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ABSTRACT

Aims. In this paper, we study the effect of MHD turbulence on the dynamics of dust particles in protoplanetary disks. We vary the size
of the particles and relate the dust evolution to the turbulent velocity fluctuations.
Methods. We performed numerical simulations using two Eulerian MHD codes, both based on finite difference techniques: ZEUS-3D
and NIRVANA. These were local shearing box simulations incorporating vertical stratification. Both ideal and non ideal MHD sim-
ulations with midplane dead zones were carried out. The codes were extended to incorporate different models for the dust as an
additional fluid component. Good agreement between results obtained using the different approaches was obtained.
Results. The simulations show that a thin layer of very small dust particles is diffusively spread over the full vertical extent of the
disk. We show that a simple description obtained using the diffusion equation with a diffusion coefficient simply expressed in terms
of the velocity correlations accurately matches the results. Dust settling starts to become apparent for particle sizes of the order of 1
to 10 centimeters for which the gas begins to decouple in a standard solar nebula model at 5.2 AU. However, for particles which are
10 centimeters in size, complete settling toward a very thin midplane layer is prevented by turbulent motions within the disk, even in
the presence of a midplane dead zone of significant size.
Conclusions. These results indicate that, when present, MHD turbulence affects dust dynamics in protoplanetary disks. We find that
the evolution and settling of the dust can be accurately modelled using an advection diffusion equation that incorporates vertical set-
tling. The value of the diffusion coefficient can be calculated from the turbulent velocity field when that is known for a time of several
local orbits.
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1. Introduction

Dust particles are very likely to be the basic building blocks that
need to be assembled to make planets.

In the “core-accretion” model for the formation of giant
planets (Mizuno 1980; Pollack et al. 1996), the growth of their
solid cores proceeds through the accretion of objects rang-
ing from micron sized dust particles to planetesimals of ra-
dius ∼10 km to eventually reach about 15 M⊕. Dust is also one
of the main observational tracers of the structure of protoplane-
tary accretion disks (Adams et al. 1987; D’Alessio et al. 2001).
A detailed knowledge of its dynamics is therefore needed both
in order to make theoretical models and to give the best interpre-
tation of the observations.

The key ingredient that drives the evolution of dust particles
is the drag force they feel from the gas (Weidenschilling 1977).
Gas must be present if a giant planet is to form subsequently.
Drag is responsible for example for the radial migration of solid
bodies toward the inner parts of a disk for which the pressure de-
creases radially outwards. The timescale for this migration is so
rapid for centimeter and meter size bodies that it has become a
problem for standard planet formation theories (Weidenschilling
1977), a resolution of which might involve the particles accumu-
lating close to pressure maxima possibly at the center of vortices.

Another important aspect of dust dynamics is the tendency
to settle towards the midplane of the disk, which increases with
particle size. Because of this, centimeter and metre sized bodies

accumulate close to the disk midplane. As argued by Goldreich
& Ward (1973), a gravitational instability in the dust sub-disk in
triggered when the dust density becomes high enough (see also
Safronov 1969; and, as remarked in a note in proof by Goldreich
& Ward 1973; Gurevich & Lebedinsky 1950). At this point,
larger bodies known as planetesimals form.

However, because the pressure force acts only on the gas,
a velocity shear between the dust sub-disk and the upper lay-
ers of the gas disk develops. This can lead to the so called
“shear-induced” turbulence that may be able to mix the dust
layer enough to prevent enough gravitational settling to satisfy
the condition for gravitational instability (Garaud et al. 2004;
Gómez & Ostriker 2005). However, the onset of this shear in-
duced turbulence depends on the vertical profile of the dust sub-
disk which is quite difficult to calculate. Indeed, this is deter-
mined as the result of the interplay between various physical
processes, such as dust coagulation, Brownian motions and tur-
bulent mixing (Dullemond & Dominik 2005). The purpose of
this paper is to investigate the behaviour of the dust disk when
just one of these operates, namely MHD turbulence, from first
principles.

Turbulence in protoplanetary disks is believed to be the result
of the magnetorotational instability (MRI). More than a decade
of analytical and numerical work (see a review by Balbus &
Hawley 1998) has shown that this is capable of leading to sus-
tained turbulence, and magnetic field with associated stresses
that transport angular momentum outwards. More and more of
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its properties have been analysed thanks to the increased com-
putational power currently available. However, little work has
focused on the effects of MHD turbulence on dust dynamics.
Carballido et al. (2005) and Johansen & Klahr (2005) analysed
the radial diffusion of small particles and calculated the effec-
tive Schmidt number, which is the ratio between the anoma-
lous turbulent viscosity and the anomalous diffusion coefficient.
They found different results which could be due to their differ-
ent initial setup. Johansen et al. (2006) and Fromang & Nelson
(2005) studied the radial migration of centimeter and meter size
bodies in turbulent disk models and found that dust trapping in
local pressure maxima could be an important confining effect.
Very recently, Turner et al. (2006) investigated the dispersion
of a passive scalar in stratified disk models by releasing parti-
cles at high altitude in the disk. They interpreted the effect of
MHD turbulence in terms of a damped wave equation. However
their analysis was restricted to infinitely small particles. They did
not consider the vertical settling that begins to occur for larger
particles. Thus in their case stratification is only significant for
the gas, being felt by the dust particles only through their strong
coupling to the gas.

A first attempt to study vertical settling numerically was
made through global SPH calculations by Barrière-Fouchet
et al. (2005). They confirmed earlier analytical results regard-
ing settling in a quiescent disk (Garaud & Lin 2004). However,
the question of the effect of MHD turbulence was left unan-
swered. In this paper, we tackle this problem by means of lo-
cal MHD simulations that use Eulerian finite difference codes.
Our goal is to relate the dust dynamics to the properties of the
turbulence. and also to characterise the amount of settling as a
function of the particle size. Because of the complexity of this
problem, we neglect dust coagulation and only consider popula-
tions of particles with a single specified size.

