tance of the vortex, in the transitional disc IRS 48. This
discovery marks the first confirmation that dust traps exist
in nature. The approximate locations of the dust-trapping
mechanisms which have been identified in the literature are
shown in Fig. 7.
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magnetorotational instability is expected to operate are marked with red, while the extent of the dead zone in a nominal protoplanetary
disc model is marked with blue. The particle trapping mechanisms are described in the main text.

4.2. Streaming instability

The above considerations of passive concentration of
particles in pressure bumps ignore the back-reaction fric-
tion force exerted by the particles onto the gas. The radial
drift of particles leads to outwards motion of the gas in the
mid-plane, because of the azimuthal frictional pull of the
particles on the gas.

Youdin and Goodman(2005) showed that the equilib-
rium streaming motion of gas and particles is linearly
unstable to small perturbations, a result also seen in the
simplified mid-plane layer model ofGoodman and Pindor
(2000). The eight dynamical equations (six for the gas and
particle velocity fields and two for the density fields) yield
eight linear modes, one of which is unstable and grows ex-
ponentially with time. The growth rate depends on both
the friction time and the particle mass-loading. Generally
the growth rate increases proportional to the friction time
(up to St∼1), as the particles enjoy increasing freedom
to move relative to the gas. The dependence on the particle
mass-loading is more complicated; below a mass-loading of
unity the growth rate increases slowly (much more slowly
than linearly) with mass-loading, but after reaching unity
in dust-to-gas ratio the growth rate jumps by one or more
orders of magnitude. Thee-folding time-scale of the un-
stable mode is as low as a few orbits in the regime of high
mass-loading.

The linear mode of the streaming instability is an ex-
act solution to the coupled equations of motion of gas and
particles, valid for very small amplitudes. This property
can be exploited to test numerical algorithm for solving
the full non-linear equations.Youdin and Johansen(2007)
tested their numerical algorithm for two-way drag forces

against two modes of the streaming instability, the modes
having different wavenumbers and friction times. These
modes have subsequently been used in other papers (e.g.
Bai and Stone, 2010b) to test the robustness and conver-
gence of numerical algorithms for the coupled dynamics of
gas and solid particles.

4.2.1. Non-stratified simulations

The non-linear evolution of the streaming instability can
be studied either with or without particle stratification. The
case without particle stratification is closest to the linear sta-
bility analysis. In this case the mean particle mass-loading
in the simulation domain must be specified, as well as the
friction time of the particles. The initial gas and parti-
cle velocities are set according to drag force equilibrium
(Nakagawa et al., 1986), with particle drifting in towards
the star and gas drifting out.

In simulations not including the component of the stellar
gravity towards the mid-plane, i.e. non-stratified simula-
tions, high particle densities are reached mainly for particles
with St = 1 (Johansen and Youdin, 2007;Bai and Stone,
2010b). At a particle mass-loading of 3 (times the mean
gas density), the particle density reaches almost 1000 times
the gas density. The overdense regions appear nearly
axisymmetric in both local and semi-global simulations
(Kowalik et al., 2013). Smaller particles withSt = 0.1
reach only between 20 and 60 times the gas density when
the particle mass-loading is unity of higher. Little or no con-
centration is found at a dust-to-gas ratio of 0.2 forSt = 0.1
particles. Bai and Stone(2010b) presented convergence
tests of non-stratified simulations in 2-D and found conver-
gence in the particle density distribution functions at10242
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Fig. 8.—Particle concentration by the streaming instability is mainly elongated along the Keplerian flow direction, as seen in the left
panel showing the column density of particles withSt = 0.3 in a local frame where the horizontal axis represents the radial direction and
the vertical axis the orbital direction. The substructure of the overdense region appears fractal with filamentary structure on many scales.
The right panel shows the measured maximum particle densityas a function of time, for three different grid resolutions.The metallicity
is gradually increased from the initialZ = 0.01 toZ = 0.02 between 30 and 40 orbits, triggering strong particle concentration. Higher
resolution resolves smaller embedded substructures and hence higher densities.

grid cells.

4.2.2. Stratified simulations

While non-stratified simulations are excellent for testing
the robustness of a numerical algorithm and comparing to
results obtained with different codes, stratified simulations
including the component of the stellar gravity towards the
mid-plane are necessary to explore the role of the stream-
ing instability for planetesimal formation. In the stratified
case the mid-plane particle mass-loading is no longer a pa-
rameter that can be set by hand. Rather its value is de-
termined self-consistently in a competition between sedi-
mentation and turbulent diffusion. The global metallicity
Z = Σp/Σg is now a free parameter and the mass-loading
in the mid-plane depends on the scale height of the layer
and thus on the degree of turbulent stirring.

Stratified simulations of the streaming instability display
a binary behaviour determined by the heavy element abun-
dance. AtZ around the solar value or lower, the mid-plane
layer is puffed up by strong turbulence and shows little par-
ticle concentration.Bai and Stone(2010a) showed that the
particle mid-plane layer is stable to Kelvin-Helmholtz in-
stabilities thriving in the vertical shear of the gas velocity,
so the mid-plane turbulence is likely a manifestation of the
streaming instability that is not associated with particlecon-
centration. Above solar metallicity very strong particle con-
centrations occur in thin and dominantly axisymmetric fila-
ments (Johansen et al., 2009a;Bai and Stone, 2010a). The
metallicity threshold for triggering strong clumping may be
related to reaching unity particle mass-loading in the mid-

plane, necessary for particle pile-ups by the streaming in-
stability. The particle density can reach several thousand
times the local gas density even for relatively small parti-
cles ofSt = 0.3 (Johansen et al., 2012a). Measurements
of the maximum particle density as a function of time are
shown in Fig. 8, together with a column density plot of the
overdense filaments.

Particles ofSt = 0.3 reach only modest concentra-
tion in non-stratified simulations. The explanation for the
higher concentration seen in stratified simulations may be
that the mid-plane layer is very thin, on the order of 1%
of a gas scale height, so that slowly drifting clumps are
more likely to merge in the stratified simulations. The max-
imum particle concentration increases when the resolution
is increased, by a factor approximately four each time the
number of grid cells is doubled in each direction. This
scaling may arise from thin filamentary structures which
resolve into thinner and thinner filaments at higher reso-
lution. The overall statistical properties of the turbulence
nevertheless remain unchanged as the resolution increases
(Johansen et al., 2012a).

The ability of the streaming instability to concentrate
particles depends on both the particle size and the local
metallicity in the disc. Carrera, Johansen and Davies
(in preparation) show that particles down toSt = 0.01
are concentrated at a metallicity slightly above the solar
value, while smaller particles down toSt = 0.001 re-
quire significantly increased metallicity, e.g. by photoe-
vaporation of gas or pile up of particles from the outer
disc. Whether the streaming instability can explain the
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Fig. 9.—Planetesimal formation in a particle filament formed by the streaming instability. The left panel shows the column density of
particles withSt = 0.3, with dots marking the newly formed planetesimals. The middle panel shows the positions and Hill spheres of
the planetesimals, while the right panel shows their contracted radii when the scale-free simulation is applied to the asteroid belt.

presence of mm-sized chondrules in primitive meteorites
is still not known. Alternative models based on small-
scale particle concentration (Cuzzi et al., 2008) and particle
sedimentation (Youdin and Shu, 2002;Chiang and Youdin,
2010;Lee et al., 2010) may be necessary.

4.3. Gravitational collapse

Planetesimals forming by gravitational contraction and
collapse of the overdense filaments are generally found to
be massive, corresponding to contracted radii between 100
km and 1000 km, depending on the adopted disc model
(Johansen et al., 2007, 2009a, 2011, 2012a;Kato et al.,
2012). Fig. 9 shows the results of a high-resolution sim-
ulation of planetesimal formation through streaming in-
stabilities, with planetesimals from 50 to 200 km radius
forming when the model is applied tor = 3 AU. The
formation of large planetesimals was predicted already by
Youdin and Goodman(2005) based on the available mass
in the linear modes. The planetesimals which form in-
crease in size with increasing disc mass (Johansen et al.,
2012a), with super-Ceres-sized planetesimals arising in
massive discs approaching Toomre instability in the gas
(Johansen et al., 2011). Increasing the numerical resolu-
tion maintains the size the largest planetesimals, but al-
lows smaller-mass clumps to condense out of the turbulent
flow alongside their massive counterparts (Johansen et al.,
2012a). Although most of the particle mass enters plan-
etesimals with characteristic sizes above 100 km, it is an
open question, which can only be answered with very-high-
resolution computer simulations, whether there is a mini-
mum size to the smallest planetesimals which can form in
particle concentration models.

Strictly speaking simulations of particle concentration
and self-gravity only find the mass spectrum of gravita-
tionally bound clumps. Whether these clumps will con-
tract to form one or more planetesimals is currently not
known in details. Nesvorńy et al. (2010) took bound par-
ticle clumps similar to those arising in numerical simula-
tions and evolved in a separateN -body code with collisions

and merging. The rotating clumps typically collapse to a
binary planetesimal, with orbital properties in good agree-
ment with the observed high binary fraction in the classical
cold Kuiper belt (Noll et al., 2008). The limited mass reso-
lution which is allowed in directN -body simulations nev-
ertheless highlights the necessity for further studies of the
fate of collapsing pebble clumps. Information from labo-
ratory experiments on coagulation, bouncing and fragmen-
tation of particles is directly applicable to self-gravitating
particle clumps as well (Güttler et al., 2010), and including
realistic particle interaction in collapse simulations should
be a high priority for future studies.

5. PARTICLE GROWTH

The size distribution of solid particles in protoplanetary
discs evolves due to processes of coagulation, fragmenta-
tion, sublimation and condensation. The particle concen-
tration mechanisms discussed in the previous section are
only relevant for particle sizes from millimeters to me-
ters, much larger than the canonical sub-micron-sized dust
and ice grains which enter the protoplanetary disc. Hence
growth to macroscopic sizes must happen in an environ-
ment of relatively uniform particle densities.

Primitive meteorites show evidence of thermal process-
ing of protoplanetary disc solids, in the form of CAIs which
likely condensed directly from the cooling gas near the
proto-Sun and chondrules which formed after rapid heating
and melting of pre-existing dust aggregates (section 2.2).
Thermal processing must also have taken place near the wa-
ter snow line where the continued process of sublimation
and condensation can lead to the formation of large hail-
like ice particles (Ros and Johansen, 2013); or more dis-
tantly around the CO snow line identified observationally at
30 AU around the young star TW Hya (Qi et al., 2013).

Direct sticking is nevertheless the most general mech-
anism for dust growth, as the densities in protoplanetary
discs are high enough for such coagulation to be important
over the life-time of the gaseous disc. Physically, the colli-
sional evolution is determined by the following factors:
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• The spatial density of particles. This will depend on
both the location in the disc and on the degree of par-
ticle concentration (see section 4).