The plan of the paper is as follows: in Sect. 2, we review
the characteristics of dust-gas interaction and describe a sim-
ple model to account for the dispersion of a passive scalar in
a turbulent medium with random velocity field. In Sect. 3, we
present the numerical methods we used together with the basic
disk model which exhibits sustained MHD turbulence. We go on
to study of the diffusion of very small dust particles in Sect. 4.
Their evolution is analysed in the context of the simple diffusion
model discussed in Sect. 2. We then show in Sect. 5 that larger
dust particles start to decouple from the gas and settle toward
the midplane of the disk. In this case the evolution is found to
be well described using an advection diffusion equation incor-
porating settling together with the same diffusion coefficient that
applied to the very small particles. In Sect. 6, we investigate the
effect a dead zone is likely to have on these processes by setting
up non-ideal MHD calculations that result in a significant mid-
plane centered dead zone. However, gas motions are effective
at preventing complete settling for 10 cm sized particles in this
case too. Finally, we discuss our results in Sect. 7.

2. Basic equations

We adopt a two fluid model of the dust and gas circulating in a
protoplanetary accretion disk. The basic equations are those of
MHD applied to the gas component together with those of hy-
drodynamics applied to the dust component. The model allows
the two fluids to have different flow velocities and consequently
exchange momentum through drag forces.

The basic equations for the gas component are the continu-
ity, momentum conservation and induction equations. In a frame
rotating with angular velocity Ω = Ω k̂, with k̂ being the unit

vector in the fixed direction of rotation, here called the verti-
cal direction and Ω being the magnitude of the angular velocity,
these take the form

∂ρ

∂t
+ ∇ · (ρu) = 0 , (1)

∂u

∂t
+ (u · ∇)u + 2Ω × u = −1

ρ
∇P +

1
4πρ

(∇×B)×B

−∇Φ − ρd

ρ

Fdrag

mp
, (2)

∂B
∂t
= ∇×(u×B − η∇×B) . (3)

Here, P is the gas pressure, ρ is the gas density, Φ is sum of
the gravitational potential, here due to a central mass and the
centrifugal potential −Ω2|r×k̂|2/2 with r being the position vec-
tor, u is the gas velocity and B denotes the magnetic field. The
resistivity of the gas, η, is taken to be nonzero only in Sect. 6
where we investigate the effect of non-ideal MHD. The last term
in Eq. (2) is the acceleration of the gas due to drag on the dust
component. The drag force acting on a single dust particle of
mass mp is Fdrag (see below) and ρd is the dust density.
The equations for the dust are

∂ρd

∂t
+ ∇ · (ρdud) = 0 , (4)

∂ud
∂t
+ (ud · ∇)ud + 2Ω × ud = −∇Φ + Fdrag

mp
, (5)

with ud being the velocity of the dust component.

2.1. The drag force

The dust interacts with the gas through drag. In this paper, we
consider only dust particles that are small enough in size that
they are in the Epstein regime (Weidenschilling 1977). The drag
force Fdrag acting on a single particle then takes the form

Fdrag =
mp

τs
(u − ud). (6)

This drag force is proportional to u − ud which is the relative
velocity between the gas and dust components, and τs, the dust
stopping time, defined by

τs =
ρsa
ρcs
, (7)

where a is the dust particle radius, ρs is the dust particle density
and cs is the local speed of sound which, as we shall take an
isothermal equation of state, is independent of height.

WhenΩ is taken to be the Keplerian angular velocity at some
disk radius, the size of the particles there can be measured in
terms of the dimensionless parameter Ωτs through the relation

a =

(
ρ

ρs

)
(Ωτs)H , (8)

where H = cs/Ω is the disk scale height. Following Johansen
et al. (2004), when we take ρs/ρ = 1010 and H = 1012 cm,
Eq. (8) gives

a = 100 (Ωτs) cm. (9)

The above relation is also appropriate for the standard minimum
mass solar nebula at 5.2 AU.
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Using an approach based on Boltzmann averaging, Garaud
et al. (2004) argued that the evolution of the dust particle distri-
bution can be accurately determined by modelling it as a pres-
sureless fluid as long as the dimensionless parameter Ωτs is less
than unity. This is the case for the dust particles over most of the
disk domains considered in this paper. Accordingly we adopt the
two fluid description in preference to, for example a much more
computationally demanding N-body approach. We also assume
throughout this paper that the dust particles remain electrically
neutral so that they do not react to the magnetic field.

2.2. Single fluid with advection diffusion equation
and settling

We here note that in the limit τs → 0, the two fluid descrip-
tion can be reduced to one of a single fluid with MHD together
with an advection diffusion equation describing the evolution of
the dust. To see this we introduce a density ρ and a velocity u
associated with the combined fluid. These are defined through

ρ = ρ + ρd (10)

and

ρ u = ρu + ρdud. (11)

Adding the continuity Eqs. (1) and (4) and eliminating the
drag force by combining Eqs. (2) and (5) and subsequently let-
ting τs → 0 while assuming u − ud = O(τs) gives

∂ρ

∂t
+ ∇ · (ρ u) = 0 , (12)

ρ

(
∂u

∂t
+ (u · ∇)u + 2Ω × u

)
= −∇P +

1
4π

(∇×B)×B − ρ∇Φ . (13)

Correct to first order in τs,we may set ud = u in the left hand side
of Eq. (5) and then use that equation to find ud located on the
right hand side. Substituting this into Eq. (4) and after making
use of Eq. (13) gives rise to the equation

∂ρd

∂t
+ ∇ · (ρdu) = 0 (14)

with

u = u + us, (15)

where

us = −ρτs

ρ2

(
−∇P +

1
4π

(∇×B)×B
)
. (16)

Using the above in Eq. (14) and setting ρd = Xρ, ρ = (1 − X)ρ,
results in the following equation for the dust mass fraction X

ρ

(
∂X
∂t
+ u · ∇X

)
+ ∇ ·

[
Xρτs

(
(1 − X)∇(ρc2

s )

ρ
+

(∇×B)×B
4πρ

)]
=

∇ · (ρc2
sτsX∇X). (17)

This can be interpreted as an advection diffusion equation where
the advection velocity ua is the sum of the mean fluid velocity
and a settling velocity such that

ua = u +
ρτs

ρ

(
(1 − X)∇(ρc2

s )

ρ
+

(∇×B)×B
4πρ

)
· (18)

We remark that for small X and no magnetic field, the vertical
component of the settling velocity is −gτs with g being the verti-
cal acceleration due to gravity. In addition there is a small diffu-
sion coefficient arising through the second derivatives of X with
respect to the coordinates such that D = (1 − X)Xc2

sτs. In prac-
tice, when turbulence is present, this is overwhelmed by the ef-
fect of the mean fluid velocity, that being particularly the case
when X is small.