• The collision cross section among particles,σcol. An
appropriate assumption is to take spherical particles,
for which σcol,ij = π(Ri + Rj)

2 whereRi andRj

are simply the radii of two particles in the absence of
gravitational focusing.

• The relative velocity among the particles,δvij . The
relative velocity affects both the collision rate and the
collision outcome.

• The collision outcome, which is determined by the
collision energy, porosity, and other collision param-
eters like the impact parameter.

The product ofδvij andσij , which together with the par-
ticle density determine the collision rate, is most often re-
ferred to as the collision kernelKij .

5.1. Numerical approaches to coagulation equation

The evolution of the dust size distribution is most com-
monly described by the Smoluchowski equation (Smoluchowski,
1916), which reads:

dn(m)

dt
=

1

2

∫

dm′K(m′,m−m′)n(m′)n(m−m′)

−n(m)

∫

dm′K(m,m′)n(m′), (28)

wheren(m) is the particle number densitydistribution(i.e.,
n(m)dm gives the number density of particles between
massm andm + dm). The terms on the right-hand side
of equation (28) simply account for the particles of mass
m that are removed due to collisions with any other parti-
cle and those gained by a collision between two particles
of massm′ andm −m′ (the factor of 1/2 prevents double
counting). In numerical applications one most often subdi-
vides the mass grid in bins (often logarithmically spaced)
and then counts the interactions among these bins.

However, equation (28), an already complex integro-
differential equation, ignores many aspects of the coagu-
lation process. For example, collisional fragmentation is
not included and the dust spatial distribution is assumed to
be homogeneous (that is, there is no local concentration).
Equation (28) furthermore assumes that each particle pair
(m,m′) collides at a single velocity and ignores the effects
of a velocity distribution two particles may have. Indeed,
perhaps the most important limitation of equation (28) is
that the time-evolution of the system is assumed to be only
a function of the particles’ masses. For the early coagula-
tion phases this is certainly inappropriate as the dust inter-
nal structure is expected to evolve and influence the colli-
sion outcome. The collision outcomes depend very strongly
on the internal structure (porosity, fractal exponent) of dust
aggregates as well on their composition (ices or silicates,
Wada et al., 2009;Güttler et al., 2010).

In principle the Smoluchowski coagulation equation can
be extended to include these effects (Ossenkopf, 1993).
However, binning in additional dimensions besides mass
may render this approach impractical. To circumvent the
multi-dimensional binningOkuzumi et al.(2009) outlined
an extension to Smoluchowski’s equation, which treats the
mean value of the additional parameters at every massm.
For example, the dust at a mass binm is in addition charac-
terized by a filling factorφ, which is allowed to change with
time. If the distribution inφ at a certain massm is expected
to be narrow, such an approach is advantageous as one may
not have to deviate from Smoluchoski’s 1D framework.

A more radical approach is to use a direct-simulation
Monte Carlo (MC) method, which drops the concept of
the distribution function altogether (Ormel et al., 2007). In-
stead the MC-method computes the collision probability be-
tween each particle pair of the distribution (essentially the
kernel functionKij), which depends on the properties of
the particles. Random numbers then determines which par-
ticle pair will collide and the time-step that is involved. The
outcome of the collision between these two particles must
be summarized in a set of physically-motivated recipes (the
analogy with equation 28 is simplym1+m2 → m). A new
set of collision rates is computed, after which the procedure
repeats itself.

Since there are many more dust grains in a disc than any
computer can handle, the computational particles should be
chosen such to accuratelyrepresentthe physical size distri-
bution. A natural choice is to sample the mass of the distri-
bution (Zsom and Dullemond, 2008). This method also al-
lows fragmentation to be naturally incorporated. The draw-
back however is that the tails of the size distribution are not
well resolved. The limited dynamic range is one of the key
drawbacks of MC-methods.Ormel and Spaans(2008) have
described a solution, but at the expense of a more complex
algorithm.

5.2. Laboratory experiments

Numerical solutions to the coagulation equation rely cru-
cially on input from laboratory experiments on the outcome
of collisions between dust particles. Collision experiments
in the laboratory as well as under microgravity conditions
over the past 20 years have proven invaluable for the mod-
eling of the dust evolution in protoplanetary discs. Here
we briefly review the state-of-the-art of these experiments
(more details are given in the chapter byTesti et al.). A de-
tailed physical model for the collision behavior of silicate
aggregates of all masses, mass ratios and porosities can be
found inGüttler et al. (2010) and recent modifications are
published byKothe et al.(2013).

The three basic types of collisional interactions between
dust aggregates are:

1. Direct collisional sticking: when two dust aggregates
collide gently enough, contact forces (e.g., van der
Waals forces) are sufficiently strong to bind the ag-
gregates together. Thus, a more massive dust ag-
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gregate has formed. Laboratory experiments sum-
marized byKothe et al.(2013) suggest that there is
a mass-velocity thresholdv ∝ m−3/4 for spheri-
cal medium-porosity dust aggregates such that only
dust aggregates less massive and slower than this
threshold can stick. However, hierarchical dust ag-
gregates still stick at higher velocities/masses than
given by the threshold for homogeneous dust aggre-
gates (Kothe et al., 2013).

2. Fragmentation: when the collision energy is suffi-
ciently high, similar-sized dust aggregates break up
so that the maximum remaining mass decreases un-
der the initial masses of the aggregates and a power-
law type tail of smaller-mass fragments is produced.
The typical fragmentation velocity for dust aggre-
gates consisting ofµm-sized silicate monomer grains
is 1 m s−1.

3. Bouncing: above the sticking threshold and below
the fragmentation limit, dust aggregates bounce off
one another. Although the conditions under which
bouncing occurs are still under debate (see sections 6
and 7), some aspects of bouncing are clear. Bouncing
does not directly lead to further mass gain so that the
growth of dust aggregates is stopped (“bouncing bar-
rier”). Furthermore, bouncing leads to a steady com-
pression of the dust aggregates so that their porosity
decreases to values of typically 60% (Weidling et al.,
2009).

Although the details of the three regimes are complex –
regime boundaries are not sharp, and other more subtle
processes exist – this simplified physical picture shows
that in protoplanetary discs, in which the mean colli-
sion velocity increases with increasing dust-aggregate size
(see Fig. 4), amaximum aggregate massexists. Detailed
numerical simulations using the dust-aggregate collision
model byGüttler et al. (2010) find such a maximum mass
(Zsom et al., 2010; Windmark et al., 2012b). For a mini-
mum mass solar nebula model at 1 AU, the maximum dust-
aggregate size is in the range of millimeters to centimeters
(e.g.Zsom et al., 2010).

Even if the bouncing barrier can be overcome, another
perhaps even more formidable obstacle will present itself
at the size scale where collision velocities reach∼1 m/s
(Fig. 4). At this size collisions among two silicate, similar-
size, dust particles are seen to fragment, rather than accrete.
Consequently, growth will stall and the size distribution
will, like with the bouncing case, settle into a steady-state
(Birnstiel et al., 2010, 2011, 2012). Highly porous icy ag-
gregates may nevertheless still stick at high collision speeds
(see section 7).

6. GROWTH BY MASS TRANSFER

Over the last two decades a large effort has been invested
to study experimentally the collisions among dust particles

Fig. 10.—Experimental example of mass transfer in fragment-
ing collisions. All experiments were performed in vacuum. (a)
A mm-sized fluffy dust aggregate is ballistically approaching the
cm-sized dusty target at a velocity of 4.2 m/s. Projectile and tar-
get consist of monodisperse SiO2 spheres of 1.5µm diameter. (b)
Shortly after impact, most of the projectile’s mass flies offthe tar-
get in form of small fragments (as indicated by the white arrows);
part of the projectile sticks to the target. (c) - (e) The sametarget
after 3 (c), 24 (d), 74 (e) and 196 (f) consecutive impacts on the
same spot. Image credit: Stefan Kothe, TU Braunschweig.

and to assess the role of collisions in planetesimal forma-
tion. As was seen in section 5 a plethora of outcomes –
sticking, compaction, bouncing, fragmentation – is possible
depending mainly on the collision velocity and the particle
size ratio. Using the most updated laboratory knowledge of
collision outcomes,Zsom et al.(2010, 2011) solved the co-
agulation equation with a Monte Carlo method and found
that in the ice-free, inner disc regions the dust size distri-
bution settles into a state dominated by mm-size particles.
Further growth is impeded because collisions among two
such mm-size particles will mainly lead to bouncing and
compactification.

The real problem behind this “bouncing barrier” may,
counter-intuitively, not be the bouncing but rather the ab-
sence of erosion and fragmentation events. Based upon lab-
oratory experiments (Wurm et al., 2005;Teiser and Wurm,
2009b,a;Kothe et al., 2010;Teiser et al., 2011;Meisner et al.,
2013), it has become clear that above the fragmentation
limit, the collision between two dust aggregates can lead to
a mass gain of the larger (target) aggregate if the smaller
(projectile) aggregate is below a certain threshold. For im-
pact velocities in the right range and relatively small projec-
tile aggregates, up to 50% of the mass of the projectile can
be firmly transferred to the target. This process has been
shown to continue to work after multiple collisions with the
target and under a wide range of impact angles (see Fig.
10).
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Growth by mass transfer requires a high fraction of the
dust mass present in small dust aggregates which can be
swept up by the larger particles. The number of small dust
aggregates can be maintained by catastrophic collisions be-
tween larger bodies. A simple two-component model for
such coagulation-fragmentation growth was developed by
Johansen et al.(2008). They divided the size distribution
into small particles and large particles and assumed that (1)
a small particle will stick to a large particle, (2) a small par-
ticle will bounce off another small particle, and (3) a large
particle will shatter another large particle. Small particles
collide with large particles at speedv12, while large parti-
cles collide with each other at speedv22. Under these condi-
tions an equilibrium in the surface density ratio of large and
small particles,Σ1/Σ2, can be reached, with equal mass
flux from large to small particles by fragmentation as from
small to large particles by mass transfer in collisions.

In the equilibrium state where the mass flux from large
to small particles balances the mass flux from small to large
particles, the growth rate of the large particles is

Ṙ =
Σp/(

√
2πH1)

ρ•
×
v22

[2/(1 +H2
1/H

2
2 )]

1/2 + 4v22/v12
. (29)

HereH1 andH2 are the scale heights of the small particles
and the large particles, respectively, andΣp = Σ1 + Σ2 is
the total column density of the dust particles. The complex-
ity of the equation arises from the assumption that the small
grains are continuously created in collisions between the
large particles. SettingH1 = H andH2 ≪ H1 the equa-
tions are valid for a very general sweep-up problem where
a few large particles sweep up a static population of small
particles, resulting in growth of the large particles at rate

Ṙ =
ǫZρg
4ρ•

v12 = 2.7mmyr−1
( ǫ

0.5

)( r

AU

)−2.75

×
(

Z

0.01

)(

ρ•
1 g cm−3

)−1
( v12
50m s−1

)