2.3. A simple theory for dust diffusion

The above analysis suggests that the dust mass fraction is ad-
vected as a passive scalar. When the gas is turbulent part of
the velocity field will be turbulent. The characteristic correlation
time associated with the turbulence is expected to be a fraction
of an orbital period (see below), whereas the underlying settling
takes place on a significantly longer timescale ∼1/(Ω2τs). Thus
we separate the effects of turbulent diffusion and settling and
consider the simplest case of the dispersion of a passive scalar in
steady state, homogeneous and isotropic turbulence. This means
that effects related to the imperfect coupling between dust and
gas such as turbulent enhancement of grain-grain collisions are
neglected (Voelk et al. 1980; Morfill 1985). It is well known
(Taylor 1921; Batchelor 1949) that the mean square displace-
ment of the scalar from its location at some initial time can be
expressed in terms of the fluid velocity fluctuations. We adopt a
Lagrangian approach and for simplicity consider only the verti-
cal z-direction. Extension to consider the other coordinate direc-
tions is straightforward but uninformative in our case.

Let z(z0, t) be the position of a particle which was located at
z = z0 at t = 0. Its displacement Z(z0, t) is given by

Z(z0, t) = z(z0, t) − z0 =

∫ t

0
U(z0, t

′)dt′, (19)

where U(z0, t) is the vertical component of the velocity of
the particle as defined in a Lagrangian sense as seen along
its path. It relates to its Eulerian equivalent vz(z, t) through
U(z0, t) = vz(z, t). We are interested in the mean square de-
viation of particles from their initial positions. Using the fact
that U(z0, t) and Z(z0, t) are related by a time integral, the deriva-
tive of Z2(z0, t) with respect to t can be expressed in terms of the
velocities as:

∂Z2(z0, t)
∂t

= 2
∫ t

0
U(z0, t

′)U(z0, t)dt′

= 2
∫ t

0
vz(z(z0, t

′), t′)vz(z(z0, t), t)dt′. (20)

To obtain a mean square particle displacement we take an en-
semble average over many particle realisations, indicated by an-
gular brackets, to obtain

d〈Z2(z0, t)〉
dt

= 2
∫ t

0
S zz(t, τ)dτ

= 2
∫ t

0
〈vz(z(z0, t − τ), t − τ)vz(z(z0, t), t)〉dτ, (21)

where S zz(t, τ) is the velocity correlation function which depends
only on the properties of the turbulence. For turbulence in a sta-
tistically steady state, as there is no preferred time, it should de-
pend only on the time difference t − t′ = τ. Thus any value of t
may be adopted in S zz(t, τ) so that

S zz(t, τ) = S zz(t = 0, τ) = S zz(t = τ, τ), (22)
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which finally gives

S zz(t, τ) = 〈vz(z(z0, τ), τ)vz(z0, 0)〉. (23)

When τ → 0, S zz becomes 〈v2z 〉, i.e. it is a measure of the mean
square turbulent velocity fluctuations. In the opposite limit,
when τ → ∞, S zz tends to zero as the velocities become un-
correlated.

The calculation of the velocity correlation described above
is greatly simplified if the integral in (21) can be performed
at a fixed location using Eulerian velocity components, such
that vz(z(z0, τ), τ) is replaced by vz(z0, τ) with z0 being fixed. This
is possible when the distance moved by a particle during the tur-
bulence correlation time is small compared to the characteristic
scale of the turbulence (Biferale et al. 1995) as would always be
the case if the turbulent velocities were reduced in magnitude
while retaining their spatial and temporal characteristics. This
situation seems to be a reasonable approximation in the case of
the MRI where the turbulence is subsonic and we note that it
would be even better in dead zones where the turbulent veloc-
ity fluctuations are reduced in magnitude. In this case S zz simply
scales down as the square of the velocity amplitude. Furthermore
for the turbulence we consider, there is no preferred location or
particles in the above ensemble averages and all fixed locations
can be assumed to get complete information about all particle
realisations. Then it is reasonable to replace the ensemble aver-
age over all possible particle realisations as a function of time,
by one over all possible fixed locations using the velocities there
at that time. Therefore, from now on, we adopt

S zz(τ) = 〈vz(z, τ)vz(z, 0)〉, (24)

where, the ensemble average is over fixed locations z and over
different realisations obtained from a set of models. We also de-
fine the quantity DT(τ) to be

DT(τ) =
∫ τ

0
S zz(τ′)dτ′. (25)

2.4. Diffusion coefficient

As we shall see, for large τ, the quantity D(τ) defines an effec-
tive diffusion coefficient. For small τ, S zz takes on a finite value.
Thus we expect DT(τ) ∝ τ. This is known as the ballistic regime
(Taylor 1921)

DT(τ) ∼ 〈v2z 〉τ (for small τ). (26)

When τ becomes large, S zz goes to zero, so we can postulate
that D(τ) goes to a finite limit, meaning that 〈Z2〉 would scale
like τ. This is the diffusive regime. If τcorr is a typical correla-
tion timescale for the turbulence, then we expect, from simple
dimensional analysis

DT(τ) ∼ 〈v2z 〉τcorr (for large τ). (27)

However, at this point we insert a cautionary note. Strict conver-
gence as τ→ ∞ would require ensemble averaging over an infi-
nite number of realisations. In practical cases these will be finite
in number and evaluating DT(τ) for increasing τ corresponds to
working out the average of a finite number of random walk dis-
placements for increasing numbers of steps. Although this might
appear reasonable for modest τ, it would not be expected to show
strict convergence for very large τ in practical cases. For this
reason a time span of 8 orbits equivalent to about 50 correlation
times is adopted below.

In this context we comment that the modelling of dust
spreading using a diffusion coefficient obtained by the above
procedure, on account of the averaging involved, of necessity
only describes evolution occurring on time scales significantly
longer than the correlation time associated with the turbulence.
Behaviour occurring on the correlation time scale or faster can-
not be meaningfully considered in this approach.