. (30)

We introduced here a sticking coefficientǫ which mea-
sures either the sticking probability or the fraction of mass
which is transferred from the projectile to the target. The
growth rate is constant and depends only on the particle size
throughv12. If the small particles are smaller than Stokes
number unity and the large particles are larger, then we can
assume that the flux of small particles is carried with the
sub-Keplerian wind,v12 ≈ ∆v, and solve equation (30) for
the time-scale to cross the radial drift barrier. The end of the
radial drift barrier can be set at reaching roughlySt = 10.
This Stokes number corresponds in the Epstein regime to
the particle size

R
(Ep)
10 =

10Hρg
ρ•

. (31)

In the Stokes regime the particle size is

R
(St)
10 =

√

90Hρgλ

4ρ•
. (32)

Fig. 3 shows that compact ice particles grow to Stokes
number 10 in the Epstein regime outside ofr = 5 AU
and in the Stokes or non-linear regimes inside of this ra-
dius. Fluffy ice particles with a very low internal density of
ρ• = 10−5 g cm−3 grow to Stokes number 10 in the non-
linear or quadratic regimes in the entire extent of the disc.
In the Epstein regime the time to grow to Stokes number 10,
τ10 = R10/Ṙ, is independent of both material density and
gas density,

τ
(Ep)
10 =

40H

ǫZv12
≈ 25000 yr

( ǫ

0.5

)−1 ( r

AU

)5/4

. (33)

The growth-time is much shorter in the Stokes regime
where the Stokes number is proportional to the squared par-
ticle radius, giving

τ
(St)
10 =

√

360Hρ•(m/σ)

ǫZρgv12
≈ 500 yr×

( ǫ

0.5

)−1
(

ρ•
1 g cm−3

)1/2
( r

AU

)27/8

,(34)

with a direct dependence on both material density and gas
density. Herem andσ are the mass and collisional cross
section of a hydrogen molecule. Regarding the sticking
coefficient,Wurm et al.(2005) find mass transfer efficien-
cies of ǫ ≈ 0.5 for collision speeds up tov12 = 25
m/s, hence we have usedǫ = 0.5 as a reference value in
the above equations. It is clearly advantageous to have a
low internal density and cross the radial drift barrier in the
Stokes regime (Okuzumi et al., 2012). The non-linear and
quadratic regimes are similarly beneficial for the growth,
with the time-scale for crossing the meter barrier in the
quadratic drag force regime approximately a factor6cs/∆v
faster than in the Epstein regime (equation 33).

The two-component model presented inJohansen et al.
(2008) is analytically solvable, but very simplified in the
collision physics.Windmark et al.(2012b) presented solu-
tions to the full coagulation equation including a velocity-
dependent mass transfer rate. They showed that artificially
injected seeds of centimeter sizes can grow by sweeping up
smaller mm-sized particles which are stuck at the bounc-
ing barrier (Zsom et al., 2010), achieving at 3 AU growth to
3 meters in 100,000 years and to 100 meters in 1 million
years. The time-scale to grow across the radial drift barrier
is broadly in agreement with the simplified model presented
above in equation (34). This time is much longer than the
radial drift time-scale which may be as short as 100–1,000
years. It is therefore necessary to invoke pressure bumps to
protect the particles from radial drift while they grow slowly
by mass transfer. However, in that case the azimuthal drift
of small particles vanishes and a relatively high turbulent
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viscosity ofα = 10−2 must be used to regain the flux onto
the large particles. The pressure bumps must additionally
be very long-lived, on the order of the life-time of the pro-
toplanetary disc.

While the discovery of a pathway for growth by mass
transfer at high-speed collisions is a major experimental
breakthrough, it seems that this effect can not in itself lead
to widespread planetesimal formation, unless perhaps in the
innermost part of the protoplanetary disc where dynami-
cal time-scales are short (equation 34). The planetesimal
sizes which are reached within a million years are also
quite small, on the order of 100 meters. These sizes are
too small to undergo gravitational focusing even in weakly
turbulent discs (see Fig. 5). An additional concern is the
erosion of the preplanetesimal by tiny dust grains carried
with the sub-Keplerian wind (Schr̈apler and Blum, 2011;
Seizinger et al., 2013).

Particles stuck at the bouncing barrier are at the lower
end of the sizes that can undergo particle concentration and
gravitational collapse. However, if a subset of “lucky” par-
ticles experience only low-speed, sticking collisions and
manage to grow past the bouncing barrier, this can even-
tually lead to the crossing of the bouncing barrier by a
very small fraction of the particles (Windmark et al., 2012a;
Garaud et al., 2013). This break-through nevertheless still
requires a pressure bump to stop the radial drift.

7. FLUFFY GROWTH

The last years have seen major improvements inN -body
molecular-dynamics simulations of dust aggregate colli-
sions by a number of groups (e.g.Wada et al., 2008, 2009,
2011;Paszun and Dominik, 2008, 2009;Seizinger and Kley,
2013). TheseN -body simulations show that fluffy aggre-
gates have the potential to overcome barriers in dust growth.
In N -body simulations of dust aggregates, all surface inter-
actions between monomers in contact in the aggregates are
calculated, by using a particle interaction model.

N -body simulations of dust aggregates have some mer-
its compared to laboratory experiments. Precise informa-
tion such as the channels through which the collisional
energy is dissipated can be readily obtained and subse-
quent data analysis is straightforward. Another advan-
tage ofN -body simulations is that one can study highly
fluffy aggregates, which are otherwise crushed under the
Earth’s gravity. On the other hand, an accurate interac-
tion model of constituent particles is required inN -body
simulations of dust aggregates. In the interaction model
used in mostN -body simulations, the constituent parti-
cles are considered as adhesive elastic spheres. The ad-
hesion force between them is described by the JKR the-
ory (Johnson et al., 1971). As for tangential resistive
forces against sliding, rolling, or twisting motions, Do-
minik and Tielens’s model is used (Dominik and Tielens,
1995, 1996, 1997;Wada et al., 2007). In order to reproduce
the results of laboratory experiments better, the interac-
tion model must be calibrated against laboratory experi-

ments (Paszun and Dominik, 2008; Seizinger et al., 2012;
Tanaka et al., 2012).

In protoplanetary discs, dust aggregates are expected to
have fluffy structures with low bulk densities if impact com-
pactification is negligible (e.g.Okuzumi et al., 2009, 2012;
Zsom et al., 2010, 2011). Especially in the early stage of
dust growth, low-speed impacts result in hit-and-stick of
dust aggregates, with little or no compression. This growth
mode makes fluffy aggregates with a low fractal dimension
of ∼2. Thus it is necessary to examine the outcome of colli-
sions between fluffy dust aggregates and the resulting com-
pression. The results ofN -body simulations can then be
used in numerical models of the coagulation equation in-
cluding the evolution of the dust porosity.

7.1. Critical impact velocity for dust growth

Dominik and Tielens(1997) first carried outN -body
simulation of aggregate collisions, using the particle in-
teraction model they constructed. They also derived a sim-
ple recipe for outcomes of aggregate collisions from their
numerical results, though they only examined head-on col-
lisions of two-dimensional small aggregates containing as
few as 40 particles. The collision outcomes are classified
into hit-and-stick, sticking with compression, and catas-
trophic disruption, depending on the impact energy. Bounc-
ing of two aggregates was not observed in their simulations.

According to the DT (Dominik and Tielens, 1997) recipe,
growth is possible at collisions withEimp < AnkEbreak,
whereA∼10 andnk is the total number of contacts in two
colliding aggregates. For relatively fluffy aggregates,nk

is approximately equal to the total number of constituent
particles in the two aggregates,N . The energy for breaking
one contact between two identical particles,Ebreak, is given
by (e.g.Chokshi et al., 1993;Wada et al., 2007)

Ebreak= 23[γ5r4(1− ν2)2/E2]1/3, (35)

wherer, γ, E , and ν are the radius, the surface energy,
Young’s modulus, and Poisson’s ratio of constituent parti-
cles, respectively. For icy particles the breaking energy is
obtained as5.2 × 10−10(r/0.1µm)4/3 erg while the value
for silicate particles is1.4×10−11(r/0.1µm)4/3 erg, so icy
aggregates are much more sticky than silicate aggregates

Using the impact velocity,vimp, the impact energy is ex-
pressed as(Nm/4)v2imp/2, wherem is the mass of a con-
stituent particle andNm/4 is the reduced mass of two
equal-sized aggregates. Substituting this expression into
the above energy criterion for dust growth and noting that
nk ≃ N , we obtain the velocity criterion as

vimp <
√

8AEbreak/m. (36)

HereA is a dimensionless parameter that needs to be cal-
ibrated with experiments. Note that this velocity criterion
is dependent only on properties of constituent particles and,
thus, independent of the mass of the aggregates.
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Fig. 11.—Examples of collision outcomes of icy PCA clusters
consisting of 8000 particles for two values of the impact parameter
b (lower panels). The upper panels represent initial aggregates.
The collision velocity of 70 m/s in both cases andR is the radius
of the initial aggregates. The head-on collision (left panel) results
in sticking with minor fragmentation while aggregates tendto pass
by each other in off-set collisions (right panels). (This figure is
reproduced based on Fig. 2 of Wada et al. 2009 by permission of
the AAS.)

To evaluate the critical impact velocity for growth more
accurately,Wada et al.(2009) performedN -body simula-
tions of large aggregates made of up to∼104 sub-micron
icy particles, including off-set collisions (see Fig. 11).They
consider two kinds of aggregate structure, the so-called
CCA and PCA clusters. The CCA (Cluster-Cluster Ag-
glomeration) clusters have an open structure with a fractal
dimension of 2 while the PCA (Particle-Cluster Agglomer-
ation) clusters have a fractal dimension of 3 and a volume
filling factor of 0.15. The PCA clusters are rather compact,
compared to the CCA. Since dust aggregates are expected to
be much more compact than CCA clusters due to compres-
sion (see section 7.2), the growth and disruption process of
PCA clusters is of particular importance for elucidating the
planetesimal formation.

For PCA clusters (composed of 0.1µm-sized icy parti-
cles), the critical impact velocity is obtained as 60 m/s from
their simulations, independent of the aggregate mass within
the mass range examined in the simulations ofWada et al.
(2009). This indicates that icy dust aggregates can circum-
vent the fragmentation barrier and grow towards planetesi-
mal sizes via collisional sticking. Note that the critical ve-
locity actually increases with the aggregate mass when only
head-on collisions are considered, as seen in Fig. 11. For an
accurate evaluation of the critical velocity for growth, off-

set collisions should be considered as well, as inWada et al.
(2009).

The above result also fixes the corresponding con-
stant A in the critical energy at 30. By usingEbreak

of silicate particles in equation (36) withA = 30, the
critical velocity for growth of silicate aggregates is ob-
tained asvimp = 1.3 (r/0.6µm)−5/6 m/s. It agrees well
with the laboratory experiments and numerical simula-
tions for small silicate aggregates (e.g.Blum and Wurm,
2000; Güttler et al., 2010; Paszun and Dominik, 2009;
Seizinger and Kley, 2013).