3. Numerical methods

3.1. The algorithms

In this paper, we use two well known finite difference codes:
ZEUS-3D (Stone & Norman 1992a,b) and NIRVANA (Ziegler
& Yorke 1997). Both are used here to solve the MHD equations
in the shearing sheet approximation (Goldreich & Lynden-Bell
1965), including vertical stratification. In this approximation a
small region of the disk is considered in the neighbourhood of
some point rotating in circular orbit with the local Keplerian
angular velocity. Local Cartesian coordinates are used with the
x axis along the line connecting the origin to the central mass
but pointing away from it, and the y axis directed in the direc-
tion of orbital motion. When dust is absent the equations solved
are (1)−(3) with Fdrag = 0 adapted to the shearing sheet by
taking

∇Φ = −3Ω2xî + Ω2zk̂, (28)

with î being the unit vector in the x direction. The evolution of
the magnetic field is calculated using the MOC-CT algorithm
(Hawley & Stone 1995), such that the solenoidality constraint
on the magnetic field is satisfied at all times.

In the two codes, we employ two different algorithms to de-
scribe the evolution of the dust particles that are the main focus
of this paper. ZEUS-3D was extended to describe the dust parti-
cle evolution by means of a second, pressureless fluid (Fromang
& Nelson 2005) using Eqs. (4), (5) together with appropriate
drag forces in the low X limit. Because of the short stopping time
of the dust particles, the effect of these is computed implicitly.

On the other hand, NIRVANA solved the MHD Eqs. (12),
(13) together with (3). Consistent with the low X limit the mean
flow velocity u was used in (3). The evolution of the dust mass
fraction was calculated by solving Eq. (17) but with the use of
an advection velocity limiter. This was applied such as to restrict
the settling velocity ua − u to be less than 0.1cs in magnitude.
This is required in the low density upper layers where dust gas
coupling becomes weak and where the theoretical description
breaks down. However, because it applies only in the upper lay-
ers, calculations of settling dust are insensitive to this cut off that
is required for numerical reasons.

3.2. The model properties

In this section, we describe the underlying disk model we used
and highlight some of the properties of the MHD turbulence that
are of importance for the dynamics of the dust that we go on to
study.

The initial disk setup in the absence of dust is very similar
to the model of Stone et al. (1996). The parameters are those of
the standard shearing box. The equation of state for the gas is
isothermal, P = ρc2

s . Because of the vertical stratification, the
initial density distribution is given by:

ρ ≡ ρ = ρ0e−z2/2H2
, (29)
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where ρ0 is the midplane density and H = cs/Ω is the disk scale
height. The Cartesian box extends over the domains [−H/2,H/2]
in x, [0, 2πH] in y and [−3H, 3H] in z.We use the standard peri-
odic boundary conditions in shearing coordinates in x (Hawley
et al. 1995; Balbus & Hawley 1998) and periodic boundary con-
ditions in y. One needs to be careful with the vertical boundary
conditions. Because of the vertical density stratification, in par-
ticular the non vanishing vertical component of the gravitational
force on the boundary, using simple periodic boundary condi-
tions in that direction leads to unphysical fluctuations generated
in the box.

In ZEUS-3D, we therefore made the vertical gravitational
force continuous at the boundary by writing the gravitational po-
tential as

Vgrav = max

(
−1

2
Ω2(z2 − H2

0), 0

)
. (30)

In practice, this means taking vertical gravity into account only
in the region z ∈ [−H0,H0]. We found that taking H0 = 2.4H
produces satisfactory results.

In NIRVANA, we further checked for the existence of
numerically generated fluctuations by applying the additional
procedure of making the vertical gravitational acceleration con-
tinuous throughout. To do this the usual acceleration was ap-
plied for z ∈ [−2.25H, 2.25H]. This was then reduced to zero
in ±[2.25H, 2.4H] by means of linear interpolation and set to
zero for |z| > 2.4H. As indicated below, similar results were ob-
tained with both codes.

In both cases the computational box is initially threaded by
a magnetic field with zero net flux, being of the form

Bz = B0 sin(2πx/H). (31)

B0 is calculated such that β, the ratio between the thermal pres-
sure and the magnetic pressure is initially 100. Finally, the nu-
merical resolution is (Nx,Ny,Nz) = (32, 100, 192) for ZEUS
and (36, 100, 196) for NIRVANA. Models with no dust are initi-
ated by imposing a small random velocity component and sub-
sequently run for ∼100 orbits.

We describe here simulation results, focusing on those ob-
tained with ZEUS-3D. The results obtained using NIRVANA
were very similar and accordingly only a few need to be illus-
trated here. As expected, the initial set up is unstable to the MRI.
Its early growth is illustrated in Fig. 1. Corresponding results ob-
tained with NIRVANA are plotted in Fig. 2. Both figures show
the time history of the volume averaged Maxwell stress (upper
solid line) and Reynolds stress (lower solid line), normalised by
the average midplane pressure P0. They are respectively defined
as

T Max
rφ =

∫∫∫
−BxBy

4π
dτ, (32)

T Rey
rφ =

∫∫∫
ρ(vx − v̄x)(vy − v̄y)dτ, (33)

where v̄x and v̄y are respectively the vertically and azimuthally
averaged radial and azimuthal velocities and dτ denotes the el-
ement of volume. The dashed line in Fig. 1 is the sum of the
Maxwell and Reynolds stresses:

α =
T Max

rφ + T Rey
rφ

P0
· (34)

After a few orbits, it peaks at a maximum as the flow breaks
down into turbulence and attains a saturated state. For the re-
maining part of the simulation, α varies noisily between 0.006

Fig. 1. Time history of the total stress (dashed line), the sum of the
Maxwell (upper solid line) and the Reynolds stresses (lower solid line)
obtained with ZEUS-3D. All stresses are normalised by the midplane
pressure. After the linear growth of the MRI, the total stress reaches a
nonzero quasi-steady state, showing that the turbulence is sustained.

Fig. 2. As in Fig. 1 but obtained with NIRVANA.

and 0.03, consistent with previous studies (Stone et al. 1996).
We remark that there are quite large fluctuations in the stresses.
At the present time, their origin is not clear. The origin of these
large variations in our stratified zero net flux models should be
addressed in the future using higher resolution calculations. In
any case, the results show clear evidence that MHD turbulence
is sustained for a very long time. The state of the disk is illus-
trated in Fig. 3, where we plot a typical snapshot of the density
in the (r, z) plane. Turbulent density fluctuations superposed on
the overall vertical stratification are obvious from this figure.