In the case of CCA clusters,Wada et al.(2009) found
that the constantA is the same as in the DT recipe (≃10).
Considering much smaller volume filling factors of CCA
clusters than PCA, it indicates that the critical velocity is
only weakly dependent on the volume filling factor.

7.2. Compression of dust aggregates

The DT recipe does not describe the amount of changes
in the porosity (or the volume filling factor) at aggregate
collisions. The first attempt to model porosity changes was
done byOrmel et al.(2007), using simple prescriptions for
the collision outcome of porosity.

Wada et al.(2008) examined compression at head-on
collisions of two equal sized CCA clusters, using a high
number ofN -body simulations. Compression (or restruc-
turing) of an aggregate occurs through rolling motions be-
tween constituent particles. Thus it is governed by the
rolling energyEroll (i.e., the energy for rolling of a par-
ticle over a quarter of the circumference of another parti-
cle in contact). At low-energy impacts withEimp . Eroll ,
aggregates just stick to each other, as indicated by the DT
recipe. For higher-energy impacts, the resultant aggregates
are compressed, depending on the impact energy. The
radius of resulting aggregates,R, is fitted well with the
power-law function

R ≃ 0.8[Eimp/(NEroll)]
−0.1N1/2.5r , (37)

wherer is the radius of a monomer andN the number of
constituent particles. Analysing the structure of the com-
pressed aggregates, it can be shown that the compressed
aggregates have a fractal dimension of 2.5. This fractal di-
mension is consistent with equation (37) since equation (37)
gives the relation ofN ∝ R2.5 for maximally compressed
aggregates (withEimp∼NEroll). The compression observed
in theN -body simulation is less much extreme than in the
simple porosity model used byOrmel et al.(2007) because
of the low fractal dimension of 2.5.

While Wada et al.(2008) examined the compression in
a single collision, dust aggregates will be gradually com-
pressed by successive collisions in realistic systems. In
order to examine such a gradual compression process dur-
ing growth,Suyama et al.(2008) performedN -body sim-
ulations of sequential collisions of aggregates. Even after
multiple collisions, the compressed aggregates maintain a
fractal dimension of 2.5.Suyama et al.(2012) further ex-
tend their porosity model to unequal-mass collisions.
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Okuzumi et al.(2012) applied the porosity evolution
model of Suyama et al.(2012) to dust growth outside of
the snow line in a protoplanetary disc. As a first step, colli-
sional fragmentation is neglected because a relatively high
impact velocity (∼60 m/s) is required for significant disrup-
tion of icy dust aggregates. They found that dust particles
evolve into highly porous aggregates (with bulk densities
much less than 0.1 g/cm3) even if collisional compression
is taken into account. This is due to the ineffective com-
pression at aggregate collisions in the porosity model of
Suyama et al.(2012). Another important aspect of fluffy
aggregates is that they cross the radial drift barrier in the
Stokes or non-linear drag force regimes (see Fig. 3 and
discussion in section 6) where it is easier to grow to sizes
where radial drift is unimportant. This mechanism accel-
erates dust growth at the radial drift barrier effectively and
enables fluffy aggregates to overcome this barrier inside 10
AU (Okuzumi et al., 2012;Kataoka et al., 2013).

7.3. Bouncing condition inN -body simulations

Until 2011, bouncing events were not reported in N-
body simulations of aggregate collisions, while bouncing
events have been frequently observed in laboratory ex-
periments (e.g.Blum and M̈unch, 1993;Langkowski et al.,
2008; Weidling et al., 2009, 2012). Wada et al. (2011)
found bouncing events in their N-body simulations of both
icy and silicate cases for rather compact aggregates with
filling factor φ ≥ 0.35. Such compact aggregates have a
relatively large coordination number (i.e., the mean num-
ber of particles in contact with a particle), which inhibits
the energy dissipation through the rolling deformation and
helps bouncing.Seizinger and Kley(2013) further investi-
gated the bouncing condition and proposed that the more
realistic condition isφ > 0.5.

This critical volume filling factor for bouncing is a few
times as large as that in the laboratory experiments (e.g.
Langkowski et al., 2008). The origin of this discrepancy be-
tween these two approaches is not clear yet. From a quali-
tative point of view, however, laboratory experiments show
that fluffy silicate aggregates withφ < 0.1 tend to stick
to each other (Blum and Wurm, 2000; Langkowski et al.,
2008; Kothe et al., 2013). This qualitative trend is con-
sistent with the N-body simulations. In protoplanetary
discs, dust aggregates are expected to be highly porous. In
the growth of such fluffy aggregates, the bouncing barrier
would not be a strong handicap.

8. TOWARDS A UNIFIED MODEL

Three main scenarios for the formation of planetes-
imals have emerged in the last years: (1) formation
via coagulation-fragmentation cycles and mass trans-
fer from small to large aggregates (Wurm et al., 2005;
Windmark et al., 2012b), (2) growth of fluffy particles and
subsequent compactification by self-gravity (Wada et al.,
2008, 2009), and (3) concentration of pebbles in the tur-
bulent gas and gravitational fragmentation of overdense

filaments (Johansen et al., 2007, 2009a;Kato et al., 2012).
The collision speeds at which planetesimal-sized bodies

form are typically 50 m/s in models (1) and (2), as small
dust aggregates are carried onto the growing planetesimal
with the sub-Keplerian wind, or even higher if the turbu-
lent density fluctuations are strong. During the gravitational
collapse of pebble clouds, formation mechanism (3) above,
the collision speeds reach a maximum of the escape speed
of the forming body. In the cometesimal formation zone
any subsequent impacts by high-speed particles, brought in
with the sub-Keplerian flow, will at most add a few meters
of compact debris to the pebble pile over the life-time of the
solar nebula (equation 30 applied tor = 10 AU).