In Sect. 2.3, we argued that the diffusion of small dust par-
ticles depends on velocity fluctuations in the disk. In Fig. 4,
we plot their vertical profile normalised by the sound speed.
The dashed curve corresponds to the radial velocity fluctuations,
while the azimuthal and vertical fluctuations are respectively
given by the solid and dotted curves. The midplane values given
by this plot are

(δv2x)1/2 = 0.11cs, (δv2y)
1/2 = 0.08cs, (δv2z )1/2 = 0.07cs.

These values are consistent with numbers previously reported in
the literature (Stone et al. 1996).

4. Vertical diffusion of small particles

In this section, we present the results we obtained for very small
particles using ZEUS-3D. For a given disk model, simulations
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Fig. 3. Gas distribution in the (r, z) plane. Density fluctuations across
the disk are clearly visible, showing that the entire disk is turbulent at
this stage.

Fig. 4. Velocity dispersion as a function of height, normalised by the
sound speed. The three curves corresponds to the radial (dashed line),
azimuthal (solid line) and vertical (dotted line) velocity dispersions.

of dust evolution are defined by the value of Ωτs. This is ac-
tually a function of gas density. To obtain a fixed parameter
defining a given simulation, Ωτs is evaluated using the initial
uniform midplane disk gas density. Where this is not stated
explicitly it should be taken as read. We focus here on parti-
cles for which Ωτs = 10−5 in the midplane of the initial disk.
Equation (9) indicates that this corresponds to micron size par-
ticles. This small value of Ωτs means that the dust particles are
very well coupled to the gas and behave almost like a passive
scalar.

The dust is initially distributed in a thin layer around the
disk midplane. Initially, the vertical profile of ρd is taken to be
a Gaussian with a thickness Hd = 0.2H. Under the effects of
MHD turbulence, this small layer broadens with time. We found
that its precise evolution depends largely on the particular time
at which the dust particles are released in the disk. In order to
improve the statistics, we computed nine simulations, by restart-
ing the disk model described in Sect. 3.2 at times t = 40, 45, 50,
55, 60, 65, 70, 75 and 80 orbits.

Fig. 5. The first four snapshots show the dust distribution in the
(r, z) plane obtained with ZEUS-3D at times t = 3, 5, 10 and 15 or-
bits after the dust is introduced (from left to right). The last snapshot on
the right represents the gas distribution at t = 15 orbits. At that time,
the micron-sized dust particles are well mixed in the entire disk. The
dust density distribution is also seen to be well correlated with the gas
density.

Figure 5 illustrates the typical evolution of such a model.
From left to right, the first four snapshots on the left show the
dust density distribution in the (r, z) plane at time t = 3, 5, 10
and 15 orbits (measured after the dust has been introduced).
The last snapshot shows the corresponding gas distribution at
t = 15 orbits. The dust is seen to spread quite rapidly. At 15 or-
bits, it is almost filling the entire vertical extend of the disk. At
later times, this distribution does not change qualitatively. By
comparing the dust and the gas distribution at t = 15 orbits, one
can also see that they are very well correlated. We also found
that the initial distribution of the dust has very little effect on
this final state: starting with an initial dust distribution such that
the gas-to-dust ratio is uniform gives an end product almost in-
distinguishable from the last two snapshots of Fig. 5.

In order to make a more quantitative comparison between
the results of these simulations and the simple theory presented
in Sect. 2.3, we computed the functions S zz and DT according
to Eqs. (24) and (25). To calculate the former, we first volume
averaged the velocity product in radius and azimuth. The ver-
tical average is taken only within H around the disk equatorial
plane. Indeed, the behaviour of the turbulence away from the
midplane is likely to depart very much from being homogeneous
and isotropic and may be influenced by the vertical boundary
conditions. To reduce the statistical noise, the result is then aver-
aged over the nine different models we computed. The resulting
function S zz(τ) is plotted in Fig. 6 using the solid line. The dotted
line represents the time variation of the function

S zz(τ) = (0.07cs)
2e−t/τcorr , (35)

where τcorr = 0.15 orbits. Given the good agreement between
the solid and dotted lines in Fig. 6, we conclude that τcorr is a
measure on the typical timescale over which the fluid velocities
become uncorrelated.

Integrating S zz over time gives DT(τ). The left panel of Fig. 7
shows the time evolution of DT/(csH). Figure 8 gives results of
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Fig. 6. Time history of the function S zz(τ), averaged between the nine
models that were run with ZEUS-3D. The solid line show the function
as it is extracted from the models while the dotted line represents the
function S 0 exp (−t/τcorr), with τcorr = 0.15 orbits. This dotted curve is
seen to match nicely the numerical result.

similar calculations done from runs with NIRVANA (see below).
DT is first observed to rise at early times. This is in good agree-
ment with Eq. (26). In fact, the prediction given by Eq. (26)
is represented by the dashed line on the right panel of Fig. 7,
which is an enlargement of the left panel at small times. It uses
(δv2z )1/2 = 0.07cs, as obtained in Sect. 3.2. This early linear rise
of the diffusion coefficient was also observed by Carballido et al.
(2005). Here, we see that it is naturally understood in terms of
the fluid velocity correlations. After this initial rise, DT(τ) is
observed to reach a roughly constant value of 5.5 × 10−3csH.
This value nicely compares with the naïve estimate of Eq. (27).
Indeed, taking the value of δv2z and τcorr derived above, one ob-
tain DT ∼ 4.6 × 10−3csH, a value which is surprisingly close to
the result of the numerical simulations. This analytical estimate
is represented by the dashed line in Fig. 7.