This difference in impact velocity leads to substan-
tial differences in the tensile strengths of the planetes-
imals/cometesimals. Due to the relatively high impact
speeds in models (1) and (2), the growing bodies are com-
pacted and possess tensile strengths on the order of 1–10
kPa (Blum et al., 2006). Skorov and Blum(2012) pointed
out that these tensile-strength values are too high to ex-
plain the continuous dust emission of comets approach-
ing the Sun and favor model (3) above, for which the ten-
sile strengths of loosely packed mm-cm pebbles should be
much smaller.

Skorov and Blum(2012) base their comet-nucleus model
on a few assumptions: (a) dust aggregates in the inner parts
of the protoplanetary disc can only grow to sizes of mm-
cm; (b) turbulent diffusion can transport dust aggregates to
the outer disc; (c) in the outer disc, dust and ice aggregates
become intermixed with a dust-to-ice ratio found in comets;
(d) cometesimals form via gravitational instability of over-
dense regions of mm-cm-sized particles which will form
planetesimals with a wide spectrum of masses. While km-
scale planetesimals have not yet been observed to form in
hydrodynamical simulations of planetesimal formation, this
may be an artifact of the limited numerical resolution (see
discussion in section 4.3).

If the comet nuclei as we find them today have been dor-
mant in the outer reaches of the Solar System since their
formation and have not been subjected to intense bombard-
ment and aqueous or thermal alteration, then they today
represent the cometesimals of the formation era of the So-
lar System.Skorov and Blum(2012) derive for their model
tensile strengths of the ice-free dusty surfaces of comet nu-
clei

T = T0

( r

1 mm

)−2/3

, (38)

with T0 = 0.5 Pa andr denoting the radius of the dust and
ice aggregates composing the cometary surface.

These extremely low tensile-strength values are, ac-
cording to the thermophysical model ofSkorov and Blum
(2012), just sufficiently low to explain a continuous out-
gassing and dust emission of comet nuclei inside a critical
distance to the Sun. This model provides strong indica-
tion that km-sized bodies in the outer Solar System were
formed by the gravitational contraction of smaller sub-units
(pebbles) at relatively low (order of m/s) velocities. Such
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pebble-pile planetesimals are in broad agreement with the
presence of large quantities of relatively intact mm-sized
chondrules and CAIs in chondrites from the asteroid belt.

The cometesimals could thus represent the smallest bod-
ies which formed by gravitational instability of mm-cm-
sized icy/rocky pebbles. These pebbles will continue to
collide inside the gravitationally collapsing clump. Low-
mass clumps experience low collision speeds and contract
as kinetic energy is dissipated in inelastic collisions, form-
ing small planetesimals which are made primarily of pris-
tine pebbles. Clumps of larger mass have higher collision
speeds between the constituent pebbles, and hence growth
by coagulation-fragmentation cycles inside massive clumps
determines the further growth towards one or more solid
bodies which may go on to differentiate by decay of short-
lived radionuclides. This way coagulation is not only im-
portant for forming pebbles that can participate in particle
concentration, but continues inside of the collapsing clumps
to determine the birth size distribution of planetesimals.

There is thus good evidence that pebbles are the pri-
mary building blocks of planetesimals both inside the ice
line (today’s asteroids) and outside the ice line (today’s
comets and Kuiper belt objects). This highlights the need
to understand pebble formation and dynamics better. The
bouncing barrier is a useful way to maintain a high num-
ber of relatively small pebbles in the protoplanetary disc
(Zsom et al., 2010). As pebbles form throughout the pro-
toplanetary disc, radial drift starts typically when reaching
mm-cm sizes. Such small pebbles drift relatively fast in
the outer disc but slow down significantly (to speeds of or-
der 10 cm/s) in the inner few AU. Pebbles with a high ice
fraction fall apart at the ice line around 3 AU, releasing re-
fractory grains, which can go on to form new (chondrule-
like) pebbles inside the ice line (Sirono, 2011), as well
as water vapor which boosts formation of large, icy peb-
bles outside the ice line (Ros and Johansen, 2013). Simi-
lar release of refractories and rapid pebble growth will oc-
cur at ice lines of more volatile species like CO (Qi et al.,
2013). In the optically thin very inner parts of the proto-
planetary disc, illumination by the central star leads to pho-
tophoresis which causes chondrules to migrate outwards
(Loesche et al., 2013). Radial drift of pebbles will conse-
quently not lead to a widespread depletion of planetesimal
building blocks from the protoplanetary disc. Instead peb-
ble formation can be thought of as a continuous cycle of
formation, radial drift, destruction and reformation.

We propose therefore that particle growth to planetesi-
mal sizes starts unaided by self-gravity, but after reaching
Stokes numbers roughly between 0.01 and 1 proceeds in-
side self-gravitating clumps of pebbles (or extremely fluffy
ice balls with similar aerodynamic stopping times). In this
picture coagulation and self-gravity are not mutually exclu-
sive alternatives but rather two absolutely necessary ingre-
dients in the multifaceted planetesimal formation process.
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Nesvorný D. et al. (2010)Astron. J., 140, 785.
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