If the dust distribution undergoes diffusive evolution as indi-
cated by the simple theory, ρd should satisfy a diffusion equation
of the form

∂ρd

∂t
= D
∂

∂z

[
ρ
∂

∂z

(
ρd

ρ

)]
, (36)

where D is a constant diffusion coefficient. We tested this hy-
pothesis by solving Eq. (36). To do so, we took an initial dust
distribution identical to that of the numerical model and investi-
gate three different values for the diffusion coefficient D. First,
we used D/(csH) = Dth = 5.5× 10−3, i.e. the value given by our
simple theoretical model in terms of the velocity fluctuations of
the fluid. If this theory is correct, we expect this solution to be
close to the numerical solution. In order to check its accuracy,
we also computed the solution of Eq. (36) using D/(csH) = 10−3

and D/(csH) = 10−2.
The comparison between the analytical solution of Eq. (36)

and the results of the numerical simulations is shown in Fig. 9.
It is illustrated by nine panels. They correspond, from top left
to bottom right, to times t = 0.48, 0.80, 1.12, 1.44, 1.76, 2.08,
2.40, 2.72 and 3.04 orbits (measured after the dust was intro-
duced into the disk). On each panel, there are four curves. The
solid line shows the vertical profile of the dust-to-gas ratio, av-
eraged between the nine models we ran and normalised by the

value in the equatorial plane at t = 0. The three dashed curves
are the solutions of Eq. (36) using the three diffusion coefficients
mentioned above. Of course, the smaller the value of D, the less
the dust is spread across the disk at a given time.

The agreement between the numerical results and the sim-
ple model is fairly good. In all panels, the solid line is seen to
have the best agreement with the middle dashed curve, calcu-
lated using D = DT. The agreement is especially good at low
altitude (typically z < H). This was to be expected: first, this
is the region in space where we performed the volume aver-
age used to calculate the function S zz. Second, the theory sup-
poses that the turbulence is homogeneous and isotropic. This re-
sults in only possibly reasonable modelling near the midplane.
The anisotropy of the turbulence is expected to increase away
from the midplane, as the density stratification becomes stronger.
From Fig. 9, there are some indications that the estimated dif-
fusion coefficient might increase with height. Indeed, at late
times, for z > H, the solid line shows better agreement with the
dashed curve computed using D/(csH) = 10−2 than at lower al-
titudes, indicating that dust particles are spread more efficiently
than the simple theory suggests. This is also supported by re-
sults of runs performed with NIRVANA to test the simple dif-
fusion theory. As with ZEUS-3D we considered runs restarted
from the basic disk model after 33, 40, and 60 orbits. We evalu-
ated the function DT(τ) by performing ensemble averages both
over grid points such that |z| < H, and for grid points such that
H < |z| < 2H and then averaging over the models. Results are
shown in Fig. 8. The indication is, in agreement with ZEUS, that
for |z| < H, DT approaches ∼5 × 10−3csH, but for H < |z| < 2H,
DT is ∼4 times larger.

5. Vertical settling of larger particles

In the previous section, we have studied the effect of MHD tur-
bulence on very small dust particles, which behave essentially
like passive scalars. In this section, we will focus on larger par-
ticles for which the settling processes described in the introduc-
tion are fast in the absence of turbulence.

We focus on three sizes, for which the parameter Ωτs is re-
spectively 0.001, 0.01 and 0.1 in the midplane of the initial disk.
Using Eq. (9), these values correspond respectively to 1 mm,
1 cm and 10 cm. In the absence of turbulence, the typical set-
tling timescale can be written (Dullemond & Dominik 2004)

τsett

Torb
∼ 1

2π
1
Ωτs
, (37)

where Torb is the orbital time. In our three cases, Ωτs = 0.001,
0.01 and 0.1 correspond to τsett = 160, 16 and 1.6 orbits re-
spectively. Thus in the absence of turbulence, settling would be
important within the duration of the simulations in the last two
cases.

At t = 40 orbits, we introduced the particles into the tur-
bulent disk model with the same vertical distribution as for the
small particles discussed in Sect. 4. Their evolution was then fol-
lowed until the vertical profile of the dust-to-gas ratio reaches a
steady state. Once again, by running models in which the initial
dust-to-gas ratio is uniform, we checked that this final distribu-
tion does not depend on the initial conditions.

The results obtained with ZEUS-3D are illustrated in Fig. 10.
This shows the typical distribution of the dust particles in the
(r, z) plane after they have reached a steady state. From left to
right, the snapshots corresponds to Ωτs = 0.001, 0.01 and 0.1.
While the smallest dust particles are still efficiently spread across
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Fig. 7. Diffusion coefficient as a function of time, normalised by csH, obtained from the simulations done with ZEUS-3D. It is computed using
Eq. (25) and combining an average over a part of the computational box (|z| < H) and over a set of models (see the description in the text). As
shown on the left panel, the diffusion coefficient is observed to saturate to a well defined value D ∼ 5.5 × 10−3csH after an initial rise. The dashed
line plots the analytical estimate computed from Eq. (27). The right panel shows an enlargement of the early evolution of DT, compared with its
expected early behaviour as given by Eq. (26) for small time (dashed line).

Fig. 8. As in Fig. 7 but for runs performed with NIRVANA. The lower curve applies for |z| < H, and the upper curve for H < |z| < 2H. In the
former case the diffusion coefficient is observed to attain D ∼ 5 × 10−3csH after an initial rise in good agreement with the ZEUS results. In the
latter case the estimated diffusion coefficient is less stable but is about 4 times larger. In that case the significance of the diffusion coefficient is less
clear for the reasons given in the text.

the disk (compare with the fourth panel of Fig. 5), there are some
signs of vertical settling for the larger particles. This is obvi-
ous in particular for the largest particles. But note however that
turbulence is quite efficient at preventing the complete settling
of these particles. As discussed above, a very thin dust subdisk
would form in just a few orbits in a quiescent disk. We have
confirmed that very similar results for the degree of settling as
a function of Ωτs (evaluated in the midplane) are obtained with
NIRVANA which employed an advection diffusion treatment of
the dust mass fraction. Steady state distributions corresponding
to those shown in Fig. 10 are plotted in Fig. 11. Again these are
found to be initial condition independent for distributions initi-
ated in the midplane regions.

Once again, we can make use of the simple theory devel-
oped in Sect. 2.3 to interpret these results. However, in this case
the full advection diffusion Eq. (17) incorporating settling must

be used with an anomalous diffusion coefficient. Neglecting
Lorentz forces, in the low X or ρd/ρ limit this gives (Dubrulle
et al. 1995; Schräpler & Henning 2004).

∂ρd

∂t
− ∂
∂z

(zΩ2τsρd) = D
∂

∂z

[
ρ
∂

∂z

(
ρd

ρ

)]
· (38)

Assuming a steady state, this equation gives a simple first or-
der ordinary differential equation for the vertical dust mass frac-
tion profile. We calculate solutions for the same three values of
the diffusion coefficient that were used in Sect. 4 and compare
them with the numerical simulations. The results are shown in
Fig. 12 for the case where Ωτs = 0.01 and in Fig. 13 for the
case Ωτs = 0.1. We do not consider the case Ωτs = 0.001 be-
cause the dust-to-gas ratio is almost uniform at the end of the
simulation. In these figures the solid line shows the steady-state
dust-to-gas ratio obtained at the end of the simulations while the
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Fig. 9. Vertical profile of the dust to gas ratio as a function of time. The different panels correspond, from top to bottom and from left to right,
to t = 0.48, 0.80, 1.12, 1.44, 1.76, 2.08, 2.40, 2.72 and 3.04 orbits. On each panels, the solid line is the result of the simulations performed with
ZEUS-3d, averaged over the nine models described in the text. Three dashed curves are plotted. They show the solution of Eq. (36), computed
using D/(csH) = 10−3, D/(csH) = 5.5 × 10−3 and D/(csH) = 10−2. The smaller the value of D, the smaller the diffusion.

three dashed curves are the corresponding solutions of Eq. (38)
calculated with D/(csH) = 10−3, 5.5 × 10−3 and 10−2. As in
Sect. 4, there is a good agreement between the solid line and the
middle dashed curve, for which the magnitude of the diffusion
coefficient corresponds to that estimated using the velocity fluc-
tuations of the underlying model. The two other values of the dif-
fusion coefficient can clearly be ruled out. There is also a marked
difference between the solid curve and the middle dashed curve
in the upper layers of the disk. This was also observed in Fig. 9.
As pointed out in Sect. 4, this is due to the increase of the diffu-
sion coefficient at high disk altitudes and also to the fact that our
simple theory breaks down because the turbulence ceases to be
something that can be profitably modelled as homogeneous and
isotropic at these locations.

6. The effect of a dead zone

All the results presented so far in this paper suppose that gas and
magnetic field are perfectly coupled throughout the entire verti-
cal extent of the disk. However, protoplanetary disks are proba-
bly cold and dense enough that this perfect coupling is unlikely,
at least in some regions of the disk. This situation has gener-
ated the “layered accretion” paradigm (Gammie 1996) in which
the gas is turbulent only in the upper layers of the disk, while a
quiescent (or “dead”) zone exists around the midplane. The ex-
tent of this dead zone is very uncertain, since it depends on the

ionising source and on the chemistry (Sano et al. 2000; Fromang
et al. 2002; Ilgner & Nelson 2006), but its existence is likely.
In this section, we investigate how the presence of a dead zone
would influence the results described in the previous sections.

The problem of layered turbulence in local numerical sim-
ulations of stratified disks has already been studied by Fleming
& Stone (2003). In this section, we reproduce one of their disk
models by allowing the resistivity η to be a function of position.
We choose the vertical profile of η such that our model is identi-
cal to the “larger dead zone” model of Fleming & Stone (2003):

η = η0 exp

(
− z2

2

)
exp

(
Σ0

ΣCR

1

2
√
π

∫ ∞

z
e−z′2 dz′

)
, (39)

where Σ0/ΣCR = 30 and η0 is chosen such that the Reynolds
magnetic number Rem, defined by

Rem =
csH
η
, (40)

equals 100 in the midplane of the disk. This disk model was
run for 100 orbits. The evolution is the same as that found by
Fleming & Stone (2003). In particular, we found that density
waves are excited in the dead zone by the turbulent motions in
the active layers. The velocity dispersions of the three velocity
components are shown in Fig. 14 as a function of z. This figure
should be compared with Fig. 4. Taken as a whole, there is a
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Fig. 10. Dust distribution in the (r, z) plane, obtained with ZEUS-3D, af-
ter a quasi-steady state has been reached. From left to right, the different
panels correspond to Ωτs = 0.001, 0.01 and 0.1.

Fig. 11. As in Fig. 10 but for results obtained with NIRVANA.

decrease of the velocity fluctuations compared to the fully tur-
bulent model. The presence of the dead zone is apparent through
a decrease in the azimuthal and vertical velocity fluctuations.
The latter have a root mean square dispersion of roughly 0.03cs,
thereby showing a decrease by about a factor of two compared
to the fully turbulent model. However, since it does not vanish, a
nonzero diffusion coefficient can be expected.

Using this new underlying disk model and introducing dust
particles, we used ZEUS-3D to recalculate the models described
in Sect. 5 for which Ωτs = 0.01 and Ωτs = 0.1. After a few
orbits, the dust distribution reaches a new equilibrium state. It is
represented in Fig. 15 (for Ωτs = 0.01) and Fig. 16 (for Ωτs =
0.1). In both cases, the solid line shows the vertical profile of the
dust-to-gas ratio in the nonideal case with a dead zone, while the
dashed line corresponds to the fully turbulent case. As expected,
the thickness of the dust sub-disk is smaller in the former case.

Fig. 12. Steady state vertical profile of the dust-to-gas ratio when Ωτs =
0.01 (solid line). It has to be compared with the vertical profile calcu-
lated using Eq. (36), shown with the dotted line for three different val-
ues of the dimensionless diffusion coefficient D/(csH): 10−3, 5.5× 10−3

and 10−2.

Fig. 13. Same as Fig. 12, but for the case Ωτs = 0.1.

It is possible to compare these results to those obtained using
the simple model presented in Sect. 2.3. To do so, we first note
that close to the midplane, the stopping time τs is nearly con-
stant. A steady-state solution to Eq. (38) can be written in that
case as

ρd

ρ
=

(
ρd

ρ

)
0

e−z2/2H̃d
2

, (41)

where the dust scale height H̃d is given by

H̃d =

√
D
Ω2τs

· (42)

We first focus on the case Ωτs = 0.1. When the disk is com-
pletely turbulent (or “active”), we found in Sect. 4 that the value
of the diffusion coefficient was D/(csH) = 5.5 × 10−3. Using
Eq. (42), this would give a scale height

H̃d
active
= 0.23 (43)

for the dust sub-disk. Next, we seek an estimate of the dust sub-
disk scale height in the presence of a dead zone. By combining
Eqs. (27) and (42), H̃d can be related to the velocity fluctua-
tions by

H̃d ∝ (δv2z )1/2. (44)

Given the smaller value we obtained for (δv2z )1/2 in the “larger
dead zone” model (see Fig. 14), we therefore expect

H̃d
dead ∼ H̃d

active
/2 ∼ 0.11. (45)
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Fig. 14. Same as Fig. 4, but for the “larger dead zone” model of Fleming
& Stone (2003).

Fig. 15. Steady state vertical profile of the dust to gas ratio in the ideal
MHD case (dashed line) and when a dead zone is present around the
equatorial plane of the disk (solid line). The parameter Ωτs equals 0.01
in that case.

The two dust distributions computed with Eq. (41) using H̃d
active

and H̃d
dead

(corresponding respectively to the fully turbulent case
and to the “larger dead zone” model) are plotted in Fig. 16 using
dotted lines. Both are seen to match very accurately the solid and
dashed curves that are their numerical analogues.

The same procedure was followed in the model for which
Ωτs = 0.01. In that case, we found H̃d

active
= 0.77 and H̃d

dead
=

0.37. The dust-to-gas ratio vertical profiles derived using these
two values are plotted in Fig. 15 with dotted lines. The agree-
ment with the solid line is quite good. However, there is a poor
agreement with the dashed line. This is because the dust is spread
to higher altitudes in that case. The hypothesis that τs is a con-
stant which we used to derive Eqs. (41) and (42) starts to break
down, which explain the discrepancy with the numerical result.

7. Discussion

In this paper, we studied the effects of MHD turbulence on dust
settling by means on local numerical simulations performed us-
ing ZEUS-3D and NIRVANA, being Eulerian MHD codes using
finite differences.

We first investigated the case of very small particles which
are strongly coupled to the gas. Turbulent velocity fluctuations
were found to cause an initially thin dust sub-disk to spread.
The time evolution of the vertical profile for the dust-to-gas ratio
can be well modelled by a diffusion equation, with a diffusion
coefficient D that can be expressed in terms of turbulent velocity

Fig. 16. Same as Fig. 15, but for the case Ωτs = 0.1.

correlations. We found that a simple analytical estimate of D
can be obtained in terms of the mean square amplitude of the
velocity fluctuations δv2z and their correlation time τcorr, both of
which are properties of the turbulence alone:

D = (δv2z )1/2τcorr. (46)

Similarly to Turner et al. (2006), we found an increase of the dif-
fusion coefficient with disk height. We also noticed that the en-
semble averages used to calculate it show weaker convergence
when the upper layers of the disk are included. While the dif-
fusive description of dust spreading seems to work well in the
neighbourhood of the midplane, it is less accurate at disk heights
exceeding a few scale heights.

A standard procedure in this type of analysis is to determine
the value of the Schmidt number S c, defined as the ratio be-
tween the anomalous viscosity and the diffusion coefficient. The
standard approach in dust diffusion modelling is to take S c = 1
(Schräpler & Henning 2004; Ilgner et al. 2004; Dullemond &
Dominik 2004). In non zero net flux local simulations of radial
dust diffusion, Carballido et al. (2005) found S c = 11, while
Johansen & Klahr (2005) reported S c = 1.5 for vertical diffusion
in zero net flux simulations. Turner et al. (2006) also reported
a near unity Schmidt number in their calculations. It is worth
comparing these values to the Schmidt number we can derive
from our simulations. By averaging the total stress represented
in Fig. 1 between 20 and 100 orbits, one obtains α = 1.54×10−2.
This, together with the value of the diffusion coefficient obtained
from the velocity fluctuations gives

S c =
αcsH

D
= 2.8, (47)

an intermediate value between the measures of Johansen et al.
(2006) and Carballido et al. (2005). However, it is important to
stress here that the origin of a non zero diffusion coefficient is
on account of the velocity fluctuations and not in the transport
properties of angular momentum.

When dust particles grow to centimeter sizes, we found that
they start to decouple from the turbulence and settle towards
the midplane. The steady state profile of the dust-to-gas ratio
is well approximated by the solution of an advection-diffusion
equation. Even for particles as large as 10 cm, we found that the
dust sub-disk is significantly spread since its semi-thickness Hd
equals 0.23H, while the settling timescale in a quiescent disk is
very short in that case (1.6 orbits). We note however that radial
migration is important for particles of this size and the interplay
between that migration and MHD turbulence in a stratified disk
could lead to complex phenomena, such as local enhancement
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of the dust density (Fromang & Nelson 2005) that might affect
this picture.

Because they are cold and dense, protoplanetary disks are
unlikely to have adequate ionisation to be turbulent everywhere.
Therefore we also investigated the effect of the presence of a
dead zone around the midplane. As expected, we found thin-
ner dust sub-disks in that case. Similarly to previous studies
(Fleming & Stone 2003), we found the dead zone is able to main-
tain significant activity (excited by the turbulent velocity fluctu-
ations of the active zone). This activity is able to prevent the
complete settling of 10 cm size particles. However, we want to
emphasise that for computational reasons, our analysis was lim-
ited to a case in which the mass of the dead zone roughly equals
the mass of the active zone. We expect our result to be modified
in cases where the mass of the dead zone is much larger than that
of the active zone and therefore only apply them to dead zones
that involve a modest fraction of the local surface density.

Nonetheless for conditions appropriate to a minimum mass
solar nebula, the work presented here that considered MHD tur-
bulence, taken together with that of eg. Gómez & Ostriker (2005)
indicates that gravitational instability of the dust layer is unlikely
and that the formation of objects of planetesimal size may de-
pend on phenomena such as densification in vortices operating
together with vertical settling.

For practical reasons, we neglected grain growth in this
work. This is an important simplification, as dust particles are
likely to grow at the same time as they settle toward the equato-
rial plane of the disk (Cuzzi et al. 1996; Dullemond & Dominik
2005). Simulations of the evolution of an entire dust population
through grain growth and turbulent stirring, that take account of
both radial and vertical disk structure, are very challenging with
present day computational capabilities, but will have to be per-
formed in the future.

Acknowledgements. Some of the simulations presented in this paper were per-
formed on the QMUL High Performance Computing Facility purchased under
the SRIF initiative.
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